2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
6 * This code is derived from software contributed to Berkeley by
7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgment:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors, as well as Christoph
21 * Herrmann and Thomas-Henning von Kamptz.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40 * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
44 /* ********************************************************** INCLUDES ***** */
45 #include <sys/param.h>
46 #include <sys/diskslice.h>
47 #include <sys/ioctl.h>
58 #include <vfs/ufs/dinode.h>
59 #include <vfs/ufs/fs.h>
63 /* *************************************************** GLOBALS & TYPES ***** */
65 int _dbg_lvl_
= (DL_INFO
); /* DL_TRC */
72 #define sblock fsun1.fs /* the new superblock */
73 #define osblock fsun2.fs /* the old superblock */
79 #define acg cgun1.cg /* a cylinder cgroup (new) */
80 #define aocg cgun2.cg /* an old cylinder group */
82 static char ablk
[MAXBSIZE
]; /* a block */
83 static char i1blk
[MAXBSIZE
]; /* some indirect blocks */
84 static char i2blk
[MAXBSIZE
];
85 static char i3blk
[MAXBSIZE
];
87 /* where to write back updated blocks */
88 static daddr_t in_src
, i1_src
, i2_src
, i3_src
;
90 /* what object contains the reference */
98 static struct csum
*fscs
; /* cylinder summary */
100 static struct ufs1_dinode zino
[MAXBSIZE
/sizeof(struct ufs1_dinode
)]; /* some inodes */
103 * An array of elements of type struct gfs_bpp describes all blocks to
104 * be relocated in order to free the space needed for the cylinder group
105 * summary for all cylinder groups located in the first cylinder group.
108 daddr_t old
; /* old block number */
109 daddr_t
new; /* new block number */
110 #define GFS_FL_FIRST 1
111 #define GFS_FL_LAST 2
112 unsigned int flags
; /* special handling required */
113 int found
; /* how many references were updated */
116 /* ******************************************************** PROTOTYPES ***** */
117 static void growfs(int, int, unsigned int);
118 static void rdfs(daddr_t
, size_t, void *, int);
119 static void wtfs(daddr_t
, size_t, void *, int, unsigned int);
120 static daddr_t
alloc(void);
121 static int charsperline(void);
122 static void usage(void);
123 static int isblock(struct fs
*, unsigned char *, int);
124 static void clrblock(struct fs
*, unsigned char *, int);
125 static void setblock(struct fs
*, unsigned char *, int);
126 static void initcg(int, time_t, int, unsigned int);
127 static void updjcg(int, time_t, int, int, unsigned int);
128 static void updcsloc(time_t, int, int, unsigned int);
129 static struct ufs1_dinode
*ginode(ino_t
, int, int);
130 static void frag_adjust(daddr_t
, int);
131 static void cond_bl_upd(ufs_daddr_t
*, struct gfs_bpp
*,
132 enum pointer_source
, int, unsigned int);
133 static void updclst(int);
134 static void updrefs(int, ino_t
, struct gfs_bpp
*, int, int, unsigned int);
136 /* ************************************************************ growfs ***** */
138 * Here we actually start growing the filesystem. We basically read the
139 * cylinder summary from the first cylinder group as we want to update
140 * this on the fly during our various operations. First we handle the
141 * changes in the former last cylinder group. Afterwards we create all new
142 * cylinder groups. Now we handle the cylinder group containing the
143 * cylinder summary which might result in a relocation of the whole
144 * structure. In the end we write back the updated cylinder summary, the
145 * new superblock, and slightly patched versions of the super block
149 growfs(int fsi
, int fso
, unsigned int Nflag
)
157 static int randinit
=0;
165 #else /* not FSIRAND */
173 * Get the cylinder summary into the memory.
175 fscs
= (struct csum
*)calloc((size_t)1, (size_t)sblock
.fs_cssize
);
177 errx(1, "calloc failed");
179 for (i
= 0; i
< osblock
.fs_cssize
; i
+= osblock
.fs_bsize
) {
180 rdfs(fsbtodb(&osblock
, osblock
.fs_csaddr
+
181 numfrags(&osblock
, i
)), (size_t)MIN(osblock
.fs_cssize
- i
,
182 osblock
.fs_bsize
), (void *)(((char *)fscs
)+i
), fsi
);
187 struct csum
*dbg_csp
;
192 for(dbg_csc
=0; dbg_csc
<osblock
.fs_ncg
; dbg_csc
++) {
193 snprintf(dbg_line
, sizeof(dbg_line
),
194 "%d. old csum in old location", dbg_csc
);
195 DBG_DUMP_CSUM(&osblock
,
200 #endif /* FS_DEBUG */
201 DBG_PRINT0("fscs read\n");
204 * Do all needed changes in the former last cylinder group.
206 updjcg(osblock
.fs_ncg
-1, utime
, fsi
, fso
, Nflag
);
209 * Dump out summary information about file system.
211 printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
212 sblock
.fs_size
* NSPF(&sblock
), sblock
.fs_ncyl
,
213 "cylinders", sblock
.fs_ntrak
, sblock
.fs_nsect
);
214 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
215 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
216 (float)sblock
.fs_size
* sblock
.fs_fsize
* B2MBFACTOR
,
217 sblock
.fs_ncg
, sblock
.fs_cpg
,
218 (float)sblock
.fs_fpg
* sblock
.fs_fsize
* B2MBFACTOR
,
223 * Now build the cylinders group blocks and
224 * then print out indices of cylinder groups.
226 printf("super-block backups (for fsck -b #) at:\n");
228 width
= charsperline();
231 * Iterate for only the new cylinder groups.
233 for (cylno
= osblock
.fs_ncg
; cylno
< sblock
.fs_ncg
; cylno
++) {
234 initcg(cylno
, utime
, fso
, Nflag
);
235 j
= sprintf(tmpbuf
, " %d%s",
236 (int)fsbtodb(&sblock
, cgsblock(&sblock
, cylno
)),
237 cylno
< (sblock
.fs_ncg
-1) ? "," : "" );
238 if (i
+ j
>= width
) {
243 printf("%s", tmpbuf
);
249 * Do all needed changes in the first cylinder group.
250 * allocate blocks in new location
252 updcsloc(utime
, fsi
, fso
, Nflag
);
255 * Now write the cylinder summary back to disk.
257 for (i
= 0; i
< sblock
.fs_cssize
; i
+= sblock
.fs_bsize
) {
258 wtfs(fsbtodb(&sblock
, sblock
.fs_csaddr
+ numfrags(&sblock
, i
)),
259 (size_t)MIN(sblock
.fs_cssize
- i
, sblock
.fs_bsize
),
260 (void *)(((char *)fscs
) + i
), fso
, Nflag
);
262 DBG_PRINT0("fscs written\n");
266 struct csum
*dbg_csp
;
271 for(dbg_csc
=0; dbg_csc
<sblock
.fs_ncg
; dbg_csc
++) {
272 snprintf(dbg_line
, sizeof(dbg_line
),
273 "%d. new csum in new location", dbg_csc
);
274 DBG_DUMP_CSUM(&sblock
,
279 #endif /* FS_DEBUG */
282 * Now write the new superblock back to disk.
284 sblock
.fs_time
= utime
;
285 wtfs((daddr_t
)(SBOFF
/ DEV_BSIZE
), (size_t)SBSIZE
, &sblock
,
287 DBG_PRINT0("sblock written\n");
289 "new initial sblock");
292 * Clean up the dynamic fields in our superblock copies.
297 sblock
.fs_cgrotor
= 0;
299 memset((void *)&sblock
.fs_fsmnt
, 0, sizeof(sblock
.fs_fsmnt
));
300 sblock
.fs_flags
&= FS_DOSOFTDEP
;
304 * The following fields are currently distributed from the superblock
312 * fs_flags regarding SOFTPDATES
314 * We probably should rather change the summary for the cylinder group
315 * statistics here to the value of what would be in there, if the file
316 * system were created initially with the new size. Therefor we still
317 * need to find an easy way of calculating that.
318 * Possibly we can try to read the first superblock copy and apply the
319 * "diffed" stats between the old and new superblock by still copying
320 * certain parameters onto that.
324 * Write out the duplicate super blocks.
326 for (cylno
= 0; cylno
< sblock
.fs_ncg
; cylno
++) {
327 wtfs(fsbtodb(&sblock
, cgsblock(&sblock
, cylno
)),
328 (size_t)SBSIZE
, &sblock
, fso
, Nflag
);
330 DBG_PRINT0("sblock copies written\n");
332 "new other sblocks");
338 /* ************************************************************ initcg ***** */
340 * This creates a new cylinder group structure, for more details please see
341 * the source of newfs(8), as this function is taken over almost unchanged.
342 * As this is never called for the first cylinder group, the special
343 * provisions for that case are removed here.
346 initcg(int cylno
, time_t utime
, int fso
, unsigned int Nflag
)
348 daddr_t cbase
, d
, dlower
, dupper
, dmax
, blkno
;
358 * Determine block bounds for cylinder group.
