2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * ----------------------------------------------------------------------------
35 * "THE BEER-WARE LICENSE" (Revision 42):
36 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
37 * can do whatever you want with this stuff. If we meet some day, and you think
38 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
39 * ----------------------------------------------------------------------------
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
78 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79 * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80 * $DragonFly: src/sys/kern/subr_disk.c,v 1.39 2007/07/30 08:02:38 dillon Exp $
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
87 #include <sys/sysctl.h>
90 #include <sys/diskslice.h>
92 #include <sys/malloc.h>
93 #include <sys/sysctl.h>
94 #include <machine/md_var.h>
95 #include <sys/ctype.h>
96 #include <sys/syslog.h>
97 #include <sys/device.h>
98 #include <sys/msgport.h>
99 #include <sys/msgport2.h>
100 #include <sys/buf2.h>
102 static MALLOC_DEFINE(M_DISK
, "disk", "disk data");
104 static d_open_t diskopen
;
105 static d_close_t diskclose
;
106 static d_ioctl_t diskioctl
;
107 static d_strategy_t diskstrategy
;
108 static d_psize_t diskpsize
;
109 static d_clone_t diskclone
;
110 static d_dump_t diskdump
;
112 static LIST_HEAD(, disk
) disklist
= LIST_HEAD_INITIALIZER(&disklist
);
114 static struct dev_ops disk_ops
= {
115 { "disk", 0, D_DISK
},
117 .d_close
= diskclose
,
119 .d_write
= physwrite
,
120 .d_ioctl
= diskioctl
,
121 .d_strategy
= diskstrategy
,
123 .d_psize
= diskpsize
,
128 * Create a raw device for the dev_ops template (which is returned). Also
129 * create a slice and unit managed disk and overload the user visible
130 * device space with it.
132 * NOTE: The returned raw device is NOT a slice and unit managed device.
133 * It is an actual raw device representing the raw disk as specified by
134 * the passed dev_ops. The disk layer not only returns such a raw device,
135 * it also uses it internally when passing (modified) commands through.
138 disk_create(int unit
, struct disk
*dp
, struct dev_ops
*raw_ops
)
141 struct dev_ops
*dev_ops
;
144 * Create the raw backing device
146 compile_dev_ops(raw_ops
);
147 rawdev
= make_dev(raw_ops
, dkmakewholedisk(unit
),
148 UID_ROOT
, GID_OPERATOR
, 0640,
149 "%s%d", raw_ops
->head
.name
, unit
);
151 bzero(dp
, sizeof(*dp
));
154 * We install a custom cdevsw rather then the passed cdevsw,
155 * and save our disk structure in d_data so we can get at it easily
156 * without any complex cloning code.
158 dev_ops
= dev_ops_add_override(rawdev
, &disk_ops
,
159 dkunitmask(), dkmakeunit(unit
));
160 dev_ops
->head
.data
= dp
;
162 dp
->d_rawdev
= rawdev
;
163 dp
->d_raw_ops
= raw_ops
;
164 dp
->d_dev_ops
= dev_ops
;
165 dp
->d_cdev
= make_dev(dev_ops
,
166 dkmakewholedisk(unit
),
167 UID_ROOT
, GID_OPERATOR
, 0640,
168 "%s%d", dev_ops
->head
.name
, unit
);
170 LIST_INSERT_HEAD(&disklist
, dp
, d_list
);
171 return (dp
->d_rawdev
);
175 * Disk drivers must call this routine when media parameters are available
179 disk_setdiskinfo(struct disk
*disk
, struct disk_info
*info
)
181 bcopy(info
, &disk
->d_info
, sizeof(disk
->d_info
));
182 info
= &disk
->d_info
;
184 KKASSERT(info
->d_media_size
== 0 || info
