kernel - SWAP CACHE part 13/many - More vm_pindex_t work for vm_objects on i386
[dragonfly.git] / sys / vm / swap_pager.c
blob8afbf570fa42777149dcddeed9ee613bfb4e96af
1 /*
2 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1994 John S. Dyson
35 * Copyright (c) 1990 University of Utah.
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
39 * This code is derived from software contributed to Berkeley by
40 * the Systems Programming Group of the University of Utah Computer
41 * Science Department.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * New Swap System
72 * Matthew Dillon
74 * Radix Bitmap 'blists'.
76 * - The new swapper uses the new radix bitmap code. This should scale
77 * to arbitrarily small or arbitrarily large swap spaces and an almost
78 * arbitrary degree of fragmentation.
80 * Features:
82 * - on the fly reallocation of swap during putpages. The new system
83 * does not try to keep previously allocated swap blocks for dirty
84 * pages.
86 * - on the fly deallocation of swap
88 * - No more garbage collection required. Unnecessarily allocated swap
89 * blocks only exist for dirty vm_page_t's now and these are already
90 * cycled (in a high-load system) by the pager. We also do on-the-fly
91 * removal of invalidated swap blocks when a page is destroyed
92 * or renamed.
94 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
96 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
98 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99 * $DragonFly: src/sys/vm/swap_pager.c,v 1.32 2008/07/01 02:02:56 dillon Exp $
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
120 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 #include <vm/vnode_pager.h>
133 #include <sys/buf2.h>
134 #include <vm/vm_page2.h>
136 #define SWM_FREE 0x02 /* free, period */
137 #define SWM_POP 0x04 /* pop out */
139 #define SWBIO_READ 0x01
140 #define SWBIO_WRITE 0x02
141 #define SWBIO_SYNC 0x04
143 struct swfreeinfo {
144 vm_object_t object;
145 vm_pindex_t basei;
146 vm_pindex_t begi;
147 vm_pindex_t endi; /* inclusive */
151 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
152 * in the old system.
155 int swap_pager_full; /* swap space exhaustion (task killing) */
156 int vm_swap_cache_use;
157 int vm_swap_anon_use;
159 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
160 static int nsw_rcount; /* free read buffers */
161 static int nsw_wcount_sync; /* limit write buffers / synchronous */
162 static int nsw_wcount_async; /* limit write buffers / asynchronous */
163 static int nsw_wcount_async_max;/* assigned maximum */
164 static int nsw_cluster_max; /* maximum VOP I/O allowed */
166 struct blist *swapblist;
167 static int swap_async_max = 4; /* maximum in-progress async I/O's */
168 static int swap_burst_read = 0; /* allow burst reading */
170 extern struct vnode *swapdev_vp; /* from vm_swap.c */
172 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
173 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
174 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
175 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
177 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
178 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
180 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
182 vm_zone_t swap_zone;
185 * Red-Black tree for swblock entries
187 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
188 vm_pindex_t, swb_index);
191 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
193 if (swb1->swb_index < swb2->swb_index)
194 return(-1);
195 if (swb1->swb_index > swb2->swb_index)
196 return(1);
197 return(0);
200 static
202 rb_swblock_scancmp(struct swblock *swb, void *data)
204 struct swfreeinfo *info = data;
206 if (swb->swb_index < info->basei)
207 return(-1);
208 if (swb->swb_index > info->endi)
209 return(1);
210 return(0);
213 static
215 rb_swblock_condcmp(struct swblock *swb, void *data)
217 struct swfreeinfo *info = data;
219 if (swb->swb_index < info->basei)
220 return(-1);
221 return(0);
225 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
226 * calls hooked from other parts of the VM system and do not appear here.
227 * (see vm/swap_pager.h).
230 static vm_object_t
231 swap_pager_alloc (void *handle, off_t size,
232 vm_prot_t prot, off_t offset);
233 static void swap_pager_dealloc (vm_object_t object);
234 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
235 static void swap_chain_iodone(struct bio *biox);
237 struct pagerops swappagerops = {
238 swap_pager_alloc, /* allocate an OBJT_SWAP object */
239 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
240 swap_pager_getpage, /* pagein */
241 swap_pager_putpages, /* pageout */
242 swap_pager_haspage /* get backing store status for page */
246 * dmmax is in page-sized chunks with the new swap system. It was
247 * dev-bsized chunks in the old. dmmax is always a power of 2.
249 * swap_*() routines are externally accessible. swp_*() routines are
250 * internal.
253 int dmmax;
254 static int dmmax_mask;
255 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
256 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
258 static __inline void swp_sizecheck (void);
259 static void swp_pager_async_iodone (struct bio *bio);
262 * Swap bitmap functions
265 static __inline void swp_pager_freeswapspace (vm_object_t object, daddr_t blk, int npages);
266 static __inline daddr_t swp_pager_getswapspace (vm_object_t object, int npages);
269 * Metadata functions
272 static void swp_pager_meta_convert (vm_object_t);
273 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
274 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, vm_pindex_t);
275 static void swp_pager_meta_free_all (vm_object_t);
276 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
279 * SWP_SIZECHECK() - update swap_pager_full indication
281 * update the swap_pager_almost_full indication and warn when we are
282 * about to run out of swap space, using lowat/hiwat hysteresis.
284 * Clear swap_pager_full ( task killing ) indication when lowat is met.
286 * No restrictions on call
287 * This routine may not block.
288 * This routine must be called at splvm()
291 static __inline void
292 swp_sizecheck(void)
294 if (vm_swap_size < nswap_lowat) {
295 if (swap_pager_almost_full == 0) {
296 kprintf("swap_pager: out of swap space\n");
297 swap_pager_almost_full = 1;
299 } else {
300 swap_pager_full = 0;
301 if (vm_swap_size > nswap_hiwat)
302 swap_pager_almost_full = 0;
307 * SWAP_PAGER_INIT() - initialize the swap pager!
309 * Expected to be started from system init. NOTE: This code is run
310 * before much else so be careful what you depend on. Most of the VM
311 * system has yet to be initialized at this point.
313 static void
314 swap_pager_init(void *arg __unused)
317 * Device Stripe, in PAGE_SIZE'd blocks
319 dmmax = SWB_NPAGES * 2;
320 dmmax_mask = ~(dmmax - 1);
322 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
325 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
327 * Expected to be started from pageout process once, prior to entering
328 * its main loop.
331 void
332 swap_pager_swap_init(void)
334 int n, n2;
337 * Number of in-transit swap bp operations. Don't
338 * exhaust the pbufs completely. Make sure we
339 * initialize workable values (0 will work for hysteresis
340 * but it isn't very efficient).
342 * The nsw_cluster_max is constrained by the number of pages an XIO
343 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
344 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
345 * constrained by the swap device interleave stripe size.
347 * Currently we hardwire nsw_wcount_async to 4. This limit is
348 * designed to prevent other I/O from having high latencies due to
349 * our pageout I/O. The value 4 works well for one or two active swap
350 * devices but is probably a little low if you have more. Even so,
351 * a higher value would probably generate only a limited improvement
352 * with three or four active swap devices since the system does not
353 * typically have to pageout at extreme bandwidths. We will want
354 * at least 2 per swap devices, and 4 is a pretty good value if you
355 * have one NFS swap device due to the command/ack latency over NFS.
