2 * SHA256-based Unix crypt implementation.
3 * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
12 #include <sys/endian.h>
13 #include <sys/param.h>
14 #include <sys/types.h>
18 #if __BYTE_ORDER == __LITTLE_ENDIAN
20 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
26 /* This array contains the bytes used to pad the buffer to the next
27 64-byte boundary. (FIPS 180-2:5.1.1) */
28 static const unsigned char fillbuf
[64] = { 0x80, 0 /* , 0, 0, ... */ };
31 /* Constants for SHA256 from FIPS 180-2:4.2.2. */
32 static const uint32_t K
[64] =
34 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
35 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
36 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
37 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
38 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
39 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
40 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
41 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
42 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
43 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
44 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
45 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
46 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
47 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
48 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
49 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
53 /* Process LEN bytes of BUFFER, accumulating context into CTX.
54 It is assumed that LEN % 64 == 0. */
56 __crypt__sha256_process_block (const void *buffer
, size_t len
, struct sha256_ctx
*ctx
)
58 const uint32_t *words
= buffer
;
59 size_t nwords
= len
/ sizeof (uint32_t);
60 uint32_t a
= ctx
->H
[0];
61 uint32_t b
= ctx
->H
[1];
62 uint32_t c
= ctx
->H
[2];
63 uint32_t d
= ctx
->H
[3];
64 uint32_t e
= ctx
->H
[4];
65 uint32_t f
= ctx
->H
[5];
66 uint32_t g
= ctx
->H
[6];
67 uint32_t h
= ctx
->H
[7];
69 /* First increment the byte count. FIPS 180-2 specifies the possible
70 length of the file up to 2^64 bits. Here we only compute the
71 number of bytes. Do a double word increment. */
73 if (ctx
->total
[0] < len
)
76 /* Process all bytes in the buffer with 64 bytes in each round of
90 /* Operators defined in FIPS 180-2:4.1.2. */
91 #define Ch(x, y, z) ((x & y) ^ (~x & z))
92 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
93 #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
94 #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
95 #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
96 #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
98 /* It is unfortunate that C does not provide an operator for
99 cyclic rotation. Hope the C compiler is smart enough. */
100 #define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
102 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
103 for (unsigned int t
= 0; t
< 16; ++t
)
105 W
[t
] = SWAP (*words
);
108 for (unsigned int t
= 16; t
< 64; ++t
)
109 W
[t
] = R1 (W
[t
- 2]) + W
[t
- 7] + R0 (W
[t
- 15]) + W
[t
- 16];
111 /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
112 for (unsigned int t
= 0; t
< 64; ++t
)
114 uint32_t T1
= h
+ S1 (e
) + Ch (e
, f
, g
) + K
[t
] + W
[t
];
115 uint32_t T2
= S0 (a
) + Maj (a
, b
, c
);
126 /* Add the starting values of the context according to FIPS 180-2:6.2.2
137 /* Prepare for the next round. */
141 /* Put checksum in context given as argument. */
153 /* Initialize structure containing state of computation.
154 (FIPS 180-2:5.3.2) */
156 __crypt__sha256_init_ctx (struct sha256_ctx
*ctx
)
158 ctx
->H
[0] = 0x6a09e667;
159 ctx
->H
[1] = 0xbb67ae85;
160 ctx
->H
[2] = 0x3c6ef372;
161 ctx
->H
[3] = 0xa54ff53a;
162 ctx
->H
[4] = 0x510e527f;
163 ctx
->H
[5] = 0x9b05688c;
164 ctx
->H
[6] = 0x1f83d9ab;
165 ctx
->H
[7] = 0x5be0cd19;
167 ctx
->total
[0] = ctx
->total
[1] = 0;
172 /* Process the remaining bytes in the internal buffer and the usual
173 prolog according to the standard and write the result to RESBUF.
