Get rid of struct user/UAREA.
[dragonfly.git] / sys / kern / kern_fork.c
blobed15362bba1985338d1351df0769ee06d180e289
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40 * $DragonFly: src/sys/kern/kern_fork.c,v 1.64 2007/02/25 23:17:12 corecode Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
68 #include <sys/vmmeter.h>
69 #include <sys/thread2.h>
70 #include <sys/signal2.h>
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
75 * These are the stuctures used to create a callout list for things to do
76 * when forking a process
78 struct forklist {
79 forklist_fn function;
80 TAILQ_ENTRY(forklist) next;
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
86 int forksleep; /* Place for fork1() to sleep on. */
88 /* ARGSUSED */
89 int
90 sys_fork(struct fork_args *uap)
92 struct lwp *lp = curthread->td_lwp;
93 struct proc *p2;
94 int error;
96 error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
97 if (error == 0) {
98 start_forked_proc(lp, p2);
99 uap->sysmsg_fds[0] = p2->p_pid;
100 uap->sysmsg_fds[1] = 0;
102 return error;
105 /* ARGSUSED */
107 sys_vfork(struct vfork_args *uap)
109 struct lwp *lp = curthread->td_lwp;
110 struct proc *p2;
111 int error;
113 error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
114 if (error == 0) {
115 start_forked_proc(lp, p2);
116 uap->sysmsg_fds[0] = p2->p_pid;
117 uap->sysmsg_fds[1] = 0;
119 return error;
123 * Handle rforks. An rfork may (1) operate on the current process without
124 * creating a new, (2) create a new process that shared the current process's
125 * vmspace, signals, and/or descriptors, or (3) create a new process that does
126 * not share these things (normal fork).
128 * Note that we only call start_forked_proc() if a new process is actually
129 * created.
131 * rfork { int flags }
134 sys_rfork(struct rfork_args *uap)
136 struct lwp *lp = curthread->td_lwp;
137 struct proc *p2;
138 int error;
140 if ((uap->flags & RFKERNELONLY) != 0)
141 return (EINVAL);
143 error = fork1(lp, uap->flags | RFPGLOCK, &p2);
144 if (error == 0) {
145 if (p2)
146 start_forked_proc(lp, p2);
147 uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
148 uap->sysmsg_fds[1] = 0;
150 return error;
154 int nprocs = 1; /* process 0 */
157 fork1(struct lwp *lp1, int flags, struct proc **procp)
159 struct proc *p1 = lp1->lwp_proc;
160 struct proc *p2, *pptr;
161 struct pgrp *pgrp;
162 struct lwp *lp2;
163 uid_t uid;
164 int ok, error;
165 static int curfail = 0;
166 static struct timeval lastfail;
167 struct forklist *ep;
168 struct filedesc_to_leader *fdtol;
170 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
171 return (EINVAL);
174 * Here we don't create a new process, but we divorce
175 * certain parts of a process from itself.
177 if ((flags & RFPROC) == 0) {
179 vm_fork(lp1, 0, flags);
182 * Close all file descriptors.
184 if (flags & RFCFDG) {
185 struct filedesc *fdtmp;
186 fdtmp = fdinit(p1);
187 fdfree(p1);
188 p1->p_fd = fdtmp;
192 * Unshare file descriptors (from parent.)
194 if (flags & RFFDG) {
195 if (p1->p_fd->fd_refcnt > 1) {
196 struct filedesc *newfd;
197 newfd = fdcopy(p1);
198 fdfree(p1);
199 p1->p_fd = newfd;
202 *procp = NULL;
203 return (0);
207 * Interlock against process group signal delivery. If signals
208 * are pending after the interlock is obtained we have to restart
209 * the system call to process the signals. If we don't the child
210 * can miss a pgsignal (such as ^C) sent during the fork.
212 * We can't use CURSIG() here because it will process any STOPs
213 * and cause the process group lock to be held indefinitely. If
214 * a STOP occurs, the fork will be restarted after the CONT.
