Restore queue depth settings across tag disable events. The system often
[dragonfly.git] / sys / kern / sys_pipe.c
blob42515497894f9c97574b89444d999756eb1aeddf
1 /*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
19 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20 * $DragonFly: src/sys/kern/sys_pipe.c,v 1.44 2006/12/28 21:24:01 dillon Exp $
24 * This file contains a high-performance replacement for the socket-based
25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
26 * all features of sockets, but does do everything that pipes normally
27 * do.
31 * This code has two modes of operation, a small write mode and a large
32 * write mode. The small write mode acts like conventional pipes with
33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
35 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36 * the receiving process can copy it directly from the pages in the sending
37 * process.
39 * If the sending process receives a signal, it is possible that it will
40 * go away, and certainly its address space can change, because control
41 * is returned back to the user-mode side. In that case, the pipe code
42 * arranges to copy the buffer supplied by the user process, to a pageable
43 * kernel buffer, and the receiving process will grab the data from the
44 * pageable kernel buffer. Since signals don't happen all that often,
45 * the copy operation is normally eliminated.
47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48 * happen for small transfers so that the system will not spend all of
49 * its time context switching. PIPE_SIZE is constrained by the
50 * amount of kernel virtual memory.
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
88 #include <sys/file2.h>
90 #include <machine/cpufunc.h>
93 * interfaces to the outside world
95 static int pipe_read (struct file *fp, struct uio *uio,
96 struct ucred *cred, int flags);
97 static int pipe_write (struct file *fp, struct uio *uio,
98 struct ucred *cred, int flags);
99 static int pipe_close (struct file *fp);
100 static int pipe_shutdown (struct file *fp, int how);
101 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
102 static int pipe_kqfilter (struct file *fp, struct knote *kn);
103 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
104 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct ucred *cred);
106 static struct fileops pipeops = {
107 .fo_read = pipe_read,
108 .fo_write = pipe_write,
109 .fo_ioctl = pipe_ioctl,
110 .fo_poll = pipe_poll,
111 .fo_kqfilter = pipe_kqfilter,
112 .fo_stat = pipe_stat,
113 .fo_close = pipe_close,
114 .fo_shutdown = pipe_shutdown
117 static void filt_pipedetach(struct knote *kn);
118 static int filt_piperead(struct knote *kn, long hint);
119 static int filt_pipewrite(struct knote *kn, long hint);
121 static struct filterops pipe_rfiltops =
122 { 1, NULL, filt_pipedetach, filt_piperead };
123 static struct filterops pipe_wfiltops =
124 { 1, NULL, filt_pipedetach, filt_pipewrite };
126 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
129 * Default pipe buffer size(s), this can be kind-of large now because pipe
130 * space is pageable. The pipe code will try to maintain locality of
131 * reference for performance reasons, so small amounts of outstanding I/O
132 * will not wipe the cache.
134 #define MINPIPESIZE (PIPE_SIZE/3)
135 #define MAXPIPESIZE (2*PIPE_SIZE/3)
138 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
139 * is there so that on large systems, we don't exhaust it.
141 #define MAXPIPEKVA (8*1024*1024)
144 * Limit for direct transfers, we cannot, of course limit
145 * the amount of kva for pipes in general though.
147 #define LIMITPIPEKVA (16*1024*1024)
150 * Limit the number of "big" pipes
152 #define LIMITBIGPIPES 32
153 #define PIPEQ_MAX_CACHE 16 /* per-cpu pipe structure cache */
155 static int pipe_maxbig = LIMITBIGPIPES;
156 static int pipe_maxcache = PIPEQ_MAX_CACHE;
157 static int pipe_nbig;
158 static int pipe_bcache_alloc;
159 static int pipe_bkmem_alloc;
160 static int pipe_dwrite_enable = 1; /* 0:copy, 1:kmem/sfbuf 2:force */
161 static int pipe_dwrite_sfbuf = 1; /* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
162 /* 3:sfbuf_dmap w/ forced invlpg */
164 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
165 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
166 CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
167 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
168 CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
169 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
170 CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
171 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
172 CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
173 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
174 CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
175 "(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
176 #if !defined(NO_PIPE_SYSCTL_STATS)
177 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
178 CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
179 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
180 CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
181 #endif
183 static void pipeclose (struct pipe *cpipe);
184 static void pipe_free_kmem (struct pipe *cpipe);
185 static int pipe_create (struct pipe **cpipep);
186 static __inline int pipelock (struct pipe *cpipe, int catch);
187 static __inline void pipeunlock (struct pipe *cpipe);
188 static __inline void pipeselwakeup (struct pipe *cpipe);
189 #ifndef PIPE_NODIRECT
190 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
191 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
192 static void pipe_clone_write_buffer (struct pipe *wpipe);
193 #endif
194 static int pipespace (struct pipe *cpipe, int size);
197 * The pipe system call for the DTYPE_PIPE type of pipes
199 * pipe_ARgs(int dummy)
202 /* ARGSUSED */
204 sys_pipe(struct pipe_args *uap)
206 struct thread *td = curthread;
207 struct proc *p = td->td_proc;
208 struct file *rf, *wf;
209 struct pipe *rpipe, *wpipe;
210 int fd1, fd2, error;
212 KKASSERT(p);
214 rpipe = wpipe = NULL;
215 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
216 pipeclose(rpipe);
217 pipeclose(wpipe);
218 return (ENFILE);
221 rpipe->pipe_state |= PIPE_DIRECTOK;
222 wpipe->pipe_state |= PIPE_DIRECTOK;
225 * Select the direct-map features to use for this pipe. Since the
226 * sysctl's can change on the fly we record the settings when the
227 * pipe is created.
