Add tunable for each_burst.
[dragonfly.git] / sys / kern / vfs_cluster.c
blobc49efbf515f17caf6fd753cd805be83b06875a01
1 /*-
2 * Copyright (c) 1993
3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
36 * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37 * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.33 2008/04/22 18:46:51 dillon Exp $
40 #include "opt_debug_cluster.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int rcluster= 0;
62 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63 #endif
65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
67 static struct cluster_save *
68 cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
69 int lblocksize);
70 static struct buf *
71 cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
72 off_t doffset, int size, int run,
73 struct buf *fbp, int doasync);
74 static void cluster_callback (struct bio *);
77 static int write_behind = 1;
78 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
80 extern vm_page_t bogus_page;
82 extern int cluster_pbuf_freecnt;
85 * Maximum number of blocks for read-ahead.
87 #define MAXRA 32
90 * This replaces bread.
92 int
93 cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
94 int size, int totread, int seqcount, struct buf **bpp)
96 struct buf *bp, *rbp, *reqbp;
97 off_t origoffset;
98 off_t doffset;
99 int error;
100 int i;
101 int maxra, racluster;
103 error = 0;
106 * Try to limit the amount of read-ahead by a few
107 * ad-hoc parameters. This needs work!!!
109 racluster = vp->v_mount->mnt_iosize_max / size;
110 maxra = 2 * racluster + (totread / size);
111 if (maxra > MAXRA)
112 maxra = MAXRA;
113 if (maxra > nbuf/8)
114 maxra = nbuf/8;
117 * get the requested block
119 *bpp = reqbp = bp = getblk(vp, loffset, size, 0, 0);
120 origoffset = loffset;
123 * if it is in the cache, then check to see if the reads have been
124 * sequential. If they have, then try some read-ahead, otherwise
125 * back-off on prospective read-aheads.
127 if (bp->b_flags & B_CACHE) {
128 if (!seqcount) {
129 return 0;
130 } else if ((bp->b_flags & B_RAM) == 0) {
131 return 0;
132 } else {
133 struct buf *tbp;
134 bp->b_flags &= ~B_RAM;
136 * We do the crit here so that there is no window
137 * between the findblk and the b_usecount increment
138 * below. We opt to keep the crit out of the loop
139 * for efficiency.
141 crit_enter();
142 for (i = 1; i < maxra; i++) {
143 if (!(tbp = findblk(vp, loffset + i * size))) {
144 break;
148 * Set another read-ahead mark so we know
149 * to check again.
151 if (((i % racluster) == (racluster - 1)) ||
152 (i == (maxra - 1)))
153 tbp->b_flags |= B_RAM;
155 crit_exit();
156 if (i >= maxra) {
157 return 0;
159 loffset += i * size;
161 reqbp = bp = NULL;
162 } else {
163 off_t firstread = bp->b_loffset;
164 int nblks;
166 KASSERT(firstread != NOOFFSET,
167 ("cluster_read: no buffer offset"));
168 if (firstread + totread > filesize)
169 totread = (int)(filesize - firstread);
170 nblks = totread / size;
171 if (nblks) {
172 int burstbytes;
174 if (nblks > racluster)
175 nblks = racluster;
177 error = VOP_BMAP(vp, loffset,
178 &doffset, &burstbytes, NULL);
179 if (error)
180 goto single_block_read;
181 if (doffset == NOOFFSET)
182 goto single_block_read;
183 if (burstbytes < size * 2)
184 goto single_block_read;
185 if (nblks > burstbytes / size)
186 nblks = burstbytes / size;
188 bp = cluster_rbuild(vp, filesize, loffset,
189 doffset, size, nblks, bp, 0);
190 loffset += bp->b_bufsize;
191 } else {
192 single_block_read:
194 * if it isn't in the cache, then get a chunk from
195 * disk if sequential, otherwise just get the block.
197 bp->b_flags |= B_RAM;
198 loffset += size;
203 * Handle the synchronous read. This only occurs if B_CACHE was
204 * not set. bp (and rbp) could be either a cluster bp or a normal
205 * bp depending on the what cluster_rbuild() decided to do. If
206 * it is a cluster bp, vfs_busy_pages() has already been called.
