2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
45 #include <sys/filedesc.h>
47 #include <sys/signalvar.h>
48 #include <sys/spinlock.h>
52 #include <vm/vm_map.h>
54 #include <machine/smp.h>
56 #include <sys/spinlock2.h>
57 #include <sys/mplock2.h>
59 static MALLOC_DEFINE(M_PGRP
, "pgrp", "process group header");
60 MALLOC_DEFINE(M_SESSION
, "session", "session header");
61 MALLOC_DEFINE(M_PROC
, "proc", "Proc structures");
62 MALLOC_DEFINE(M_LWP
, "lwp", "lwp structures");
63 MALLOC_DEFINE(M_SUBPROC
, "subproc", "Proc sub-structures");
65 int ps_showallprocs
= 1;
66 static int ps_showallthreads
= 1;
67 SYSCTL_INT(_security
, OID_AUTO
, ps_showallprocs
, CTLFLAG_RW
,
69 "Unprivileged processes can see proccesses with different UID/GID");
70 SYSCTL_INT(_security
, OID_AUTO
, ps_showallthreads
, CTLFLAG_RW
,
71 &ps_showallthreads
, 0,
72 "Unprivileged processes can see kernel threads");
74 static void pgdelete(struct pgrp
*);
75 static void orphanpg(struct pgrp
*pg
);
76 static pid_t
proc_getnewpid_locked(int random_offset
);
81 struct pidhashhead
*pidhashtbl
;
83 struct pgrphashhead
*pgrphashtbl
;
85 struct proclist allproc
;
86 struct proclist zombproc
;
87 struct spinlock allproc_spin
;
90 * Random component to nextpid generation. We mix in a random factor to make
91 * it a little harder to predict. We sanity check the modulus value to avoid
92 * doing it in critical paths. Don't let it be too small or we pointlessly
93 * waste randomness entropy, and don't let it be impossibly large. Using a
94 * modulus that is too big causes a LOT more process table scans and slows
95 * down fork processing as the pidchecked caching is defeated.
97 static int randompid
= 0;
100 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS
)
105 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
106 if (error
|| !req
->newptr
)
108 if (pid
< 0 || pid
> PID_MAX
- 100) /* out of range */
110 else if (pid
< 2) /* NOP */
112 else if (pid
< 100) /* Make it reasonable */
118 SYSCTL_PROC(_kern
, OID_AUTO
, randompid
, CTLTYPE_INT
|CTLFLAG_RW
,
119 0, 0, sysctl_kern_randompid
, "I", "Random PID modulus");
122 * Initialize global process hashing structures.
128 LIST_INIT(&zombproc
);
129 spin_init(&allproc_spin
);
131 pidhashtbl
= hashinit(maxproc
/ 4, M_PROC
, &pidhash
);
132 pgrphashtbl
= hashinit(maxproc
/ 4, M_PROC
, &pgrphash
);
137 * Is p an inferior of the current process?