229 * Generally speaking the system will default to what we consider
230 * to be the best-balanced and most stable option. Right now this
231 * is SFBUF1. Modes 2 and 3 are considered experiemental at the
232 * moment.
234 wpipe->pipe_feature = PIPE_COPY;
235 if (pipe_dwrite_enable) {
236 switch(pipe_dwrite_sfbuf) {
237 case 0:
238 wpipe->pipe_feature = PIPE_KMEM;
239 break;
240 case 1:
241 wpipe->pipe_feature = PIPE_SFBUF1;
242 break;
243 case 2:
244 case 3:
245 wpipe->pipe_feature = PIPE_SFBUF2;
246 break;
249 rpipe->pipe_feature = wpipe->pipe_feature;
251 error = falloc(p, &rf, &fd1);
252 if (error) {
253 pipeclose(rpipe);
254 pipeclose(wpipe);
255 return (error);
257 uap->sysmsg_fds[0] = fd1;
260 * Warning: once we've gotten past allocation of the fd for the
261 * read-side, we can only drop the read side via fdrop() in order
262 * to avoid races against processes which manage to dup() the read
263 * side while we are blocked trying to allocate the write side.
265 rf->f_type = DTYPE_PIPE;
266 rf->f_flag = FREAD | FWRITE;
267 rf->f_ops = &pipeops;
268 rf->f_data = rpipe;
269 error = falloc(p, &wf, &fd2);
270 if (error) {
271 fsetfd(p, NULL, fd1);
272 fdrop(rf);
273 /* rpipe has been closed by fdrop(). */
274 pipeclose(wpipe);
275 return (error);
277 wf->f_type = DTYPE_PIPE;
278 wf->f_flag = FREAD | FWRITE;
279 wf->f_ops = &pipeops;
280 wf->f_data = wpipe;
281 uap->sysmsg_fds[1] = fd2;
283 rpipe->pipe_peer = wpipe;
284 wpipe->pipe_peer = rpipe;
286 fsetfd(p, rf, fd1);
287 fsetfd(p, wf, fd2);
288 fdrop(rf);
289 fdrop(wf);
291 return (0);
295 * Allocate kva for pipe circular buffer, the space is pageable
296 * This routine will 'realloc' the size of a pipe safely, if it fails
297 * it will retain the old buffer.
298 * If it fails it will return ENOMEM.
300 static int
301 pipespace(struct pipe *cpipe, int size)
303 struct vm_object *object;
304 caddr_t buffer;
305 int npages, error;
307 npages = round_page(size) / PAGE_SIZE;
308 object = cpipe->pipe_buffer.object;
311 * [re]create the object if necessary and reserve space for it
312 * in the kernel_map. The object and memory are pageable. On
313 * success, free the old resources before assigning the new
314 * ones.
316 if (object == NULL || object->size != npages) {
317 object = vm_object_allocate(OBJT_DEFAULT, npages);
318 buffer = (caddr_t)vm_map_min(&kernel_map);
320 error = vm_map_find(&kernel_map, object, 0,
321 (vm_offset_t *)&buffer, size,
323 VM_MAPTYPE_NORMAL,
324 VM_PROT_ALL, VM_PROT_ALL,
327 if (error != KERN_SUCCESS) {
328 vm_object_deallocate(object);
329 return (ENOMEM);
331 pipe_free_kmem(cpipe);
332 cpipe->pipe_buffer.object = object;
333 cpipe->pipe_buffer.buffer = buffer;
334 cpipe->pipe_buffer.size = size;
335 ++pipe_bkmem_alloc;
336 } else {
337 ++pipe_bcache_alloc;
339 cpipe->pipe_buffer.in = 0;
340 cpipe->pipe_buffer.out = 0;
341 cpipe->pipe_buffer.cnt = 0;
342 return (0);
346 * Initialize and allocate VM and memory for pipe, pulling the pipe from
347 * our per-cpu cache if possible. For now make sure it is sized for the
348 * smaller PIPE_SIZE default.
