kernel - Bring in dff23c692 from FreeBSD
[dragonfly.git] / crypto / openssh / moduli.c
blobbb4dd7beb49df01beb5e4b35f6ae29d209bb6e1b
1 /* $OpenBSD: moduli.c,v 1.28 2013/10/24 00:49:49 dtucker Exp $ */
2 /*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
40 #include "includes.h"
42 #include <sys/param.h>
43 #include <sys/types.h>
45 #include <openssl/bn.h>
46 #include <openssl/dh.h>
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <stdarg.h>
53 #include <time.h>
54 #include <unistd.h>
56 #include "xmalloc.h"
57 #include "dh.h"
58 #include "log.h"
59 #include "misc.h"
61 #include "openbsd-compat/openssl-compat.h"
64 * File output defines
67 /* need line long enough for largest moduli plus headers */
68 #define QLINESIZE (100+8192)
71 * Size: decimal.
72 * Specifies the number of the most significant bit (0 to M).
73 * WARNING: internally, usually 1 to N.
75 #define QSIZE_MINIMUM (511)
78 * Prime sieving defines
81 /* Constant: assuming 8 bit bytes and 32 bit words */
82 #define SHIFT_BIT (3)
83 #define SHIFT_BYTE (2)
84 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
85 #define SHIFT_MEGABYTE (20)
86 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
89 * Using virtual memory can cause thrashing. This should be the largest
90 * number that is supported without a large amount of disk activity --
91 * that would increase the run time from hours to days or weeks!
93 #define LARGE_MINIMUM (8UL) /* megabytes */
96 * Do not increase this number beyond the unsigned integer bit size.
97 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
99 #define LARGE_MAXIMUM (127UL) /* megabytes */
102 * Constant: when used with 32-bit integers, the largest sieve prime
103 * has to be less than 2**32.
105 #define SMALL_MAXIMUM (0xffffffffUL)
107 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
108 #define TINY_NUMBER (1UL<<16)
110 /* Ensure enough bit space for testing 2*q. */
111 #define TEST_MAXIMUM (1UL<<16)
112 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
113 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
114 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
116 /* bit operations on 32-bit words */
117 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
118 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
119 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
122 * Prime testing defines
125 /* Minimum number of primality tests to perform */
126 #define TRIAL_MINIMUM (4)
129 * Sieving data (XXX - move to struct)
132 /* sieve 2**16 */
133 static u_int32_t *TinySieve, tinybits;
135 /* sieve 2**30 in 2**16 parts */
136 static u_int32_t *SmallSieve, smallbits, smallbase;
138 /* sieve relative to the initial value */
139 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
140 static u_int32_t largebits, largememory; /* megabytes */
141 static BIGNUM *largebase;
143 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
144 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
145 unsigned long);
148 * print moduli out in consistent form,
150 static int
151 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
152 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
154 struct tm *gtm;
155 time_t time_now;
156 int res;
158 time(&time_now);
159 gtm = gmtime(&time_now);
161 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
162 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
163 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
164 otype, otests, otries, osize, ogenerator);
166 if (res < 0)
167 return (-1);
169 if (BN_print_fp(ofile, omodulus) < 1)
170 return (-1);
172 res = fprintf(ofile, "\n");
173 fflush(ofile);
175 return (res > 0 ? 0 : -1);
180 ** Sieve p's and q's with small factors
182 static void
183 sieve_large(u_int32_t s)
185 u_int32_t r, u;
187 debug3("sieve_large %u", s);
188 largetries++;
189 /* r = largebase mod s */
190 r = BN_mod_word(largebase, s);
191 if (r == 0)
192 u = 0; /* s divides into largebase exactly */
193 else
194 u = s - r; /* largebase+u is first entry divisible by s */
196 if (u < largebits * 2) {
198 * The sieve omits p's and q's divisible by 2, so ensure that
199 * largebase+u is odd. Then, step through the sieve in
200 * increments of 2*s
202 if (u & 0x1)
203 u += s; /* Make largebase+u odd, and u even */
205 /* Mark all multiples of 2*s */
206 for (u /= 2; u < largebits; u += s)
207 BIT_SET(LargeSieve, u);
210 /* r = p mod s */
211 r = (2 * r + 1) % s;
212 if (r == 0)
213 u = 0; /* s divides p exactly */
214 else
215 u = s - r; /* p+u is first entry divisible by s */
217 if (u < largebits * 4) {
219 * The sieve omits p's divisible by 4, so ensure that
220 * largebase+u is not. Then, step through the sieve in
221 * increments of 4*s
223 while (u & 0x3) {
224 if (SMALL_MAXIMUM - u < s)
225 return;
226 u += s;
229 /* Mark all multiples of 4*s */
230 for (u /= 4; u < largebits; u += s)
231 BIT_SET(LargeSieve, u);
236 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
237 * to standard output.