360 cbase
= cgbase(&sblock
, cylno
);
361 dmax
= cbase
+ sblock
.fs_fpg
;
362 if (dmax
> sblock
.fs_size
) {
363 dmax
= sblock
.fs_size
;
365 dlower
= cgsblock(&sblock
, cylno
) - cbase
;
366 dupper
= cgdmin(&sblock
, cylno
) - cbase
;
367 if (cylno
== 0) { /* XXX fscs may be relocated */
368 dupper
+= howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
371 memset(&acg
, 0, (size_t)sblock
.fs_cgsize
);
373 acg
.cg_magic
= CG_MAGIC
;
375 if (cylno
== sblock
.fs_ncg
- 1) {
376 acg
.cg_ncyl
= sblock
.fs_ncyl
% sblock
.fs_cpg
;
378 acg
.cg_ncyl
= sblock
.fs_cpg
;
380 acg
.cg_niblk
= sblock
.fs_ipg
;
381 acg
.cg_ndblk
= dmax
- cbase
;
382 if (sblock
.fs_contigsumsize
> 0) {
383 acg
.cg_nclusterblks
= acg
.cg_ndblk
/ sblock
.fs_frag
;
385 acg
.cg_btotoff
= &acg
.cg_space
[0] - (u_char
*)(&acg
.cg_firstfield
);
386 acg
.cg_boff
= acg
.cg_btotoff
+ sblock
.fs_cpg
* sizeof(int32_t);
387 acg
.cg_iusedoff
= acg
.cg_boff
+
388 sblock
.fs_cpg
* sblock
.fs_nrpos
* sizeof(u_int16_t
);
389 acg
.cg_freeoff
= acg
.cg_iusedoff
+ howmany(sblock
.fs_ipg
, NBBY
);
390 if (sblock
.fs_contigsumsize
<= 0) {
391 acg
.cg_nextfreeoff
= acg
.cg_freeoff
+
392 howmany(sblock
.fs_cpg
* sblock
.fs_spc
/ NSPF(&sblock
), NBBY
);
394 acg
.cg_clustersumoff
= acg
.cg_freeoff
+ howmany
395 (sblock
.fs_cpg
* sblock
.fs_spc
/ NSPF(&sblock
), NBBY
) -
397 acg
.cg_clustersumoff
=
398 roundup(acg
.cg_clustersumoff
, sizeof(u_int32_t
));
399 acg
.cg_clusteroff
= acg
.cg_clustersumoff
+
400 (sblock
.fs_contigsumsize
+ 1) * sizeof(u_int32_t
);
401 acg
.cg_nextfreeoff
= acg
.cg_clusteroff
+ howmany
402 (sblock
.fs_cpg
* sblock
.fs_spc
/ NSPB(&sblock
), NBBY
);
404 if (acg
.cg_nextfreeoff
-(intptr_t)(&acg
.cg_firstfield
) > sblock
.fs_cgsize
) {
406 * XXX This should never happen as we would have had that panic
407 * already on filesystem creation
409 errx(37, "panic: cylinder group too big");
411 acg
.cg_cs
.cs_nifree
+= sblock
.fs_ipg
;
413 for (i
= 0; (size_t)i
< ROOTINO
; i
++) {
414 setbit(cg_inosused(&acg
), i
);
415 acg
.cg_cs
.cs_nifree
--;
417 for (i
= 0; i
< sblock
.fs_ipg
/ INOPF(&sblock
); i
+= sblock
.fs_frag
) {
419 for (j
= 0; j
< sblock
.fs_bsize
/ sizeof(struct ufs1_dinode
); j
++) {
420 zino
[j
].di_gen
= random();
423 wtfs(fsbtodb(&sblock
, cgimin(&sblock
, cylno
) + i
),
424 (size_t)sblock
.fs_bsize
, (void *)zino
, fso
, Nflag
);
426 for (d
= 0; d
< dlower
; d
+= sblock
.fs_frag
) {
427 blkno
= d
/ sblock
.fs_frag
;
428 setblock(&sblock
, cg_blksfree(&acg
), blkno
);
429 if (sblock
.fs_contigsumsize
> 0) {
430 setbit(cg_clustersfree(&acg
), blkno
);
432 acg
.cg_cs
.cs_nbfree
++;
433 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]++;
434 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
435 [cbtorpos(&sblock
, d
)]++;
437 sblock
.fs_dsize
+= dlower
;
438 sblock
.fs_dsize
+= acg
.cg_ndblk
- dupper
;
439 if ((i
= dupper
% sblock
.fs_frag
)) {
440 acg
.cg_frsum
[sblock
.fs_frag
- i
]++;
441 for (d
= dupper
+ sblock
.fs_frag
- i
; dupper
< d
; dupper
++) {
442 setbit(cg_blksfree(&acg
), dupper
);
443 acg
.cg_cs
.cs_nffree
++;
446 for (d
= dupper
; d
+ sblock
.fs_frag
<= dmax
- cbase
; ) {
447 blkno
= d
/ sblock
.fs_frag
;
448 setblock(&sblock
, cg_blksfree(&acg
), blkno
);
449 if (sblock
.fs_contigsumsize
> 0) {
450 setbit(cg_clustersfree(&acg
), blkno
);
452 acg
.cg_cs
.cs_nbfree
++;
453 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]++;
454 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
455 [cbtorpos(&sblock
, d
)]++;
458 if (d
< dmax
- cbase
) {
459 acg
.cg_frsum
[dmax
- cbase
- d
]++;
460 for (; d
< dmax
- cbase
; d
++) {
461 setbit(cg_blksfree(&acg
), d
);
462 acg
.cg_cs
.cs_nffree
++;
465 if (sblock
.fs_contigsumsize
> 0) {
466 int32_t *sump
= cg_clustersum(&acg
);
467 u_char
*mapp
= cg_clustersfree(&acg
);
472 for (i
= 0; i
< acg
.cg_nclusterblks
; i
++) {
473 if ((map
& bit
) != 0) {
475 } else if (run
!= 0) {
476 if (run
> sblock
.fs_contigsumsize
) {
477 run
= sblock
.fs_contigsumsize
;
482 if ((i
& (NBBY
- 1)) != (NBBY
- 1)) {
490 if (run
> sblock
.fs_contigsumsize
) {
491 run
= sblock
.fs_contigsumsize
;
496 sblock
.fs_cstotal
.cs_ndir
+= acg
.cg_cs
.cs_ndir
;
497 sblock
.fs_cstotal
.cs_nffree
+= acg
.cg_cs
.cs_nffree
;
498 sblock
.fs_cstotal
.cs_nbfree
+= acg
.cg_cs
.cs_nbfree
;
499 sblock
.fs_cstotal
.cs_nifree
+= acg
.cg_cs
.cs_nifree
;
501 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)),
502 (size_t)sblock
.fs_bsize
, &acg
, fso
, Nflag
);
511 /* ******************************************************* frag_adjust ***** */
513 * Here we add or subtract (sign +1/-1) the available fragments in a given
514 * block to or from the fragment statistics. By subtracting before and adding
515 * after an operation on the free frag map we can easy update the fragment
516 * statistic, which seems to be otherwise an rather complex operation.
519 frag_adjust(daddr_t frag
, int sign
)
528 * Here frag only needs to point to any fragment in the block we want
531 for(f
=rounddown(frag
, sblock
.fs_frag
);
532 f
<roundup(frag
+1, sblock
.fs_frag
);
535 * Count contiguos free fragments.
537 if(isset(cg_blksfree(&acg
), f
)) {
540 if(fragsize
&& fragsize
<sblock
.fs_frag
) {
542 * We found something in between.
544 acg
.cg_frsum
[fragsize
]+=sign
;
545 DBG_PRINT2("frag_adjust [%d]+=%d\n",
552 if(fragsize
&& fragsize
<sblock
.fs_frag
) {
554 * We found something.
556 acg
.cg_frsum
[fragsize
]+=sign
;
557 DBG_PRINT2("frag_adjust [%d]+=%d\n",
561 DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
569 /* ******************************************************* cond_bl_upd ***** */
571 * Here we conditionally update a pointer to a fragment. We check for all
572 * relocated blocks if any of it's fragments is referenced by the current
573 * field, and update the pointer to the respective fragment in our new
574 * block. If we find a reference we write back the block immediately,
575 * as there is no easy way for our general block reading engine to figure
576 * out if a write back operation is needed.
579 cond_bl_upd(ufs_daddr_t
*block
, struct gfs_bpp
*field
,
580 enum pointer_source source
, int fso
, unsigned int Nflag
)
589 while(f
->old
) { /* for all old blocks */
590 if(*block
/sblock
.fs_frag
== f
->old
) {
592 * The fragment is part of the block, so update.