356 * So it all works out pretty well.
359 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
361 nsw_rcount = (nswbuf + 1) / 2;
362 nsw_wcount_sync = (nswbuf + 3) / 4;
363 nsw_wcount_async = 4;
364 nsw_wcount_async_max = nsw_wcount_async;
367 * The zone is dynamically allocated so generally size it to
368 * maxswzone (32MB to 512MB of KVM). Set a minimum size based
369 * on physical memory of around 8x (each swblock can hold 16 pages).
371 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
372 * has increased dramatically.
374 n = vmstats.v_page_count / 2;
375 if (maxswzone && n < maxswzone / sizeof(struct swblock))
376 n = maxswzone / sizeof(struct swblock);
377 n2 = n;
379 do {
380 swap_zone = zinit(
381 "SWAPMETA",
382 sizeof(struct swblock),
384 ZONE_INTERRUPT,
386 if (swap_zone != NULL)
387 break;
389 * if the allocation failed, try a zone two thirds the
390 * size of the previous attempt.
392 n -= ((n + 2) / 3);
393 } while (n > 0);
395 if (swap_zone == NULL)
396 panic("swap_pager_swap_init: swap_zone == NULL");
397 if (n2 != n)
398 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
402 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
403 * its metadata structures.
405 * This routine is called from the mmap and fork code to create a new
406 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
407 * and then converting it with swp_pager_meta_convert().
409 * This routine may block in vm_object_allocate() and create a named
410 * object lookup race, so we must interlock. We must also run at
411 * splvm() for the object lookup to handle races with interrupts, but
412 * we do not have to maintain splvm() in between the lookup and the
413 * add because (I believe) it is not possible to attempt to create
414 * a new swap object w/handle when a default object with that handle
415 * already exists.
418 static vm_object_t
419 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
421 vm_object_t object;
423 KKASSERT(handle == NULL);
424 #if 0
425 if (handle) {
427 * Reference existing named region or allocate new one. There
428 * should not be a race here against swp_pager_meta_build()
429 * as called from vm_page_remove() in regards to the lookup
430 * of the handle.
432 while (sw_alloc_interlock) {
433 sw_alloc_interlock = -1;
434 tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
436 sw_alloc_interlock = 1;
438 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
440 if (object != NULL) {
441 vm_object_reference(object);
442 } else {
443 object = vm_object_allocate(OBJT_DEFAULT,
444 OFF_TO_IDX(offset + PAGE_MASK + size));
445 object->handle = handle;
446 swp_pager_meta_convert(object);
449 if (sw_alloc_interlock < 0)
450 wakeup(&sw_alloc_interlock);
451 sw_alloc_interlock = 0;
452 } else { ... }
453 #endif
454 object = vm_object_allocate(OBJT_DEFAULT,
455 OFF_TO_IDX(offset + PAGE_MASK + size));
456 swp_pager_meta_convert(object);
458 return (object);
462 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
464 * The swap backing for the object is destroyed. The code is
465 * designed such that we can reinstantiate it later, but this
466 * routine is typically called only when the entire object is
467 * about to be destroyed.
469 * This routine may block, but no longer does.
471 * The object must be locked or unreferenceable.
474 static void
475 swap_pager_dealloc(vm_object_t object)
477 vm_object_pip_wait(object, "swpdea");
480 * Free all remaining metadata. We only bother to free it from
481 * the swap meta data. We do not attempt to free swapblk's still
482 * associated with vm_page_t's for this object. We do not care
483 * if paging is still in progress on some objects.
485 crit_enter();
486 swp_pager_meta_free_all(object);
487 crit_exit();
490 /************************************************************************
491 * SWAP PAGER BITMAP ROUTINES *
492 ************************************************************************/
495 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
497 * Allocate swap for the requested number of pages. The starting
498 * swap block number (a page index) is returned or SWAPBLK_NONE
499 * if the allocation failed.
501 * Also has the side effect of advising that somebody made a mistake
502 * when they configured swap and didn't configure enough.
504 * Must be called at splvm() to avoid races with bitmap frees from
505 * vm_page_remove() aka swap_pager_page_removed().
507 * This routine may not block
508 * This routine must be called at splvm().
510 static __inline daddr_t
511 swp_pager_getswapspace(vm_object_t object, int npages)
513 daddr_t blk;
515 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
516 if (swap_pager_full != 2) {
517 kprintf("swap_pager_getswapspace: failed\n");
518 swap_pager_full = 2;
519 swap_pager_almost_full = 1;
521 } else {
522 vm_swap_size -= npages;
523 if (object->type == OBJT_SWAP)
524 vm_swap_anon_use += npages;
525 else
526 vm_swap_cache_use += npages;
527 swp_sizecheck();
529 return(blk);
533 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
535 * This routine returns the specified swap blocks back to the bitmap.
537 * Note: This routine may not block (it could in the old swap code),
538 * and through the use of the new blist routines it does not block.
540 * We must be called at splvm() to avoid races with bitmap frees from
541 * vm_page_remove() aka swap_pager_page_removed().
543 * This routine may not block
544 * This routine must be called at splvm().
547 static __inline void
548 swp_pager_freeswapspace(vm_object_t object, daddr_t blk, int npages)
550 blist_free(swapblist, blk, npages);
551 vm_swap_size += npages;
552 if (object->type == OBJT_SWAP)
553 vm_swap_anon_use -= npages;
554 else
555 vm_swap_cache_use -= npages;
556 swp_sizecheck();
560 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
561 * range within an object.
563 * This is a globally accessible routine.
565 * This routine removes swapblk assignments from swap metadata.
567 * The external callers of this routine typically have already destroyed
568 * or renamed vm_page_t's associated with this range in the object so
569 * we should be ok.
571 * This routine may be called at any spl. We up our spl to splvm
572 * temporarily in order to perform the metadata removal.
574 void
575 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
577 crit_enter();
578 swp_pager_meta_free(object, start, size);
579 crit_exit();
582 void
583 swap_pager_freespace_all(vm_object_t object)
585 crit_enter();
586 swp_pager_meta_free_all(object);
587 crit_exit();
591 * This function conditionally frees swap cache swap starting at
592 * (*basei) in the object. (count) swap blocks will be nominally freed.
593 * The actual number of blocks freed can be more or less than the
594 * requested number.
596 * This function nominally returns the number of blocks freed. However,
597 * the actual number of blocks freed may be less then the returned value.
598 * If the function is unable to exhaust the object or if it is able to
599 * free (approximately) the requested number of blocks it returns
600 * a value n > count.
602 * If we exhaust the object we will return a value n <= count.
604 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
607 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
609 struct swfreeinfo info;
611 info.object = object;
612 info.basei = *basei; /* skip up to this page index */
613 info.begi = count; /* max swap pages to destroy */
614 info.endi = count * 8; /* max swblocks to scan */
616 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
617 swap_pager_condfree_callback, &info);
618 *basei = info.basei;
619 if (info.endi < 0 && info.begi <= count)
620 info.begi = count + 1;
621 return(count - (int)info.begi);
625 * The idea is to free whole meta-block to avoid fragmenting
626 * the swap space or disk I/O. We only do this if NO VM pages
627 * are present.