->d_media_blksize
== 0);
185 if (info
->d_media_size
== 0 && info
->d_media_blocks
) {
186 info
->d_media_size
= (u_int64_t
)info
->d_media_blocks
*
187 info
->d_media_blksize
;
188 } else if (info
->d_media_size
&& info
->d_media_blocks
== 0 &&
189 info
->d_media_blksize
) {
190 info
->d_media_blocks
= info
->d_media_size
/
191 info
->d_media_blksize
;
196 * This routine is called when an adapter detaches. The higher level
197 * managed disk device is destroyed while the lower level raw device is
201 disk_destroy(struct disk
*disk
)
203 if (disk
->d_dev_ops
) {
204 dev_ops_remove(disk
->d_dev_ops
, dkunitmask(),
205 dkmakeunit(dkunit(disk
->d_cdev
)));
206 LIST_REMOVE(disk
, d_list
);
208 if (disk
->d_raw_ops
) {
209 destroy_all_devs(disk
->d_raw_ops
, dkunitmask(),
210 dkmakeunit(dkunit(disk
->d_rawdev
)));
212 bzero(disk
, sizeof(*disk
));
216 disk_dumpcheck(cdev_t dev
, u_int64_t
*count
, u_int64_t
*blkno
, u_int
*secsize
)
218 struct partinfo pinfo
;
221 bzero(&pinfo
, sizeof(pinfo
));
222 error
= dev_dioctl(dev
, DIOCGPART
, (void *)&pinfo
, 0, proc0
.p_ucred
);
225 if (pinfo
.media_blksize
== 0)
227 *count
= (u_int64_t
)Maxmem
* PAGE_SIZE
/ pinfo
.media_blksize
;
228 if (dumplo64
< pinfo
.reserved_blocks
||
229 dumplo64
+ *count
> pinfo
.media_blocks
) {
232 *blkno
= dumplo64
+ pinfo
.media_offset
/ pinfo
.media_blksize
;
233 *secsize
= pinfo
.media_blksize
;
238 disk_invalidate (struct disk
*disk
)
241 dsgone(&disk
->d_slice
);
245 disk_enumerate(struct disk
*disk
)
248 return (LIST_FIRST(&disklist
));
250 return (LIST_NEXT(disk
, d_list
));
255 sysctl_disks(SYSCTL_HANDLER_ARGS
)
263 while ((disk
= disk_enumerate(disk
))) {
265 error
= SYSCTL_OUT(req
, " ", 1);
271 error
= SYSCTL_OUT(req
, disk
->d_rawdev
->si_name
,
272 strlen(disk
->d_rawdev
->si_name
));
276 error
= SYSCTL_OUT(req
, "", 1);
280 SYSCTL_PROC(_kern
, OID_AUTO
, disks
, CTLTYPE_STRING
| CTLFLAG_RD
, 0, NULL
,
281 sysctl_disks
, "A", "names of available disks");
284 * Open a disk device or partition.
288 diskopen(struct dev_open_args
*ap
)
290 cdev_t dev
= ap
->a_head
.a_dev
;
295 * dp can't be NULL here XXX.
303 * Deal with open races
305 while (dp
->d_flags
& DISKFLAG_LOCK
) {
306 dp
->d_flags
|= DISKFLAG_WANTED
;
307 error
= tsleep(dp
, PCATCH
, "diskopen", hz
);
311 dp
->d_flags
|= DISKFLAG_LOCK
;
314 * Open the underlying raw device.
316 if (!dsisopen(dp
->d_slice
)) {
318 if (!pdev
->si_iosize_max
)
319 pdev
->si_iosize_max
= dev
->si_iosize_max
;
321 error
= dev_dopen(dp
->d_rawdev
, ap
->a_oflags
,
322 ap
->a_devtype
, ap
->a_cred
);
326 * Inherit properties from the underlying device now that it is
334 error
= dsopen(dev
, ap
->a_devtype
, dp
->d_info
.d_dsflags
,
335 &dp
->d_slice
, &dp
->d_info
);
337 if (!dsisopen(dp
->d_slice
))
338 dev_dclose(dp
->d_rawdev
, ap
->a_oflags
, ap
->a_devtype
);
340 dp
->d_flags
&= ~DISKFLAG_LOCK
;
341 if (dp
->d_flags
& DISKFLAG_WANTED
) {
342 dp
->d_flags
&= ~DISKFLAG_WANTED
;
350 * Close a disk device or partition
354 diskclose(struct dev_close_args
*ap
)
356 cdev_t dev
= ap
->a_head
.a_dev
;
363 dsclose(dev
, ap
->a_devtype
, dp
->d_slice
);
364 if (!dsisopen(dp
->d_slice
))
365 error
= dev_dclose(dp
->d_rawdev
, ap
->a_fflag
, ap
->a_devtype
);
370 * First execute the ioctl on the disk device, and if it isn't supported
371 * try running it on the backing device.