238 * The list is checked against small known primes (less than 2**30).
241 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
243 BIGNUM *q;
244 u_int32_t j, r, s, t;
245 u_int32_t smallwords = TINY_NUMBER >> 6;
246 u_int32_t tinywords = TINY_NUMBER >> 6;
247 time_t time_start, time_stop;
248 u_int32_t i;
249 int ret = 0;
251 largememory = memory;
253 if (memory != 0 &&
254 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
255 error("Invalid memory amount (min %ld, max %ld)",
256 LARGE_MINIMUM, LARGE_MAXIMUM);
257 return (-1);
261 * Set power to the length in bits of the prime to be generated.
262 * This is changed to 1 less than the desired safe prime moduli p.
264 if (power > TEST_MAXIMUM) {
265 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
266 return (-1);
267 } else if (power < TEST_MINIMUM) {
268 error("Too few bits: %u < %u", power, TEST_MINIMUM);
269 return (-1);
271 power--; /* decrement before squaring */
274 * The density of ordinary primes is on the order of 1/bits, so the
275 * density of safe primes should be about (1/bits)**2. Set test range
276 * to something well above bits**2 to be reasonably sure (but not
277 * guaranteed) of catching at least one safe prime.
279 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
282 * Need idea of how much memory is available. We don't have to use all
283 * of it.
285 if (largememory > LARGE_MAXIMUM) {
286 logit("Limited memory: %u MB; limit %lu MB",
287 largememory, LARGE_MAXIMUM);
288 largememory = LARGE_MAXIMUM;
291 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
292 logit("Increased memory: %u MB; need %u bytes",
293 largememory, (largewords << SHIFT_BYTE));
294 largewords = (largememory << SHIFT_MEGAWORD);
295 } else if (largememory > 0) {
296 logit("Decreased memory: %u MB; want %u bytes",
297 largememory, (largewords << SHIFT_BYTE));
298 largewords = (largememory << SHIFT_MEGAWORD);
301 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
302 tinybits = tinywords << SHIFT_WORD;
304 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
305 smallbits = smallwords << SHIFT_WORD;
308 * dynamically determine available memory
310 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
311 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
313 largebits = largewords << SHIFT_WORD;
314 largenumbers = largebits * 2; /* even numbers excluded */
316 /* validation check: count the number of primes tried */
317 largetries = 0;
318 if ((q = BN_new()) == NULL)
319 fatal("BN_new failed");
322 * Generate random starting point for subprime search, or use
323 * specified parameter.
325 if ((largebase = BN_new()) == NULL)
326 fatal("BN_new failed");
327 if (start == NULL) {
328 if (BN_rand(largebase, power, 1, 1) == 0)
329 fatal("BN_rand failed");
330 } else {
331 if (BN_copy(largebase, start) == NULL)
332 fatal("BN_copy: failed");
335 /* ensure odd */
336 if (BN_set_bit(largebase, 0) == 0)
337 fatal("BN_set_bit: failed");
339 time(&time_start);
341 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
342 largenumbers, power);
343 debug2("start point: 0x%s", BN_bn2hex(largebase));
346 * TinySieve
348 for (i = 0; i < tinybits; i++) {
349 if (BIT_TEST(TinySieve, i))
350 continue; /* 2*i+3 is composite */
352 /* The next tiny prime */
353 t = 2 * i + 3;
355 /* Mark all multiples of t */
356 for (j = i + t; j < tinybits; j += t)
357 BIT_SET(TinySieve, j);
359 sieve_large(t);
363 * Start the small block search at the next possible prime. To avoid
364 * fencepost errors, the last pass is skipped.