216 error = 0;
217 pgrp = NULL;
218 if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
219 lockmgr(&pgrp->pg_lock, LK_SHARED);
220 if (CURSIGNB(lp1)) {
221 error = ERESTART;
222 goto done;
227 * Although process entries are dynamically created, we still keep
228 * a global limit on the maximum number we will create. Don't allow
229 * a nonprivileged user to use the last ten processes; don't let root
230 * exceed the limit. The variable nprocs is the current number of
231 * processes, maxproc is the limit.
233 uid = p1->p_ucred->cr_ruid;
234 if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
235 if (ppsratecheck(&lastfail, &curfail, 1))
236 kprintf("maxproc limit exceeded by uid %d, please "
237 "see tuning(7) and login.conf(5).\n", uid);
238 tsleep(&forksleep, 0, "fork", hz / 2);
239 error = EAGAIN;
240 goto done;
243 * Increment the nprocs resource before blocking can occur. There
244 * are hard-limits as to the number of processes that can run.
246 nprocs++;
249 * Increment the count of procs running with this uid. Don't allow
250 * a nonprivileged user to exceed their current limit.
252 ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
253 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
254 if (!ok) {
256 * Back out the process count
258 nprocs--;
259 if (ppsratecheck(&lastfail, &curfail, 1))
260 kprintf("maxproc limit exceeded by uid %d, please "
261 "see tuning(7) and login.conf(5).\n", uid);
262 tsleep(&forksleep, 0, "fork", hz / 2);
263 error = EAGAIN;
264 goto done;
267 /* Allocate new proc. */
268 p2 = zalloc(proc_zone);
269 lp2 = zalloc(lwp_zone);
272 * Setup linkage for kernel based threading XXX lwp
274 if (flags & RFTHREAD) {
275 p2->p_peers = p1->p_peers;
276 p1->p_peers = p2;
277 p2->p_leader = p1->p_leader;
278 } else {
279 p2->p_peers = NULL;
280 p2->p_leader = p2;
283 p2->p_wakeup = 0;
284 p2->p_vmspace = NULL;
285 p2->p_numposixlocks = 0;
286 p2->p_emuldata = NULL;
287 LIST_INIT(&p2->p_lwps);
289 /* XXX lwp */
290 lp2->lwp_proc = p2;
291 lp2->lwp_tid = 0;
292 LIST_INSERT_HEAD(&p2->p_lwps, lp2, lwp_list);
293 p2->p_nthreads = 1;
294 p2->p_nstopped = 0;
295 p2->p_lasttid = 0;
298 * Setting the state to SIDL protects the partially initialized
299 * process once it starts getting hooked into the rest of the system.
301 p2->p_stat = SIDL;
302 lp2->lwp_stat = LSRUN; /* XXX use other state? start_forked_proc() handles this*/
303 proc_add_allproc(p2);
306 * Make a proc table entry for the new process.
307 * Start by zeroing the section of proc that is zero-initialized,
308 * then copy the section that is copied directly from the parent.
310 bzero(&p2->p_startzero,
311 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
312 bzero(&lp2->lwp_startzero,
313 (unsigned) ((caddr_t)&lp2->lwp_endzero -
314 (caddr_t)&lp2->lwp_startzero));
315 bcopy(&p1->p_startcopy, &p2->p_startcopy,
316 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
317 bcopy(&lp1->lwp_startcopy, &lp2->lwp_startcopy,
318 (unsigned) ((caddr_t)&lp2->lwp_endcopy -
319 (caddr_t)&lp2->lwp_startcopy));
321 p2->p_aioinfo = NULL;
324 * Duplicate sub-structures as needed.
325 * Increase reference counts on shared objects.
326 * p_lock is in the copy area and must be cleared.