140 inferior(struct proc
*p
)
142 for (; p
!= curproc
; p
= p
->p_pptr
)
149 * Locate a process by number
156 LIST_FOREACH(p
, PIDHASH(pid
), p_hash
) {
164 * Locate a process group by number
171 LIST_FOREACH(pgrp
, PGRPHASH(pgid
), pg_hash
) {
172 if (pgrp
->pg_id
== pgid
)
179 * Move p to a new or existing process group (and session)
182 enterpgrp(struct proc
*p
, pid_t pgid
, int mksess
)
184 struct pgrp
*pgrp
= pgfind(pgid
);
186 KASSERT(pgrp
== NULL
|| !mksess
,
187 ("enterpgrp: setsid into non-empty pgrp"));
188 KASSERT(!SESS_LEADER(p
),
189 ("enterpgrp: session leader attempted setpgrp"));
192 pid_t savepid
= p
->p_pid
;
197 KASSERT(p
->p_pid
== pgid
,
198 ("enterpgrp: new pgrp and pid != pgid"));
199 if ((np
= pfind(savepid
)) == NULL
|| np
!= p
)
201 MALLOC(pgrp
, struct pgrp
*, sizeof(struct pgrp
), M_PGRP
,
204 struct session
*sess
;
209 MALLOC(sess
, struct session
*, sizeof(struct session
),
210 M_SESSION
, M_WAITOK
);
212 sess
->s_sid
= p
->p_pid
;
214 sess
->s_ttyvp
= NULL
;
216 bcopy(p
->p_session
->s_login
, sess
->s_login
,
217 sizeof(sess
->s_login
));
218 p
->p_flag
&= ~P_CONTROLT
;
219 pgrp
->pg_session
= sess
;
220 KASSERT(p
== curproc
,
221 ("enterpgrp: mksession and p != curproc"));
223 pgrp
->pg_session
= p
->p_session
;
224 sess_hold(pgrp
->pg_session
);
227 LIST_INIT(&pgrp
->pg_members
);
228 LIST_INSERT_HEAD(PGRPHASH(pgid
), pgrp
, pg_hash
);
230 SLIST_INIT(&pgrp
->pg_sigiolst
);
231 lockinit(&pgrp
->pg_lock
, "pgwt", 0, 0);
232 } else if (pgrp
== p
->p_pgrp
)
236 * Adjust eligibility of affected pgrps to participate in job control.
237 * Increment eligibility counts before decrementing, otherwise we
238 * could reach 0 spuriously during the first call.
241 fixjobc(p
, p
->p_pgrp
, 0);
243 LIST_REMOVE(p
, p_pglist
);
244 if (LIST_EMPTY(&p
->p_pgrp
->pg_members
))
247 LIST_INSERT_HEAD(&pgrp
->pg_members
, p
, p_pglist
);
252 * remove process from process group
255 leavepgrp(struct proc
*p
)
258 LIST_REMOVE(p
, p_pglist
);
259 if (LIST_EMPTY(&p
->p_pgrp
->pg_members
))
266 * delete a process group
269 pgdelete(struct pgrp
*pgrp
)
273 * Reset any sigio structures pointing to us as a result of
274 * F_SETOWN with our pgid.
276 funsetownlst(&pgrp
->pg_sigiolst
);
278 if (pgrp
->pg_session
->s_ttyp
!= NULL
&&
279 pgrp
->pg_session
->s_ttyp
->t_pgrp
== pgrp
)
280 pgrp
->pg_session
->s_ttyp
->t_pgrp
= NULL
;
281 LIST_REMOVE(pgrp
, pg_hash
);
282 sess_rele(pgrp
->pg_session
);
287 * Adjust the ref count on a session structure. When the ref count falls to
288 * zero the tty is disassociated from the session and the session structure
289 * is freed. Note that tty assocation is not itself ref-counted.
292 sess_hold(struct session
*sp
)
298 sess_rele(struct session
*sp
)
300 KKASSERT(sp
->s_count
> 0);
301 if (--sp
->s_count
== 0) {
302 if (sp
->s_ttyp
&& sp
->s_ttyp
->t_session
) {
303 #ifdef TTY_DO_FULL_CLOSE
304 /* FULL CLOSE, see ttyclearsession() */
305 KKASSERT(sp
->s_ttyp
->t_session
== sp
);
306 sp
->s_ttyp
->t_session
= NULL
;
308 /* HALF CLOSE, see ttyclearsession() */
309 if (sp
->s_ttyp
->t_session
== sp
)
310 sp
->s_ttyp
->t_session
= NULL
;
313 kfree(sp
, M_SESSION
);
318 * Adjust pgrp jobc counters when specified process changes process group.
319 * We count the number of processes in each process group that "qualify"
320 * the group for terminal job control (those with a parent in a different
321 * process group of the same session). If that count reaches zero, the
322 * process group becomes orphaned. Check both the specified process'
323 * process group and that of its children.
324 * entering == 0 => p is leaving specified group.
325 * entering == 1 => p is entering specified group.
328 fixjobc(struct proc
*p
, struct pgrp
*pgrp
, int entering
)
330 struct pgrp
*hispgrp
;
331 struct session
*mysession
= pgrp
->pg_session
;
334 * Check p's parent to see whether p qualifies its own process
335 * group; if so, adjust count for p's process group.