350 static int
351 pipe_create(struct pipe **cpipep)
353 globaldata_t gd = mycpu;
354 struct pipe *cpipe;
355 int error;
357 if ((cpipe = gd->gd_pipeq) != NULL) {
358 gd->gd_pipeq = cpipe->pipe_peer;
359 --gd->gd_pipeqcount;
360 cpipe->pipe_peer = NULL;
361 } else {
362 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
364 *cpipep = cpipe;
365 if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
366 return (error);
367 vfs_timestamp(&cpipe->pipe_ctime);
368 cpipe->pipe_atime = cpipe->pipe_ctime;
369 cpipe->pipe_mtime = cpipe->pipe_ctime;
370 return (0);
375 * lock a pipe for I/O, blocking other access
377 static __inline int
378 pipelock(struct pipe *cpipe, int catch)
380 int error;
382 while (cpipe->pipe_state & PIPE_LOCK) {
383 cpipe->pipe_state |= PIPE_LWANT;
384 error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
385 if (error != 0)
386 return (error);
388 cpipe->pipe_state |= PIPE_LOCK;
389 return (0);
393 * unlock a pipe I/O lock
395 static __inline void
396 pipeunlock(struct pipe *cpipe)
399 cpipe->pipe_state &= ~PIPE_LOCK;
400 if (cpipe->pipe_state & PIPE_LWANT) {
401 cpipe->pipe_state &= ~PIPE_LWANT;
402 wakeup(cpipe);
406 static __inline void
407 pipeselwakeup(struct pipe *cpipe)
410 if (cpipe->pipe_state & PIPE_SEL) {
411 cpipe->pipe_state &= ~PIPE_SEL;
412 selwakeup(&cpipe->pipe_sel);
414 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
415 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
416 KNOTE(&cpipe->pipe_sel.si_note, 0);
420 * MPALMOSTSAFE (acquires mplock)
422 static int
423 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
425 struct pipe *rpipe;
426 int error;
427 int nread = 0;
428 int nbio;
429 u_int size;
431 get_mplock();
432 rpipe = (struct pipe *) fp->f_data;
433 ++rpipe->pipe_busy;
434 error = pipelock(rpipe, 1);
435 if (error)
436 goto unlocked_error;
438 if (fflags & O_FBLOCKING)
439 nbio = 0;
440 else if (fflags & O_FNONBLOCKING)
441 nbio = 1;
442 else if (fp->f_flag & O_NONBLOCK)
443 nbio = 1;
444 else
445 nbio = 0;
447 while (uio->uio_resid) {
448 caddr_t va;
450 if (rpipe->pipe_buffer.cnt > 0) {
452 * normal pipe buffer receive
454 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
455 if (size > rpipe->pipe_buffer.cnt)
456 size = rpipe->pipe_buffer.cnt;
457 if (size > (u_int) uio->uio_resid)
458 size = (u_int) uio->uio_resid;
460 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
461 size, uio);
462 if (error)
463 break;
465 rpipe->pipe_buffer.out += size;
466 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
467 rpipe->pipe_buffer.out = 0;
469 rpipe->pipe_buffer.cnt -= size;
472 * If there is no more to read in the pipe, reset
473 * its pointers to the beginning. This improves
474 * cache hit stats.
476 if (rpipe->pipe_buffer.cnt == 0) {
477 rpipe->pipe_buffer.in = 0;
478 rpipe->pipe_buffer.out = 0;
480 nread += size;
481 #ifndef PIPE_NODIRECT
482 } else if (rpipe->pipe_kva &&
483 rpipe->pipe_feature == PIPE_KMEM &&
484 (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
485 == PIPE_DIRECTW
488 * Direct copy using source-side kva mapping
490 size = rpipe->pipe_map.xio_bytes -
491 rpipe->pipe_buffer.out;
492 if (size > (u_int)uio->uio_resid)
493 size = (u_int)uio->uio_resid;
494 va = (caddr_t)rpipe->pipe_kva +
495 xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
496 error = uiomove(va, size, uio);
497 if (error)
498 break;
499 nread += size;
500 rpipe->pipe_buffer.out += size;
501 if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
502 rpipe->pipe_state |= PIPE_DIRECTIP;
503 rpipe->pipe_state &= ~PIPE_DIRECTW;
504 /* reset out index for copy mode */
505 rpipe->pipe_buffer.out = 0;
506 wakeup(rpipe);
508 } else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
509 rpipe->pipe_kva &&
510 rpipe->pipe_feature == PIPE_SFBUF2 &&
511 (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
512 == PIPE_DIRECTW
515 * Direct copy, bypassing a kernel buffer. We cannot
516 * mess with the direct-write buffer until
517 * PIPE_DIRECTIP is cleared. In order to prevent
518 * the pipe_write code from racing itself in
519 * direct_write, we set DIRECTIP when we clear
520 * DIRECTW after we have exhausted the buffer.
522 if (pipe_dwrite_sfbuf == 3)
523 rpipe->pipe_kvamask = 0;
524 pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
525 rpipe->pipe_map.xio_npages,
526 &rpipe->pipe_kvamask);
527 size = rpipe->pipe_map.xio_bytes -
528 rpipe->pipe_buffer.out;
529 if (size > (u_int)uio->uio_resid)
530 size = (u_int)uio->uio_resid;
531 va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
532 error = uiomove(va, size, uio);
533 if (error)
534 break;
535 nread += size;
536 rpipe->pipe_buffer.out += size;
537 if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
538 rpipe->pipe_state |= PIPE_DIRECTIP;
539 rpipe->pipe_state &= ~PIPE_DIRECTW;
540 /* reset out index for copy mode */
541 rpipe->pipe_buffer.out = 0;
542 wakeup(rpipe);
544 } else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
545 rpipe->pipe_feature == PIPE_SFBUF1 &&
546 (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
547 == PIPE_DIRECTW
550 * Direct copy, bypassing a kernel buffer. We cannot
551 * mess with the direct-write buffer until
552 * PIPE_DIRECTIP is cleared. In order to prevent
553 * the pipe_write code from racing itself in
554 * direct_write, we set DIRECTIP when we clear
555 * DIRECTW after we have exhausted the buffer.
