3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
36 * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37 * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.33 2008/04/22 18:46:51 dillon Exp $
40 #include "opt_debug_cluster.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
57 #include <vm/vm_page2.h>
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int rcluster
= 0;
62 SYSCTL_INT(_debug
, OID_AUTO
, rcluster
, CTLFLAG_RW
, &rcluster
, 0, "");
65 static MALLOC_DEFINE(M_SEGMENT
, "cluster_save", "cluster_save buffer");
67 static struct cluster_save
*
68 cluster_collectbufs (struct vnode
*vp
, struct buf
*last_bp
,
71 cluster_rbuild (struct vnode
*vp
, off_t filesize
, off_t loffset
,
72 off_t doffset
, int size
, int run
,
73 struct buf
*fbp
, int doasync
);
74 static void cluster_callback (struct bio
*);
77 static int write_behind
= 1;
78 SYSCTL_INT(_vfs
, OID_AUTO
, write_behind
, CTLFLAG_RW
, &write_behind
, 0, "");
80 extern vm_page_t bogus_page
;
82 extern int cluster_pbuf_freecnt
;
85 * Maximum number of blocks for read-ahead.
90 * This replaces bread.
93 cluster_read(struct vnode
*vp
, off_t filesize
, off_t loffset
,
94 int size
, int totread
, int seqcount
, struct buf
**bpp
)
96 struct buf
*bp
, *rbp
, *reqbp
;
101 int maxra
, racluster
;
106 * Try to limit the amount of read-ahead by a few
107 * ad-hoc parameters. This needs work!!!
109 racluster
= vp
->v_mount
->mnt_iosize_max
/ size
;
110 maxra
= 2 * racluster
+ (totread
/ size
);
117 * get the requested block
119 *bpp
= reqbp
= bp
= getblk(vp
, loffset
, size
, 0, 0);
120 origoffset
= loffset
;
123 * if it is in the cache, then check to see if the reads have been
124 * sequential. If they have, then try some read-ahead, otherwise
125 * back-off on prospective read-aheads.
127 if (bp
->b_flags
& B_CACHE
) {
130 } else if ((bp
->b_flags
& B_RAM
) == 0) {
134 bp
->b_flags
&= ~B_RAM
;
136 * We do the crit here so that there is no window
137 * between the findblk and the b_usecount increment
138 * below. We opt to keep the crit out of the loop
142 for (i
= 1; i
< maxra
; i
++) {
143 if (!(tbp
= findblk(vp
, loffset
+ i
* size
))) {
148 * Set another read-ahead mark so we know
151 if (((i
% racluster
) == (racluster
- 1)) ||
153 tbp
->b_flags
|= B_RAM
;
163 off_t firstread
= bp
->b_loffset
;
166 KASSERT(firstread
!= NOOFFSET
,
167 ("cluster_read: no buffer offset"));
168 if (firstread
+ totread
> filesize
)
169 totread
= (int)(filesize
- firstread
);
170 nblks
= totread
/ size
;
174 if (nblks
> racluster
)
177 error
= VOP_BMAP(vp
, loffset
,
178 &doffset
, &burstbytes
, NULL
);
180 goto single_block_read
;
181 if (doffset
== NOOFFSET
)
182 goto single_block_read
;
183 if (burstbytes
< size
* 2)
184 goto single_block_read
;
185 if (nblks
> burstbytes
/ size
)
186 nblks
= burstbytes
/ size
;
188 bp
= cluster_rbuild(vp
, filesize
, loffset
,
189 doffset
, size
, nblks
, bp
, 0);
190 loffset
+= bp
->b_bufsize
;
194 * if it isn't in the cache, then get a chunk from
195 * disk if sequential, otherwise just get the block.
197 bp
->b_flags
|= B_RAM
;
203 * Handle the synchronous read. This only occurs if B_CACHE was
204 * not set. bp (and rbp) could be either a cluster bp or a normal
205 * bp depending on the what cluster_rbuild() decided to do. If
206 * it is a cluster bp, vfs_busy_pages() has already been called.