328 p2->p_flag = 0;
329 p2->p_lock = 0;
330 lp2->lwp_lock = 0;
331 if (p1->p_flag & P_PROFIL)
332 startprofclock(p2);
333 p2->p_ucred = crhold(p1->p_ucred);
335 if (jailed(p2->p_ucred))
336 p2->p_flag |= P_JAILED;
338 if (p2->p_args)
339 p2->p_args->ar_ref++;
341 if (flags & RFSIGSHARE) {
342 p2->p_sigacts = p1->p_sigacts;
343 p2->p_sigacts->ps_refcnt++;
344 } else {
345 p2->p_sigacts = (struct sigacts *)kmalloc(sizeof(*p2->p_sigacts),
346 M_SUBPROC, M_WAITOK);
347 bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
348 p2->p_sigacts->ps_refcnt = 1;
350 if (flags & RFLINUXTHPN)
351 p2->p_sigparent = SIGUSR1;
352 else
353 p2->p_sigparent = SIGCHLD;
355 /* bump references to the text vnode (for procfs) */
356 p2->p_textvp = p1->p_textvp;
357 if (p2->p_textvp)
358 vref(p2->p_textvp);
361 * Handle file descriptors
363 if (flags & RFCFDG) {
364 p2->p_fd = fdinit(p1);
365 fdtol = NULL;
366 } else if (flags & RFFDG) {
367 p2->p_fd = fdcopy(p1);
368 fdtol = NULL;
369 } else {
370 p2->p_fd = fdshare(p1);
371 if (p1->p_fdtol == NULL)
372 p1->p_fdtol =
373 filedesc_to_leader_alloc(NULL,
374 p1->p_leader);
375 if ((flags & RFTHREAD) != 0) {
377 * Shared file descriptor table and
378 * shared process leaders.
380 fdtol = p1->p_fdtol;
381 fdtol->fdl_refcount++;
382 } else {
384 * Shared file descriptor table, and
385 * different process leaders
387 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
390 p2->p_fdtol = fdtol;
391 p2->p_limit = plimit_fork(p1->p_limit);
394 * Preserve some more flags in subprocess. P_PROFIL has already
395 * been preserved.
397 p2->p_flag |= p1->p_flag & P_SUGID;
398 lp2->lwp_flag |= lp1->lwp_flag & LWP_ALTSTACK;
399 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
400 p2->p_flag |= P_CONTROLT;
401 if (flags & RFPPWAIT)
402 p2->p_flag |= P_PPWAIT;
405 * Inherit the virtual kernel structure (allows a virtual kernel
406 * to fork to simulate multiple cpus).
408 p2->p_vkernel = NULL;
409 if (p1->p_vkernel)
410 vkernel_inherit(p1, p2);
413 * Once we are on a pglist we may receive signals. XXX we might
414 * race a ^C being sent to the process group by not receiving it
415 * at all prior to this line.
417 LIST_INSERT_AFTER(p1, p2, p_pglist);
420 * Attach the new process to its parent.
422 * If RFNOWAIT is set, the newly created process becomes a child
423 * of init. This effectively disassociates the child from the
424 * parent.
426 if (flags & RFNOWAIT)
427 pptr = initproc;
428 else
429 pptr = p1;
430 p2->p_pptr = pptr;
431 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
432 LIST_INIT(&p2->p_children);
433 varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
434 callout_init(&p2->p_ithandle);
436 #ifdef KTRACE
438 * Copy traceflag and tracefile if enabled. If not inherited,
439 * these were zeroed above but we still could have a trace race
440 * so make sure p2's p_tracenode is NULL.
442 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
443 p2->p_traceflag = p1->p_traceflag;
444 p2->p_tracenode = ktrinherit(p1->p_tracenode);
446 #endif
449 * Inherit the scheduler and initialize scheduler-related fields.
450 * Set cpbase to the last timeout that occured (not the upcoming
451 * timeout).
453 * A critical section is required since a timer IPI can update
454 * scheduler specific data.