594 *block
=(f
->new*sblock
.fs_frag
+(*block
%sblock
.fs_frag
));
596 DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
599 *block
%sblock
.fs_frag
);
601 /* Write the block back to disk immediately */
607 case GFS_PS_IND_BLK_LVL1
:
611 case GFS_PS_IND_BLK_LVL2
:
615 case GFS_PS_IND_BLK_LVL3
:
625 * XXX If src is not of type inode we have to
626 * implement copy on write here in case
627 * of active snapshots.
629 wtfs(dst
, (size_t)sblock
.fs_bsize
, src
,
634 * The same block can't be found again in this loop.
645 /* ************************************************************ updjcg ***** */
647 * Here we do all needed work for the former last cylinder group. It has to be
648 * changed in any case, even if the filesystem ended exactly on the end of
649 * this group, as there is some slightly inconsistent handling of the number
650 * of cylinders in the cylinder group. We start again by reading the cylinder
651 * group from disk. If the last block was not fully available, we first handle
652 * the missing fragments, then we handle all new full blocks in that file
653 * system and finally we handle the new last fragmented block in the file
654 * system. We again have to handle the fragment statistics rotational layout
655 * tables and cluster summary during all those operations.
658 updjcg(int cylno
, time_t utime
, int fsi
, int fso
, unsigned int Nflag
)
660 daddr_t cbase
, dmax
, dupper
;
668 * Read the former last (joining) cylinder group from disk, and make
671 rdfs(fsbtodb(&osblock
, cgtod(&osblock
, cylno
)),
672 (size_t)osblock
.fs_cgsize
, &aocg
, fsi
);
673 DBG_PRINT0("jcg read\n");
678 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
681 * If the cylinder group had already it's new final size almost
682 * nothing is to be done ... except:
683 * For some reason the value of cg_ncyl in the last cylinder group has
684 * to be zero instead of fs_cpg. As this is now no longer the last
685 * cylinder group we have to change that value now to fs_cpg.
688 if(cgbase(&osblock
, cylno
+1) == osblock
.fs_size
) {
689 acg
.cg_ncyl
=sblock
.fs_cpg
;
691 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)),
692 (size_t)sblock
.fs_cgsize
, &acg
, fso
, Nflag
);
693 DBG_PRINT0("jcg written\n");
703 * Set up some variables needed later.
705 cbase
= cgbase(&sblock
, cylno
);
706 dmax
= cbase
+ sblock
.fs_fpg
;
707 if (dmax
> sblock
.fs_size
)
708 dmax
= sblock
.fs_size
;
709 dupper
= cgdmin(&sblock
, cylno
) - cbase
;
710 if (cylno
== 0) { /* XXX fscs may be relocated */
711 dupper
+= howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
715 * Set pointer to the cylinder summary for our cylinder group.
720 * Touch the cylinder group, update all fields in the cylinder group as
721 * needed, update the free space in the superblock.
724 if (cylno
== sblock
.fs_ncg
- 1) {
726 * This is still the last cylinder group.
728 acg
.cg_ncyl
= sblock
.fs_ncyl
% sblock
.fs_cpg
;
730 acg
.cg_ncyl
= sblock
.fs_cpg
;
732 DBG_PRINT4("jcg dbg: %d %u %d %u\n",
737 acg
.cg_ndblk
= dmax
- cbase
;
738 sblock
.fs_dsize
+= acg
.cg_ndblk
-aocg
.cg_ndblk
;
739 if (sblock
.fs_contigsumsize
> 0) {
740 acg
.cg_nclusterblks
= acg
.cg_ndblk
/ sblock
.fs_frag
;
744 * Now we have to update the free fragment bitmap for our new free
745 * space. There again we have to handle the fragmentation and also
746 * the rotational layout tables and the cluster summary. This is
747 * also done per fragment for the first new block if the old file
748 * system end was not on a block boundary, per fragment for the new
749 * last block if the new file system end is not on a block boundary,
750 * and per block for all space in between.
752 * Handle the first new block here if it was partially available
755 if(osblock
.fs_size
% sblock
.fs_frag
) {
756 if(roundup(osblock
.fs_size
, sblock
.fs_frag
)<=sblock
.fs_size
) {
758 * The new space is enough to fill at least this
762 for(i
=roundup(osblock
.fs_size
-cbase
, sblock
.fs_frag
)-1;
763 i
>=osblock
.fs_size
-cbase
;
765 setbit(cg_blksfree(&acg
), i
);
766 acg
.cg_cs
.cs_nffree
++;
771 * Check if the fragment just created could join an
772 * already existing fragment at the former end of the
775 if(isblock(&sblock
, cg_blksfree(&acg
),
776 ((osblock
.fs_size
- cgbase(&sblock
, cylno
))/
779 * The block is now completely available
781 DBG_PRINT0("block was\n");
782 acg
.cg_frsum
[osblock
.fs_size
%sblock
.fs_frag
]--;
783 acg
.cg_cs
.cs_nbfree
++;
784 acg
.cg_cs
.cs_nffree
-=sblock
.fs_frag
;
785 k
=rounddown(osblock
.fs_size
-cbase
,
787 cg_blktot(&acg
)[cbtocylno(&sblock
, k
)]++;
788 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, k
))
789 [cbtorpos(&sblock
, k
)]++;
790 updclst((osblock
.fs_size
-cbase
)/sblock
.fs_frag
);
793 * Lets rejoin a possible partially growed
797 while(isset(cg_blksfree(&acg
), i
) &&
798 (i
>=rounddown(osblock
.fs_size
-cbase
,
810 * We only grow by some fragments within this last
813 for(i
=sblock
.fs_size
-cbase
-1;
814 i
>=osblock
.fs_size
-cbase
;
816 setbit(cg_blksfree(&acg
), i
);
817 acg
.cg_cs
.cs_nffree
++;
821 * Lets rejoin a possible partially growed fragment.
824 while(isset(cg_blksfree(&acg
), i
) &&
825 (i
>=rounddown(osblock
.fs_size
-cbase
,
838 * Handle all new complete blocks here.
840 for(i
=roundup(osblock
.fs_size
-cbase
, sblock
.fs_frag
);
841 i
+sblock
.fs_frag
<=dmax
-cbase
; /* XXX <= or only < ? */
843 j
= i
/ sblock
.fs_frag
;
844 setblock(&sblock
, cg_blksfree(&acg
), j
);
846 acg
.cg_cs
.cs_nbfree
++;
847 cg_blktot(&acg
)[cbtocylno(&sblock
, i
)]++;
848 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, i
))
849 [cbtorpos(&sblock
, i
)]++;
853 * Handle the last new block if there are stll some new fragments left.
854 * Here we don't have to bother about the cluster summary or the even
855 * the rotational layout table.
857 if (i
< (dmax
- cbase
)) {
858 acg
.cg_frsum
[dmax
- cbase
- i
]++;
859 for (; i
< dmax
- cbase
; i
++) {
860 setbit(cg_blksfree(&acg
), i
);
861 acg
.cg_cs
.cs_nffree
++;
865 sblock
.fs_cstotal
.cs_nffree
+=
866 (acg
.cg_cs
.cs_nffree
- aocg
.cg_cs
.cs_nffree
);
867 sblock
.fs_cstotal
.cs_nbfree
+=
868 (acg
.cg_cs
.cs_nbfree
- aocg
.cg_cs
.cs_nbfree
);
870 * The following statistics are not changed here:
871 * sblock.fs_cstotal.cs_ndir
872 * sblock.fs_cstotal.cs_nifree
873 * As the statistics for this cylinder group are ready, copy it to
874 * the summary information array.
879 * Write the updated "joining" cylinder group back to disk.
881 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, cylno
)), (size_t)sblock
.fs_cgsize
,
883 DBG_PRINT0("jcg written\n");
892 /* ********************************************************** updcsloc ***** */
894 * Here we update the location of the cylinder summary. We have two possible
895 * ways of growing the cylinder summary.
896 * (1) We can try to grow the summary in the current location, and relocate
897 * possibly used blocks within the current cylinder group.
898 * (2) Alternatively we can relocate the whole cylinder summary to the first
899 * new completely empty cylinder group. Once the cylinder summary is no
900 * longer in the beginning of the first cylinder group you should never
901 * use a version of fsck which is not aware of the possibility to have
902 * this structure in a non standard place.
903 * Option (1) is considered to be less intrusive to the structure of the file-
904 * system. So we try to stick to that whenever possible. If there is not enough
905 * space in the cylinder group containing the cylinder summary we have to use
906 * method (2). In case of active snapshots in the filesystem we probably can
907 * completely avoid implementing copy on write if we stick to method (2) only.
910 updcsloc(time_t utime
, int fsi
, int fso
, unsigned int Nflag
)
915 daddr_t cbase
, dupper
, odupper
, d
, f
, g
;
925 if(howmany(sblock
.fs_cssize
, sblock
.fs_fsize
) ==
926 howmany(osblock
.fs_cssize
, osblock
.fs_fsize
)) {
928 * No new fragment needed.
933 ocscg
=dtog(&osblock
, osblock
.fs_csaddr
);
935 blocks
= 1+howmany(sblock
.fs_cssize
, sblock
.fs_bsize
)-
936 howmany(osblock
.fs_cssize
, osblock
.fs_bsize
);
939 * Read original cylinder group from disk, and make a copy.