366 for (smallbase = TINY_NUMBER + 3;
367 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
368 smallbase += TINY_NUMBER) {
369 for (i = 0; i < tinybits; i++) {
370 if (BIT_TEST(TinySieve, i))
371 continue; /* 2*i+3 is composite */
373 /* The next tiny prime */
374 t = 2 * i + 3;
375 r = smallbase % t;
377 if (r == 0) {
378 s = 0; /* t divides into smallbase exactly */
379 } else {
380 /* smallbase+s is first entry divisible by t */
381 s = t - r;
385 * The sieve omits even numbers, so ensure that
386 * smallbase+s is odd. Then, step through the sieve
387 * in increments of 2*t
389 if (s & 1)
390 s += t; /* Make smallbase+s odd, and s even */
392 /* Mark all multiples of 2*t */
393 for (s /= 2; s < smallbits; s += t)
394 BIT_SET(SmallSieve, s);
398 * SmallSieve
400 for (i = 0; i < smallbits; i++) {
401 if (BIT_TEST(SmallSieve, i))
402 continue; /* 2*i+smallbase is composite */
404 /* The next small prime */
405 sieve_large((2 * i) + smallbase);
408 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
411 time(&time_stop);
413 logit("%.24s Sieved with %u small primes in %ld seconds",
414 ctime(&time_stop), largetries, (long) (time_stop - time_start));
416 for (j = r = 0; j < largebits; j++) {
417 if (BIT_TEST(LargeSieve, j))
418 continue; /* Definitely composite, skip */
420 debug2("test q = largebase+%u", 2 * j);
421 if (BN_set_word(q, 2 * j) == 0)
422 fatal("BN_set_word failed");
423 if (BN_add(q, q, largebase) == 0)
424 fatal("BN_add failed");
425 if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
426 MODULI_TESTS_SIEVE, largetries,
427 (power - 1) /* MSB */, (0), q) == -1) {
428 ret = -1;
429 break;
432 r++; /* count q */
435 time(&time_stop);
437 free(LargeSieve);
438 free(SmallSieve);
439 free(TinySieve);
441 logit("%.24s Found %u candidates", ctime(&time_stop), r);
443 return (ret);
446 static void
447 write_checkpoint(char *cpfile, u_int32_t lineno)
449 FILE *fp;
450 char tmp[MAXPATHLEN];
451 int r;
453 r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
454 if (r == -1 || r >= MAXPATHLEN) {
455 logit("write_checkpoint: temp pathname too long");
456 return;
458 if ((r = mkstemp(tmp)) == -1) {
459 logit("mkstemp(%s): %s", tmp, strerror(errno));
460 return;
462 if ((fp = fdopen(r, "w")) == NULL) {
463 logit("write_checkpoint: fdopen: %s", strerror(errno));
464 close(r);
465 return;
467 if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
468 && rename(tmp, cpfile) == 0)
469 debug3("wrote checkpoint line %lu to '%s'",
470 (unsigned long)lineno, cpfile);
471 else
472 logit("failed to write to checkpoint file '%s': %s", cpfile,
473 strerror(errno));
476 static unsigned long
477 read_checkpoint(char *cpfile)
479 FILE *fp;
480 unsigned long lineno = 0;
482 if ((fp = fopen(cpfile, "r")) == NULL)
483 return 0;
484 if (fscanf(fp, "%lu\n", &lineno) < 1)
485 logit("Failed to load checkpoint from '%s'", cpfile);
486 else
487 logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
488 fclose(fp);
489 return lineno;
492 static unsigned long
493 count_lines(FILE *f)
495 unsigned long count = 0;
496 char lp[QLINESIZE + 1];
498 if (fseek(f, 0, SEEK_SET) != 0) {
499 debug("input file is not seekable");
500 return ULONG_MAX;
502 while (fgets(lp, QLINESIZE + 1, f) != NULL)
503 count++;
504 rewind(f);
505 debug("input file has %lu lines", count);
506 return count;
509 static char *
510 fmt_time(time_t seconds)
512 int day, hr, min;
513 static char buf[128];
515 min = (seconds / 60) % 60;
516 hr = (seconds / 60 / 60) % 24;
517 day = seconds / 60 / 60 / 24;
518 if (day > 0)
519 snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
520 else
521 snprintf(buf, sizeof buf, "%d:%02d", hr, min);
522 return buf;
525 static void