337 if ((hispgrp
= p
->p_pptr
->p_pgrp
) != pgrp
&&
338 hispgrp
->pg_session
== mysession
) {
341 else if (--pgrp
->pg_jobc
== 0)
346 * Check this process' children to see whether they qualify
347 * their process groups; if so, adjust counts for children's
350 LIST_FOREACH(p
, &p
->p_children
, p_sibling
)
351 if ((hispgrp
= p
->p_pgrp
) != pgrp
&&
352 hispgrp
->pg_session
== mysession
&&
353 p
->p_stat
!= SZOMB
) {
356 else if (--hispgrp
->pg_jobc
== 0)
362 * A process group has become orphaned;
363 * if there are any stopped processes in the group,
364 * hang-up all process in that group.
367 orphanpg(struct pgrp
*pg
)
371 LIST_FOREACH(p
, &pg
->pg_members
, p_pglist
) {
372 if (p
->p_stat
== SSTOP
) {
373 LIST_FOREACH(p
, &pg
->pg_members
, p_pglist
) {
383 * Add a new process to the allproc list and the PID hash. This
384 * also assigns a pid to the new process.
386 * MPALMOSTSAFE - acquires mplock for karc4random() call
389 proc_add_allproc(struct proc
*p
)
393 if ((random_offset
= randompid
) != 0) {
395 random_offset
= karc4random() % random_offset
;
399 spin_lock_wr(&allproc_spin
);
400 p
->p_pid
= proc_getnewpid_locked(random_offset
);
401 LIST_INSERT_HEAD(&allproc
, p
, p_list
);
402 LIST_INSERT_HEAD(PIDHASH(p
->p_pid
), p
, p_hash
);
403 spin_unlock_wr(&allproc_spin
);
407 * Calculate a new process pid. This function is integrated into
408 * proc_add_allproc() to guarentee that the new pid is not reused before
409 * the new process can be added to the allproc list.
411 * MPSAFE - must be called with allproc_spin held.
415 proc_getnewpid_locked(int random_offset
)
417 static pid_t nextpid
;
418 static pid_t pidchecked
;
422 * Find an unused process ID. We remember a range of unused IDs
423 * ready to use (from nextpid+1 through pidchecked-1).
425 nextpid
= nextpid
+ 1 + random_offset
;
428 * If the process ID prototype has wrapped around,
429 * restart somewhat above 0, as the low-numbered procs
430 * tend to include daemons that don't exit.
432 if (nextpid
>= PID_MAX
) {
433 nextpid
= nextpid
% PID_MAX
;
438 if (nextpid
>= pidchecked
) {
441 pidchecked
= PID_MAX
;
443 * Scan the active and zombie procs to check whether this pid
444 * is in use. Remember the lowest pid that's greater
445 * than nextpid, so we can avoid checking for a while.
447 p
= LIST_FIRST(&allproc
);
449 for (; p
!= 0; p
= LIST_NEXT(p
, p_list
)) {
450 while (p
->p_pid
== nextpid
||
451 p
->p_pgrp
->pg_id
== nextpid
||
452 p
->p_session
->s_sid
== nextpid
) {
454 if (nextpid
>= pidchecked
)
457 if (p
->p_pid
> nextpid
&& pidchecked
> p
->p_pid
)
458 pidchecked
= p
->p_pid
;
459 if (p
->p_pgrp
->pg_id
> nextpid
&&
460 pidchecked
> p
->p_pgrp
->pg_id
)
461 pidchecked
= p
->p_pgrp
->pg_id
;
462 if (p
->p_session
->s_sid
> nextpid
&&
463 pidchecked
> p
->p_session
->s_sid
)
464 pidchecked
= p
->p_session
->s_sid
;
468 p
= LIST_FIRST(&zombproc
);
476 * Called from exit1 to remove a process from the allproc
477 * list and move it to the zombie list.