208 if (bp) {
209 #if defined(CLUSTERDEBUG)
210 if (rcluster)
211 kprintf("S(%lld,%d,%d) ",
212 bp->b_loffset, bp->b_bcount, seqcount);
213 #endif
214 bp->b_cmd = BUF_CMD_READ;
215 if ((bp->b_flags & B_CLUSTER) == 0)
216 vfs_busy_pages(vp, bp);
217 bp->b_flags &= ~(B_ERROR|B_INVAL);
218 if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
219 BUF_KERNPROC(bp);
220 vn_strategy(vp, &bp->b_bio1);
221 error = bp->b_error;
225 * If we have been doing sequential I/O, then do some read-ahead.
227 rbp = NULL;
228 if (!error &&
229 seqcount &&
230 loffset < origoffset + seqcount * size &&
231 loffset + size <= filesize
233 int nblksread;
234 int ntoread;
235 int burstbytes;
237 rbp = getblk(vp, loffset, size, 0, 0);
238 if ((rbp->b_flags & B_CACHE)) {
239 bqrelse(rbp);
240 goto no_read_ahead;
243 error = VOP_BMAP(vp, loffset,
244 &doffset, &burstbytes, NULL);
245 if (error || doffset == NOOFFSET) {
246 rbp->b_flags |= B_INVAL;
247 brelse(rbp);
248 rbp = NULL;
249 goto no_read_ahead;
251 ntoread = burstbytes / size;
252 nblksread = (totread + size - 1) / size;
253 if (seqcount < nblksread)
254 seqcount = nblksread;
255 if (seqcount < ntoread)
256 ntoread = seqcount;
258 rbp->b_flags |= B_RAM;
259 if (burstbytes) {
260 rbp = cluster_rbuild(vp, filesize, loffset,
261 doffset, size,
262 ntoread, rbp, 1);
263 } else {
264 rbp->b_bio2.bio_offset = doffset;
266 #if defined(CLUSTERDEBUG)
267 if (rcluster) {
268 if (bp)
269 kprintf("A+(%lld,%d,%lld,%d) ",
270 rbp->b_loffset, rbp->b_bcount,
271 rbp->b_loffset - origoffset,
272 seqcount);
273 else
274 kprintf("A(%lld,%d,%lld,%d) ",
275 rbp->b_loffset, rbp->b_bcount,
276 rbp->b_loffset - origoffset,
277 seqcount);
279 #endif
280 rbp->b_flags &= ~(B_ERROR|B_INVAL);
281 rbp->b_flags |= B_ASYNC;
282 rbp->b_cmd = BUF_CMD_READ;
284 if ((rbp->b_flags & B_CLUSTER) == 0)
285 vfs_busy_pages(vp, rbp);
286 BUF_KERNPROC(rbp); /* B_ASYNC */
287 vn_strategy(vp, &rbp->b_bio1);
289 no_read_ahead:
291 if (reqbp)
292 return (biowait(reqbp));
293 else
294 return (error);
298 * If blocks are contiguous on disk, use this to provide clustered
299 * read ahead. We will read as many blocks as possible sequentially
300 * and then parcel them up into logical blocks in the buffer hash table.
302 static struct buf *
303 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset,
304 off_t doffset, int size, int run, struct buf *fbp, int doasync)
306 struct buf *bp, *tbp;
307 off_t boffset;
308 int i, j;
310 KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
311 ("cluster_rbuild: size %d != filesize %ld\n",
312 size, vp->v_mount->mnt_stat.f_iosize));
315 * avoid a division
317 while (loffset + run * size > filesize) {
318 --run;
321 tbp = fbp;
322 tbp->b_bio2.bio_offset = doffset;
323 if((tbp->b_flags & B_MALLOC) ||
324 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
325 return tbp;
328 bp = trypbuf(&cluster_pbuf_freecnt);
329 if (bp == NULL)
330 return tbp;
333 * We are synthesizing a buffer out of vm_page_t's, but
334 * if the block size is not page aligned then the starting
335 * address may not be either. Inherit the b_data offset
336 * from the original buffer.