940 * XXX If Nflag is set in some very rare cases we now miss
941 * some changes done in updjcg by reading the unmodified
944 rdfs(fsbtodb(&osblock
, cgtod(&osblock
, ocscg
)),
945 (size_t)osblock
.fs_cgsize
, &aocg
, fsi
);
946 DBG_PRINT0("oscg read\n");
951 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
954 * Touch the cylinder group, set up local variables needed later
955 * and update the superblock.
960 * XXX In the case of having active snapshots we may need much more
961 * blocks for the copy on write. We need each block twice, and
962 * also up to 8*3 blocks for indirect blocks for all possible
965 if(/*((int)sblock.fs_time&0x3)>0||*/ cs
->cs_nbfree
< blocks
) {
967 * There is not enough space in the old cylinder group to
968 * relocate all blocks as needed, so we relocate the whole
969 * cylinder group summary to a new group. We try to use the
970 * first complete new cylinder group just created. Within the
971 * cylinder group we allign the area immediately after the
972 * cylinder group information location in order to be as
973 * close as possible to the original implementation of ffs.
975 * First we have to make sure we'll find enough space in the
976 * new cylinder group. If not, then we currently give up.
977 * We start with freeing everything which was used by the
978 * fragments of the old cylinder summary in the current group.
979 * Now we write back the group meta data, read in the needed
980 * meta data from the new cylinder group, and start allocating
981 * within that group. Here we can assume, the group to be
982 * completely empty. Which makes the handling of fragments and
983 * clusters a lot easier.
986 if(sblock
.fs_ncg
-osblock
.fs_ncg
< 2) {
987 errx(2, "panic: not enough space");
991 * Point "d" to the first fragment not used by the cylinder
994 d
=osblock
.fs_csaddr
+(osblock
.fs_cssize
/osblock
.fs_fsize
);
997 * Set up last cluster size ("lcs") already here. Calculate
998 * the size for the trailing cluster just behind where "d"
1001 if(sblock
.fs_contigsumsize
> 0) {
1002 for(block
=howmany(d
%sblock
.fs_fpg
, sblock
.fs_frag
),
1003 lcs
=0; lcs
<sblock
.fs_contigsumsize
;
1005 if(isclr(cg_clustersfree(&acg
), block
)){
1012 * Point "d" to the last frag used by the cylinder summary.
1016 DBG_PRINT1("d=%d\n",
1018 if((d
+1)%sblock
.fs_frag
) {
1020 * The end of the cylinder summary is not a complete
1024 frag_adjust(d
%sblock
.fs_fpg
, -1);
1025 for(; (d
+1)%sblock
.fs_frag
; d
--) {
1026 DBG_PRINT1("d=%d\n",
1028 setbit(cg_blksfree(&acg
), d
%sblock
.fs_fpg
);
1029 acg
.cg_cs
.cs_nffree
++;
1030 sblock
.fs_cstotal
.cs_nffree
++;
1033 * Point "d" to the last fragment of the last
1034 * (incomplete) block of the clinder summary.
1037 frag_adjust(d
%sblock
.fs_fpg
, 1);
1039 if(isblock(&sblock
, cg_blksfree(&acg
),
1040 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
)) {
1041 DBG_PRINT1("d=%d\n",
1043 acg
.cg_cs
.cs_nffree
-=sblock
.fs_frag
;
1044 acg
.cg_cs
.cs_nbfree
++;
1045 sblock
.fs_cstotal
.cs_nffree
-=sblock
.fs_frag
;
1046 sblock
.fs_cstotal
.cs_nbfree
++;
1047 cg_blktot(&acg
)[cbtocylno(&sblock
,
1048 d
%sblock
.fs_fpg
)]++;
1049 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1050 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1051 d
%sblock
.fs_fpg
)]++;
1052 if(sblock
.fs_contigsumsize
> 0) {
1053 setbit(cg_clustersfree(&acg
),
1054 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1055 if(lcs
< sblock
.fs_contigsumsize
) {
1061 cg_clustersum(&acg
)[lcs
]++;
1066 * Point "d" to the first fragment of the block before
1067 * the last incomplete block.
1072 DBG_PRINT1("d=%d\n",
1074 for(d
=rounddown(d
, sblock
.fs_frag
); d
>= osblock
.fs_csaddr
;
1075 d
-=sblock
.fs_frag
) {
1077 DBG_PRINT1("d=%d\n",
1079 setblock(&sblock
, cg_blksfree(&acg
),
1080 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1081 acg
.cg_cs
.cs_nbfree
++;
1082 sblock
.fs_cstotal
.cs_nbfree
++;
1083 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]++;
1084 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1085 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1086 d
%sblock
.fs_fpg
)]++;
1087 if(sblock
.fs_contigsumsize
> 0) {
1088 setbit(cg_clustersfree(&acg
),
1089 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1091 * The last cluster size is already set up.
1093 if(lcs
< sblock
.fs_contigsumsize
) {
1095 cg_clustersum(&acg
)[lcs
]--;
1098 cg_clustersum(&acg
)[lcs
]++;
1105 * Now write the former cylinder group containing the cylinder
1106 * summary back to disk.
1108 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ocscg
)),
1109 (size_t)sblock
.fs_cgsize
, &acg
, fso
, Nflag
);
1110 DBG_PRINT0("oscg written\n");
1111 DBG_DUMP_CG(&sblock
,
1116 * Find the beginning of the new cylinder group containing the
1119 sblock
.fs_csaddr
=cgdmin(&sblock
, osblock
.fs_ncg
);
1120 ncscg
=dtog(&sblock
, sblock
.fs_csaddr
);
1125 * If Nflag is specified, we would now read random data instead
1126 * of an empty cg structure from disk. So we can't simulate that
1130 DBG_PRINT0("nscg update skipped\n");
1136 * Read the future cylinder group containing the cylinder
1137 * summary from disk, and make a copy.
1139 rdfs(fsbtodb(&sblock
, cgtod(&sblock
, ncscg
)),
1140 (size_t)sblock
.fs_cgsize
, &aocg
, fsi
);
1141 DBG_PRINT0("nscg read\n");
1142 DBG_DUMP_CG(&sblock
,
1146 memcpy((void *)&cgun1
, (void *)&cgun2
, sizeof(cgun2
));
1149 * Allocate all complete blocks used by the new cylinder
1152 for(d
=sblock
.fs_csaddr
; d
+sblock
.fs_frag
<=
1153 sblock
.fs_csaddr
+(sblock
.fs_cssize
/sblock
.fs_fsize
);
1154 d
+=sblock
.fs_frag
) {
1155 clrblock(&sblock
, cg_blksfree(&acg
),
1156 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1157 acg
.cg_cs
.cs_nbfree
--;
1158 sblock
.fs_cstotal
.cs_nbfree
--;
1159 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]--;
1160 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1161 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1162 d
%sblock
.fs_fpg
)]--;
1163 if(sblock
.fs_contigsumsize
> 0) {
1164 clrbit(cg_clustersfree(&acg
),
1165 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1170 * Allocate all fragments used by the cylinder summary in the
1173 if(d
<sblock
.fs_csaddr
+(sblock
.fs_cssize
/sblock
.fs_fsize
)) {
1174 for(; d
-sblock
.fs_csaddr
<
1175 sblock
.fs_cssize
/sblock
.fs_fsize
;
1177 clrbit(cg_blksfree(&acg
), d
%sblock
.fs_fpg
);
1178 acg
.cg_cs
.cs_nffree
--;
1179 sblock
.fs_cstotal
.cs_nffree
--;
1181 acg
.cg_cs
.cs_nbfree
--;
1182 acg
.cg_cs
.cs_nffree
+=sblock
.fs_frag
;
1183 sblock
.fs_cstotal
.cs_nbfree
--;
1184 sblock
.fs_cstotal
.cs_nffree
+=sblock
.fs_frag
;
1185 cg_blktot(&acg
)[cbtocylno(&sblock
, d
%sblock
.fs_fpg
)]--;
1186 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
,
1187 d
%sblock
.fs_fpg
))[cbtorpos(&sblock
,
1188 d
%sblock
.fs_fpg
)]--;
1189 if(sblock
.fs_contigsumsize
> 0) {
1190 clrbit(cg_clustersfree(&acg
),
1191 (d
%sblock
.fs_fpg
)/sblock
.fs_frag
);
1194 frag_adjust(d
%sblock
.fs_fpg
, +1);
1197 * XXX Handle the cluster statistics here in the case this
1198 * cylinder group is now almost full, and the remaining
1199 * space is less then the maximum cluster size. This is
1200 * probably not needed, as you would hardly find a file
1201 * system which has only MAXCSBUFS+FS_MAXCONTIG of free
1202 * space right behind the cylinder group information in
1203 * any new cylinder group.
1207 * Update our statistics in the cylinder summary.