526 print_progress(unsigned long start_lineno, unsigned long current_lineno,
527 unsigned long end_lineno)
529 static time_t time_start, time_prev;
530 time_t time_now, elapsed;
531 unsigned long num_to_process, processed, remaining, percent, eta;
532 double time_per_line;
533 char *eta_str;
535 time_now = monotime();
536 if (time_start == 0) {
537 time_start = time_prev = time_now;
538 return;
540 /* print progress after 1m then once per 5m */
541 if (time_now - time_prev < 5 * 60)
542 return;
543 time_prev = time_now;
544 elapsed = time_now - time_start;
545 processed = current_lineno - start_lineno;
546 remaining = end_lineno - current_lineno;
547 num_to_process = end_lineno - start_lineno;
548 time_per_line = (double)elapsed / processed;
549 /* if we don't know how many we're processing just report count+time */
550 time(&time_now);
551 if (end_lineno == ULONG_MAX) {
552 logit("%.24s processed %lu in %s", ctime(&time_now),
553 processed, fmt_time(elapsed));
554 return;
556 percent = 100 * processed / num_to_process;
557 eta = time_per_line * remaining;
558 eta_str = xstrdup(fmt_time(eta));
559 logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
560 ctime(&time_now), processed, num_to_process, percent,
561 fmt_time(elapsed), eta_str);
562 free(eta_str);
566 * perform a Miller-Rabin primality test
567 * on the list of candidates
568 * (checking both q and p)
569 * The result is a list of so-call "safe" primes
572 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
573 char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
575 BIGNUM *q, *p, *a;
576 BN_CTX *ctx;
577 char *cp, *lp;
578 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
579 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
580 unsigned long last_processed = 0, end_lineno;
581 time_t time_start, time_stop;
582 int res;
584 if (trials < TRIAL_MINIMUM) {
585 error("Minimum primality trials is %d", TRIAL_MINIMUM);
586 return (-1);
589 if (num_lines == 0)
590 end_lineno = count_lines(in);
591 else
592 end_lineno = start_lineno + num_lines;
594 time(&time_start);
596 if ((p = BN_new()) == NULL)
597 fatal("BN_new failed");
598 if ((q = BN_new()) == NULL)
599 fatal("BN_new failed");
600 if ((ctx = BN_CTX_new()) == NULL)
601 fatal("BN_CTX_new failed");
603 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
604 ctime(&time_start), trials, generator_wanted);
606 if (checkpoint_file != NULL)
607 last_processed = read_checkpoint(checkpoint_file);
608 last_processed = start_lineno = MAX(last_processed, start_lineno);
609 if (end_lineno == ULONG_MAX)
610 debug("process from line %lu from pipe", last_processed);
611 else
612 debug("process from line %lu to line %lu", last_processed,
613 end_lineno);
615 res = 0;
616 lp = xmalloc(QLINESIZE + 1);
617 while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
618 count_in++;
619 if (count_in <= last_processed) {
620 debug3("skipping line %u, before checkpoint or "
621 "specified start line", count_in);
622 continue;
624 if (checkpoint_file != NULL)
625 write_checkpoint(checkpoint_file, count_in);
626 print_progress(start_lineno, count_in, end_lineno);
627 if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
628 debug2("%10u: comment or short line", count_in);
629 continue;
632 /* XXX - fragile parser */
633 /* time */
634 cp = &lp[14]; /* (skip) */
636 /* type */
637 in_type = strtoul(cp, &cp, 10);
639 /* tests */
640 in_tests = strtoul(cp, &cp, 10);
642 if (in_tests & MODULI_TESTS_COMPOSITE) {
643 debug2("%10u: known composite", count_in);
644 continue;
647 /* tries */
648 in_tries = strtoul(cp, &cp, 10);
650 /* size (most significant bit) */
651 in_size = strtoul(cp, &cp, 10);
653 /* generator (hex) */