338 bp->b_data = (char *)((vm_offset_t)bp->b_data |
339 ((vm_offset_t)tbp->b_data & PAGE_MASK));
340 bp->b_flags |= B_ASYNC | B_CLUSTER | B_VMIO;
341 bp->b_cmd = BUF_CMD_READ;
342 bp->b_bio1.bio_done = cluster_callback;
343 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
344 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
345 bp->b_loffset = loffset;
346 bp->b_bio2.bio_offset = NOOFFSET;
347 KASSERT(bp->b_loffset != NOOFFSET,
348 ("cluster_rbuild: no buffer offset"));
350 bp->b_bcount = 0;
351 bp->b_bufsize = 0;
352 bp->b_xio.xio_npages = 0;
354 for (boffset = doffset, i = 0; i < run; ++i, boffset += size) {
355 if (i) {
356 if ((bp->b_xio.xio_npages * PAGE_SIZE) +
357 round_page(size) > vp->v_mount->mnt_iosize_max) {
358 break;
362 * Shortcut some checks and try to avoid buffers that
363 * would block in the lock. The same checks have to
364 * be made again after we officially get the buffer.
366 if ((tbp = findblk(vp, loffset + i * size)) != NULL) {
367 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
368 break;
369 BUF_UNLOCK(tbp);
371 for (j = 0; j < tbp->b_xio.xio_npages; j++) {
372 if (tbp->b_xio.xio_pages[j]->valid)
373 break;
376 if (j != tbp->b_xio.xio_npages)
377 break;
379 if (tbp->b_bcount != size)
380 break;
383 tbp = getblk(vp, loffset + i * size, size, 0, 0);
386 * Stop scanning if the buffer is fuly valid
387 * (marked B_CACHE), or locked (may be doing a
388 * background write), or if the buffer is not
389 * VMIO backed. The clustering code can only deal
390 * with VMIO-backed buffers.
392 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
393 (tbp->b_flags & B_VMIO) == 0 ||
394 (LIST_FIRST(&tbp->b_dep) != NULL &&
395 buf_checkread(tbp))
397 bqrelse(tbp);
398 break;
402 * The buffer must be completely invalid in order to
403 * take part in the cluster. If it is partially valid
404 * then we stop.
406 for (j = 0;j < tbp->b_xio.xio_npages; j++) {
407 if (tbp->b_xio.xio_pages[j]->valid)
408 break;
410 if (j != tbp->b_xio.xio_npages) {
411 bqrelse(tbp);
412 break;
416 * Set a read-ahead mark as appropriate
418 if (i == 1 || i == (run - 1))
419 tbp->b_flags |= B_RAM;
422 * Set the block number if it isn't set, otherwise
423 * if it is make sure it matches the block number we
424 * expect.
426 if (tbp->b_bio2.bio_offset == NOOFFSET) {
427 tbp->b_bio2.bio_offset = boffset;
428 } else if (tbp->b_bio2.bio_offset != boffset) {
429 brelse(tbp);
430 break;
434 * The first buffer is setup async if doasync is specified.
435 * All other buffers in the cluster are setup async. This
436 * way the caller can decide how to deal with the requested
437 * buffer.
439 if (i || doasync)
440 tbp->b_flags |= B_ASYNC;
441 tbp->b_cmd = BUF_CMD_READ;
442 BUF_KERNPROC(tbp);
443 cluster_append(&bp->b_bio1, tbp);
444 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
445 vm_page_t m;
446 m = tbp->b_xio.xio_pages[j];
447 vm_page_io_start(m);
448 vm_object_pip_add(m->object, 1);
449 if ((bp->b_xio.xio_npages == 0) ||
450 (bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
451 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
452 bp->b_xio.xio_npages++;
454 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
455 tbp->b_xio.xio_pages[j] = bogus_page;
458 * XXX shouldn't this be += size for both, like in
459 * cluster_wbuild()?
461 * Don't inherit tbp->b_bufsize as it may be larger due to
462 * a non-page-aligned size. Instead just aggregate using
463 * 'size'.