482 proc_move_allproc_zombie(struct proc
*p
)
484 spin_lock_wr(&allproc_spin
);
486 spin_unlock_wr(&allproc_spin
);
487 tsleep(p
, 0, "reap1", hz
/ 10);
488 spin_lock_wr(&allproc_spin
);
490 LIST_REMOVE(p
, p_list
);
491 LIST_INSERT_HEAD(&zombproc
, p
, p_list
);
492 LIST_REMOVE(p
, p_hash
);
494 spin_unlock_wr(&allproc_spin
);
498 * This routine is called from kern_wait() and will remove the process
499 * from the zombie list and the sibling list. This routine will block
500 * if someone has a lock on the proces (p_lock).
505 proc_remove_zombie(struct proc
*p
)
507 spin_lock_wr(&allproc_spin
);
509 spin_unlock_wr(&allproc_spin
);
510 tsleep(p
, 0, "reap1", hz
/ 10);
511 spin_lock_wr(&allproc_spin
);
513 LIST_REMOVE(p
, p_list
); /* off zombproc */
514 LIST_REMOVE(p
, p_sibling
);
515 spin_unlock_wr(&allproc_spin
);
519 * Scan all processes on the allproc list. The process is automatically
520 * held for the callback. A return value of -1 terminates the loop.
525 allproc_scan(int (*callback
)(struct proc
*, void *), void *data
)
530 spin_lock_rd(&allproc_spin
);
531 LIST_FOREACH(p
, &allproc
, p_list
) {
533 spin_unlock_rd(&allproc_spin
);
534 r
= callback(p
, data
);
535 spin_lock_rd(&allproc_spin
);
540 spin_unlock_rd(&allproc_spin
);
544 * Scan all lwps of processes on the allproc list. The lwp is automatically
545 * held for the callback. A return value of -1 terminates the loop.
547 * possibly not MPSAFE, needs to access foreingn proc structures
550 alllwp_scan(int (*callback
)(struct lwp
*, void *), void *data
)
556 spin_lock_rd(&allproc_spin
);
557 LIST_FOREACH(p
, &allproc
, p_list
) {
559 spin_unlock_rd(&allproc_spin
);
560 FOREACH_LWP_IN_PROC(lp
, p
) {
562 r
= callback(lp
, data
);
565 spin_lock_rd(&allproc_spin
);
570 spin_unlock_rd(&allproc_spin
);
574 * Scan all processes on the zombproc list. The process is automatically
575 * held for the callback. A return value of -1 terminates the loop.
580 zombproc_scan(int (*callback
)(struct proc
*, void *), void *data
)
585 spin_lock_rd(&allproc_spin
);
586 LIST_FOREACH(p
, &zombproc
, p_list
) {
588 spin_unlock_rd(&allproc_spin
);
589 r
= callback(p
, data
);
590 spin_lock_rd(&allproc_spin
);
595 spin_unlock_rd(&allproc_spin
);
602 DB_SHOW_COMMAND(pgrpdump
, pgrpdump
)
608 for (i
= 0; i
<= pgrphash
; i
++) {
609 if (!LIST_EMPTY(&pgrphashtbl
[i
])) {
610 kprintf("\tindx %d\n", i
);
611 LIST_FOREACH(pgrp
, &pgrphashtbl
[i
], pg_hash
) {
613 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
614 (void *)pgrp
, (long)pgrp
->pg_id
,
615 (void *)pgrp
->pg_session
,
616 pgrp
->pg_session
->s_count
,
617 (void *)LIST_FIRST(&pgrp
->pg_members
));
618 LIST_FOREACH(p
, &pgrp
->pg_members
, p_pglist
) {
619 kprintf("\t\tpid %ld addr %p pgrp %p\n",
620 (long)p
->p_pid
, (void *)p
,
630 * Locate a process on the zombie list. Return a held process or NULL.