209 #if defined(CLUSTERDEBUG)
211 kprintf("S(%lld,%d,%d) ",
212 bp
->b_loffset
, bp
->b_bcount
, seqcount
);
214 bp
->b_cmd
= BUF_CMD_READ
;
215 if ((bp
->b_flags
& B_CLUSTER
) == 0)
216 vfs_busy_pages(vp
, bp
);
217 bp
->b_flags
&= ~(B_ERROR
|B_INVAL
);
218 if ((bp
->b_flags
& B_ASYNC
) || bp
->b_bio1
.bio_done
!= NULL
)
220 vn_strategy(vp
, &bp
->b_bio1
);
225 * If we have been doing sequential I/O, then do some read-ahead.
230 loffset
< origoffset
+ seqcount
* size
&&
231 loffset
+ size
<= filesize
237 rbp
= getblk(vp
, loffset
, size
, 0, 0);
238 if ((rbp
->b_flags
& B_CACHE
)) {
243 error
= VOP_BMAP(vp
, loffset
,
244 &doffset
, &burstbytes
, NULL
);
245 if (error
|| doffset
== NOOFFSET
) {
246 rbp
->b_flags
|= B_INVAL
;
251 ntoread
= burstbytes
/ size
;
252 nblksread
= (totread
+ size
- 1) / size
;
253 if (seqcount
< nblksread
)
254 seqcount
= nblksread
;
255 if (seqcount
< ntoread
)
258 rbp
->b_flags
|= B_RAM
;
260 rbp
= cluster_rbuild(vp
, filesize
, loffset
,
264 rbp
->b_bio2
.bio_offset
= doffset
;
266 #if defined(CLUSTERDEBUG)
269 kprintf("A+(%lld,%d,%lld,%d) ",
270 rbp
->b_loffset
, rbp
->b_bcount
,
271 rbp
->b_loffset
- origoffset
,
274 kprintf("A(%lld,%d,%lld,%d) ",
275 rbp
->b_loffset
, rbp
->b_bcount
,
276 rbp
->b_loffset
- origoffset
,
280 rbp
->b_flags
&= ~(B_ERROR
|B_INVAL
);
281 rbp
->b_flags
|= B_ASYNC
;
282 rbp
->b_cmd
= BUF_CMD_READ
;
284 if ((rbp
->b_flags
& B_CLUSTER
) == 0)
285 vfs_busy_pages(vp
, rbp
);
286 BUF_KERNPROC(rbp
); /* B_ASYNC */
287 vn_strategy(vp
, &rbp
->b_bio1
);
292 return (biowait(reqbp
));
298 * If blocks are contiguous on disk, use this to provide clustered
299 * read ahead. We will read as many blocks as possible sequentially
300 * and then parcel them up into logical blocks in the buffer hash table.
303 cluster_rbuild(struct vnode
*vp
, off_t filesize
, off_t loffset
,
304 off_t doffset
, int size
, int run
, struct buf
*fbp
, int doasync
)
306 struct buf
*bp
, *tbp
;
310 KASSERT(size
== vp
->v_mount
->mnt_stat
.f_iosize
,
311 ("cluster_rbuild: size %d != filesize %ld\n",
312 size
, vp
->v_mount
->mnt_stat
.f_iosize
));
317 while (loffset
+ run
* size
> filesize
) {
322 tbp
->b_bio2
.bio_offset
= doffset
;
323 if((tbp
->b_flags
& B_MALLOC
) ||
324 ((tbp
->b_flags
& B_VMIO
) == 0) || (run
<= 1)) {
328 bp
= trypbuf(&cluster_pbuf_freecnt
);
333 * We are synthesizing a buffer out of vm_page_t's, but
334 * if the block size is not page aligned then the starting
335 * address may not be either. Inherit the b_data offset
336 * from the original buffer.
338 bp
->b_data
= (char *)((vm_offset_t
)bp
->b_data
|
339 ((vm_offset_t
)tbp
->b_data
& PAGE_MASK
));
340 bp
->b_flags
|= B_ASYNC
| B_CLUSTER
| B_VMIO
;
341 bp
->b_cmd
= BUF_CMD_READ
;
342 bp
->b_bio1
.bio_done
= cluster_callback
;
343 bp
->b_bio1
.bio_caller_info1
.cluster_head
= NULL
;
344 bp
->b_bio1
.bio_caller_info2
.cluster_tail
= NULL
;
345 bp
->b_loffset
= loffset
;
346 bp
->b_bio2
.bio_offset
= NOOFFSET
;
347 KASSERT(bp
->b_loffset
!= NOOFFSET
,
348 ("cluster_rbuild: no buffer offset"));
352 bp
->b_xio
.xio_npages
= 0;
354 for (boffset
= doffset
, i
= 0; i
< run
; ++i
, boffset
+= size
) {
356 if ((bp
->b_xio
.xio_npages
* PAGE_SIZE
) +
357 round_page(size
) > vp
->v_mount
->mnt_iosize_max
) {
362 * Shortcut some checks and try to avoid buffers that
363 * would block in the lock. The same checks have to
364 * be made again after we officially get the buffer.