465 if (tbp->b_bcount != size)
466 kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, size);
467 if (tbp->b_bufsize != size)
468 kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, size);
469 bp->b_bcount += size;
470 bp->b_bufsize += size;
474 * Fully valid pages in the cluster are already good and do not need
475 * to be re-read from disk. Replace the page with bogus_page
477 for (j = 0; j < bp->b_xio.xio_npages; j++) {
478 if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
479 VM_PAGE_BITS_ALL) {
480 bp->b_xio.xio_pages[j] = bogus_page;
483 if (bp->b_bufsize > bp->b_kvasize) {
484 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
485 bp->b_bufsize, bp->b_kvasize);
488 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
489 (vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
490 return (bp);
494 * Cleanup after a clustered read or write.
495 * This is complicated by the fact that any of the buffers might have
496 * extra memory (if there were no empty buffer headers at allocbuf time)
497 * that we will need to shift around.
499 * The returned bio is &bp->b_bio1
501 void
502 cluster_callback(struct bio *bio)
504 struct buf *bp = bio->bio_buf;
505 struct buf *tbp;
506 int error = 0;
509 * Must propogate errors to all the components. A short read (EOF)
510 * is a critical error.
512 if (bp->b_flags & B_ERROR) {
513 error = bp->b_error;
514 } else if (bp->b_bcount != bp->b_bufsize) {
515 panic("cluster_callback: unexpected EOF on cluster %p!", bio);
518 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
520 * Move memory from the large cluster buffer into the component
521 * buffers and mark IO as done on these. Since the memory map
522 * is the same, no actual copying is required.
524 while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
525 bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
526 if (error) {
527 tbp->b_flags |= B_ERROR;
528 tbp->b_error = error;
529 } else {
530 tbp->b_dirtyoff = tbp->b_dirtyend = 0;
531 tbp->b_flags &= ~(B_ERROR|B_INVAL);
533 * XXX the bdwrite()/bqrelse() issued during
534 * cluster building clears B_RELBUF (see bqrelse()
535 * comment). If direct I/O was specified, we have
536 * to restore it here to allow the buffer and VM
537 * to be freed.
539 if (tbp->b_flags & B_DIRECT)
540 tbp->b_flags |= B_RELBUF;
542 biodone(&tbp->b_bio1);
544 relpbuf(bp, &cluster_pbuf_freecnt);
548 * cluster_wbuild_wb:
550 * Implement modified write build for cluster.
552 * write_behind = 0 write behind disabled
553 * write_behind = 1 write behind normal (default)
554 * write_behind = 2 write behind backed-off
557 static __inline int
558 cluster_wbuild_wb(struct vnode *vp, int size, off_t start_loffset, int len)
560 int r = 0;
562 switch(write_behind) {
563 case 2:
564 if (start_loffset < len)
565 break;
566 start_loffset -= len;
567 /* fall through */
568 case 1:
569 r = cluster_wbuild(vp, size, start_loffset, len);
570 /* fall through */
571 default:
572 /* fall through */
573 break;
575 return(r);
579 * Do clustered write for FFS.
581 * Three cases:
582 * 1. Write is not sequential (write asynchronously)
583 * Write is sequential:
584 * 2. beginning of cluster - begin cluster
585 * 3. middle of a cluster - add to cluster
586 * 4. end of a cluster - asynchronously write cluster
588 void
589 cluster_write(struct buf *bp, off_t filesize, int seqcount)
591 struct vnode *vp;
592 off_t loffset;
593 int maxclen, cursize;
594 int lblocksize;
595 int async;
597 vp = bp->b_vp;
598 if (vp->v_type == VREG) {
599 async = vp->v_mount->mnt_flag & MNT_ASYNC;
600 lblocksize = vp->v_mount->mnt_stat.f_iosize;
601 } else {
602 async = 0;
603 lblocksize = bp->b_bufsize;
605 loffset = bp->b_loffset;
606 KASSERT(bp->b_loffset != NOOFFSET,
607 ("cluster_write: no buffer offset"));
609 /* Initialize vnode to beginning of file. */
610 if (loffset == 0)
611 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
613 if (vp->v_clen == 0 || loffset != vp->v_lastw + lblocksize ||
614 bp->b_bio2.bio_offset == NOOFFSET ||
615 (bp->b_bio2.bio_offset != vp->v_lasta + lblocksize)) {
616 maxclen = vp->v_mount->mnt_iosize_max;
617 if (vp->v_clen != 0) {
619 * Next block is not sequential.