557 error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
558 if (error)
559 break;
560 nread += size;
561 rpipe->pipe_buffer.out += size;
562 if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
563 rpipe->pipe_state |= PIPE_DIRECTIP;
564 rpipe->pipe_state &= ~PIPE_DIRECTW;
565 /* reset out index for copy mode */
566 rpipe->pipe_buffer.out = 0;
567 wakeup(rpipe);
569 #endif
570 } else {
572 * detect EOF condition
573 * read returns 0 on EOF, no need to set error
575 if (rpipe->pipe_state & PIPE_EOF)
576 break;
579 * If the "write-side" has been blocked, wake it up now.
581 if (rpipe->pipe_state & PIPE_WANTW) {
582 rpipe->pipe_state &= ~PIPE_WANTW;
583 wakeup(rpipe);
587 * Break if some data was read.
589 if (nread > 0)
590 break;
593 * Unlock the pipe buffer for our remaining
594 * processing. We will either break out with an
595 * error or we will sleep and relock to loop.
597 pipeunlock(rpipe);
600 * Handle non-blocking mode operation or
601 * wait for more data.
603 if (nbio) {
604 error = EAGAIN;
605 } else {
606 rpipe->pipe_state |= PIPE_WANTR;
607 if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
608 "piperd", 0)) == 0) {
609 error = pipelock(rpipe, 1);
612 if (error)
613 goto unlocked_error;
616 pipeunlock(rpipe);
618 if (error == 0)
619 vfs_timestamp(&rpipe->pipe_atime);
620 unlocked_error:
621 --rpipe->pipe_busy;
624 * PIPE_WANT processing only makes sense if pipe_busy is 0.
626 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
627 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
628 wakeup(rpipe);
629 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
631 * Handle write blocking hysteresis.
633 if (rpipe->pipe_state & PIPE_WANTW) {
634 rpipe->pipe_state &= ~PIPE_WANTW;
635 wakeup(rpipe);
639 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
640 pipeselwakeup(rpipe);
641 rel_mplock();
642 return (error);
645 #ifndef PIPE_NODIRECT
647 * Map the sending processes' buffer into kernel space and wire it.
648 * This is similar to a physical write operation.
650 static int
651 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
653 int error;
654 u_int size;
656 size = (u_int) uio->uio_iov->iov_len;
657 if (size > wpipe->pipe_buffer.size)
658 size = wpipe->pipe_buffer.size;
660 if (uio->uio_segflg == UIO_SYSSPACE) {
661 error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
662 size);
663 } else {
664 error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
665 size, XIOF_READ);
667 wpipe->pipe_buffer.out = 0;
668 if (error)
669 return(error);
672 * Create a kernel map for KMEM and SFBUF2 copy modes. SFBUF2 will
673 * map the pages on the target while KMEM maps the pages now.
675 switch(wpipe->pipe_feature) {
676 case PIPE_KMEM:
677 case PIPE_SFBUF2:
678 if (wpipe->pipe_kva == NULL) {
679 wpipe->pipe_kva =
680 kmem_alloc_nofault(&kernel_map, XIO_INTERNAL_SIZE);
681 wpipe->pipe_kvamask = 0;
683 if (wpipe->pipe_feature == PIPE_KMEM) {
684 pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
685 wpipe->pipe_map.xio_npages);
687 break;
688 default:
689 break;
693 * And update the uio data. The XIO might have loaded fewer bytes
694 * then requested so reload 'size'.
696 size = wpipe->pipe_map.xio_bytes;
697 uio->uio_iov->iov_len -= size;
698 uio->uio_iov->iov_base += size;
699 if (uio->uio_iov->iov_len == 0)
700 uio->uio_iov++;
701 uio->uio_resid -= size;
702 uio->uio_offset += size;
703 return (0);
707 * In the case of a signal, the writing process might go away. This
708 * code copies the data into the circular buffer so that the source
709 * pages can be freed without loss of data.
711 * Note that in direct mode pipe_buffer.out is used to track the
712 * XIO offset. We are converting the direct mode into buffered mode
713 * which changes the meaning of pipe_buffer.out.
715 static void
716 pipe_clone_write_buffer(struct pipe *wpipe)
718 int size;
719 int offset;
721 offset = wpipe->pipe_buffer.out;
722 size = wpipe->pipe_map.xio_bytes - offset;
724 KKASSERT(size <= wpipe->pipe_buffer.size);
726 wpipe->pipe_buffer.in = size;
727 wpipe->pipe_buffer.out = 0;
728 wpipe->pipe_buffer.cnt = size;
729 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
731 xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
732 xio_release(&wpipe->pipe_map);
733 if (wpipe->pipe_kva) {
734 pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
735 kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
736 wpipe->pipe_kva = NULL;
741 * This implements the pipe buffer write mechanism. Note that only
742 * a direct write OR a normal pipe write can be pending at any given time.
743 * If there are any characters in the pipe buffer, the direct write will
744 * be deferred until the receiving process grabs all of the bytes from
745 * the pipe buffer. Then the direct mapping write is set-up.