629 * We do not have to deal with clearing PG_SWAPPED in related VM
630 * pages because there are no related VM pages.
632 static int
633 swap_pager_condfree_callback(struct swblock *swap, void *data)
635 struct swfreeinfo *info = data;
636 vm_object_t object = info->object;
637 int i;
639 for (i = 0; i < SWAP_META_PAGES; ++i) {
640 if (vm_page_lookup(object, swap->swb_index + i))
641 break;
643 info->basei = swap->swb_index + SWAP_META_PAGES;
644 if (i == SWAP_META_PAGES) {
645 info->begi -= swap->swb_count;
646 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
648 --info->endi;
649 if ((int)info->begi < 0 || (int)info->endi < 0)
650 return(-1);
651 return(0);
655 * Called by vm_page_alloc() when a new VM page is inserted
656 * into a VM object. Checks whether swap has been assigned to
657 * the page and sets PG_SWAPPED as necessary.
659 void
660 swap_pager_page_inserted(vm_page_t m)
662 if (m->object->swblock_count) {
663 crit_enter();
664 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
665 vm_page_flag_set(m, PG_SWAPPED);
666 crit_exit();
671 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
673 * Assigns swap blocks to the specified range within the object. The
674 * swap blocks are not zerod. Any previous swap assignment is destroyed.
676 * Returns 0 on success, -1 on failure.
679 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
681 int n = 0;
682 daddr_t blk = SWAPBLK_NONE;
683 vm_pindex_t beg = start; /* save start index */
685 crit_enter();
686 while (size) {
687 if (n == 0) {
688 n = BLIST_MAX_ALLOC;
689 while ((blk = swp_pager_getswapspace(object, n)) ==
690 SWAPBLK_NONE)
692 n >>= 1;
693 if (n == 0) {
694 swp_pager_meta_free(object, beg,
695 start - beg);
696 crit_exit();
697 return(-1);
701 swp_pager_meta_build(object, start, blk);
702 --size;
703 ++start;
704 ++blk;
705 --n;
707 swp_pager_meta_free(object, start, n);
708 crit_exit();
709 return(0);
713 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
714 * and destroy the source.
716 * Copy any valid swapblks from the source to the destination. In
717 * cases where both the source and destination have a valid swapblk,
718 * we keep the destination's.
720 * This routine is allowed to block. It may block allocating metadata
721 * indirectly through swp_pager_meta_build() or if paging is still in
722 * progress on the source.
724 * This routine can be called at any spl
726 * XXX vm_page_collapse() kinda expects us not to block because we
727 * supposedly do not need to allocate memory, but for the moment we
728 * *may* have to get a little memory from the zone allocator, but
729 * it is taken from the interrupt memory. We should be ok.
731 * The source object contains no vm_page_t's (which is just as well)
733 * The source object is of type OBJT_SWAP.
735 * The source and destination objects must be locked or
736 * inaccessible (XXX are they ?)
739 void
740 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
741 vm_pindex_t base_index, int destroysource)
743 vm_pindex_t i;
745 crit_enter();
748 * transfer source to destination.
750 for (i = 0; i < dstobject->size; ++i) {
751 daddr_t dstaddr;
754 * Locate (without changing) the swapblk on the destination,
755 * unless it is invalid in which case free it silently, or
756 * if the destination is a resident page, in which case the
757 * source is thrown away.
759 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
761 if (dstaddr == SWAPBLK_NONE) {
763 * Destination has no swapblk and is not resident,
764 * copy source.
766 daddr_t srcaddr;
768 srcaddr = swp_pager_meta_ctl(srcobject,
769 base_index + i, SWM_POP);
771 if (srcaddr != SWAPBLK_NONE)
772 swp_pager_meta_build(dstobject, i, srcaddr);
773 } else {
775 * Destination has valid swapblk or it is represented
776 * by a resident page. We destroy the sourceblock.
778 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
783 * Free left over swap blocks in source.
785 * We have to revert the type to OBJT_DEFAULT so we do not accidently
786 * double-remove the object from the swap queues.
788 if (destroysource) {
790 * Reverting the type is not necessary, the caller is going
791 * to destroy srcobject directly, but I'm doing it here
792 * for consistency since we've removed the object from its
793 * queues.
795 swp_pager_meta_free_all(srcobject);
796 if (srcobject->type == OBJT_SWAP)
797 srcobject->type = OBJT_DEFAULT;
799 crit_exit();
803 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
804 * the requested page.
806 * We determine whether good backing store exists for the requested
807 * page and return TRUE if it does, FALSE if it doesn't.
809 * If TRUE, we also try to determine how much valid, contiguous backing
810 * store exists before and after the requested page within a reasonable
811 * distance. We do not try to restrict it to the swap device stripe
812 * (that is handled in getpages/putpages). It probably isn't worth
813 * doing here.
816 boolean_t
817 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
819 daddr_t blk0;
822 * do we have good backing store at the requested index ?
825 crit_enter();
826 blk0 = swp_pager_meta_ctl(object, pindex, 0);
828 if (blk0 == SWAPBLK_NONE) {
829 crit_exit();
830 return (FALSE);
833 #if 0
835 * find backwards-looking contiguous good backing store
837 if (before != NULL) {
838 int i;
840 for (i = 1; i < (SWB_NPAGES/2); ++i) {
841 daddr_t blk;
843 if (i > pindex)
844 break;
845 blk = swp_pager_meta_ctl(object, pindex - i, 0);
846 if (blk != blk0 - i)
847 break;
849 *before = (i - 1);
853 * find forward-looking contiguous good backing store
856 if (after != NULL) {
857 int i;
859 for (i = 1; i < (SWB_NPAGES/2); ++i) {
860 daddr_t blk;
862 blk = swp_pager_meta_ctl(object, pindex + i, 0);
863 if (blk != blk0 + i)
864 break;
866 *after = (i - 1);
868 #endif
869 crit_exit();
870 return (TRUE);
874 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
876 * This removes any associated swap backing store, whether valid or
877 * not, from the page. This operates on any VM object, not just OBJT_SWAP
878 * objects.
880 * This routine is typically called when a page is made dirty, at
881 * which point any associated swap can be freed. MADV_FREE also
882 * calls us in a special-case situation
884 * NOTE!!! If the page is clean and the swap was valid, the caller
885 * should make the page dirty before calling this routine. This routine
886 * does NOT change the m->dirty status of the page. Also: MADV_FREE
887 * depends on it.
889 * This routine may not block
890 * This routine must be called at splvm()
892 void
893 swap_pager_unswapped(vm_page_t m)
895 if (m->flags & PG_SWAPPED) {
896 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
897 vm_page_flag_clear(m, PG_SWAPPED);
902 * SWAP_PAGER_STRATEGY() - read, write, free blocks
904 * This implements a VM OBJECT strategy function using swap backing store.
905 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
906 * types.