621 * If we are not writing at end of file, the process
622 * seeked to another point in the file since its last
623 * write, or we have reached our maximum cluster size,
624 * then push the previous cluster. Otherwise try
625 * reallocating to make it sequential.
627 * Change to algorithm: only push previous cluster if
628 * it was sequential from the point of view of the
629 * seqcount heuristic, otherwise leave the buffer
630 * intact so we can potentially optimize the I/O
631 * later on in the buf_daemon or update daemon
632 * flush.
634 cursize = vp->v_lastw - vp->v_cstart + lblocksize;
635 if (bp->b_loffset + lblocksize != filesize ||
636 loffset != vp->v_lastw + lblocksize || vp->v_clen <= cursize) {
637 if (!async && seqcount > 0) {
638 cluster_wbuild_wb(vp, lblocksize,
639 vp->v_cstart, cursize);
641 } else {
642 struct buf **bpp, **endbp;
643 struct cluster_save *buflist;
645 buflist = cluster_collectbufs(vp, bp,
646 lblocksize);
647 endbp = &buflist->bs_children
648 [buflist->bs_nchildren - 1];
649 if (VOP_REALLOCBLKS(vp, buflist)) {
651 * Failed, push the previous cluster
652 * if *really* writing sequentially
653 * in the logical file (seqcount > 1),
654 * otherwise delay it in the hopes that
655 * the low level disk driver can
656 * optimize the write ordering.
658 for (bpp = buflist->bs_children;
659 bpp < endbp; bpp++)
660 brelse(*bpp);
661 kfree(buflist, M_SEGMENT);
662 if (seqcount > 1) {
663 cluster_wbuild_wb(vp,
664 lblocksize, vp->v_cstart,
665 cursize);
667 } else {
669 * Succeeded, keep building cluster.
671 for (bpp = buflist->bs_children;
672 bpp <= endbp; bpp++)
673 bdwrite(*bpp);
674 kfree(buflist, M_SEGMENT);
675 vp->v_lastw = loffset;
676 vp->v_lasta = bp->b_bio2.bio_offset;
677 return;
682 * Consider beginning a cluster. If at end of file, make
683 * cluster as large as possible, otherwise find size of
684 * existing cluster.
686 if ((vp->v_type == VREG) &&
687 bp->b_loffset + lblocksize != filesize &&
688 (bp->b_bio2.bio_offset == NOOFFSET) &&
689 (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL) ||
690 bp->b_bio2.bio_offset == NOOFFSET)) {
691 bawrite(bp);
692 vp->v_clen = 0;
693 vp->v_lasta = bp->b_bio2.bio_offset;
694 vp->v_cstart = loffset + lblocksize;
695 vp->v_lastw = loffset;
696 return;
698 if (maxclen > lblocksize)
699 vp->v_clen = maxclen - lblocksize;
700 else
701 vp->v_clen = 0;
702 if (!async && vp->v_clen == 0) { /* I/O not contiguous */
703 vp->v_cstart = loffset + lblocksize;
704 bawrite(bp);
705 } else { /* Wait for rest of cluster */
706 vp->v_cstart = loffset;
707 bdwrite(bp);
709 } else if (loffset == vp->v_cstart + vp->v_clen) {
711 * At end of cluster, write it out if seqcount tells us we
712 * are operating sequentially, otherwise let the buf or
713 * update daemon handle it.
715 bdwrite(bp);
716 if (seqcount > 1)
717 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
718 vp->v_clen + lblocksize);
719 vp->v_clen = 0;
720 vp->v_cstart = loffset + lblocksize;
721 } else if (vm_page_count_severe()) {
723 * We are low on memory, get it going NOW
725 bawrite(bp);
726 } else {
728 * In the middle of a cluster, so just delay the I/O for now.