747 static int
748 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
750 int error;
752 retry:
753 while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
754 if (wpipe->pipe_state & PIPE_WANTR) {
755 wpipe->pipe_state &= ~PIPE_WANTR;
756 wakeup(wpipe);
758 wpipe->pipe_state |= PIPE_WANTW;
759 error = tsleep(wpipe, PCATCH, "pipdww", 0);
760 if (error)
761 goto error2;
762 if (wpipe->pipe_state & PIPE_EOF) {
763 error = EPIPE;
764 goto error2;
767 KKASSERT(wpipe->pipe_map.xio_bytes == 0);
768 if (wpipe->pipe_buffer.cnt > 0) {
769 if (wpipe->pipe_state & PIPE_WANTR) {
770 wpipe->pipe_state &= ~PIPE_WANTR;
771 wakeup(wpipe);
774 wpipe->pipe_state |= PIPE_WANTW;
775 error = tsleep(wpipe, PCATCH, "pipdwc", 0);
776 if (error)
777 goto error2;
778 if (wpipe->pipe_state & PIPE_EOF) {
779 error = EPIPE;
780 goto error2;
782 goto retry;
786 * Build our direct-write buffer
788 wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
789 error = pipe_build_write_buffer(wpipe, uio);
790 if (error)
791 goto error1;
792 wpipe->pipe_state &= ~PIPE_DIRECTIP;
795 * Wait until the receiver has snarfed the data. Since we are likely
796 * going to sleep we optimize the case and yield synchronously,
797 * possibly avoiding the tsleep().
799 error = 0;
800 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
801 if (wpipe->pipe_state & PIPE_EOF) {
802 pipelock(wpipe, 0);
803 xio_release(&wpipe->pipe_map);
804 if (wpipe->pipe_kva) {
805 pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
806 kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
807 wpipe->pipe_kva = NULL;
809 pipeunlock(wpipe);
810 pipeselwakeup(wpipe);
811 error = EPIPE;
812 goto error1;
814 if (wpipe->pipe_state & PIPE_WANTR) {
815 wpipe->pipe_state &= ~PIPE_WANTR;
816 wakeup(wpipe);
818 pipeselwakeup(wpipe);
819 error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
821 pipelock(wpipe,0);
822 if (wpipe->pipe_state & PIPE_DIRECTW) {
824 * this bit of trickery substitutes a kernel buffer for
825 * the process that might be going away.
827 pipe_clone_write_buffer(wpipe);
828 KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
829 } else {
831 * note: The pipe_kva mapping is not qremove'd here. For
832 * legacy PIPE_KMEM mode this constitutes an improvement
833 * over the original FreeBSD-4 algorithm. For PIPE_SFBUF2
834 * mode the kva mapping must not be removed to get the
835 * caching benefit.
837 * For testing purposes we will give the original algorithm
838 * the benefit of the doubt 'what it could have been', and
839 * keep the optimization.
841 KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
842 xio_release(&wpipe->pipe_map);
843 wpipe->pipe_state &= ~PIPE_DIRECTIP;
845 pipeunlock(wpipe);
846 return (error);
849 * Direct-write error, clear the direct write flags.
851 error1:
852 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
853 /* fallthrough */
856 * General error, wakeup the other side if it happens to be sleeping.
858 error2:
859 wakeup(wpipe);
860 return (error);
862 #endif
865 * MPALMOSTSAFE - acquires mplock
867 static int
868 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
870 int error = 0;
871 int orig_resid;
872 int nbio;
873 struct pipe *wpipe, *rpipe;
875 get_mplock();
876 rpipe = (struct pipe *) fp->f_data;
877 wpipe = rpipe->pipe_peer;
880 * detect loss of pipe read side, issue SIGPIPE if lost.
882 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
883 rel_mplock();
884 return (EPIPE);
886 ++wpipe->pipe_busy;
888 if (fflags & O_FBLOCKING)
889 nbio = 0;
890 else if (fflags & O_FNONBLOCKING)
891 nbio = 1;
892 else if (fp->f_flag & O_NONBLOCK)
893 nbio = 1;
894 else
895 nbio = 0;
898 * If it is advantageous to resize the pipe buffer, do
899 * so.
901 if ((uio->uio_resid > PIPE_SIZE) &&
902 (pipe_nbig < pipe_maxbig) &&
903 (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
904 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
905 (wpipe->pipe_buffer.cnt == 0)) {
907 if ((error = pipelock(wpipe,1)) == 0) {
908 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
909 pipe_nbig++;
910 pipeunlock(wpipe);
915 * If an early error occured unbusy and return, waking up any pending
916 * readers.
918 if (error) {
919 --wpipe->pipe_busy;
920 if ((wpipe->pipe_busy == 0) &&
921 (wpipe->pipe_state & PIPE_WANT)) {
922 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
923 wakeup(wpipe);
925 rel_mplock();
926 return(error);
929 KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
931 orig_resid = uio->uio_resid;
933 while (uio->uio_resid) {
934 int space;
936 #ifndef PIPE_NODIRECT
938 * If the transfer is large, we can gain performance if
939 * we do process-to-process copies directly.