908 * This is intended to be a cacheless interface (i.e. caching occurs at
909 * higher levels), and is also used as a swap-based SSD cache for vnode
910 * and device objects.
912 * All I/O goes directly to and from the swap device.
914 * We currently attempt to run I/O synchronously or asynchronously as
915 * the caller requests. This isn't perfect because we loose error
916 * sequencing when we run multiple ops in parallel to satisfy a request.
917 * But this is swap, so we let it all hang out.
919 void
920 swap_pager_strategy(vm_object_t object, struct bio *bio)
922 struct buf *bp = bio->bio_buf;
923 struct bio *nbio;
924 vm_pindex_t start;
925 vm_pindex_t biox_blkno = 0;
926 int count;
927 char *data;
928 struct bio *biox;
929 struct buf *bufx;
930 struct bio_track *track;
933 * tracking for swapdev vnode I/Os
935 if (bp->b_cmd == BUF_CMD_READ)
936 track = &swapdev_vp->v_track_read;
937 else
938 track = &swapdev_vp->v_track_write;
940 if (bp->b_bcount & PAGE_MASK) {
941 bp->b_error = EINVAL;
942 bp->b_flags |= B_ERROR | B_INVAL;
943 biodone(bio);
944 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
945 "not page bounded\n",
946 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
947 return;
951 * Clear error indication, initialize page index, count, data pointer.
953 bp->b_error = 0;
954 bp->b_flags &= ~B_ERROR;
955 bp->b_resid = bp->b_bcount;
957 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
958 count = howmany(bp->b_bcount, PAGE_SIZE);
959 data = bp->b_data;
962 * Deal with BUF_CMD_FREEBLKS
964 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
966 * FREE PAGE(s) - destroy underlying swap that is no longer
967 * needed.
969 swp_pager_meta_free(object, start, count);
970 bp->b_resid = 0;
971 biodone(bio);
972 return;
976 * We need to be able to create a new cluster of I/O's. We cannot
977 * use the caller fields of the passed bio so push a new one.
979 * Because nbio is just a placeholder for the cluster links,
980 * we can biodone() the original bio instead of nbio to make
981 * things a bit more efficient.
983 nbio = push_bio(bio);
984 nbio->bio_offset = bio->bio_offset;
985 nbio->bio_caller_info1.cluster_head = NULL;
986 nbio->bio_caller_info2.cluster_tail = NULL;
988 biox = NULL;
989 bufx = NULL;
992 * Execute read or write
994 while (count > 0) {
995 daddr_t blk;
998 * Obtain block. If block not found and writing, allocate a
999 * new block and build it into the object.
1001 blk = swp_pager_meta_ctl(object, start, 0);
1002 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1003 blk = swp_pager_getswapspace(object, 1);
1004 if (blk == SWAPBLK_NONE) {
1005 bp->b_error = ENOMEM;
1006 bp->b_flags |= B_ERROR;
1007 break;
1009 swp_pager_meta_build(object, start, blk);
1013 * Do we have to flush our current collection? Yes if:
1015 * - no swap block at this index
1016 * - swap block is not contiguous
1017 * - we cross a physical disk boundry in the
1018 * stripe.
1020 if (
1021 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1022 ((biox_blkno ^ blk) & dmmax_mask)
1025 if (bp->b_cmd == BUF_CMD_READ) {
1026 ++mycpu->gd_cnt.v_swapin;
1027 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1028 } else {
1029 ++mycpu->gd_cnt.v_swapout;
1030 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1031 bufx->b_dirtyend = bufx->b_bcount;
1035 * Finished with this buf.
1037 KKASSERT(bufx->b_bcount != 0);
1038 if (bufx->b_cmd != BUF_CMD_READ)
1039 bufx->b_dirtyend = bufx->b_bcount;
1040 biox = NULL;
1041 bufx = NULL;
1045 * Add new swapblk to biox, instantiating biox if necessary.
1046 * Zero-fill reads are able to take a shortcut.
1048 if (blk == SWAPBLK_NONE) {
1050 * We can only get here if we are reading. Since
1051 * we are at splvm() we can safely modify b_resid,
1052 * even if chain ops are in progress.
1054 bzero(data, PAGE_SIZE);
1055 bp->b_resid -= PAGE_SIZE;
1056 } else {
1057 if (biox == NULL) {
1058 /* XXX chain count > 4, wait to <= 4 */
1060 bufx = getpbuf(NULL);
1061 biox = &bufx->b_bio1;
1062 cluster_append(nbio, bufx);
1063 bufx->b_flags |= (bufx->b_flags & B_ORDERED);
1064 bufx->b_cmd = bp->b_cmd;
1065 biox->bio_done = swap_chain_iodone;
1066 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1067 biox->bio_caller_info1.cluster_parent = nbio;
1068 biox_blkno = blk;
1069 bufx->b_bcount = 0;
1070 bufx->b_data = data;
1072 bufx->b_bcount += PAGE_SIZE;
1074 --count;
1075 ++start;
1076 data += PAGE_SIZE;
1080 * Flush out last buffer
1082 if (biox) {
1083 if (bufx->b_cmd == BUF_CMD_READ) {
1084 ++mycpu->gd_cnt.v_swapin;
1085 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1086 } else {
1087 ++mycpu->gd_cnt.v_swapout;
1088 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1089 bufx->b_dirtyend = bufx->b_bcount;
1091 KKASSERT(bufx->b_bcount);
1092 if (bufx->b_cmd != BUF_CMD_READ)
1093 bufx->b_dirtyend = bufx->b_bcount;
1094 /* biox, bufx = NULL */
1098 * Now initiate all the I/O. Be careful looping on our chain as
1099 * I/O's may complete while we are still initiating them.
1101 nbio->bio_caller_info2.cluster_tail = NULL;
1102 bufx = nbio->bio_caller_info1.cluster_head;
1104 while (bufx) {
1105 biox = &bufx->b_bio1;
1106 BUF_KERNPROC(bufx);
1107 bufx = bufx->b_cluster_next;
1108 vn_strategy(swapdev_vp, biox);
1112 * Completion of the cluster will also call biodone_chain(nbio).
1113 * We never call biodone(nbio) so we don't have to worry about
1114 * setting up a bio_done callback. It's handled in the sub-IO.
1116 /**/
1119 static void
1120 swap_chain_iodone(struct bio *biox)
1122 struct buf **nextp;
1123 struct buf *bufx; /* chained sub-buffer */
1124 struct bio *nbio; /* parent nbio with chain glue */
1125 struct buf *bp; /* original bp associated with nbio */
1126 int chain_empty;
1128 bufx = biox->bio_buf;
1129 nbio = biox->bio_caller_info1.cluster_parent;
1130 bp = nbio->bio_buf;
1133 * Update the original buffer
1135 KKASSERT(bp != NULL);
1136 if (bufx->b_flags & B_ERROR) {
1137 atomic_set_int(&bufx->b_flags, B_ERROR);
1138 bp->b_error = bufx->b_error;
1139 } else if (bufx->b_resid != 0) {
1140 atomic_set_int(&bufx->b_flags, B_ERROR);
1141 bp->b_error = EINVAL;
1142 } else {
1143 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1147 * Remove us from the chain.