730 bdwrite(bp);
732 vp->v_lastw = loffset;
733 vp->v_lasta = bp->b_bio2.bio_offset;
738 * This is an awful lot like cluster_rbuild...wish they could be combined.
739 * The last lbn argument is the current block on which I/O is being
740 * performed. Check to see that it doesn't fall in the middle of
741 * the current block (if last_bp == NULL).
744 cluster_wbuild(struct vnode *vp, int size, off_t start_loffset, int bytes)
746 struct buf *bp, *tbp;
747 int i, j;
748 int totalwritten = 0;
750 while (bytes > 0) {
751 crit_enter();
753 * If the buffer is not delayed-write (i.e. dirty), or it
754 * is delayed-write but either locked or inval, it cannot
755 * partake in the clustered write.
757 if (((tbp = findblk(vp, start_loffset)) == NULL) ||
758 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
759 (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
760 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
761 start_loffset += size;
762 bytes -= size;
763 crit_exit();
764 continue;
766 bremfree(tbp);
767 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
768 crit_exit();
771 * Extra memory in the buffer, punt on this buffer.
772 * XXX we could handle this in most cases, but we would
773 * have to push the extra memory down to after our max
774 * possible cluster size and then potentially pull it back
775 * up if the cluster was terminated prematurely--too much
776 * hassle.
778 if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
779 (tbp->b_bcount != tbp->b_bufsize) ||
780 (tbp->b_bcount != size) ||
781 (bytes == size) ||
782 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
783 totalwritten += tbp->b_bufsize;
784 bawrite(tbp);
785 start_loffset += size;
786 bytes -= size;
787 continue;
791 * Set up the pbuf. Track our append point with b_bcount
792 * and b_bufsize. b_bufsize is not used by the device but
793 * our caller uses it to loop clusters and we use it to
794 * detect a premature EOF on the block device.
796 bp->b_bcount = 0;
797 bp->b_bufsize = 0;
798 bp->b_xio.xio_npages = 0;
799 bp->b_loffset = tbp->b_loffset;
800 bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
803 * We are synthesizing a buffer out of vm_page_t's, but
804 * if the block size is not page aligned then the starting
805 * address may not be either. Inherit the b_data offset
806 * from the original buffer.
808 bp->b_data = (char *)((vm_offset_t)bp->b_data |
809 ((vm_offset_t)tbp->b_data & PAGE_MASK));
810 bp->b_flags &= ~B_ERROR;
811 bp->b_flags |= B_CLUSTER | B_BNOCLIP |
812 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
813 bp->b_bio1.bio_done = cluster_callback;
814 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
815 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
817 * From this location in the file, scan forward to see
818 * if there are buffers with adjacent data that need to
819 * be written as well.
821 for (i = 0; i < bytes; (i += size), (start_loffset += size)) {
822 if (i != 0) { /* If not the first buffer */
823 crit_enter();
825 * If the adjacent data is not even in core it
826 * can't need to be written.
828 if ((tbp = findblk(vp, start_loffset)) == NULL) {
829 crit_exit();
830 break;
834 * If it IS in core, but has different
835 * characteristics, or is locked (which
836 * means it could be undergoing a background
837 * I/O or be in a weird state), then don't
838 * cluster with it.
840 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
841 B_INVAL | B_DELWRI | B_NEEDCOMMIT))
842 != (B_DELWRI | B_CLUSTEROK |
843 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
844 (tbp->b_flags & B_LOCKED) ||
845 (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
846 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
847 crit_exit();
848 break;
852 * Check that the combined cluster
853 * would make sense with regard to pages
854 * and would not be too large
856 if ((tbp->b_bcount != size) ||
857 ((bp->b_bio2.bio_offset + i) !=
858 tbp->b_bio2.bio_offset) ||
859 ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
860 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
861 BUF_UNLOCK(tbp);
862 crit_exit();
863 break;
866 * Ok, it's passed all the tests,
867 * so remove it from the free list
868 * and mark it busy. We will use it.