375 diskioctl(struct dev_ioctl_args
*ap
)
377 cdev_t dev
= ap
->a_head
.a_dev
;
384 error
= dsioctl(dev
, ap
->a_cmd
, ap
->a_data
, ap
->a_fflag
,
385 &dp
->d_slice
, &dp
->d_info
);
386 if (error
== ENOIOCTL
) {
387 error
= dev_dioctl(dp
->d_rawdev
, ap
->a_cmd
, ap
->a_data
,
388 ap
->a_fflag
, ap
->a_cred
);
394 * Execute strategy routine
398 diskstrategy(struct dev_strategy_args
*ap
)
400 cdev_t dev
= ap
->a_head
.a_dev
;
401 struct bio
*bio
= ap
->a_bio
;
408 bio
->bio_buf
->b_error
= ENXIO
;
409 bio
->bio_buf
->b_flags
|= B_ERROR
;
413 KKASSERT(dev
->si_disk
== dp
);
416 * The dscheck() function will also transform the slice relative
417 * block number i.e. bio->bio_offset into a block number that can be
418 * passed directly to the underlying raw device. If dscheck()
419 * returns NULL it will have handled the bio for us (e.g. EOF
420 * or error due to being beyond the device size).
422 if ((nbio
= dscheck(dev
, bio
, dp
->d_slice
)) != NULL
)
423 dev_dstrategy(dp
->d_rawdev
, nbio
);
430 * Return the partition size in ?blocks?
434 diskpsize(struct dev_psize_args
*ap
)
436 cdev_t dev
= ap
->a_head
.a_dev
;
442 ap
->a_result
= dssize(dev
, &dp
->d_slice
);
447 * When new device entries are instantiated, make sure they inherit our
448 * si_disk structure and block and iosize limits from the raw device.
450 * This routine is always called synchronously in the context of the
453 * XXX The various io and block size constraints are not always initialized
454 * properly by devices.
458 diskclone(struct dev_clone_args
*ap
)
460 cdev_t dev
= ap
->a_head
.a_dev
;
463 dp
= dev
->si_ops
->head
.data
;
464 KKASSERT(dp
!= NULL
);
466 dev
->si_iosize_max
= dp
->d_rawdev
->si_iosize_max
;
467 dev
->si_bsize_phys
= dp
->d_rawdev
->si_bsize_phys
;
468 dev
->si_bsize_best
= dp
->d_rawdev
->si_bsize_best
;
473 diskdump(struct dev_dump_args
*ap
)
475 cdev_t dev
= ap
->a_head
.a_dev
;
476 struct disk
*dp
= dev
->si_ops
->head
.data
;
479 error
= disk_dumpcheck(dev
, &ap
->a_count
, &ap
->a_blkno
, &ap
->a_secsize
);
481 ap
->a_head
.a_dev
= dp
->d_rawdev
;
482 error
= dev_doperate(&ap
->a_head
);
489 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, diskslices
, CTLFLAG_RD
,
490 0, sizeof(struct diskslices
), "sizeof(struct diskslices)");
492 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, disk
, CTLFLAG_RD
,
493 0, sizeof(struct disk
), "sizeof(struct disk)");
497 * Seek sort for disks.
499 * The bio_queue keep two queues, sorted in ascending block order. The first
500 * queue holds those requests which are positioned after the current block
501 * (in the first request); the second, which starts at queue->switch_point,
502 * holds requests which came in after their block number was passed. Thus
503 * we implement a one way scan, retracting after reaching the end of the drive
504 * to the first request on the second queue, at which time it becomes the
507 * A one-way scan is natural because of the way UNIX read-ahead blocks are
511 bioqdisksort(struct bio_queue_head
*bioq
, struct bio
*bio
)
517 be
= TAILQ_LAST(&bioq
->queue
, bio_queue
);
519 * If the queue is empty or we are an
520 * ordered transaction, then it's easy.