175 IMPORTANT: On some systems it is required that RESBUF is correctly
176 aligned for a 32 bits value. */
178 __crypt__sha256_finish_ctx (struct sha256_ctx
*ctx
, void *resbuf
)
180 /* Take yet unprocessed bytes into account. */
181 uint32_t bytes
= ctx
->buflen
;
184 /* Now count remaining bytes. */
185 ctx
->total
[0] += bytes
;
186 if (ctx
->total
[0] < bytes
)
189 pad
= bytes
>= 56 ? 64 + 56 - bytes
: 56 - bytes
;
190 memcpy (&ctx
->buffer
[bytes
], fillbuf
, pad
);
192 /* Put the 64-bit file length in *bits* at the end of the buffer. */
193 *(uint32_t *) &ctx
->buffer
[bytes
+ pad
+ 4] = SWAP (ctx
->total
[0] << 3);
194 *(uint32_t *) &ctx
->buffer
[bytes
+ pad
] = SWAP ((ctx
->total
[1] << 3) |
195 (ctx
->total
[0] >> 29));
197 /* Process last bytes. */
198 __crypt__sha256_process_block (ctx
->buffer
, bytes
+ pad
+ 8, ctx
);
200 /* Put result from CTX in first 32 bytes following RESBUF. */
201 for (unsigned int i
= 0; i
< 8; ++i
)
202 ((uint32_t *) resbuf
)[i
] = SWAP (ctx
->H
[i
]);
208 __crypt__sha256_process_bytes (const void *buffer
, size_t len
, struct sha256_ctx
*ctx
)
210 /* When we already have some bits in our internal buffer concatenate
211 both inputs first. */
212 if (ctx
->buflen
!= 0)
214 size_t left_over
= ctx
->buflen
;
215 size_t add
= 128 - left_over
> len
? len
: 128 - left_over
;
217 memcpy (&ctx
->buffer
[left_over
], buffer
, add
);
220 if (ctx
->buflen
> 64)
222 __crypt__sha256_process_block (ctx
->buffer
, ctx
->buflen
& ~63, ctx
);
225 /* The regions in the following copy operation cannot overlap. */
226 memcpy (ctx
->buffer
, &ctx
->buffer
[(left_over
+ add
) & ~63],
230 buffer
= (const char *) buffer
+ add
;
234 /* Process available complete blocks. */
237 /* To check alignment gcc has an appropriate operator. Other
240 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
242 # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
244 if (UNALIGNED_P (buffer
))
247 __crypt__sha256_process_block (memcpy (ctx
->buffer
, buffer
, 64), 64, ctx
);
248 buffer
= (const char *) buffer
+ 64;
253 __crypt__sha256_process_block (buffer
, len
& ~63, ctx
);
254 buffer
= (const char *) buffer
+ (len
& ~63);
259 /* Move remaining bytes into internal buffer. */
262 size_t left_over
= ctx
->buflen
;
264 memcpy (&ctx
->buffer
[left_over
], buffer
, len
);
268 __crypt__sha256_process_block (ctx
->buffer
, 64, ctx
);
270 memcpy (ctx
->buffer
, &ctx
->buffer
[64], left_over
);
272 ctx
->buflen
= left_over
;
277 /* Define our magic string to mark salt for SHA256 "encryption"
279 static const char sha256_salt_prefix
[] = "$5$";
281 /* Prefix for optional rounds specification. */
282 static const char sha256_rounds_prefix
[] = "rounds=";
284 /* Maximum salt string length. */
285 #define SALT_LEN_MAX 16
286 /* Default number of rounds if not explicitly specified. */
287 #define ROUNDS_DEFAULT 5000
288 /* Minimum number of rounds. */
289 #define ROUNDS_MIN 1000
290 /* Maximum number of rounds. */
291 #define ROUNDS_MAX 999999999
293 /* Table with characters for base64 transformation. */
294 static const char b64t
[64] =
295 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
299 crypt_sha256_r (const char *key
, const char *salt
, char *buffer
, int buflen
)
301 unsigned char alt_result
[32]
302 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
303 unsigned char temp_result
[32]
304 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
305 struct sha256_ctx ctx
;
306 struct sha256_ctx alt_ctx
;
311 char *copied_key
= NULL
;
312 char *copied_salt
= NULL
;
315 /* Default number of rounds. */
316 size_t rounds
= ROUNDS_DEFAULT
;
317 bool rounds_custom
= false;
319 /* Find beginning of salt string. The prefix should normally always
320 be present. Just in case it is not. */