1212 * Write the new cylinder group containing the cylinder summary
1215 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ncscg
)),
1216 (size_t)sblock
.fs_cgsize
, &acg
, fso
, Nflag
);
1217 DBG_PRINT0("nscg written\n");
1218 DBG_DUMP_CG(&sblock
,
1226 * We have got enough of space in the current cylinder group, so we
1227 * can relocate just a few blocks, and let the summary information
1228 * grow in place where it is right now.
1232 cbase
= cgbase(&osblock
, ocscg
); /* old and new are equal */
1233 dupper
= sblock
.fs_csaddr
- cbase
+
1234 howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
1235 odupper
= osblock
.fs_csaddr
- cbase
+
1236 howmany(osblock
.fs_cssize
, osblock
.fs_fsize
);
1238 sblock
.fs_dsize
-= dupper
-odupper
;
1241 * Allocate the space for the array of blocks to be relocated.
1243 bp
=(struct gfs_bpp
*)malloc(((dupper
-odupper
)/sblock
.fs_frag
+2)*
1244 sizeof(struct gfs_bpp
));
1246 errx(1, "malloc failed");
1248 memset((char *)bp
, 0, ((dupper
-odupper
)/sblock
.fs_frag
+2)*
1249 sizeof(struct gfs_bpp
));
1252 * Lock all new frags needed for the cylinder group summary. This is
1253 * done per fragment in the first and last block of the new required
1254 * area, and per block for all other blocks.
1256 * Handle the first new block here (but only if some fragments where
1257 * already used for the cylinder summary).
1260 frag_adjust(odupper
, -1);
1261 for(d
=odupper
; ((d
<dupper
)&&(d
%sblock
.fs_frag
)); d
++) {
1262 DBG_PRINT1("scg first frag check loop d=%d\n",
1264 if(isclr(cg_blksfree(&acg
), d
)) {
1266 bp
[ind
].old
=d
/sblock
.fs_frag
;
1267 bp
[ind
].flags
|=GFS_FL_FIRST
;
1268 if(roundup(d
, sblock
.fs_frag
) >= dupper
) {
1269 bp
[ind
].flags
|=GFS_FL_LAST
;
1274 clrbit(cg_blksfree(&acg
), d
);
1275 acg
.cg_cs
.cs_nffree
--;
1276 sblock
.fs_cstotal
.cs_nffree
--;
1279 * No cluster handling is needed here, as there was at least
1280 * one fragment in use by the cylinder summary in the old
1282 * No block-free counter handling here as this block was not
1286 frag_adjust(odupper
, 1);
1289 * Handle all needed complete blocks here.
1291 for(; d
+sblock
.fs_frag
<=dupper
; d
+=sblock
.fs_frag
) {
1292 DBG_PRINT1("scg block check loop d=%d\n",
1294 if(!isblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
)) {
1295 for(f
=d
; f
<d
+sblock
.fs_frag
; f
++) {
1296 if(isset(cg_blksfree(&aocg
), f
)) {
1297 acg
.cg_cs
.cs_nffree
--;
1298 sblock
.fs_cstotal
.cs_nffree
--;
1301 clrblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
);
1302 bp
[ind
].old
=d
/sblock
.fs_frag
;
1305 clrblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
);
1306 acg
.cg_cs
.cs_nbfree
--;
1307 sblock
.fs_cstotal
.cs_nbfree
--;
1308 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1309 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
1310 [cbtorpos(&sblock
, d
)]--;
1311 if(sblock
.fs_contigsumsize
> 0) {
1312 clrbit(cg_clustersfree(&acg
), d
/sblock
.fs_frag
);
1313 for(lcs
=0, l
=(d
/sblock
.fs_frag
)+1;
1314 lcs
<sblock
.fs_contigsumsize
;
1316 if(isclr(cg_clustersfree(&acg
),l
)){
1320 if(lcs
< sblock
.fs_contigsumsize
) {
1321 cg_clustersum(&acg
)[lcs
+1]--;
1323 cg_clustersum(&acg
)[lcs
]++;
1329 * No fragment counter handling is needed here, as this finally
1330 * doesn't change after the relocation.
1335 * Handle all fragments needed in the last new affected block.
1338 frag_adjust(dupper
-1, -1);
1340 if(isblock(&sblock
, cg_blksfree(&acg
), d
/sblock
.fs_frag
)) {
1341 acg
.cg_cs
.cs_nbfree
--;
1342 sblock
.fs_cstotal
.cs_nbfree
--;
1343 acg
.cg_cs
.cs_nffree
+=sblock
.fs_frag
;
1344 sblock
.fs_cstotal
.cs_nffree
+=sblock
.fs_frag
;
1345 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1346 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))
1347 [cbtorpos(&sblock
, d
)]--;
1348 if(sblock
.fs_contigsumsize
> 0) {
1349 clrbit(cg_clustersfree(&acg
), d
/sblock
.fs_frag
);
1350 for(lcs
=0, l
=(d
/sblock
.fs_frag
)+1;
1351 lcs
<sblock
.fs_contigsumsize
;
1353 if(isclr(cg_clustersfree(&acg
),l
)){
1357 if(lcs
< sblock
.fs_contigsumsize
) {
1358 cg_clustersum(&acg
)[lcs
+1]--;
1360 cg_clustersum(&acg
)[lcs
]++;
1366 for(; d
<dupper
; d
++) {
1367 DBG_PRINT1("scg second frag check loop d=%d\n",
1369 if(isclr(cg_blksfree(&acg
), d
)) {
1370 bp
[ind
].old
=d
/sblock
.fs_frag
;
1371 bp
[ind
].flags
|=GFS_FL_LAST
;
1373 clrbit(cg_blksfree(&acg
), d
);
1374 acg
.cg_cs
.cs_nffree
--;
1375 sblock
.fs_cstotal
.cs_nffree
--;
1378 if(bp
[ind
].flags
& GFS_FL_LAST
) { /* we have to advance here */
1381 frag_adjust(dupper
-1, 1);
1385 * If we found a block to relocate just do so.
1388 for(i
=0; i
<ind
; i
++) {
1389 if(!bp
[i
].old
) { /* no more blocks listed */
1391 * XXX A relative blocknumber should not be
1392 * zero, which is not explicitly
1393 * guaranteed by our code.
1398 * Allocate a complete block in the same (current)
1401 bp
[i
].new=alloc()/sblock
.fs_frag
;
1404 * There is no frag_adjust() needed for the new block
1405 * as it will have no fragments yet :-).
1407 for(f
=bp
[i
].old
*sblock
.fs_frag
,
1408 g
=bp
[i
].new*sblock
.fs_frag
;
1409 f
<(bp
[i
].old
+1)*sblock
.fs_frag
;
1411 if(isset(cg_blksfree(&aocg
), f
)) {
1412 setbit(cg_blksfree(&acg
), g
);
1413 acg
.cg_cs
.cs_nffree
++;
1414 sblock
.fs_cstotal
.cs_nffree
++;
1419 * Special handling is required if this was the first
1420 * block. We have to consider the fragments which were
1421 * used by the cylinder summary in the original block
1422 * which re to be free in the copy of our block. We
1423 * have to be careful if this first block happens to
1424 * be also the last block to be relocated.
1426 if(bp
[i
].flags
& GFS_FL_FIRST
) {
1427 for(f
=bp
[i
].old
*sblock
.fs_frag
,
1428 g
=bp
[i
].new*sblock
.fs_frag
;
1431 setbit(cg_blksfree(&acg
), g
);
1432 acg
.cg_cs
.cs_nffree
++;
1433 sblock
.fs_cstotal
.cs_nffree
++;
1435 if(!(bp
[i
].flags
& GFS_FL_LAST
)) {
1436 frag_adjust(bp
[i
].new*sblock
.fs_frag
,1);
1442 * Special handling is required if this is the last
1443 * block to be relocated.
1445 if(bp
[i
].flags
& GFS_FL_LAST
) {
1446 frag_adjust(bp
[i
].new*sblock
.fs_frag
, 1);
1447 frag_adjust(bp
[i
].old
*sblock
.fs_frag
, -1);
1449 f
<roundup(dupper
, sblock
.fs_frag
);
1451 if(isclr(cg_blksfree(&acg
), f
)) {
1452 setbit(cg_blksfree(&acg
), f
);
1453 acg
.cg_cs
.cs_nffree
++;
1454 sblock
.fs_cstotal
.cs_nffree
++;
1457 frag_adjust(bp
[i
].old
*sblock
.fs_frag
, 1);
1461 * !!! Attach the cylindergroup offset here.
1463 bp
[i
].old
+=cbase
/sblock
.fs_frag
;
1464 bp
[i
].new+=cbase
/sblock
.fs_frag
;
1467 * Copy the content of the block.
1470 * XXX Here we will have to implement a copy on write
1471 * in the case we have any active snapshots.