1149 spin_lock_wr(&bp->b_lock.lk_spinlock);
1150 nextp = &nbio->bio_caller_info1.cluster_head;
1151 while (*nextp != bufx) {
1152 KKASSERT(*nextp != NULL);
1153 nextp = &(*nextp)->b_cluster_next;
1155 *nextp = bufx->b_cluster_next;
1156 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1157 spin_unlock_wr(&bp->b_lock.lk_spinlock);
1160 * Clean up bufx. If the chain is now empty we finish out
1161 * the parent. Note that we may be racing other completions
1162 * so we must use the chain_empty status from above.
1164 if (chain_empty) {
1165 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1166 atomic_set_int(&bp->b_flags, B_ERROR);
1167 bp->b_error = EINVAL;
1169 biodone_chain(nbio);
1171 relpbuf(bufx, NULL);
1175 * SWAP_PAGER_GETPAGES() - bring page in from swap
1177 * The requested page may have to be brought in from swap. Calculate the
1178 * swap block and bring in additional pages if possible. All pages must
1179 * have contiguous swap block assignments and reside in the same object.
1181 * The caller has a single vm_object_pip_add() reference prior to
1182 * calling us and we should return with the same.
1184 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1185 * and any additinal pages unbusied.
1187 * If the caller encounters a PG_RAM page it will pass it to us even though
1188 * it may be valid and dirty. We cannot overwrite the page in this case!
1189 * The case is used to allow us to issue pure read-aheads.
1191 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1192 * the PG_RAM page is validated at the same time as mreq. What we
1193 * really need to do is issue a separate read-ahead pbuf.
1195 static int
1196 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1198 struct buf *bp;
1199 struct bio *bio;
1200 vm_page_t mreq;
1201 vm_page_t m;
1202 vm_offset_t kva;
1203 daddr_t blk;
1204 int i;
1205 int j;
1206 int raonly;
1207 vm_page_t marray[XIO_INTERNAL_PAGES];
1209 mreq = *mpp;
1211 if (mreq->object != object) {
1212 panic("swap_pager_getpages: object mismatch %p/%p",
1213 object,
1214 mreq->object
1219 * We don't want to overwrite a fully valid page as it might be
1220 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1221 * valid page with PG_RAM set.
1223 * In this case we see if the next page is a suitable page-in
1224 * candidate and if it is we issue read-ahead. PG_RAM will be
1225 * set on the last page of the read-ahead to continue the pipeline.
1227 if (mreq->valid == VM_PAGE_BITS_ALL) {
1228 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size)
1229 return(VM_PAGER_OK);
1230 crit_enter();
1231 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1232 if (blk == SWAPBLK_NONE) {
1233 crit_exit();
1234 return(VM_PAGER_OK);
1236 m = vm_page_lookup(object, mreq->pindex + 1);
1237 if (m == NULL) {
1238 m = vm_page_alloc(object, mreq->pindex + 1,
1239 VM_ALLOC_QUICK);
1240 if (m == NULL) {
1241 crit_exit();
1242 return(VM_PAGER_OK);
1244 } else {
1245 if ((m->flags & PG_BUSY) || m->busy || m->valid) {
1246 crit_exit();
1247 return(VM_PAGER_OK);
1249 vm_page_unqueue_nowakeup(m);
1250 vm_page_busy(m);
1252 mreq = m;
1253 raonly = 1;
1254 crit_exit();
1255 } else {
1256 raonly = 0;
1260 * Try to block-read contiguous pages from swap if sequential,
1261 * otherwise just read one page. Contiguous pages from swap must
1262 * reside within a single device stripe because the I/O cannot be
1263 * broken up across multiple stripes.
1265 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1266 * set up such that the case(s) are handled implicitly.
1268 crit_enter();
1269 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1270 marray[0] = mreq;
1272 for (i = 1; swap_burst_read &&
1273 i < XIO_INTERNAL_PAGES &&
1274 mreq->pindex + i < object->size; ++i) {
1275 daddr_t iblk;
1277 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1278 if (iblk != blk + i)
1279 break;
1280 if ((blk ^ iblk) & dmmax_mask)
1281 break;
1282 m = vm_page_lookup(object, mreq->pindex + i);
1283 if (m == NULL) {
1284 m = vm_page_alloc(object, mreq->pindex + i,
1285 VM_ALLOC_QUICK);
1286 if (m == NULL)
1287 break;
1288 } else {
1289 if ((m->flags & PG_BUSY) || m->busy || m->valid)
1290 break;
1291 vm_page_unqueue_nowakeup(m);
1292 vm_page_busy(m);
1294 marray[i] = m;
1296 if (i > 1)
1297 vm_page_flag_set(marray[i - 1], PG_RAM);
1299 crit_exit();
1302 * If mreq is the requested page and we have nothing to do return
1303 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1304 * page and must be cleaned up.
1306 if (blk == SWAPBLK_NONE) {
1307 KKASSERT(i == 1);
1308 if (raonly) {
1309 vnode_pager_freepage(mreq);
1310 return(VM_PAGER_OK);
1311 } else {
1312 return(VM_PAGER_FAIL);
1317 * map our page(s) into kva for input
1319 bp = getpbuf(&nsw_rcount);
1320 bio = &bp->b_bio1;
1321 kva = (vm_offset_t) bp->b_kvabase;
1322 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1323 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1325 bp->b_data = (caddr_t)kva;
1326 bp->b_bcount = PAGE_SIZE * i;
1327 bp->b_xio.xio_npages = i;
1328 bio->bio_done = swp_pager_async_iodone;
1329 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1330 bio->bio_caller_info1.index = SWBIO_READ;
1333 * Set index. If raonly set the index beyond the array so all
1334 * the pages are treated the same, otherwise the original mreq is
1335 * at index 0.
1337 if (raonly)
1338 bio->bio_driver_info = (void *)(intptr_t)i;
1339 else
1340 bio->bio_driver_info = (void *)(intptr_t)0;
1342 for (j = 0; j < i; ++j)
1343 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1345 mycpu->gd_cnt.v_swapin++;
1346 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1349 * We still hold the lock on mreq, and our automatic completion routine
1350 * does not remove it.
1352 vm_object_pip_add(object, bp->b_xio.xio_npages);
1355 * perform the I/O. NOTE!!! bp cannot be considered valid after
1356 * this point because we automatically release it on completion.
1357 * Instead, we look at the one page we are interested in which we
1358 * still hold a lock on even through the I/O completion.
1360 * The other pages in our m[] array are also released on completion,
1361 * so we cannot assume they are valid anymore either.
1363 bp->b_cmd = BUF_CMD_READ;
1364 BUF_KERNPROC(bp);
1365 vn_strategy(swapdev_vp, bio);
1368 * Wait for the page we want to complete. PG_SWAPINPROG is always
1369 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1370 * is set in the meta-data.
1372 * If this is a read-ahead only we return immediately without
1373 * waiting for I/O.
1375 if (raonly)
1376 return(VM_PAGER_OK);
1379 * Read-ahead includes originally requested page case.