321 if (strncmp (sha256_salt_prefix
, salt
, sizeof (sha256_salt_prefix
) - 1) == 0)
322 /* Skip salt prefix. */
323 salt
+= sizeof (sha256_salt_prefix
) - 1;
325 if (strncmp (salt
, sha256_rounds_prefix
, sizeof (sha256_rounds_prefix
) - 1)
328 const char *num
= salt
+ sizeof (sha256_rounds_prefix
) - 1;
330 unsigned long int srounds
= strtoul (num
, &endp
, 10);
334 rounds
= MAX (ROUNDS_MIN
, MIN (srounds
, ROUNDS_MAX
));
335 rounds_custom
= true;
339 salt_len
= MIN (strcspn (salt
, "$"), SALT_LEN_MAX
);
340 key_len
= strlen (key
);
342 if ((key
- (char *) 0) % __alignof__ (uint32_t) != 0)
344 char *tmp
= (char *) alloca (key_len
+ __alignof__ (uint32_t));
346 memcpy (tmp
+ __alignof__ (uint32_t)
347 - (tmp
- (char *) 0) % __alignof__ (uint32_t),
351 if ((salt
- (char *) 0) % __alignof__ (uint32_t) != 0)
353 char *tmp
= (char *) alloca (salt_len
+ __alignof__ (uint32_t));
355 memcpy (tmp
+ __alignof__ (uint32_t)
356 - (tmp
- (char *) 0) % __alignof__ (uint32_t),
360 /* Prepare for the real work. */
361 __crypt__sha256_init_ctx (&ctx
);
363 /* Add the key string. */
364 __crypt__sha256_process_bytes (key
, key_len
, &ctx
);
366 /* The last part is the salt string. This must be at most 16
367 characters and it ends at the first `$' character (for
368 compatibility with existing implementations). */
369 __crypt__sha256_process_bytes (salt
, salt_len
, &ctx
);
372 /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
373 final result will be added to the first context. */
374 __crypt__sha256_init_ctx (&alt_ctx
);
377 __crypt__sha256_process_bytes (key
, key_len
, &alt_ctx
);
380 __crypt__sha256_process_bytes (salt
, salt_len
, &alt_ctx
);
383 __crypt__sha256_process_bytes (key
, key_len
, &alt_ctx
);
385 /* Now get result of this (32 bytes) and add it to the other
387 __crypt__sha256_finish_ctx (&alt_ctx
, alt_result
);
389 /* Add for any character in the key one byte of the alternate sum. */
390 for (cnt
= key_len
; cnt
> 32; cnt
-= 32)
391 __crypt__sha256_process_bytes (alt_result
, 32, &ctx
);
392 __crypt__sha256_process_bytes (alt_result
, cnt
, &ctx
);
394 /* Take the binary representation of the length of the key and for every
395 1 add the alternate sum, for every 0 the key. */
396 for (cnt
= key_len
; cnt
> 0; cnt
>>= 1)
398 __crypt__sha256_process_bytes (alt_result
, 32, &ctx
);
400 __crypt__sha256_process_bytes (key
, key_len
, &ctx
);
402 /* Create intermediate result. */
403 __crypt__sha256_finish_ctx (&ctx
, alt_result
);
405 /* Start computation of P byte sequence. */
406 __crypt__sha256_init_ctx (&alt_ctx
);
408 /* For every character in the password add the entire password. */
409 for (cnt
= 0; cnt
< key_len
; ++cnt
)
410 __crypt__sha256_process_bytes (key
, key_len
, &alt_ctx
);
412 /* Finish the digest. */
413 __crypt__sha256_finish_ctx (&alt_ctx
, temp_result
);
415 /* Create byte sequence P. */
416 cp
= p_bytes
= alloca (key_len
);
417 for (cnt
= key_len
; cnt
>= 32; cnt
-= 32)
418 cp
= mempcpy (cp
, temp_result
, 32);
419 memcpy (cp
, temp_result
, cnt
);
421 /* Start computation of S byte sequence. */
422 __crypt__sha256_init_ctx (&alt_ctx
);
424 /* For every character in the password add the entire password. */
425 for (cnt
= 0; cnt
< 16 + alt_result
[0]; ++cnt
)
426 __crypt__sha256_process_bytes (salt
, salt_len
, &alt_ctx
);
428 /* Finish the digest. */
429 __crypt__sha256_finish_ctx (&alt_ctx
, temp_result
);
431 /* Create byte sequence S. */
432 cp
= s_bytes
= alloca (salt_len
);
433 for (cnt
= salt_len
; cnt
>= 32; cnt
-= 32)
434 cp
= mempcpy (cp
, temp_result
, 32);
435 memcpy (cp
, temp_result
, cnt
);
437 /* Repeatedly run the collected hash value through SHA256 to burn
439 for (cnt
= 0; cnt
< rounds
; ++cnt
)
442 __crypt__sha256_init_ctx (&ctx