637 LIST_FOREACH(p
, &zombproc
, p_list
)
644 sysctl_out_proc(struct proc
*p
, struct sysctl_req
*req
, int flags
)
646 struct kinfo_proc ki
;
648 int skp
= 0, had_output
= 0;
651 bzero(&ki
, sizeof(ki
));
652 fill_kinfo_proc(p
, &ki
);
653 if ((flags
& KERN_PROC_FLAG_LWP
) == 0)
656 FOREACH_LWP_IN_PROC(lp
, p
) {
658 fill_kinfo_lwp(lp
, &ki
.kp_lwp
);
660 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
667 /* We need to output at least the proc, even if there is no lwp. */
668 if (had_output
== 0) {
669 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
675 sysctl_out_proc_kthread(struct thread
*td
, struct sysctl_req
*req
, int flags
)
677 struct kinfo_proc ki
;
680 fill_kinfo_proc_kthread(td
, &ki
);
681 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
688 sysctl_kern_proc(SYSCTL_HANDLER_ARGS
)
690 int *name
= (int*) arg1
;
691 int oid
= oidp
->oid_number
;
692 u_int namelen
= arg2
;
694 struct proclist
*plist
;
696 int doingzomb
, flags
= 0;
700 struct ucred
*cr1
= curproc
->p_ucred
;
702 flags
= oid
& KERN_PROC_FLAGMASK
;
703 oid
&= ~KERN_PROC_FLAGMASK
;
705 if ((oid
== KERN_PROC_ALL
&& namelen
!= 0) ||
706 (oid
!= KERN_PROC_ALL
&& namelen
!= 1))
709 if (oid
== KERN_PROC_PID
) {
710 p
= pfind((pid_t
)name
[0]);
713 if (!PRISON_CHECK(cr1
, p
->p_ucred
))
716 error
= sysctl_out_proc(p
, req
, flags
);
722 /* overestimate by 5 procs */
723 error
= SYSCTL_OUT(req
, 0, sizeof (struct kinfo_proc
) * 5);
727 for (doingzomb
= 0; doingzomb
<= 1; doingzomb
++) {
732 LIST_FOREACH(p
, plist
, p_list
) {
734 * Show a user only their processes.
736 if ((!ps_showallprocs
) && p_trespass(cr1
, p
->p_ucred
))
739 * Skip embryonic processes.
741 if (p
->p_stat
== SIDL
)
744 * TODO - make more efficient (see notes below).
749 /* could do this by traversing pgrp */
750 if (p
->p_pgrp
== NULL
||
751 p
->p_pgrp
->pg_id
!= (pid_t
)name
[0])
756 if ((p
->p_flag
& P_CONTROLT
) == 0 ||
757 p
->p_session
== NULL
||
758 p
->p_session
->s_ttyp
== NULL
||
759 dev2udev(p
->p_session
->s_ttyp
->t_dev
) !=
765 if (p
->p_ucred
== NULL
||
766 p
->p_ucred
->cr_uid
!= (uid_t
)name
[0])
771 if (p
->p_ucred
== NULL
||
772 p
->p_ucred
->cr_ruid
!= (uid_t
)name
[0])
777 if (!PRISON_CHECK(cr1
, p
->p_ucred
))
780 error
= sysctl_out_proc(p
, req
, flags
);
788 * Iterate over all active cpus and scan their thread list. Start
789 * with the next logical cpu and end with our original cpu. We
790 * migrate our own thread to each target cpu in order to safely scan
791 * its thread list. In the last loop we migrate back to our original
794 origcpu
= mycpu
->gd_cpuid
;
795 if (!ps_showallthreads
|| jailed(cr1
))
797 for (n
= 1; n
<= ncpus
; ++n
) {
801 nid
= (origcpu
+ n
) % ncpus
;
802 if ((smp_active_mask
& (1 << nid
)) == 0)
804 rgd
= globaldata_find(nid
);
805 lwkt_setcpu_self(rgd
);
807 TAILQ_FOREACH(td
, &mycpu
->gd_tdallq
, td_allq
) {
820 error
= sysctl_out_proc_kthread(td
, req
, doingzomb
);
831 * This sysctl allows a process to retrieve the argument list or process
832 * title for another process without groping around in the address space
833 * of the other process. It also allow a process to set its own "process
834 * title to a string of its own choice.