940 * If the write is non-blocking, we don't use the
941 * direct write mechanism.
943 * The direct write mechanism will detect the reader going
944 * away on us.
946 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
947 pipe_dwrite_enable > 1) &&
948 nbio == 0 &&
949 pipe_dwrite_enable) {
950 error = pipe_direct_write( wpipe, uio);
951 if (error)
952 break;
953 continue;
955 #endif
958 * Pipe buffered writes cannot be coincidental with
959 * direct writes. We wait until the currently executing
960 * direct write is completed before we start filling the
961 * pipe buffer. We break out if a signal occurs or the
962 * reader goes away.
964 retrywrite:
965 while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
966 if (wpipe->pipe_state & PIPE_WANTR) {
967 wpipe->pipe_state &= ~PIPE_WANTR;
968 wakeup(wpipe);
970 error = tsleep(wpipe, PCATCH, "pipbww", 0);
971 if (wpipe->pipe_state & PIPE_EOF)
972 break;
973 if (error)
974 break;
976 if (wpipe->pipe_state & PIPE_EOF) {
977 error = EPIPE;
978 break;
981 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
983 /* Writes of size <= PIPE_BUF must be atomic. */
984 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
985 space = 0;
988 * Write to fill, read size handles write hysteresis. Also
989 * additional restrictions can cause select-based non-blocking
990 * writes to spin.
992 if (space > 0) {
993 if ((error = pipelock(wpipe,1)) == 0) {
994 int size; /* Transfer size */
995 int segsize; /* first segment to transfer */
998 * It is possible for a direct write to
999 * slip in on us... handle it here...
1001 if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
1002 pipeunlock(wpipe);
1003 goto retrywrite;
1006 * If a process blocked in uiomove, our
1007 * value for space might be bad.
1009 * XXX will we be ok if the reader has gone
1010 * away here?
1012 if (space > wpipe->pipe_buffer.size -
1013 wpipe->pipe_buffer.cnt) {
1014 pipeunlock(wpipe);
1015 goto retrywrite;
1019 * Transfer size is minimum of uio transfer
1020 * and free space in pipe buffer.
1022 if (space > uio->uio_resid)
1023 size = uio->uio_resid;
1024 else
1025 size = space;
1027 * First segment to transfer is minimum of
1028 * transfer size and contiguous space in
1029 * pipe buffer. If first segment to transfer
1030 * is less than the transfer size, we've got
1031 * a wraparound in the buffer.
1033 segsize = wpipe->pipe_buffer.size -
1034 wpipe->pipe_buffer.in;
1035 if (segsize > size)
1036 segsize = size;
1038 /* Transfer first segment */
1040 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1041 segsize, uio);
1043 if (error == 0 && segsize < size) {
1045 * Transfer remaining part now, to
1046 * support atomic writes. Wraparound
1047 * happened.
1049 if (wpipe->pipe_buffer.in + segsize !=
1050 wpipe->pipe_buffer.size)
1051 panic("Expected pipe buffer wraparound disappeared");
1053 error = uiomove(&wpipe->pipe_buffer.buffer[0],
1054 size - segsize, uio);
1056 if (error == 0) {
1057 wpipe->pipe_buffer.in += size;
1058 if (wpipe->pipe_buffer.in >=
1059 wpipe->pipe_buffer.size) {
1060 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1061 panic("Expected wraparound bad");
1062 wpipe->pipe_buffer.in = size - segsize;
1065 wpipe->pipe_buffer.cnt += size;
1066 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1067 panic("Pipe buffer overflow");
1070 pipeunlock(wpipe);
1072 if (error)
1073 break;
1075 } else {
1077 * If the "read-side" has been blocked, wake it up now
1078 * and yield to let it drain synchronously rather
1079 * then block.
1081 if (wpipe->pipe_state & PIPE_WANTR) {
1082 wpipe->pipe_state &= ~PIPE_WANTR;
1083 wakeup(wpipe);
1087 * don't block on non-blocking I/O
1089 if (nbio) {
1090 error = EAGAIN;
1091 break;
1095 * We have no more space and have something to offer,
1096 * wake up select/poll.
1098 pipeselwakeup(wpipe);
1100 wpipe->pipe_state |= PIPE_WANTW;
1101 error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1102 if (error != 0)
1103 break;
1105 * If read side wants to go away, we just issue a signal
1106 * to ourselves.
1108 if (wpipe->pipe_state & PIPE_EOF) {
1109 error = EPIPE;
1110 break;
1115 --wpipe->pipe_busy;
1117 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1118 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1119 wakeup(wpipe);
1120 } else if (wpipe->pipe_buffer.cnt > 0) {
1122 * If we have put any characters in the buffer, we wake up
1123 * the reader.
1125 if (wpipe->pipe_state & PIPE_WANTR) {
1126 wpipe->pipe_state &= ~PIPE_WANTR;
1127 wakeup(wpipe);
1132 * Don't return EPIPE if I/O was successful
1134 if ((wpipe->pipe_buffer.cnt == 0) &&
1135 (uio->uio_resid == 0) &&
1136 (error == EPIPE)) {
1137 error = 0;
1140 if (error == 0)
1141 vfs_timestamp(&wpipe->pipe_mtime);
1144 * We have something to offer,
1145 * wake up select/poll.