);
444 /* Add key or last result. */
446 __crypt__sha256_process_bytes (p_bytes
, key_len
, &ctx
);
448 __crypt__sha256_process_bytes (alt_result
, 32, &ctx
);
450 /* Add salt for numbers not divisible by 3. */
452 __crypt__sha256_process_bytes (s_bytes
, salt_len
, &ctx
);
454 /* Add key for numbers not divisible by 7. */
456 __crypt__sha256_process_bytes (p_bytes
, key_len
, &ctx
);
458 /* Add key or last result. */
460 __crypt__sha256_process_bytes (alt_result
, 32, &ctx
);
462 __crypt__sha256_process_bytes (p_bytes
, key_len
, &ctx
);
464 /* Create intermediate result. */
465 __crypt__sha256_finish_ctx (&ctx
, alt_result
);
468 /* Now we can construct the result string. It consists of three
470 cp
= stpncpy (buffer
, sha256_salt_prefix
, MAX (0, buflen
));
471 buflen
-= sizeof (sha256_salt_prefix
) - 1;
475 int n
= snprintf (cp
, MAX (0, buflen
), "%s%zu$",
476 sha256_rounds_prefix
, rounds
);
481 cp
= stpncpy (cp
, salt
, MIN ((size_t) MAX (0, buflen
), salt_len
));
482 buflen
-= MIN ((size_t) MAX (0, buflen
), salt_len
);
490 #define b64_from_24bit(B2, B1, B0, N) \
492 unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
494 while (n-- > 0 && buflen > 0) \
496 *cp++ = b64t[w & 0x3f]; \
502 b64_from_24bit (alt_result
[0], alt_result
[10], alt_result
[20], 4);
503 b64_from_24bit (alt_result
[21], alt_result
[1], alt_result
[11], 4);
504 b64_from_24bit (alt_result
[12], alt_result
[22], alt_result
[2], 4);
505 b64_from_24bit (alt_result
[3], alt_result
[13], alt_result
[23], 4);
506 b64_from_24bit (alt_result
[24], alt_result
[4], alt_result
[14], 4);
507 b64_from_24bit (alt_result
[15], alt_result
[25], alt_result
[5], 4);
508 b64_from_24bit (alt_result
[6], alt_result
[16], alt_result
[26], 4);
509 b64_from_24bit (alt_result
[27], alt_result
[7], alt_result
[17], 4);
510 b64_from_24bit (alt_result
[18], alt_result
[28], alt_result
[8], 4);
511 b64_from_24bit (alt_result
[9], alt_result
[19], alt_result
[29], 4);
512 b64_from_24bit (0, alt_result
[31], alt_result
[30], 3);
519 *cp
= '\0'; /* Terminate the string. */
521 /* Clear the buffer for the intermediate result so that people
522 attaching to processes or reading core dumps cannot get any
523 information. We do it in this way to clear correct_words[]
524 inside the SHA256 implementation as well. */
525 __crypt__sha256_init_ctx (&ctx
);
526 __crypt__sha256_finish_ctx (&ctx
, alt_result
);
527 memset (temp_result
, '\0', sizeof (temp_result
));
528 memset (p_bytes
, '\0', key_len
);
529 memset (s_bytes
, '\0', salt_len
);
530 memset (&ctx
, '\0', sizeof (ctx
));
531 memset (&alt_ctx
, '\0', sizeof (alt_ctx
));
532 if (copied_key
!= NULL
)
533 memset (copied_key
, '\0', key_len
);
534 if (copied_salt
!= NULL
)
535 memset (copied_salt
, '\0', salt_len
);
541 /* This entry point is equivalent to the `crypt' function in Unix
544 crypt_sha256 (const char *key
, const char *salt
)
546 /* We don't want to have an arbitrary limit in the size of the
547 password. We can compute an upper bound for the size of the
548 result in advance and so we can prepare the buffer we pass to
552 int needed
= (sizeof (sha256_salt_prefix
) - 1
553 + sizeof (sha256_rounds_prefix
) + 9 + 1
554 + strlen (salt
) + 1 + 43 + 1);
558 char *new_buffer
= (char *) realloc (buffer
, needed
);
559 if (new_buffer
== NULL
)
566 return crypt_sha256_r (key
, salt
, buffer
, buflen
);
574 const char result
[32];
577 /* Test vectors from FIPS 180-2: appendix B.1. */
579 "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
580 "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" },
581 /* Test vectors from FIPS 180-2: appendix B.2. */
582 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
583 "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