366 if ((tbp
= findblk(vp
, loffset
+ i
* size
)) != NULL
) {
367 if (BUF_LOCK(tbp
, LK_EXCLUSIVE
| LK_NOWAIT
))
371 for (j
= 0; j
< tbp
->b_xio
.xio_npages
; j
++) {
372 if (tbp
->b_xio
.xio_pages
[j
]->valid
)
376 if (j
!= tbp
->b_xio
.xio_npages
)
379 if (tbp
->b_bcount
!= size
)
383 tbp
= getblk(vp
, loffset
+ i
* size
, size
, 0, 0);
386 * Stop scanning if the buffer is fuly valid
387 * (marked B_CACHE), or locked (may be doing a
388 * background write), or if the buffer is not
389 * VMIO backed. The clustering code can only deal
390 * with VMIO-backed buffers.
392 if ((tbp
->b_flags
& (B_CACHE
|B_LOCKED
)) ||
393 (tbp
->b_flags
& B_VMIO
) == 0 ||
394 (LIST_FIRST(&tbp
->b_dep
) != NULL
&&
402 * The buffer must be completely invalid in order to
403 * take part in the cluster. If it is partially valid
406 for (j
= 0;j
< tbp
->b_xio
.xio_npages
; j
++) {
407 if (tbp
->b_xio
.xio_pages
[j
]->valid
)
410 if (j
!= tbp
->b_xio
.xio_npages
) {
416 * Set a read-ahead mark as appropriate
418 if (i
== 1 || i
== (run
- 1))
419 tbp
->b_flags
|= B_RAM
;
422 * Set the block number if it isn't set, otherwise
423 * if it is make sure it matches the block number we
426 if (tbp
->b_bio2
.bio_offset
== NOOFFSET
) {
427 tbp
->b_bio2
.bio_offset
= boffset
;
428 } else if (tbp
->b_bio2
.bio_offset
!= boffset
) {
434 * The first buffer is setup async if doasync is specified.
435 * All other buffers in the cluster are setup async. This
436 * way the caller can decide how to deal with the requested
440 tbp
->b_flags
|= B_ASYNC
;
441 tbp
->b_cmd
= BUF_CMD_READ
;
443 cluster_append(&bp
->b_bio1
, tbp
);
444 for (j
= 0; j
< tbp
->b_xio
.xio_npages
; ++j
) {
446 m
= tbp
->b_xio
.xio_pages
[j
];
448 vm_object_pip_add(m
->object
, 1);
449 if ((bp
->b_xio
.xio_npages
== 0) ||
450 (bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
-1] != m
)) {
451 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
452 bp
->b_xio
.xio_npages
++;
454 if ((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
)
455 tbp
->b_xio
.xio_pages
[j
] = bogus_page
;
458 * XXX shouldn't this be += size for both, like in
461 * Don't inherit tbp->b_bufsize as it may be larger due to
462 * a non-page-aligned size. Instead just aggregate using
465 if (tbp
->b_bcount
!= size
)
466 kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp
->b_bcount
, size
);
467 if (tbp
->b_bufsize
!= size
)
468 kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp
->b_bufsize
, size
);
469 bp
->b_bcount
+= size
;
470 bp
->b_bufsize
+= size
;
474 * Fully valid pages in the cluster are already good and do not need
475 * to be re-read from disk. Replace the page with bogus_page
477 for (j
= 0; j
< bp
->b_xio
.xio_npages
; j
++) {
478 if ((bp
->b_xio
.xio_pages
[j
]->valid
& VM_PAGE_BITS_ALL
) ==
480 bp
->b_xio
.xio_pages
[j
] = bogus_page
;
483 if (bp
->b_bufsize
> bp
->b_kvasize
) {
484 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
485 bp
->b_bufsize
, bp
->b_kvasize
);
488 pmap_qenter(trunc_page((vm_offset_t
) bp
->b_data
),
489 (vm_page_t
*)bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
494 * Cleanup after a clustered read or write.