1381 crit_enter();
1382 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1383 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1384 mycpu->gd_cnt.v_intrans++;
1385 if (tsleep(mreq, 0, "swread", hz*20)) {
1386 kprintf(
1387 "swap_pager: indefinite wait buffer: "
1388 " offset: %lld, size: %ld\n",
1389 (long long)bio->bio_offset,
1390 (long)bp->b_bcount
1394 crit_exit();
1397 * mreq is left bussied after completion, but all the other pages
1398 * are freed. If we had an unrecoverable read error the page will
1399 * not be valid.
1401 if (mreq->valid != VM_PAGE_BITS_ALL)
1402 return(VM_PAGER_ERROR);
1403 else
1404 return(VM_PAGER_OK);
1407 * A final note: in a low swap situation, we cannot deallocate swap
1408 * and mark a page dirty here because the caller is likely to mark
1409 * the page clean when we return, causing the page to possibly revert
1410 * to all-zero's later.
1415 * swap_pager_putpages:
1417 * Assign swap (if necessary) and initiate I/O on the specified pages.
1419 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1420 * are automatically converted to SWAP objects.
1422 * In a low memory situation we may block in vn_strategy(), but the new
1423 * vm_page reservation system coupled with properly written VFS devices
1424 * should ensure that no low-memory deadlock occurs. This is an area
1425 * which needs work.
1427 * The parent has N vm_object_pip_add() references prior to
1428 * calling us and will remove references for rtvals[] that are
1429 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1430 * completion.
1432 * The parent has soft-busy'd the pages it passes us and will unbusy
1433 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1434 * We need to unbusy the rest on I/O completion.
1436 void
1437 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1438 boolean_t sync, int *rtvals)
1440 int i;
1441 int n = 0;
1443 if (count && m[0]->object != object) {
1444 panic("swap_pager_getpages: object mismatch %p/%p",
1445 object,
1446 m[0]->object
1451 * Step 1
1453 * Turn object into OBJT_SWAP
1454 * check for bogus sysops
1455 * force sync if not pageout process
1457 if (object->type == OBJT_DEFAULT)
1458 swp_pager_meta_convert(object);
1460 if (curthread != pagethread)
1461 sync = TRUE;
1464 * Step 2
1466 * Update nsw parameters from swap_async_max sysctl values.
1467 * Do not let the sysop crash the machine with bogus numbers.
1470 if (swap_async_max != nsw_wcount_async_max) {
1471 int n;
1474 * limit range
1476 if ((n = swap_async_max) > nswbuf / 2)
1477 n = nswbuf / 2;
1478 if (n < 1)
1479 n = 1;
1480 swap_async_max = n;
1483 * Adjust difference ( if possible ). If the current async
1484 * count is too low, we may not be able to make the adjustment
1485 * at this time.
1487 crit_enter();
1488 n -= nsw_wcount_async_max;
1489 if (nsw_wcount_async + n >= 0) {
1490 nsw_wcount_async += n;
1491 nsw_wcount_async_max += n;
1492 wakeup(&nsw_wcount_async);
1494 crit_exit();
1498 * Step 3
1500 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1501 * The page is left dirty until the pageout operation completes
1502 * successfully.
1505 for (i = 0; i < count; i += n) {
1506 struct buf *bp;
1507 struct bio *bio;
1508 daddr_t blk;
1509 int j;
1512 * Maximum I/O size is limited by a number of factors.
1515 n = min(BLIST_MAX_ALLOC, count - i);
1516 n = min(n, nsw_cluster_max);
1518 crit_enter();
1521 * Get biggest block of swap we can. If we fail, fall
1522 * back and try to allocate a smaller block. Don't go
1523 * overboard trying to allocate space if it would overly
1524 * fragment swap.
1526 while (
1527 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1528 n > 4
1530 n >>= 1;
1532 if (blk == SWAPBLK_NONE) {
1533 for (j = 0; j < n; ++j)
1534 rtvals[i+j] = VM_PAGER_FAIL;
1535 crit_exit();
1536 continue;
1540 * The I/O we are constructing cannot cross a physical
1541 * disk boundry in the swap stripe. Note: we are still
1542 * at splvm().
1544 if ((blk ^ (blk + n)) & dmmax_mask) {
1545 j = ((blk + dmmax) & dmmax_mask) - blk;
1546 swp_pager_freeswapspace(object, blk + j, n - j);
1547 n = j;
1551 * All I/O parameters have been satisfied, build the I/O
1552 * request and assign the swap space.
1554 if (sync == TRUE)
1555 bp = getpbuf(&nsw_wcount_sync);
1556 else
1557 bp = getpbuf(&nsw_wcount_async);
1558 bio = &bp->b_bio1;
1560 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1562 bp->b_bcount = PAGE_SIZE * n;
1563 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1565 for (j = 0; j < n; ++j) {
1566 vm_page_t mreq = m[i+j];
1568 swp_pager_meta_build(mreq->object, mreq->pindex,
1569 blk + j);
1570 if (object->type == OBJT_SWAP)
1571 vm_page_dirty(mreq);
1572 rtvals[i+j] = VM_PAGER_OK;
1574 vm_page_flag_set(mreq, PG_SWAPINPROG);
1575 bp->b_xio.xio_pages[j] = mreq;
1577 bp->b_xio.xio_npages = n;
1579 mycpu->gd_cnt.v_swapout++;
1580 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1582 crit_exit();
1584 bp->b_dirtyoff = 0; /* req'd for NFS */
1585 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1586 bp->b_cmd = BUF_CMD_WRITE;
1587 bio->bio_caller_info1.index = SWBIO_WRITE;
1590 * asynchronous
1592 if (sync == FALSE) {
1593 bio->bio_done = swp_pager_async_iodone;
1594 BUF_KERNPROC(bp);
1595 vn_strategy(swapdev_vp, bio);
1597 for (j = 0; j < n; ++j)
1598 rtvals[i+j] = VM_PAGER_PEND;
1599 continue;
1603 * Issue synchrnously.
1605 * Wait for the sync I/O to complete, then update rtvals.
1606 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1607 * our async completion routine at the end, thus avoiding a
1608 * double-free.
1610 bio->bio_caller_info1.index |= SWBIO_SYNC;
1611 bio->bio_done = biodone_sync;
1612 bio->bio_flags |= BIO_SYNC;
1613 vn_strategy(swapdev_vp, bio);
1614 biowait(bio, "swwrt");
1616 for (j = 0; j < n; ++j)
1617 rtvals[i+j] = VM_PAGER_PEND;
1620 * Now that we are through with the bp, we can call the
1621 * normal async completion, which frees everything up.
1623 swp_pager_async_iodone(bio);
1627 void
1628 swap_pager_newswap(void)
1630 swp_sizecheck();
1634 * swp_pager_async_iodone:
1636 * Completion routine for asynchronous reads and writes from/to swap.
1637 * Also called manually by synchronous code to finish up a bp.
1639 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1640 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1641 * unbusy all pages except the 'main' request page. For WRITE
1642 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1643 * because we marked them all VM_PAGER_PEND on return from putpages ).