1147 if (wpipe->pipe_buffer.cnt)
1148 pipeselwakeup(wpipe);
1149 rel_mplock();
1150 return (error);
1154 * MPALMOSTSAFE - acquires mplock
1156 * we implement a very minimal set of ioctls for compatibility with sockets.
1159 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct ucred *cred)
1161 struct pipe *mpipe;
1162 int error;
1164 get_mplock();
1165 mpipe = (struct pipe *)fp->f_data;
1167 switch (cmd) {
1168 case FIOASYNC:
1169 if (*(int *)data) {
1170 mpipe->pipe_state |= PIPE_ASYNC;
1171 } else {
1172 mpipe->pipe_state &= ~PIPE_ASYNC;
1174 error = 0;
1175 break;
1176 case FIONREAD:
1177 if (mpipe->pipe_state & PIPE_DIRECTW) {
1178 *(int *)data = mpipe->pipe_map.xio_bytes -
1179 mpipe->pipe_buffer.out;
1180 } else {
1181 *(int *)data = mpipe->pipe_buffer.cnt;
1183 error = 0;
1184 break;
1185 case FIOSETOWN:
1186 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1187 break;
1188 case FIOGETOWN:
1189 *(int *)data = fgetown(mpipe->pipe_sigio);
1190 error = 0;
1191 break;
1192 case TIOCSPGRP:
1193 /* This is deprecated, FIOSETOWN should be used instead. */
1194 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1195 break;
1197 case TIOCGPGRP:
1198 /* This is deprecated, FIOGETOWN should be used instead. */
1199 *(int *)data = -fgetown(mpipe->pipe_sigio);
1200 error = 0;
1201 break;
1202 default:
1203 error = ENOTTY;
1204 break;
1206 rel_mplock();
1207 return (error);
1211 * MPALMOSTSAFE - acquires mplock
1214 pipe_poll(struct file *fp, int events, struct ucred *cred)
1216 struct pipe *rpipe;
1217 struct pipe *wpipe;
1218 int revents = 0;
1220 get_mplock();
1221 rpipe = (struct pipe *)fp->f_data;
1222 wpipe = rpipe->pipe_peer;
1223 if (events & (POLLIN | POLLRDNORM))
1224 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1225 (rpipe->pipe_buffer.cnt > 0) ||
1226 (rpipe->pipe_state & PIPE_EOF))
1227 revents |= events & (POLLIN | POLLRDNORM);
1229 if (events & (POLLOUT | POLLWRNORM))
1230 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1231 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1232 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1233 revents |= events & (POLLOUT | POLLWRNORM);
1235 if ((rpipe->pipe_state & PIPE_EOF) ||
1236 (wpipe == NULL) ||
1237 (wpipe->pipe_state & PIPE_EOF))
1238 revents |= POLLHUP;
1240 if (revents == 0) {
1241 if (events & (POLLIN | POLLRDNORM)) {
1242 selrecord(curthread, &rpipe->pipe_sel);
1243 rpipe->pipe_state |= PIPE_SEL;
1246 if (events & (POLLOUT | POLLWRNORM)) {
1247 selrecord(curthread, &wpipe->pipe_sel);
1248 wpipe->pipe_state |= PIPE_SEL;
1251 rel_mplock();
1252 return (revents);
1256 * MPALMOSTSAFE - acquires mplock
1258 static int
1259 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1261 struct pipe *pipe;
1263 get_mplock();
1264 pipe = (struct pipe *)fp->f_data;
1266 bzero((caddr_t)ub, sizeof(*ub));
1267 ub->st_mode = S_IFIFO;
1268 ub->st_blksize = pipe->pipe_buffer.size;
1269 ub->st_size = pipe->pipe_buffer.cnt;
1270 if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1271 ub->st_size = pipe->pipe_map.xio_bytes -
1272 pipe->pipe_buffer.out;
1274 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1275 ub->st_atimespec = pipe->pipe_atime;
1276 ub->st_mtimespec = pipe->pipe_mtime;
1277 ub->st_ctimespec = pipe->pipe_ctime;
1279 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1280 * st_flags, st_gen.
1281 * XXX (st_dev, st_ino) should be unique.
1283 rel_mplock();
1284 return (0);
1288 * MPALMOSTSAFE - acquires mplock
1290 static int
1291 pipe_close(struct file *fp)
1293 struct pipe *cpipe = (struct pipe *)fp->f_data;
1295 get_mplock();
1296 fp->f_ops = &badfileops;
1297 fp->f_data = NULL;
1298 funsetown(cpipe->pipe_sigio);
1299 pipeclose(cpipe);
1300 rel_mplock();
1301 return (0);
1305 * Shutdown one or both directions of a full-duplex pipe.