837 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS
)
839 int *name
= (int*) arg1
;
840 u_int namelen
= arg2
;
844 struct ucred
*cr1
= curproc
->p_ucred
;
849 p
= pfind((pid_t
)name
[0]);
853 if ((!ps_argsopen
) && p_trespass(cr1
, p
->p_ucred
))
856 if (req
->newptr
&& curproc
!= p
)
859 if (req
->oldptr
&& p
->p_args
!= NULL
)
860 error
= SYSCTL_OUT(req
, p
->p_args
->ar_args
, p
->p_args
->ar_length
);
861 if (req
->newptr
== NULL
)
864 if (p
->p_args
&& --p
->p_args
->ar_ref
== 0)
865 FREE(p
->p_args
, M_PARGS
);
868 if (req
->newlen
+ sizeof(struct pargs
) > ps_arg_cache_limit
)
871 MALLOC(pa
, struct pargs
*, sizeof(struct pargs
) + req
->newlen
,
874 pa
->ar_length
= req
->newlen
;
875 error
= SYSCTL_IN(req
, pa
->ar_args
, req
->newlen
);
883 SYSCTL_NODE(_kern
, KERN_PROC
, proc
, CTLFLAG_RD
, 0, "Process table");
885 SYSCTL_PROC(_kern_proc
, KERN_PROC_ALL
, all
, CTLFLAG_RD
|CTLTYPE_STRUCT
,
886 0, 0, sysctl_kern_proc
, "S,proc", "Return entire process table");
888 SYSCTL_NODE(_kern_proc
, KERN_PROC_PGRP
, pgrp
, CTLFLAG_RD
,
889 sysctl_kern_proc
, "Process table");
891 SYSCTL_NODE(_kern_proc
, KERN_PROC_TTY
, tty
, CTLFLAG_RD
,
892 sysctl_kern_proc
, "Process table");
894 SYSCTL_NODE(_kern_proc
, KERN_PROC_UID
, uid
, CTLFLAG_RD
,
895 sysctl_kern_proc
, "Process table");
897 SYSCTL_NODE(_kern_proc
, KERN_PROC_RUID
, ruid
, CTLFLAG_RD
,
898 sysctl_kern_proc
, "Process table");
900 SYSCTL_NODE(_kern_proc
, KERN_PROC_PID
, pid
, CTLFLAG_RD
,
901 sysctl_kern_proc
, "Process table");
903 SYSCTL_NODE(_kern_proc
, (KERN_PROC_ALL
| KERN_PROC_FLAG_LWP
), all_lwp
, CTLFLAG_RD
,
904 sysctl_kern_proc
, "Process table");
906 SYSCTL_NODE(_kern_proc
, (KERN_PROC_PGRP
| KERN_PROC_FLAG_LWP
), pgrp_lwp
, CTLFLAG_RD
,
907 sysctl_kern_proc
, "Process table");
909 SYSCTL_NODE(_kern_proc
, (KERN_PROC_TTY
| KERN_PROC_FLAG_LWP
), tty_lwp
, CTLFLAG_RD
,
910 sysctl_kern_proc
, "Process table");
912 SYSCTL_NODE(_kern_proc
, (KERN_PROC_UID
| KERN_PROC_FLAG_LWP
), uid_lwp
, CTLFLAG_RD
,
913 sysctl_kern_proc
, "Process table");
915 SYSCTL_NODE(_kern_proc
, (KERN_PROC_RUID
| KERN_PROC_FLAG_LWP
), ruid_lwp
, CTLFLAG_RD
,
916 sysctl_kern_proc
, "Process table");
918 SYSCTL_NODE(_kern_proc
, (KERN_PROC_PID
| KERN_PROC_FLAG_LWP
), pid_lwp
, CTLFLAG_RD
,
919 sysctl_kern_proc
, "Process table");
921 SYSCTL_NODE(_kern_proc
, KERN_PROC_ARGS
, args
, CTLFLAG_RW
| CTLFLAG_ANYBODY
,
922 sysctl_kern_proc_args
, "Process argument list");