495 * This is complicated by the fact that any of the buffers might have
496 * extra memory (if there were no empty buffer headers at allocbuf time)
497 * that we will need to shift around.
499 * The returned bio is &bp->b_bio1
502 cluster_callback(struct bio
*bio
)
504 struct buf
*bp
= bio
->bio_buf
;
509 * Must propogate errors to all the components. A short read (EOF)
510 * is a critical error.
512 if (bp
->b_flags
& B_ERROR
) {
514 } else if (bp
->b_bcount
!= bp
->b_bufsize
) {
515 panic("cluster_callback: unexpected EOF on cluster %p!", bio
);
518 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
), bp
->b_xio
.xio_npages
);
520 * Move memory from the large cluster buffer into the component
521 * buffers and mark IO as done on these. Since the memory map
522 * is the same, no actual copying is required.
524 while ((tbp
= bio
->bio_caller_info1
.cluster_head
) != NULL
) {
525 bio
->bio_caller_info1
.cluster_head
= tbp
->b_cluster_next
;
527 tbp
->b_flags
|= B_ERROR
;
528 tbp
->b_error
= error
;
530 tbp
->b_dirtyoff
= tbp
->b_dirtyend
= 0;
531 tbp
->b_flags
&= ~(B_ERROR
|B_INVAL
);
533 * XXX the bdwrite()/bqrelse() issued during
534 * cluster building clears B_RELBUF (see bqrelse()
535 * comment). If direct I/O was specified, we have
536 * to restore it here to allow the buffer and VM
539 if (tbp
->b_flags
& B_DIRECT
)
540 tbp
->b_flags
|= B_RELBUF
;
542 biodone(&tbp
->b_bio1
);
544 relpbuf(bp
, &cluster_pbuf_freecnt
);
550 * Implement modified write build for cluster.
552 * write_behind = 0 write behind disabled
553 * write_behind = 1 write behind normal (default)
554 * write_behind = 2 write behind backed-off
558 cluster_wbuild_wb(struct vnode
*vp
, int size
, off_t start_loffset
, int len
)
562 switch(write_behind
) {
564 if (start_loffset
< len
)
566 start_loffset
-= len
;
569 r
= cluster_wbuild(vp
, size
, start_loffset
, len
);
579 * Do clustered write for FFS.
582 * 1. Write is not sequential (write asynchronously)
583 * Write is sequential:
584 * 2. beginning of cluster - begin cluster
585 * 3. middle of a cluster - add to cluster
586 * 4. end of a cluster - asynchronously write cluster
589 cluster_write(struct buf
*bp
, off_t filesize
, int seqcount
)
593 int maxclen
, cursize
;
598 if (vp
->v_type
== VREG
) {
599 async
= vp
->v_mount
->mnt_flag
& MNT_ASYNC
;
600 lblocksize
= vp
->v_mount
->mnt_stat
.f_iosize
;
603 lblocksize
= bp
->b_bufsize
;
605 loffset
= bp
->b_loffset
;
606 KASSERT(bp
->b_loffset
!= NOOFFSET
,
607 ("cluster_write: no buffer offset"));
609 /* Initialize vnode to beginning of file. */
611 vp
->v_lasta
= vp
->v_clen
= vp
->v_cstart
= vp
->v_lastw
= 0;
613 if (vp
->v_clen
== 0 || loffset
!= vp
->v_lastw
+ lblocksize
||
614 bp
->b_bio2
.bio_offset
== NOOFFSET
||
615 (bp
->b_bio2
.bio_offset
!= vp
->v_lasta
+ lblocksize
)) {
616 maxclen
= vp
->v_mount
->mnt_iosize_max
;
617 if (vp
->v_clen
!= 0) {
619 * Next block is not sequential.
621 * If we are not writing at end of file, the process
622 * seeked to another point in the file since its last
623 * write, or we have reached our maximum cluster size,
624 * then push the previous cluster. Otherwise try
625 * reallocating to make it sequential.