1645 * This routine may not block.
1647 static void
1648 swp_pager_async_iodone(struct bio *bio)
1650 struct buf *bp = bio->bio_buf;
1651 vm_object_t object = NULL;
1652 int i;
1653 int *nswptr;
1656 * report error
1658 if (bp->b_flags & B_ERROR) {
1659 kprintf(
1660 "swap_pager: I/O error - %s failed; offset %lld,"
1661 "size %ld, error %d\n",
1662 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1663 "pagein" : "pageout"),
1664 (long long)bio->bio_offset,
1665 (long)bp->b_bcount,
1666 bp->b_error
1671 * set object, raise to splvm().
1673 if (bp->b_xio.xio_npages)
1674 object = bp->b_xio.xio_pages[0]->object;
1675 crit_enter();
1678 * remove the mapping for kernel virtual
1680 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1683 * cleanup pages. If an error occurs writing to swap, we are in
1684 * very serious trouble. If it happens to be a disk error, though,
1685 * we may be able to recover by reassigning the swap later on. So
1686 * in this case we remove the m->swapblk assignment for the page
1687 * but do not free it in the rlist. The errornous block(s) are thus
1688 * never reallocated as swap. Redirty the page and continue.
1690 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1691 vm_page_t m = bp->b_xio.xio_pages[i];
1693 if (bp->b_flags & B_ERROR) {
1695 * If an error occurs I'd love to throw the swapblk
1696 * away without freeing it back to swapspace, so it
1697 * can never be used again. But I can't from an
1698 * interrupt.
1701 if (bio->bio_caller_info1.index & SWBIO_READ) {
1703 * When reading, reqpage needs to stay
1704 * locked for the parent, but all other
1705 * pages can be freed. We still want to
1706 * wakeup the parent waiting on the page,
1707 * though. ( also: pg_reqpage can be -1 and
1708 * not match anything ).
1710 * We have to wake specifically requested pages
1711 * up too because we cleared PG_SWAPINPROG and
1712 * someone may be waiting for that.
1714 * NOTE: for reads, m->dirty will probably
1715 * be overridden by the original caller of
1716 * getpages so don't play cute tricks here.
1718 * NOTE: We can't actually free the page from
1719 * here, because this is an interrupt. It
1720 * is not legal to mess with object->memq
1721 * from an interrupt. Deactivate the page
1722 * instead.
1725 m->valid = 0;
1726 vm_page_flag_clear(m, PG_ZERO);
1727 vm_page_flag_clear(m, PG_SWAPINPROG);
1730 * bio_driver_info holds the requested page
1731 * index.
1733 if (i != (int)(intptr_t)bio->bio_driver_info) {
1734 vm_page_deactivate(m);
1735 vm_page_wakeup(m);
1736 } else {
1737 vm_page_flash(m);
1740 * If i == bp->b_pager.pg_reqpage, do not wake
1741 * the page up. The caller needs to.
1743 } else {
1745 * If a write error occurs, reactivate page
1746 * so it doesn't clog the inactive list,
1747 * then finish the I/O.
1749 * Only for OBJT_SWAP. When using the swap
1750 * as a cache for clean vnode-backed pages
1751 * we don't mess with the page dirty state.
1753 vm_page_flag_clear(m, PG_SWAPINPROG);
1754 if (m->object->type == OBJT_SWAP) {
1755 vm_page_dirty(m);
1756 vm_page_activate(m);
1758 vm_page_io_finish(m);
1760 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1762 * NOTE: for reads, m->dirty will probably be
1763 * overridden by the original caller of getpages so
1764 * we cannot set them in order to free the underlying
1765 * swap in a low-swap situation. I don't think we'd
1766 * want to do that anyway, but it was an optimization
1767 * that existed in the old swapper for a time before
1768 * it got ripped out due to precisely this problem.
1770 * clear PG_ZERO in page.
1772 * If not the requested page then deactivate it.
1774 * Note that the requested page, reqpage, is left
1775 * busied, but we still have to wake it up. The
1776 * other pages are released (unbusied) by
1777 * vm_page_wakeup(). We do not set reqpage's
1778 * valid bits here, it is up to the caller.
1782 * NOTE: can't call pmap_clear_modify(m) from an
1783 * interrupt thread, the pmap code may have to map
1784 * non-kernel pmaps and currently asserts the case.
1786 /*pmap_clear_modify(m);*/
1787 m->valid = VM_PAGE_BITS_ALL;
1788 vm_page_undirty(m);
1789 vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1790 vm_page_flag_set(m, PG_SWAPPED);
1793 * We have to wake specifically requested pages
1794 * up too because we cleared PG_SWAPINPROG and
1795 * could be waiting for it in getpages. However,
1796 * be sure to not unbusy getpages specifically
1797 * requested page - getpages expects it to be
1798 * left busy.
1800 * bio_driver_info holds the requested page
1802 if (i != (int)(intptr_t)bio->bio_driver_info) {
1803 vm_page_deactivate(m);
1804 vm_page_wakeup(m);
1805 } else {
1806 vm_page_flash(m);
1808 } else {
1810 * Mark the page clean but do not mess with the
1811 * pmap-layer's modified state. That state should
1812 * also be clear since the caller protected the
1813 * page VM_PROT_READ, but allow the case.
1815 * We are in an interrupt, avoid pmap operations.
1817 * If we have a severe page deficit, deactivate the
1818 * page. Do not try to cache it (which would also
1819 * involve a pmap op), because the page might still
1820 * be read-heavy.
1822 * When using the swap to cache clean vnode pages
1823 * we do not mess with the page dirty bits.
1825 if (m->object->type == OBJT_SWAP)
1826 vm_page_undirty(m);
1827 vm_page_flag_clear(m, PG_SWAPINPROG);
1828 vm_page_flag_set(m, PG_SWAPPED);
1829 vm_page_io_finish(m);
1830 if (vm_page_count_severe())
1831 vm_page_deactivate(m);
1832 #if 0
1833 if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1834 vm_page_protect(m, VM_PROT_READ);
1835 #endif
1840 * adjust pip. NOTE: the original parent may still have its own
1841 * pip refs on the object.
1844 if (object)
1845 vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1848 * Release the physical I/O buffer.
1850 * NOTE: Due to synchronous operations in the write case b_cmd may
1851 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1852 * been cleared.
1854 if (bio->bio_caller_info1.index & SWBIO_READ)
1855 nswptr = &nsw_rcount;
1856 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1857 nswptr = &nsw_wcount_sync;
1858 else
1859 nswptr = &nsw_wcount_async;
1860 bp->b_cmd = BUF_CMD_DONE;
1861 relpbuf(bp, nswptr);
1862 crit_exit();
1865 /************************************************************************
1866 * SWAP META DATA *
1867 ************************************************************************
1869 * These routines manipulate the swap metadata stored in the
1870 * OBJT_SWAP object. All swp_*() routines must be called at
1871 * splvm() because swap can be freed up by the low level vm_page
1872 * code which might be called from interrupts beyond what splbio() covers.
1874 * Swap metadata is implemented with a global hash and not directly
1875 * linked into the object. Instead the object simply contains
1876 * appropriate tracking counters.