654 generator_known = strtoul(cp, &cp, 16);
656 /* Skip white space */
657 cp += strspn(cp, " ");
659 /* modulus (hex) */
660 switch (in_type) {
661 case MODULI_TYPE_SOPHIE_GERMAIN:
662 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
663 a = q;
664 if (BN_hex2bn(&a, cp) == 0)
665 fatal("BN_hex2bn failed");
666 /* p = 2*q + 1 */
667 if (BN_lshift(p, q, 1) == 0)
668 fatal("BN_lshift failed");
669 if (BN_add_word(p, 1) == 0)
670 fatal("BN_add_word failed");
671 in_size += 1;
672 generator_known = 0;
673 break;
674 case MODULI_TYPE_UNSTRUCTURED:
675 case MODULI_TYPE_SAFE:
676 case MODULI_TYPE_SCHNORR:
677 case MODULI_TYPE_STRONG:
678 case MODULI_TYPE_UNKNOWN:
679 debug2("%10u: (%u)", count_in, in_type);
680 a = p;
681 if (BN_hex2bn(&a, cp) == 0)
682 fatal("BN_hex2bn failed");
683 /* q = (p-1) / 2 */
684 if (BN_rshift(q, p, 1) == 0)
685 fatal("BN_rshift failed");
686 break;
687 default:
688 debug2("Unknown prime type");
689 break;
693 * due to earlier inconsistencies in interpretation, check
694 * the proposed bit size.
696 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
697 debug2("%10u: bit size %u mismatch", count_in, in_size);
698 continue;
700 if (in_size < QSIZE_MINIMUM) {
701 debug2("%10u: bit size %u too short", count_in, in_size);
702 continue;
705 if (in_tests & MODULI_TESTS_MILLER_RABIN)
706 in_tries += trials;
707 else
708 in_tries = trials;
711 * guess unknown generator
713 if (generator_known == 0) {
714 if (BN_mod_word(p, 24) == 11)
715 generator_known = 2;
716 else if (BN_mod_word(p, 12) == 5)
717 generator_known = 3;
718 else {
719 u_int32_t r = BN_mod_word(p, 10);
721 if (r == 3 || r == 7)
722 generator_known = 5;
726 * skip tests when desired generator doesn't match
728 if (generator_wanted > 0 &&
729 generator_wanted != generator_known) {
730 debug2("%10u: generator %d != %d",
731 count_in, generator_known, generator_wanted);
732 continue;
736 * Primes with no known generator are useless for DH, so
737 * skip those.
739 if (generator_known == 0) {
740 debug2("%10u: no known generator", count_in);
741 continue;
744 count_possible++;
747 * The (1/4)^N performance bound on Miller-Rabin is
748 * extremely pessimistic, so don't spend a lot of time
749 * really verifying that q is prime until after we know
750 * that p is also prime. A single pass will weed out the
751 * vast majority of composite q's.
753 if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
754 debug("%10u: q failed first possible prime test",
755 count_in);
756 continue;
760 * q is possibly prime, so go ahead and really make sure
761 * that p is prime. If it is, then we can go back and do
762 * the same for q. If p is composite, chances are that
763 * will show up on the first Rabin-Miller iteration so it
764 * doesn't hurt to specify a high iteration count.
766 if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
767 debug("%10u: p is not prime", count_in);
768 continue;
770 debug("%10u: p is almost certainly prime", count_in);
772 /* recheck q more rigorously */
773 if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
774 debug("%10u: q is not prime", count_in);
775 continue;
777 debug("%10u: q is almost certainly prime", count_in);
779 if (qfileout(out, MODULI_TYPE_SAFE,
780 in_tests | MODULI_TESTS_MILLER_RABIN,
781 in_tries, in_size, generator_known, p)) {
782 res = -1;
783 break;
786 count_out++;
789 time(&time_stop);
790 free(lp);
791 BN_free(p);
792 BN_free(q);
793 BN_CTX_free(ctx);
795 if (checkpoint_file != NULL)
796 unlink(checkpoint_file);
798 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
799 ctime(&time_stop), count_out, count_possible,
800 (long) (time_stop - time_start));
802 return (res);