627 * Change to algorithm: only push previous cluster if
628 * it was sequential from the point of view of the
629 * seqcount heuristic, otherwise leave the buffer
630 * intact so we can potentially optimize the I/O
631 * later on in the buf_daemon or update daemon
634 cursize
= vp
->v_lastw
- vp
->v_cstart
+ lblocksize
;
635 if (bp
->b_loffset
+ lblocksize
!= filesize
||
636 loffset
!= vp
->v_lastw
+ lblocksize
|| vp
->v_clen
<= cursize
) {
637 if (!async
&& seqcount
> 0) {
638 cluster_wbuild_wb(vp
, lblocksize
,
639 vp
->v_cstart
, cursize
);
642 struct buf
**bpp
, **endbp
;
643 struct cluster_save
*buflist
;
645 buflist
= cluster_collectbufs(vp
, bp
,
647 endbp
= &buflist
->bs_children
648 [buflist
->bs_nchildren
- 1];
649 if (VOP_REALLOCBLKS(vp
, buflist
)) {
651 * Failed, push the previous cluster
652 * if *really* writing sequentially
653 * in the logical file (seqcount > 1),
654 * otherwise delay it in the hopes that
655 * the low level disk driver can
656 * optimize the write ordering.
658 for (bpp
= buflist
->bs_children
;
661 kfree(buflist
, M_SEGMENT
);
663 cluster_wbuild_wb(vp
,
664 lblocksize
, vp
->v_cstart
,
669 * Succeeded, keep building cluster.
671 for (bpp
= buflist
->bs_children
;
674 kfree(buflist
, M_SEGMENT
);
675 vp
->v_lastw
= loffset
;
676 vp
->v_lasta
= bp
->b_bio2
.bio_offset
;
682 * Consider beginning a cluster. If at end of file, make
683 * cluster as large as possible, otherwise find size of
686 if ((vp
->v_type
== VREG
) &&
687 bp
->b_loffset
+ lblocksize
!= filesize
&&
688 (bp
->b_bio2
.bio_offset
== NOOFFSET
) &&
689 (VOP_BMAP(vp
, loffset
, &bp
->b_bio2
.bio_offset
, &maxclen
, NULL
) ||
690 bp
->b_bio2
.bio_offset
== NOOFFSET
)) {
693 vp
->v_lasta
= bp
->b_bio2
.bio_offset
;
694 vp
->v_cstart
= loffset
+ lblocksize
;
695 vp
->v_lastw
= loffset
;
698 if (maxclen
> lblocksize
)
699 vp
->v_clen
= maxclen
- lblocksize
;
702 if (!async
&& vp
->v_clen
== 0) { /* I/O not contiguous */
703 vp
->v_cstart
= loffset
+ lblocksize
;
705 } else { /* Wait for rest of cluster */
706 vp
->v_cstart
= loffset
;
709 } else if (loffset
== vp
->v_cstart
+ vp
->v_clen
) {
711 * At end of cluster, write it out if seqcount tells us we
712 * are operating sequentially, otherwise let the buf or
713 * update daemon handle it.
717 cluster_wbuild_wb(vp
, lblocksize
, vp
->v_cstart
,
718 vp
->v_clen
+ lblocksize
);
720 vp
->v_cstart
= loffset
+ lblocksize
;
721 } else if (vm_page_count_severe()) {
723 * We are low on memory, get it going NOW
728 * In the middle of a cluster, so just delay the I/O for now.
732 vp
->v_lastw
= loffset
;
733 vp
->v_lasta
= bp
->b_bio2
.bio_offset
;
738 * This is an awful lot like cluster_rbuild...wish they could be combined.
739 * The last lbn argument is the current block on which I/O is being
740 * performed. Check to see that it doesn't fall in the middle of
741 * the current block (if last_bp == NULL).
744 cluster_wbuild(struct vnode
*vp
, int size
, off_t start_loffset
, int bytes
)
746 struct buf
*bp
, *tbp
;
748 int totalwritten
= 0;
753 * If the buffer is not delayed-write (i.e. dirty), or it
754 * is delayed-write but either locked or inval, it cannot
755 * partake in the clustered write.