522 if ((bq
= bioq_first(bioq
)) == NULL
||
523 (bio
->bio_buf
->b_flags
& B_ORDERED
) != 0) {
524 bioq_insert_tail(bioq
, bio
);
526 } else if (bioq
->insert_point
!= NULL
) {
529 * A certain portion of the list is
530 * "locked" to preserve ordering, so
531 * we can only insert after the insert
534 bq
= bioq
->insert_point
;
538 * If we lie before the last removed (currently active)
539 * request, and are not inserting ourselves into the
540 * "locked" portion of the list, then we must add ourselves
541 * to the second request list.
543 if (bio
->bio_offset
< bioq
->last_offset
) {
544 bq
= bioq
->switch_point
;
546 * If we are starting a new secondary list,
550 bioq
->switch_point
= bio
;
551 bioq_insert_tail(bioq
, bio
);
555 * If we lie ahead of the current switch point,
556 * insert us before the switch point and move
559 if (bio
->bio_offset
< bq
->bio_offset
) {
560 bioq
->switch_point
= bio
;
561 TAILQ_INSERT_BEFORE(bq
, bio
, bio_act
);
565 if (bioq
->switch_point
!= NULL
)
566 be
= TAILQ_PREV(bioq
->switch_point
,
569 * If we lie between last_offset and bq,
572 if (bio
->bio_offset
< bq
->bio_offset
) {
573 TAILQ_INSERT_BEFORE(bq
, bio
, bio_act
);
580 * Request is at/after our current position in the list.
581 * Optimize for sequential I/O by seeing if we go at the tail.
583 if (bio
->bio_offset
> be
->bio_offset
) {
584 TAILQ_INSERT_AFTER(&bioq
->queue
, be
, bio
, bio_act
);
588 /* Otherwise, insertion sort */
589 while ((bn
= TAILQ_NEXT(bq
, bio_act
)) != NULL
) {
592 * We want to go after the current request if it is the end
593 * of the first request list, or if the next request is a
594 * larger cylinder than our request.
596 if (bn
== bioq
->switch_point
597 || bio
->bio_offset
< bn
->bio_offset
)
601 TAILQ_INSERT_AFTER(&bioq
->queue
, bq
, bio
, bio_act
);
605 * Disk error is the preface to plaintive error messages
606 * about failing disk transfers. It prints messages of the form
608 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
610 * if the offset of the error in the transfer and a disk label
611 * are both available. blkdone should be -1 if the position of the error
612 * is unknown; the disklabel pointer may be null from drivers that have not
613 * been converted to use them. The message is printed with kprintf
614 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
615 * The message should be completed (with at least a newline) with kprintf
616 * or log(-1, ...), respectively. There is no trailing space.
619 diskerr(struct bio
*bio
, cdev_t dev
, const char *what
, int pri
, int donecnt
)
621 struct buf
*bp
= bio
->bio_buf
;
622 int unit
= dkunit(dev
);
623 int slice
= dkslice(dev
);
624 int part
= dkpart(dev
);
640 sname
= dsname(dev
, unit
, slice
, part
, partname
);
641 kprintf("%s%s: %s %sing ", sname
, partname
, what
, term
);
642 kprintf("offset %012llx for %d", bio
->bio_offset
, bp
->b_bcount
);
644 kprintf(" (%d bytes completed)", donecnt
);
648 * Locate a disk device
651 disk_locate(const char *devname
)
664 for (i
= 0; devname
[i
]; ++i
) {
665 if (devname
[i
] >= '0' && devname
[i
] <= '9')
668 while (devname
[i
] >= '0' && devname
[i
] <= '9')
673 * Slice and partition. s1 starts at slice #2. s0 is slice #0.
674 * slice #1 is the WHOLE_DISK_SLICE.
676 if (devname
[i
] == 's') {
677 slice
= strtol(devname
+ i
+ 1, &ptr
, 10);
678 i
= (const char *)ptr
- devname
;
682 slice
= WHOLE_DISK_SLICE
;
684 if (devname
[i
] >= 'a' && devname
[i
] <= 'z') {
685 part
= devname
[i
] - 'a';
687 part
= WHOLE_SLICE_PART
;
693 LIST_FOREACH(dp
, &disklist
, d_list
) {
695 if (strlen(dev
->si_name
) == prefix
&&
696 strncmp(devname
, dev
->si_name
, prefix
) == 0
698 return(dkmodpart(dkmodslice(dev
, slice
), part
));