1473 rdfs(fsbtodb(&sblock
, bp
[i
].old
*sblock
.fs_frag
),
1474 (size_t)sblock
.fs_bsize
, &ablk
, fsi
);
1475 wtfs(fsbtodb(&sblock
, bp
[i
].new*sblock
.fs_frag
),
1476 (size_t)sblock
.fs_bsize
, &ablk
, fso
, Nflag
);
1477 DBG_DUMP_HEX(&sblock
,
1478 "copied full block",
1479 (unsigned char *)&ablk
);
1481 DBG_PRINT2("scg (%d->%d) block relocated\n",
1487 * Now we have to update all references to any fragment which
1488 * belongs to any block relocated. We iterate now over all
1489 * cylinder groups, within those over all non zero length
1492 for(cylno
=0; cylno
<osblock
.fs_ncg
; cylno
++) {
1493 DBG_PRINT1("scg doing cg (%d)\n",
1495 for(inc
=osblock
.fs_ipg
-1 ; inc
>=0 ; inc
--) {
1496 updrefs(cylno
, (ino_t
)inc
, bp
, fsi
, fso
, Nflag
);
1501 * All inodes are checked, now make sure the number of
1502 * references found make sense.
1504 for(i
=0; i
<ind
; i
++) {
1505 if(!bp
[i
].found
|| (bp
[i
].found
>sblock
.fs_frag
)) {
1506 warnx("error: %d refs found for block %d.",
1507 bp
[i
].found
, bp
[i
].old
);
1513 * The following statistics are not changed here:
1514 * sblock.fs_cstotal.cs_ndir
1515 * sblock.fs_cstotal.cs_nifree
1516 * The following statistics were already updated on the fly:
1517 * sblock.fs_cstotal.cs_nffree
1518 * sblock.fs_cstotal.cs_nbfree
1519 * As the statistics for this cylinder group are ready, copy it to
1520 * the summary information array.
1526 * Write summary cylinder group back to disk.
1528 wtfs(fsbtodb(&sblock
, cgtod(&sblock
, ocscg
)), (size_t)sblock
.fs_cgsize
,
1530 DBG_PRINT0("scg written\n");
1531 DBG_DUMP_CG(&sblock
,
1539 /* ************************************************************** rdfs ***** */
1541 * Here we read some block(s) from disk.
1544 rdfs(daddr_t bno
, size_t size
, void *bf
, int fsi
)
1550 if (lseek(fsi
, (off_t
)bno
* DEV_BSIZE
, 0) < 0) {
1551 err(33, "rdfs: seek error: %ld", (long)bno
);
1553 n
= read(fsi
, bf
, size
);
1554 if (n
!= (ssize_t
)size
) {
1555 err(34, "rdfs: read error: %ld", (long)bno
);
1562 /* ************************************************************** wtfs ***** */
1564 * Here we write some block(s) to disk.
1567 wtfs(daddr_t bno
, size_t size
, void *bf
, int fso
, unsigned int Nflag
)
1577 if (lseek(fso
, (off_t
)bno
* DEV_BSIZE
, SEEK_SET
) < 0) {
1578 err(35, "wtfs: seek error: %ld", (long)bno
);
1580 n
= write(fso
, bf
, size
);
1581 if (n
!= (ssize_t
)size
) {
1582 err(36, "wtfs: write error: %ld", (long)bno
);
1589 /* ************************************************************* alloc ***** */
1591 * Here we allocate a free block in the current cylinder group. It is assumed,
1592 * that acg contains the current cylinder group. As we may take a block from
1593 * somewhere in the filesystem we have to handle cluster summary here.
1602 int dlower
, dupper
, dmax
;
1606 if (acg
.cg_magic
!= CG_MAGIC
) {
1607 warnx("acg: bad magic number");
1611 if (acg
.cg_cs
.cs_nbfree
== 0) {
1612 warnx("error: cylinder group ran out of space");
1617 * We start seeking for free blocks only from the space available after
1618 * the end of the new grown cylinder summary. Otherwise we allocate a
1619 * block here which we have to relocate a couple of seconds later again
1620 * again, and we are not prepared to to this anyway.
1623 dlower
=cgsblock(&sblock
, acg
.cg_cgx
)-cgbase(&sblock
, acg
.cg_cgx
);
1624 dupper
=cgdmin(&sblock
, acg
.cg_cgx
)-cgbase(&sblock
, acg
.cg_cgx
);
1625 dmax
=cgbase(&sblock
, acg
.cg_cgx
)+sblock
.fs_fpg
;
1626 if (dmax
> sblock
.fs_size
) {
1627 dmax
= sblock
.fs_size
;
1629 dmax
-=cgbase(&sblock
, acg
.cg_cgx
); /* retransform into cg */
1630 csmin
=sblock
.fs_csaddr
-cgbase(&sblock
, acg
.cg_cgx
);
1631 csmax
=csmin
+howmany(sblock
.fs_cssize
, sblock
.fs_fsize
);
1632 DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1636 DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1640 for(d
=0; (d
<dlower
&& blkno
==-1); d
+=sblock
.fs_frag
) {
1641 if(d
>=csmin
&& d
<=csmax
) {
1644 if(isblock(&sblock
, cg_blksfree(&acg
), fragstoblks(&sblock
,
1646 blkno
= fragstoblks(&sblock
, d
);/* Yeah found a block */
1650 for(d
=dupper
; (d
<dmax
&& blkno
==-1); d
+=sblock
.fs_frag
) {
1651 if(d
>=csmin
&& d
<=csmax
) {
1654 if(isblock(&sblock
, cg_blksfree(&acg
), fragstoblks(&sblock
,
1656 blkno
= fragstoblks(&sblock
, d
);/* Yeah found a block */
1661 warnx("internal error: couldn't find promised block in cg");
1667 * This is needed if the block was found already in the first loop.
1669 d
=blkstofrags(&sblock
, blkno
);
1671 clrblock(&sblock
, cg_blksfree(&acg
), blkno
);
1672 if (sblock
.fs_contigsumsize
> 0) {
1674 * Handle the cluster allocation bitmap.
1676 clrbit(cg_clustersfree(&acg
), blkno
);
1678 * We possibly have split a cluster here, so we have to do
1679 * recalculate the sizes of the remaining cluster halves now,
1680 * and use them for updating the cluster summary information.
1682 * Lets start with the blocks before our allocated block ...
1684 for(lcs1
=0, l
=blkno
-1; lcs1
<sblock
.fs_contigsumsize
;
1686 if(isclr(cg_clustersfree(&acg
),l
)){
1691 * ... and continue with the blocks right after our allocated
1694 for(lcs2
=0, l
=blkno
+1; lcs2
<sblock
.fs_contigsumsize
;
1696 if(isclr(cg_clustersfree(&acg
),l
)){
1702 * Now update all counters.
1704 cg_clustersum(&acg
)[MIN(lcs1
+lcs2
+1,sblock
.fs_contigsumsize
)]--;
1706 cg_clustersum(&acg
)[lcs1
]++;
1709 cg_clustersum(&acg
)[lcs2
]++;
1713 * Update all statistics based on blocks.