757 if (((tbp
= findblk(vp
, start_loffset
)) == NULL
) ||
758 ((tbp
->b_flags
& (B_LOCKED
| B_INVAL
| B_DELWRI
)) != B_DELWRI
) ||
759 (LIST_FIRST(&tbp
->b_dep
) != NULL
&& buf_checkwrite(tbp
)) ||
760 BUF_LOCK(tbp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
761 start_loffset
+= size
;
767 KKASSERT(tbp
->b_cmd
== BUF_CMD_DONE
);
771 * Extra memory in the buffer, punt on this buffer.
772 * XXX we could handle this in most cases, but we would
773 * have to push the extra memory down to after our max
774 * possible cluster size and then potentially pull it back
775 * up if the cluster was terminated prematurely--too much
778 if (((tbp
->b_flags
& (B_CLUSTEROK
|B_MALLOC
)) != B_CLUSTEROK
) ||
779 (tbp
->b_bcount
!= tbp
->b_bufsize
) ||
780 (tbp
->b_bcount
!= size
) ||
782 ((bp
= getpbuf(&cluster_pbuf_freecnt
)) == NULL
)) {
783 totalwritten
+= tbp
->b_bufsize
;
785 start_loffset
+= size
;
791 * Set up the pbuf. Track our append point with b_bcount
792 * and b_bufsize. b_bufsize is not used by the device but
793 * our caller uses it to loop clusters and we use it to
794 * detect a premature EOF on the block device.
798 bp
->b_xio
.xio_npages
= 0;
799 bp
->b_loffset
= tbp
->b_loffset
;
800 bp
->b_bio2
.bio_offset
= tbp
->b_bio2
.bio_offset
;
803 * We are synthesizing a buffer out of vm_page_t's, but
804 * if the block size is not page aligned then the starting
805 * address may not be either. Inherit the b_data offset
806 * from the original buffer.
808 bp
->b_data
= (char *)((vm_offset_t
)bp
->b_data
|
809 ((vm_offset_t
)tbp
->b_data
& PAGE_MASK
));
810 bp
->b_flags
&= ~B_ERROR
;
811 bp
->b_flags
|= B_CLUSTER
| B_BNOCLIP
|
812 (tbp
->b_flags
& (B_VMIO
| B_NEEDCOMMIT
));
813 bp
->b_bio1
.bio_done
= cluster_callback
;
814 bp
->b_bio1
.bio_caller_info1
.cluster_head
= NULL
;
815 bp
->b_bio1
.bio_caller_info2
.cluster_tail
= NULL
;
817 * From this location in the file, scan forward to see
818 * if there are buffers with adjacent data that need to
819 * be written as well.
821 for (i
= 0; i
< bytes
; (i
+= size
), (start_loffset
+= size
)) {
822 if (i
!= 0) { /* If not the first buffer */
825 * If the adjacent data is not even in core it
826 * can't need to be written.
828 if ((tbp
= findblk(vp
, start_loffset
)) == NULL
) {
834 * If it IS in core, but has different
835 * characteristics, or is locked (which
836 * means it could be undergoing a background
837 * I/O or be in a weird state), then don't
840 if ((tbp
->b_flags
& (B_VMIO
| B_CLUSTEROK
|
841 B_INVAL
| B_DELWRI
| B_NEEDCOMMIT
))
842 != (B_DELWRI
| B_CLUSTEROK
|
843 (bp
->b_flags
& (B_VMIO
| B_NEEDCOMMIT
))) ||
844 (tbp
->b_flags
& B_LOCKED
) ||
845 (LIST_FIRST(&tbp
->b_dep
) != NULL
&& buf_checkwrite(tbp
)) ||
846 BUF_LOCK(tbp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
852 * Check that the combined cluster
853 * would make sense with regard to pages
854 * and would not be too large
856 if ((tbp
->b_bcount
!= size
) ||
857 ((bp
->b_bio2
.bio_offset
+ i
) !=
858 tbp
->b_bio2
.bio_offset
) ||
859 ((tbp
->b_xio
.xio_npages
+ bp
->b_xio
.xio_npages
) >
860 (vp
->v_mount
->mnt_iosize_max
/ PAGE_SIZE
))) {
866 * Ok, it's passed all the tests,
867 * so remove it from the free list
868 * and mark it busy. We will use it.