870 bremfree(tbp);
871 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
872 crit_exit();
873 } /* end of code for non-first buffers only */
876 * If the IO is via the VM then we do some
877 * special VM hackery (yuck). Since the buffer's
878 * block size may not be page-aligned it is possible
879 * for a page to be shared between two buffers. We
880 * have to get rid of the duplication when building
881 * the cluster.
883 if (tbp->b_flags & B_VMIO) {
884 vm_page_t m;
886 if (i != 0) { /* if not first buffer */
887 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
888 m = tbp->b_xio.xio_pages[j];
889 if (m->flags & PG_BUSY) {
890 bqrelse(tbp);
891 goto finishcluster;
896 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
897 m = tbp->b_xio.xio_pages[j];
898 vm_page_io_start(m);
899 vm_object_pip_add(m->object, 1);
900 if ((bp->b_xio.xio_npages == 0) ||
901 (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
902 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
903 bp->b_xio.xio_npages++;
907 bp->b_bcount += size;
908 bp->b_bufsize += size;
910 crit_enter();
911 bundirty(tbp);
912 tbp->b_flags &= ~B_ERROR;
913 tbp->b_flags |= B_ASYNC;
914 tbp->b_cmd = BUF_CMD_WRITE;
915 crit_exit();
916 BUF_KERNPROC(tbp);
917 cluster_append(&bp->b_bio1, tbp);
920 * check for latent dependencies to be handled
922 if (LIST_FIRST(&tbp->b_dep) != NULL)
923 buf_start(tbp);
925 finishcluster:
926 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
927 (vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
928 if (bp->b_bufsize > bp->b_kvasize) {
929 panic(
930 "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
931 bp->b_bufsize, bp->b_kvasize);
933 totalwritten += bp->b_bufsize;
934 bp->b_dirtyoff = 0;
935 bp->b_dirtyend = bp->b_bufsize;
936 bp->b_flags |= B_ASYNC;
937 bp->b_cmd = BUF_CMD_WRITE;
938 vfs_busy_pages(vp, bp);
939 bp->b_runningbufspace = bp->b_bufsize;
940 runningbufspace += bp->b_runningbufspace;
941 BUF_KERNPROC(bp); /* B_ASYNC */
942 vn_strategy(vp, &bp->b_bio1);
944 bytes -= i;
946 return totalwritten;
950 * Collect together all the buffers in a cluster.
951 * Plus add one additional buffer.
953 static struct cluster_save *
954 cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int lblocksize)
956 struct cluster_save *buflist;
957 struct buf *bp;
958 off_t loffset;
959 int i, len;
961 len = (int)(vp->v_lastw - vp->v_cstart + lblocksize) / lblocksize;
962 buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
963 M_SEGMENT, M_WAITOK);
964 buflist->bs_nchildren = 0;
965 buflist->bs_children = (struct buf **) (buflist + 1);
966 for (loffset = vp->v_cstart, i = 0; i < len; (loffset += lblocksize), i++) {
967 (void) bread(vp, loffset, last_bp->b_bcount, &bp);
968 buflist->bs_children[i] = bp;
969 if (bp->b_bio2.bio_offset == NOOFFSET) {
970 VOP_BMAP(bp->b_vp, bp->b_loffset,
971 &bp->b_bio2.bio_offset, NULL, NULL);
974 buflist->bs_children[i] = bp = last_bp;
975 if (bp->b_bio2.bio_offset == NOOFFSET) {
976 VOP_BMAP(bp->b_vp, bp->b_loffset,
977 &bp->b_bio2.bio_offset, NULL, NULL);
979 buflist->bs_nchildren = i + 1;
980 return (buflist);
983 void
984 cluster_append(struct bio *bio, struct buf *tbp)
986 tbp->b_cluster_next = NULL;
987 if (bio->bio_caller_info1.cluster_head == NULL) {
988 bio->bio_caller_info1.cluster_head = tbp;
989 bio->bio_caller_info2.cluster_tail = tbp;
990 } else {
991 bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
992 bio->bio_caller_info2.cluster_tail = tbp;