1715 acg
.cg_cs
.cs_nbfree
--;
1716 sblock
.fs_cstotal
.cs_nbfree
--;
1717 cg_blktot(&acg
)[cbtocylno(&sblock
, d
)]--;
1718 cg_blks(&sblock
, &acg
, cbtocylno(&sblock
, d
))[cbtorpos(&sblock
, d
)]--;
1724 /* *********************************************************** isblock ***** */
1726 * Here we check if all frags of a block are free. For more details again
1727 * please see the source of newfs(8), as this function is taken over almost
1731 isblock(struct fs
*fs
, unsigned char *cp
, int h
)
1737 switch (fs
->fs_frag
) {
1740 return (cp
[h
] == 0xff);
1742 mask
= 0x0f << ((h
& 0x1) << 2);
1744 return ((cp
[h
>> 1] & mask
) == mask
);
1746 mask
= 0x03 << ((h
& 0x3) << 1);
1748 return ((cp
[h
>> 2] & mask
) == mask
);
1750 mask
= 0x01 << (h
& 0x7);
1752 return ((cp
[h
>> 3] & mask
) == mask
);
1754 fprintf(stderr
, "isblock bad fs_frag %d\n", fs
->fs_frag
);
1760 /* ********************************************************** clrblock ***** */
1762 * Here we allocate a complete block in the block map. For more details again
1763 * please see the source of newfs(8), as this function is taken over almost
1767 clrblock(struct fs
*fs
, unsigned char *cp
, int h
)
1771 switch ((fs
)->fs_frag
) {
1776 cp
[h
>> 1] &= ~(0x0f << ((h
& 0x1) << 2));
1779 cp
[h
>> 2] &= ~(0x03 << ((h
& 0x3) << 1));
1782 cp
[h
>> 3] &= ~(0x01 << (h
& 0x7));
1785 warnx("clrblock bad fs_frag %d", fs
->fs_frag
);
1793 /* ********************************************************** setblock ***** */
1795 * Here we free a complete block in the free block map. For more details again
1796 * please see the source of newfs(8), as this function is taken over almost
1800 setblock(struct fs
*fs
, unsigned char *cp
, int h
)
1804 switch (fs
->fs_frag
) {
1809 cp
[h
>> 1] |= (0x0f << ((h
& 0x1) << 2));
1812 cp
[h
>> 2] |= (0x03 << ((h
& 0x3) << 1));
1815 cp
[h
>> 3] |= (0x01 << (h
& 0x7));
1818 warnx("setblock bad fs_frag %d", fs
->fs_frag
);
1826 /* ************************************************************ ginode ***** */
1828 * This function provides access to an individual inode. We find out in which
1829 * block the requested inode is located, read it from disk if needed, and
1830 * return the pointer into that block. We maintain a cache of one block to
1831 * not read the same block again and again if we iterate linearly over all
1834 static struct ufs1_dinode
*
1835 ginode(ino_t inumber
, int fsi
, int cg
)
1838 static ino_t startinum
=0; /* first inode in cached block */
1839 struct ufs1_dinode
*pi
;
1843 pi
=(struct ufs1_dinode
*)(void *)ablk
;
1844 inumber
+=(cg
* sblock
.fs_ipg
);
1845 if (startinum
== 0 || inumber
< startinum
||
1846 inumber
>= startinum
+ INOPB(&sblock
)) {
1848 * The block needed is not cached, so we have to read it from
1851 iblk
= ino_to_fsba(&sblock
, inumber
);
1852 in_src
=fsbtodb(&sblock
, iblk
);
1853 rdfs(in_src
, (size_t)sblock
.fs_bsize
, &ablk
, fsi
);
1854 startinum
= (inumber
/ INOPB(&sblock
)) * INOPB(&sblock
);
1858 return (&(pi
[inumber
% INOPB(&sblock
)]));
1861 /* ****************************************************** charsperline ***** */
1863 * Figure out how many lines our current terminal has. For more details again
1864 * please see the source of newfs(8), as this function is taken over almost
1877 if (ioctl(0, TIOCGWINSZ
, &ws
) != -1) {
1878 columns
= ws
.ws_col
;
1880 if (columns
== 0 && (cp
= getenv("COLUMNS"))) {
1884 columns
= 80; /* last resort */
1891 /* ************************************************************** main ***** */
1893 * growfs(8) is a utility which allows to increase the size of an existing
1894 * ufs filesystem. Currently this can only be done on unmounted file system.
1895 * It recognizes some command line options to specify the new desired size,
1896 * and it does some basic checkings. The old file system size is determined
1897 * and after some more checks like we can really access the new last block
1898 * on the disk etc. we calculate the new parameters for the superblock. After
1899 * having done this we just call growfs() which will do the work. Before
1900 * we finish the only thing left is to update the disklabel.
1901 * We still have to provide support for snapshots. Therefore we first have to
1902 * understand what data structures are always replicated in the snapshot on
1903 * creation, for all other blocks we touch during our procedure, we have to
1904 * keep the old blocks unchanged somewhere available for the snapshots. If we
1905 * are lucky, then we only have to handle our blocks to be relocated in that
1907 * Also we have to consider in what order we actually update the critical
1908 * data structures of the filesystem to make sure, that in case of a disaster
1909 * fsck(8) is still able to restore any lost data.
1910 * The foreseen last step then will be to provide for growing even mounted
1911 * file systems. There we have to extend the mount() system call to provide
1912 * userland access to the file system locking facility.
1915 main(int argc
, char **argv
)
1917 struct partinfo pinfo
;
1918 char *device
, *special
;
1920 unsigned int size
=0;
1922 unsigned int Nflag
=0;
1929 #endif /* FSMAXSNAP */
1933 while((ch
=getopt(argc
, argv
, "Ns:vy")) != -1) {
1939 size
=(size_t)atol(optarg
);
1944 case 'v': /* for compatibility to newfs */
1964 * Now try to guess the (raw)device name.
1966 if (0 == strrchr(device
, '/')) {
1968 * No path prefix was given, so try in that order:
1974 * FreeBSD now doesn't distinguish between raw and block
1975 * devices any longer, but it should still work this way.
1977 len
=strlen(device
)+strlen(_PATH_DEV
)+2+strlen("vinum/");
1978 special
=(char *)malloc(len
);
1979 if(special
== NULL
) {
1980 errx(1, "malloc failed");
1982 snprintf(special
, len
, "%sr%s", _PATH_DEV
, device
);
1983 if (stat(special
, &st
) == -1) {
1984 snprintf(special
, len
, "%s%s", _PATH_DEV
, device
);
1985 if (stat(special
, &st
) == -1) {
1986 snprintf(special
, len
, "%svinum/r%s",
1988 if (stat(special
, &st
) == -1) {
1989 /* For now this is the 'last resort' */
1990 snprintf(special
, len
, "%svinum/%s",
1999 * Try to access our devices for writing ...
2004 fso
= open(device
, O_WRONLY
);
2006 err(1, "%s", device
);
2013 fsi
= open(device
, O_RDONLY
);
2015 err(1, "%s", device
);
2019 * Try to read a label and gess the slice if not specified. This
2020 * code should guess the right thing and avaid to bother the user
2021 * user with the task of specifying the option -v on vinum volumes.
2023 if (ioctl(fsi
, DIOCGPART
, &pinfo
) < 0) {
2024 if (fstat(fsi
, &st
) < 0)
2025 err(1, "unable to figure out the partition size");
2026 pinfo
.media_blocks
= st
.st_size
/ DEV_BSIZE
;
2027 pinfo
.media_blksize
= DEV_BSIZE
;
2031 * Check if that partition looks suited for growing a file system.
2033 if (pinfo
.media_blocks
< 1) {
2034 errx(1, "partition is unavailable");
2038 * Read the current superblock, and take a backup.
2040 rdfs((daddr_t
)(SBOFF
/DEV_BSIZE
), (size_t)SBSIZE
, &osblock
, fsi
);
2041 if (osblock
.fs_magic
!= FS_MAGIC
) {
2042 errx(1, "superblock not recognized");
2044 memcpy((void *)&fsun1
, (void *)&fsun2
, sizeof(fsun2
));
2046 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2047 DBG_DUMP_FS(&sblock
,
2051 * Determine size to grow to. Default to the full size specified in
2054 sblock
.fs_size
= dbtofsb(&osblock
, pinfo
.media_blocks
);
2056 if (size
> pinfo
.media_blocks
){
2057 errx(1, "There is not enough space (%ju < %d)",
2058 (intmax_t)pinfo
.media_blocks
, size
);
2060 sblock
.fs_size
= dbtofsb(&osblock
, size
);
2064 * Are we really growing ?
2066 if(osblock
.fs_size
>= sblock
.fs_size
) {
2067 errx(1, "we are not growing (%d->%d)", osblock
.fs_size
,
2074 * Check if we find an active snapshot.
2076 if(ExpertFlag
== 0) {
2077 for(j
=0; j
<FSMAXSNAP
; j
++) {
2078 if(sblock
.fs_snapinum
[j
]) {
2079 errx(1, "active snapshot found in filesystem\n"
2080 " please remove all snapshots before "
2083 if(!sblock
.fs_snapinum
[j
]) { /* list is dense */
2090 if (ExpertFlag
== 0 && Nflag
== 0) {
2091 printf("We strongly recommend you to make a backup "
2092 "before growing the Filesystem\n\n"
2093 " Did you backup your data (Yes/No) ? ");
2094 fgets(reply
, (int)sizeof(reply
), stdin
);
2095 if (strcmp(reply
, "Yes\n")){
2096 printf("\n Nothing done \n");
2101 printf("new filesystemsize is: %d frags\n", sblock
.fs_size
);
2104 * Try to access our new last block in the filesystem. Even if we
2105 * later on realize we have to abort our operation, on that block
2106 * there should be no data, so we can't destroy something yet.
2108 wtfs((daddr_t
)pinfo
.media_blocks
-1, (size_t)DEV_BSIZE
, &sblock
, fso
,
2112 * Now calculate new superblock values and check for reasonable
2113 * bound for new file system size:
2114 * fs_size: is derived from label or user input
2115 * fs_dsize: should get updated in the routines creating or
2116 * updating the cylinder groups on the fly
2117 * fs_cstotal: should get updated in the routines creating or
2118 * updating the cylinder groups
2122 * Update the number of cylinders in the filesystem.
2124 sblock
.fs_ncyl
= sblock
.fs_size
* NSPF(&sblock
) / sblock
.fs_spc
;
2125 if (sblock
.fs_size
* NSPF(&sblock
) > sblock
.fs_ncyl
* sblock
.fs_spc
) {
2130 * Update the number of cylinder groups in the filesystem.