871 KKASSERT(tbp
->b_cmd
== BUF_CMD_DONE
);
873 } /* end of code for non-first buffers only */
876 * If the IO is via the VM then we do some
877 * special VM hackery (yuck). Since the buffer's
878 * block size may not be page-aligned it is possible
879 * for a page to be shared between two buffers. We
880 * have to get rid of the duplication when building
883 if (tbp
->b_flags
& B_VMIO
) {
886 if (i
!= 0) { /* if not first buffer */
887 for (j
= 0; j
< tbp
->b_xio
.xio_npages
; ++j
) {
888 m
= tbp
->b_xio
.xio_pages
[j
];
889 if (m
->flags
& PG_BUSY
) {
896 for (j
= 0; j
< tbp
->b_xio
.xio_npages
; ++j
) {
897 m
= tbp
->b_xio
.xio_pages
[j
];
899 vm_object_pip_add(m
->object
, 1);
900 if ((bp
->b_xio
.xio_npages
== 0) ||
901 (bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
- 1] != m
)) {
902 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
903 bp
->b_xio
.xio_npages
++;
907 bp
->b_bcount
+= size
;
908 bp
->b_bufsize
+= size
;
912 tbp
->b_flags
&= ~B_ERROR
;
913 tbp
->b_flags
|= B_ASYNC
;
914 tbp
->b_cmd
= BUF_CMD_WRITE
;
917 cluster_append(&bp
->b_bio1
, tbp
);
920 * check for latent dependencies to be handled
922 if (LIST_FIRST(&tbp
->b_dep
) != NULL
)
926 pmap_qenter(trunc_page((vm_offset_t
) bp
->b_data
),
927 (vm_page_t
*) bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
928 if (bp
->b_bufsize
> bp
->b_kvasize
) {
930 "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
931 bp
->b_bufsize
, bp
->b_kvasize
);
933 totalwritten
+= bp
->b_bufsize
;
935 bp
->b_dirtyend
= bp
->b_bufsize
;
936 bp
->b_flags
|= B_ASYNC
;
937 bp
->b_cmd
= BUF_CMD_WRITE
;
938 vfs_busy_pages(vp
, bp
);
939 bp
->b_runningbufspace
= bp
->b_bufsize
;
940 runningbufspace
+= bp
->b_runningbufspace
;
941 BUF_KERNPROC(bp
); /* B_ASYNC */
942 vn_strategy(vp
, &bp
->b_bio1
);
950 * Collect together all the buffers in a cluster.
951 * Plus add one additional buffer.
953 static struct cluster_save
*
954 cluster_collectbufs(struct vnode
*vp
, struct buf
*last_bp
, int lblocksize
)
956 struct cluster_save
*buflist
;
961 len
= (int)(vp
->v_lastw
- vp
->v_cstart
+ lblocksize
) / lblocksize
;
962 buflist
= kmalloc(sizeof(struct buf
*) * (len
+ 1) + sizeof(*buflist
),
963 M_SEGMENT
, M_WAITOK
);
964 buflist
->bs_nchildren
= 0;
965 buflist
->bs_children
= (struct buf
**) (buflist
+ 1);
966 for (loffset
= vp
->v_cstart
, i
= 0; i
< len
; (loffset
+= lblocksize
), i
++) {
967 (void) bread(vp
, loffset
, last_bp
->b_bcount
, &bp
);
968 buflist
->bs_children
[i
] = bp
;
969 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
970 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
,
971 &bp
->b_bio2
.bio_offset
, NULL
, NULL
);
974 buflist
->bs_children
[i
] = bp
= last_bp
;
975 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
976 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
,
977 &bp
->b_bio2
.bio_offset
, NULL
, NULL
);
979 buflist
->bs_nchildren
= i
+ 1;
984 cluster_append(struct bio
*bio
, struct buf
*tbp
)
986 tbp
->b_cluster_next
= NULL
;
987 if (bio
->bio_caller_info1
.cluster_head
== NULL
) {
988 bio
->bio_caller_info1
.cluster_head
= tbp
;
989 bio
->bio_caller_info2
.cluster_tail
= tbp
;
991 bio
->bio_caller_info2
.cluster_tail
->b_cluster_next
= tbp
;
992 bio
->bio_caller_info2
.cluster_tail
= tbp
;