584 "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
585 /* Test vectors from the NESSIE project. */
587 "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
588 "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" },
590 "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
591 "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" },
593 "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
594 "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" },
595 { "abcdefghijklmnopqrstuvwxyz",
596 "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
597 "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" },
598 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
599 "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
600 "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
601 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
602 "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
603 "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" },
604 { "123456789012345678901234567890123456789012345678901234567890"
605 "12345678901234567890",
606 "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
607 "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" }
609 #define ntests (sizeof (tests) / sizeof (tests[0]))
616 const char *expected
;
619 { "$5$saltstring", "Hello world!",
620 "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" },
621 { "$5$rounds=10000$saltstringsaltstring", "Hello world!",
622 "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
624 { "$5$rounds=5000$toolongsaltstring", "This is just a test",
625 "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
627 { "$5$rounds=1400$anotherlongsaltstring",
628 "a very much longer text to encrypt. This one even stretches over more"
630 "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
632 { "$5$rounds=77777$short",
633 "we have a short salt string but not a short password",
634 "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" },
635 { "$5$rounds=123456$asaltof16chars..", "a short string",
636 "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
638 { "$5$rounds=10$roundstoolow", "the minimum number is still observed",
639 "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
642 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
648 struct sha256_ctx ctx
;
653 for (cnt
= 0; cnt
< (int) ntests
; ++cnt
)
655 __crypt__sha256_init_ctx (&ctx
);
656 __crypt__sha256_process_bytes (tests
[cnt
].input
, strlen (tests
[cnt
].input
), &ctx
);
657 __crypt__sha256_finish_ctx (&ctx
, sum
);
658 if (memcmp (tests
[cnt
].result
, sum
, 32) != 0)
660 printf ("test %d run %d failed\n", cnt
, 1);
664 __crypt__sha256_init_ctx (&ctx
);
665 for (int i
= 0; tests
[cnt
].input
[i
] != '\0'; ++i
)
666 __crypt__sha256_process_bytes (&tests
[cnt
].input
[i
], 1, &ctx
);
667 __crypt__sha256_finish_ctx (&ctx
, sum
);
668 if (memcmp (tests
[cnt
].result
, sum
, 32) != 0)
670 printf ("test %d run %d failed\n", cnt
, 2);
675 /* Test vector from FIPS 180-2: appendix B.3. */
677 memset (buf
, 'a', sizeof (buf
));
678 __crypt__sha256_init_ctx (&ctx
);
679 for (int i
= 0; i
< 1000; ++i
)
680 __crypt__sha256_process_bytes (buf
, sizeof (buf
), &ctx
);
681 __crypt__sha256_finish_ctx (&ctx
, sum
);
682 static const char expected
[32] =
683 "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
684 "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
685 if (memcmp (expected
, sum
, 32) != 0)
687 printf ("test %d failed\n", cnt
);
691 for (cnt
= 0; cnt
< ntests2
; ++cnt
)
693 char *cp
= crypt_sha256 (tests2
[cnt
].input
, tests2
[cnt
].salt
);
695 if (strcmp (cp
, tests2
[cnt
].expected
) != 0)
697 printf ("test %d: expected \"%s\", got \"%s\"\n",
698 cnt
, tests2
[cnt
].expected
, cp
);
704 puts ("all tests OK");