2132 sblock
.fs_ncg
= sblock
.fs_ncyl
/ sblock
.fs_cpg
;
2133 if (sblock
.fs_ncyl
% sblock
.fs_cpg
) {
2137 if ((sblock
.fs_size
- (sblock
.fs_ncg
-1) * sblock
.fs_fpg
) <
2138 sblock
.fs_fpg
&& cgdmin(&sblock
, (sblock
.fs_ncg
-1))-
2139 cgbase(&sblock
, (sblock
.fs_ncg
-1)) > (sblock
.fs_size
-
2140 (sblock
.fs_ncg
-1) * sblock
.fs_fpg
)) {
2142 * The space in the new last cylinder group is too small,
2146 #if 1 /* this is a bit more safe */
2147 sblock
.fs_ncyl
= sblock
.fs_ncg
* sblock
.fs_cpg
;
2149 sblock
.fs_ncyl
-= sblock
.fs_ncyl
% sblock
.fs_cpg
;
2151 sblock
.fs_ncyl
-= sblock
.fs_ncyl
% sblock
.fs_cpg
;
2152 printf( "Warning: %d sector(s) cannot be allocated.\n",
2153 (sblock
.fs_size
-(sblock
.fs_ncg
)*sblock
.fs_fpg
) *
2155 sblock
.fs_size
= sblock
.fs_ncyl
* sblock
.fs_spc
/ NSPF(&sblock
);
2159 * Update the space for the cylinder group summary information in the
2160 * respective cylinder group data area.
2163 fragroundup(&sblock
, sblock
.fs_ncg
* sizeof(struct csum
));
2165 if(osblock
.fs_size
>= sblock
.fs_size
) {
2166 errx(1, "not enough new space");
2169 DBG_PRINT0("sblock calculated\n");
2172 * Ok, everything prepared, so now let's do the tricks.
2174 growfs(fsi
, fso
, Nflag
);
2177 if(fso
>-1) close(fso
);
2185 /* ************************************************************* usage ***** */
2187 * Dump a line of usage.
2194 fprintf(stderr
, "usage: growfs [-Ny] [-s size] special\n");
2200 /* *********************************************************** updclst ***** */
2202 * This updates most paramters and the bitmap related to cluster. We have to
2203 * assume, that sblock, osblock, acg are set up.
2212 if(sblock
.fs_contigsumsize
< 1) { /* no clustering */
2216 * update cluster allocation map
2218 setbit(cg_clustersfree(&acg
), block
);
2221 * update cluster summary table
2225 * calculate size for the trailing cluster
2227 for(block
--; lcs
<sblock
.fs_contigsumsize
; block
--, lcs
++ ) {
2228 if(isclr(cg_clustersfree(&acg
), block
)){
2233 if(lcs
< sblock
.fs_contigsumsize
) {
2235 cg_clustersum(&acg
)[lcs
]--;
2238 cg_clustersum(&acg
)[lcs
]++;
2245 /* *********************************************************** updrefs ***** */
2247 * This updates all references to relocated blocks for the given inode. The
2248 * inode is given as number within the cylinder group, and the number of the
2252 updrefs(int cg
, ino_t in
, struct gfs_bpp
*bp
, int fsi
, int fso
, unsigned int
2255 unsigned int ictr
, ind2ctr
, ind3ctr
;
2256 ufs_daddr_t
*iptr
, *ind2ptr
, *ind3ptr
;
2257 struct ufs1_dinode
*ino
;
2258 int remaining_blocks
;
2263 * XXX We should skip unused inodes even from beeing read from disk
2264 * here by using the bitmap.
2266 ino
=ginode(in
, fsi
, cg
);
2267 if(!((ino
->di_mode
& IFMT
)==IFDIR
|| (ino
->di_mode
& IFMT
)==IFREG
||
2268 (ino
->di_mode
& IFMT
)==IFLNK
)) {
2270 return; /* only check DIR, FILE, LINK */
2272 if(((ino
->di_mode
& IFMT
)==IFLNK
) && (ino
->di_size
<MAXSYMLINKLEN
)) {
2274 return; /* skip short symlinks */
2278 return; /* skip empty file */
2280 if(!ino
->di_blocks
) {
2282 return; /* skip empty swiss cheesy file or old fastlink */
2284 DBG_PRINT2("scg checking inode (%ju in %d)\n",
2289 * Start checking all direct blocks.
2291 remaining_blocks
=howmany(ino
->di_size
, sblock
.fs_bsize
);
2292 for(ictr
=0; ictr
< MIN(NDADDR
, (unsigned int)remaining_blocks
);
2294 iptr
=&(ino
->di_db
[ictr
]);
2296 cond_bl_upd(iptr
, bp
, GFS_PS_INODE
, fso
, Nflag
);
2299 DBG_PRINT0("~~scg direct blocks checked\n");
2301 remaining_blocks
-=NDADDR
;
2302 if(remaining_blocks
<0) {
2308 * Start checking first indirect block
2310 cond_bl_upd(&(ino
->di_ib
[0]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2311 i1_src
=fsbtodb(&sblock
, ino
->di_ib
[0]);
2312 rdfs(i1_src
, (size_t)sblock
.fs_bsize
, &i1blk
, fsi
);
2313 for(ictr
=0; ictr
< MIN(howmany(sblock
.fs_bsize
,
2314 sizeof(ufs_daddr_t
)), (unsigned int)remaining_blocks
);
2316 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)[ictr
];
2318 cond_bl_upd(iptr
, bp
, GFS_PS_IND_BLK_LVL1
,
2323 DBG_PRINT0("scg indirect_1 blocks checked\n");
2325 remaining_blocks
-= howmany(sblock
.fs_bsize
, sizeof(ufs_daddr_t
));
2326 if(remaining_blocks
<0) {
2332 * Start checking second indirect block
2334 cond_bl_upd(&(ino
->di_ib
[1]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2335 i2_src
=fsbtodb(&sblock
, ino
->di_ib
[1]);
2336 rdfs(i2_src
, (size_t)sblock
.fs_bsize
, &i2blk
, fsi
);
2337 for(ind2ctr
=0; ind2ctr
< howmany(sblock
.fs_bsize
,
2338 sizeof(ufs_daddr_t
)); ind2ctr
++) {
2339 ind2ptr
=&((ufs_daddr_t
*)(void *)&i2blk
)[ind2ctr
];
2343 cond_bl_upd(ind2ptr
, bp
, GFS_PS_IND_BLK_LVL2
, fso
,
2345 i1_src
=fsbtodb(&sblock
, *ind2ptr
);
2346 rdfs(i1_src
, (size_t)sblock
.fs_bsize
, &i1blk
,
2348 for(ictr
=0; ictr
<MIN(howmany((unsigned int)
2349 sblock
.fs_bsize
, sizeof(ufs_daddr_t
)),
2350 (unsigned int)remaining_blocks
); ictr
++) {
2351 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)[ictr
];
2353 cond_bl_upd(iptr
, bp
,
2354 GFS_PS_IND_BLK_LVL1
, fso
, Nflag
);
2359 DBG_PRINT0("scg indirect_2 blocks checked\n");
2361 #define SQUARE(a) ((a)*(a))
2362 remaining_blocks
-=SQUARE(howmany(sblock
.fs_bsize
, sizeof(ufs_daddr_t
)));
2364 if(remaining_blocks
<0) {
2371 * Start checking third indirect block
2373 cond_bl_upd(&(ino
->di_ib
[2]), bp
, GFS_PS_INODE
, fso
, Nflag
);
2374 i3_src
=fsbtodb(&sblock
, ino
->di_ib
[2]);
2375 rdfs(i3_src
, (size_t)sblock
.fs_bsize
, &i3blk
, fsi
);
2376 for(ind3ctr
=0; ind3ctr
< howmany(sblock
.fs_bsize
,
2377 sizeof(ufs_daddr_t
)); ind3ctr
++) {
2378 ind3ptr
=&((ufs_daddr_t
*)(void *)&i3blk
)[ind3ctr
];
2382 cond_bl_upd(ind3ptr
, bp
, GFS_PS_IND_BLK_LVL3
, fso
,
2384 i2_src
=fsbtodb(&sblock
, *ind3ptr
);
2385 rdfs(i2_src
, (size_t)sblock
.fs_bsize
, &i2blk
,
2387 for(ind2ctr
=0; ind2ctr
< howmany(sblock
.fs_bsize
,
2388 sizeof(ufs_daddr_t
)); ind2ctr
++) {
2389 ind2ptr
=&((ufs_daddr_t
*)(void *)&i2blk
)
2394 cond_bl_upd(ind2ptr
, bp
, GFS_PS_IND_BLK_LVL2
,
2396 i1_src
=fsbtodb(&sblock
, *ind2ptr
);
2397 rdfs(i1_src
, (size_t)sblock
.fs_bsize
,
2399 for(ictr
=0; ictr
< MIN(howmany(sblock
.fs_bsize
,
2400 sizeof(ufs_daddr_t
)),
2401 (unsigned int)remaining_blocks
); ictr
++) {
2402 iptr
=&((ufs_daddr_t
*)(void *)&i1blk
)
2405 cond_bl_upd(iptr
, bp
,
2406 GFS_PS_IND_BLK_LVL1
, fso
,
2414 DBG_PRINT0("scg indirect_3 blocks checked\n");