456 crit_enter();
457 p2->p_usched = p1->p_usched;
458 lp2->lwp_cpbase = mycpu->gd_schedclock.time -
459 mycpu->gd_schedclock.periodic;
460 p2->p_usched->heuristic_forking(lp1, lp2);
461 crit_exit();
464 * This begins the section where we must prevent the parent
465 * from being swapped.
467 PHOLD(p1);
470 * Finish creating the child process. It will return via a different
471 * execution path later. (ie: directly into user mode)
473 vm_fork(lp1, p2, flags);
474 caps_fork(lp1->lwp_thread, lp2->lwp_thread, flags);
476 if (flags == (RFFDG | RFPROC)) {
477 mycpu->gd_cnt.v_forks++;
478 mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
479 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
480 mycpu->gd_cnt.v_vforks++;
481 mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
482 } else if (p1 == &proc0) {
483 mycpu->gd_cnt.v_kthreads++;
484 mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
485 } else {
486 mycpu->gd_cnt.v_rforks++;
487 mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
491 * Both processes are set up, now check if any loadable modules want
492 * to adjust anything.
493 * What if they have an error? XXX
495 TAILQ_FOREACH(ep, &fork_list, next) {
496 (*ep->function)(p1, p2, flags);
500 * Set the start time. Note that the process is not runnable. The
501 * caller is responsible for making it runnable.
503 microtime(&p2->p_start);
504 p2->p_acflag = AFORK;
507 * tell any interested parties about the new process
509 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
512 * Return child proc pointer to parent.
514 *procp = p2;
515 done:
516 if (pgrp)
517 lockmgr(&pgrp->pg_lock, LK_RELEASE);
518 return (error);
522 * The next two functionms are general routines to handle adding/deleting
523 * items on the fork callout list.
525 * at_fork():
526 * Take the arguments given and put them onto the fork callout list,
527 * However first make sure that it's not already there.
528 * Returns 0 on success or a standard error number.
531 at_fork(forklist_fn function)
533 struct forklist *ep;
535 #ifdef INVARIANTS
536 /* let the programmer know if he's been stupid */
537 if (rm_at_fork(function)) {
538 kprintf("WARNING: fork callout entry (%p) already present\n",
539 function);
541 #endif
542 ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
543 ep->function = function;
544 TAILQ_INSERT_TAIL(&fork_list, ep, next);
545 return (0);
549 * Scan the exit callout list for the given item and remove it..
550 * Returns the number of items removed (0 or 1)
553 rm_at_fork(forklist_fn function)
555 struct forklist *ep;
557 TAILQ_FOREACH(ep, &fork_list, next) {
558 if (ep->function == function) {
559 TAILQ_REMOVE(&fork_list, ep, next);
560 kfree(ep, M_ATFORK);
561 return(1);
564 return (0);
568 * Add a forked process to the run queue after any remaining setup, such
569 * as setting the fork handler, has been completed.
571 void
572 start_forked_proc(struct lwp *lp1, struct proc *p2)
574 struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
577 * Move from SIDL to RUN queue, and activate the process's thread.
578 * Activation of the thread effectively makes the process "a"
579 * current process, so we do not setrunqueue().
581 * YYY setrunqueue works here but we should clean up the trampoline
582 * code so we just schedule the LWKT thread and let the trampoline
583 * deal with the userland scheduler on return to userland.
585 KASSERT(p2->p_stat == SIDL,
586 ("cannot start forked process, bad status: %p", p2));
587 p2->p_usched->resetpriority(lp2);
588 crit_enter();
589 p2->p_stat = SACTIVE;
590 lp2->lwp_stat = LSRUN;
591 p2->p_usched->setrunqueue(lp2);
592 crit_exit();
595 * Now can be swapped.
597 PRELE(lp1->lwp_proc);
600 * Preserve synchronization semantics of vfork. If waiting for
601 * child to exec or exit, set P_PPWAIT on child, and sleep on our
602 * proc (in case of exit).
604 while (p2->p_flag & P_PPWAIT)
605 tsleep(lp1->lwp_proc, 0, "ppwait", 0);