1880 * Lookup the swblock containing the specified swap block index.
1882 static __inline
1883 struct swblock *
1884 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
1886 index &= ~SWAP_META_MASK;
1887 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
1891 * Remove a swblock from the RB tree.
1893 static __inline
1894 void
1895 swp_pager_remove(vm_object_t object, struct swblock *swap)
1897 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
1901 * Convert default object to swap object if necessary
1903 static void
1904 swp_pager_meta_convert(vm_object_t object)
1906 if (object->type == OBJT_DEFAULT) {
1907 object->type = OBJT_SWAP;
1908 KKASSERT(object->swblock_count == 0);
1913 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1915 * We first convert the object to a swap object if it is a default
1916 * object. Vnode objects do not need to be converted.
1918 * The specified swapblk is added to the object's swap metadata. If
1919 * the swapblk is not valid, it is freed instead. Any previously
1920 * assigned swapblk is freed.
1922 static void
1923 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, daddr_t swapblk)
1925 struct swblock *swap;
1926 struct swblock *oswap;
1928 KKASSERT(swapblk != SWAPBLK_NONE);
1931 * Convert object if necessary
1933 if (object->type == OBJT_DEFAULT)
1934 swp_pager_meta_convert(object);
1937 * Locate swblock. If not found create, but if we aren't adding
1938 * anything just return. If we run out of space in the map we wait
1939 * and, since the hash table may have changed, retry.
1941 retry:
1942 swap = swp_pager_lookup(object, index);
1944 if (swap == NULL) {
1945 int i;
1947 swap = zalloc(swap_zone);
1948 if (swap == NULL) {
1949 vm_wait(0);
1950 goto retry;
1952 swap->swb_index = index & ~SWAP_META_MASK;
1953 swap->swb_count = 0;
1955 ++object->swblock_count;
1957 for (i = 0; i < SWAP_META_PAGES; ++i)
1958 swap->swb_pages[i] = SWAPBLK_NONE;
1959 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
1960 KKASSERT(oswap == NULL);
1964 * Delete prior contents of metadata
1967 index &= SWAP_META_MASK;
1969 if (swap->swb_pages[index] != SWAPBLK_NONE) {
1970 swp_pager_freeswapspace(object, swap->swb_pages[index], 1);
1971 --swap->swb_count;
1975 * Enter block into metadata
1977 swap->swb_pages[index] = swapblk;
1978 if (swapblk != SWAPBLK_NONE)
1979 ++swap->swb_count;
1983 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1985 * The requested range of blocks is freed, with any associated swap
1986 * returned to the swap bitmap.
1988 * This routine will free swap metadata structures as they are cleaned
1989 * out. This routine does *NOT* operate on swap metadata associated
1990 * with resident pages.
1992 * This routine must be called at splvm()
1994 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
1996 static void
1997 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
1999 struct swfreeinfo info;
2002 * Nothing to do
2004 if (object->swblock_count == 0) {
2005 KKASSERT(RB_EMPTY(&object->swblock_root));
2006 return;
2008 if (count == 0)
2009 return;
2012 * Setup for RB tree scan. Note that the pindex range can be huge
2013 * due to the 64 bit page index space so we cannot safely iterate.
2015 info.object = object;
2016 info.basei = index & ~SWAP_META_MASK;
2017 info.begi = index;
2018 info.endi = index + count - 1;
2019 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2020 swp_pager_meta_free_callback, &info);
2023 static
2025 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2027 struct swfreeinfo *info = data;
2028 vm_object_t object = info->object;
2029 int index;
2030 int eindex;
2033 * Figure out the range within the swblock. The wider scan may
2034 * return edge-case swap blocks when the start and/or end points
2035 * are in the middle of a block.
2037 if (swap->swb_index < info->begi)
2038 index = (int)info->begi & SWAP_META_MASK;
2039 else
2040 index = 0;
2042 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2043 eindex = (int)info->endi & SWAP_META_MASK;
2044 else
2045 eindex = SWAP_META_MASK;
2048 * Scan and free the blocks. The loop terminates early
2049 * if (swap) runs out of blocks and could be freed.
2051 while (index <= eindex) {
2052 daddr_t v = swap->swb_pages[index];
2054 if (v != SWAPBLK_NONE) {
2055 swp_pager_freeswapspace(object, v, 1);
2056 swap->swb_pages[index] = SWAPBLK_NONE;
2057 if (--swap->swb_count == 0) {
2058 swp_pager_remove(object, swap);
2059 zfree(swap_zone, swap);
2060 --object->swblock_count;
2061 break;
2064 ++index;
2066 /* swap may be invalid here due to zfree above */
2067 return(0);
2071 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2073 * This routine locates and destroys all swap metadata associated with
2074 * an object.
2076 * This routine must be called at splvm()
2078 static void
2079 swp_pager_meta_free_all(vm_object_t object)
2081 struct swblock *swap;
2082 int i;
2084 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2085 swp_pager_remove(object, swap);
2086 for (i = 0; i < SWAP_META_PAGES; ++i) {
2087 daddr_t v = swap->swb_pages[i];
2088 if (v != SWAPBLK_NONE) {
2089 --swap->swb_count;
2090 swp_pager_freeswapspace(object, v, 1);
2093 if (swap->swb_count != 0)
2094 panic("swap_pager_meta_free_all: swb_count != 0");
2095 zfree(swap_zone, swap);
2096 --object->swblock_count;
2098 KKASSERT(object->swblock_count == 0);
2102 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2104 * This routine is capable of looking up, popping, or freeing
2105 * swapblk assignments in the swap meta data or in the vm_page_t.
2106 * The routine typically returns the swapblk being looked-up, or popped,
2107 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2108 * was invalid. This routine will automatically free any invalid
2109 * meta-data swapblks.
2111 * It is not possible to store invalid swapblks in the swap meta data
2112 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2114 * When acting on a busy resident page and paging is in progress, we
2115 * have to wait until paging is complete but otherwise can act on the
2116 * busy page.
2118 * This routine must be called at splvm().
2120 * SWM_FREE remove and free swap block from metadata
2121 * SWM_POP remove from meta data but do not free.. pop it out
2123 static daddr_t
2124 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2126 struct swblock *swap;
2127 daddr_t r1;
2129 if (object->swblock_count == 0)
2130 return(SWAPBLK_NONE);
2132 r1 = SWAPBLK_NONE;
2133 swap = swp_pager_lookup(object, index);
2135 if (swap != NULL) {
2136 index &= SWAP_META_MASK;
2137 r1 = swap->swb_pages[index];
2139 if (r1 != SWAPBLK_NONE) {
2140 if (flags & SWM_FREE) {
2141 swp_pager_freeswapspace(object, r1, 1);
2142 r1 = SWAPBLK_NONE;
2144 if (flags & (SWM_FREE|SWM_POP)) {
2145 swap->swb_pages[index] = SWAPBLK_NONE;
2146 if (--swap->swb_count == 0) {
2147 swp_pager_remove(object, swap);
2148 zfree(swap_zone, swap);
2149 --object->swblock_count;
2154 return(r1);