1307 * MPALMOSTSAFE - acquires mplock
1309 static int
1310 pipe_shutdown(struct file *fp, int how)
1312 struct pipe *rpipe;
1313 struct pipe *wpipe;
1314 int error = EPIPE;
1316 get_mplock();
1317 rpipe = (struct pipe *)fp->f_data;
1319 switch(how) {
1320 case SHUT_RDWR:
1321 case SHUT_RD:
1322 if (rpipe) {
1323 rpipe->pipe_state |= PIPE_EOF;
1324 pipeselwakeup(rpipe);
1325 if (rpipe->pipe_busy)
1326 wakeup(rpipe);
1327 error = 0;
1329 if (how == SHUT_RD)
1330 break;
1331 /* fall through */
1332 case SHUT_WR:
1333 if (rpipe && (wpipe = rpipe->pipe_peer) != NULL) {
1334 wpipe->pipe_state |= PIPE_EOF;
1335 pipeselwakeup(wpipe);
1336 if (wpipe->pipe_busy)
1337 wakeup(wpipe);
1338 error = 0;
1341 rel_mplock();
1342 return (error);
1345 static void
1346 pipe_free_kmem(struct pipe *cpipe)
1348 if (cpipe->pipe_buffer.buffer != NULL) {
1349 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1350 --pipe_nbig;
1351 kmem_free(&kernel_map,
1352 (vm_offset_t)cpipe->pipe_buffer.buffer,
1353 cpipe->pipe_buffer.size);
1354 cpipe->pipe_buffer.buffer = NULL;
1355 cpipe->pipe_buffer.object = NULL;
1357 #ifndef PIPE_NODIRECT
1358 KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1359 cpipe->pipe_map.xio_offset == 0 &&
1360 cpipe->pipe_map.xio_npages == 0);
1361 #endif
1365 * shutdown the pipe
1367 static void
1368 pipeclose(struct pipe *cpipe)
1370 globaldata_t gd;
1371 struct pipe *ppipe;
1373 if (cpipe == NULL)
1374 return;
1376 pipeselwakeup(cpipe);
1379 * If the other side is blocked, wake it up saying that
1380 * we want to close it down.
1382 while (cpipe->pipe_busy) {
1383 wakeup(cpipe);
1384 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1385 tsleep(cpipe, 0, "pipecl", 0);
1389 * Disconnect from peer
1391 if ((ppipe = cpipe->pipe_peer) != NULL) {
1392 pipeselwakeup(ppipe);
1394 ppipe->pipe_state |= PIPE_EOF;
1395 wakeup(ppipe);
1396 KNOTE(&ppipe->pipe_sel.si_note, 0);
1397 ppipe->pipe_peer = NULL;
1400 if (cpipe->pipe_kva) {
1401 pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1402 kmem_free(&kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1403 cpipe->pipe_kva = NULL;
1407 * free or cache resources
1409 gd = mycpu;
1410 if (gd->gd_pipeqcount >= pipe_maxcache ||
1411 cpipe->pipe_buffer.size != PIPE_SIZE
1413 pipe_free_kmem(cpipe);
1414 kfree(cpipe, M_PIPE);
1415 } else {
1416 KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1417 cpipe->pipe_map.xio_bytes == 0 &&
1418 cpipe->pipe_map.xio_offset == 0);
1419 cpipe->pipe_state = 0;
1420 cpipe->pipe_busy = 0;
1421 cpipe->pipe_peer = gd->gd_pipeq;
1422 gd->gd_pipeq = cpipe;
1423 ++gd->gd_pipeqcount;
1428 * MPALMOSTSAFE - acquires mplock
1430 static int
1431 pipe_kqfilter(struct file *fp, struct knote *kn)
1433 struct pipe *cpipe;
1435 get_mplock();
1436 cpipe = (struct pipe *)kn->kn_fp->f_data;
1438 switch (kn->kn_filter) {
1439 case EVFILT_READ:
1440 kn->kn_fop = &pipe_rfiltops;
1441 break;
1442 case EVFILT_WRITE:
1443 kn->kn_fop = &pipe_wfiltops;
1444 cpipe = cpipe->pipe_peer;
1445 if (cpipe == NULL) {
1446 /* other end of pipe has been closed */
1447 rel_mplock();
1448 return (EPIPE);
1450 break;
1451 default:
1452 return (1);
1454 kn->kn_hook = (caddr_t)cpipe;
1456 SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1457 rel_mplock();
1458 return (0);
1461 static void
1462 filt_pipedetach(struct knote *kn)
1464 struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1466 SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1469 /*ARGSUSED*/
1470 static int
1471 filt_piperead(struct knote *kn, long hint)
1473 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1474 struct pipe *wpipe = rpipe->pipe_peer;
1476 kn->kn_data = rpipe->pipe_buffer.cnt;
1477 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1478 kn->kn_data = rpipe->pipe_map.xio_bytes -
1479 rpipe->pipe_buffer.out;
1482 if ((rpipe->pipe_state & PIPE_EOF) ||
1483 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1484 kn->kn_flags |= EV_EOF;
1485 return (1);
1487 return (kn->kn_data > 0);
1490 /*ARGSUSED*/
1491 static int
1492 filt_pipewrite(struct knote *kn, long hint)
1494 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1495 struct pipe *wpipe = rpipe->pipe_peer;
1497 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1498 kn->kn_data = 0;
1499 kn->kn_flags |= EV_EOF;
1500 return (1);
1502 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1503 if (wpipe->pipe_state & PIPE_DIRECTW)
1504 kn->kn_data = 0;
1506 return (kn->kn_data >= PIPE_BUF);