HAMMER 59C/Many: Stabilization pass - fixes for large file issues
[dragonfly.git] / sys / vm / vm_page.c
blob176bcb8e65f88093d0cc427d8433e095323a8300
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38 * $DragonFly: src/sys/vm/vm_page.c,v 1.38 2008/05/09 07:24:48 dillon Exp $
42 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43 * All rights reserved.
45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 * Permission to use, copy, modify and distribute this software and
48 * its documentation is hereby granted, provided that both the copyright
49 * notice and this permission notice appear in all copies of the
50 * software, derivative works or modified versions, and any portions
51 * thereof, and that both notices appear in supporting documentation.
53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 * Carnegie Mellon requests users of this software to return to
59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
60 * School of Computer Science
61 * Carnegie Mellon University
62 * Pittsburgh PA 15213-3890
64 * any improvements or extensions that they make and grant Carnegie the
65 * rights to redistribute these changes.
68 * Resident memory management module. The module manipulates 'VM pages'.
69 * A VM page is the core building block for memory management.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
97 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
99 #define ASSERT_IN_CRIT_SECTION() KKASSERT(crit_test(curthread));
101 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
102 vm_pindex_t, pindex);
104 static void
105 vm_page_queue_init(void)
107 int i;
109 for (i = 0; i < PQ_L2_SIZE; i++)
110 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
111 for (i = 0; i < PQ_L2_SIZE; i++)
112 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
114 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
115 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
116 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
117 /* PQ_NONE has no queue */
119 for (i = 0; i < PQ_COUNT; i++)
120 TAILQ_INIT(&vm_page_queues[i].pl);
124 * note: place in initialized data section? Is this necessary?
126 long first_page = 0;
127 int vm_page_array_size = 0;
128 int vm_page_zero_count = 0;
129 vm_page_t vm_page_array = 0;
132 * (low level boot)
134 * Sets the page size, perhaps based upon the memory size.
135 * Must be called before any use of page-size dependent functions.
137 void
138 vm_set_page_size(void)
140 if (vmstats.v_page_size == 0)
141 vmstats.v_page_size = PAGE_SIZE;
142 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
143 panic("vm_set_page_size: page size not a power of two");
147 * (low level boot)
149 * Add a new page to the freelist for use by the system. New pages
150 * are added to both the head and tail of the associated free page
151 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
152 * requests pull 'recent' adds (higher physical addresses) first.
154 * Must be called in a critical section.
156 vm_page_t
157 vm_add_new_page(vm_paddr_t pa)
159 struct vpgqueues *vpq;
160 vm_page_t m;
162 ++vmstats.v_page_count;
163 ++vmstats.v_free_count;
164 m = PHYS_TO_VM_PAGE(pa);
165 m->phys_addr = pa;
166 m->flags = 0;
167 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
168 m->queue = m->pc + PQ_FREE;
169 KKASSERT(m->dirty == 0);
171 vpq = &vm_page_queues[m->queue];
172 if (vpq->flipflop)
173 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
174 else
175 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
176 vpq->flipflop = 1 - vpq->flipflop;
178 vm_page_queues[m->queue].lcnt++;
179 return (m);
183 * (low level boot)
185 * Initializes the resident memory module.
187 * Allocates memory for the page cells, and for the object/offset-to-page
188 * hash table headers. Each page cell is initialized and placed on the
189 * free list.
191 * starta/enda represents the range of physical memory addresses available
192 * for use (skipping memory already used by the kernel), subject to
193 * phys_avail[]. Note that phys_avail[] has already mapped out memory
194 * already in use by the kernel.
196 vm_offset_t
197 vm_page_startup(vm_offset_t vaddr)
199 vm_offset_t mapped;
200 vm_size_t npages;
201 vm_paddr_t page_range;
202 vm_paddr_t new_end;
203 int i;
204 vm_paddr_t pa;
205 int nblocks;
206 vm_paddr_t last_pa;
207 vm_paddr_t end;
208 vm_paddr_t biggestone, biggestsize;
209 vm_paddr_t total;
211 total = 0;
212 biggestsize = 0;
213 biggestone = 0;
214 nblocks = 0;
215 vaddr = round_page(vaddr);
217 for (i = 0; phys_avail[i + 1]; i += 2) {
218 phys_avail[i] = round_page(phys_avail[i]);
219 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
222 for (i = 0; phys_avail[i + 1]; i += 2) {
223 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
225 if (size > biggestsize) {
226 biggestone = i;
227 biggestsize = size;
229 ++nblocks;
230 total += size;
233 end = phys_avail[biggestone+1];
234 end = trunc_page(end);
237 * Initialize the queue headers for the free queue, the active queue
238 * and the inactive queue.
241 vm_page_queue_init();
244 * Compute the number of pages of memory that will be available for
245 * use (taking into account the overhead of a page structure per
246 * page).
248 first_page = phys_avail[0] / PAGE_SIZE;
249 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
250 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
253 * Initialize the mem entry structures now, and put them in the free
254 * queue.
256 vm_page_array = (vm_page_t) vaddr;
257 mapped = vaddr;
260 * Validate these addresses.
262 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
263 mapped = pmap_map(mapped, new_end, end,
264 VM_PROT_READ | VM_PROT_WRITE);
267 * Clear all of the page structures
269 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
270 vm_page_array_size = page_range;
273 * Construct the free queue(s) in ascending order (by physical
274 * address) so that the first 16MB of physical memory is allocated
275 * last rather than first. On large-memory machines, this avoids
276 * the exhaustion of low physical memory before isa_dmainit has run.
278 vmstats.v_page_count = 0;
279 vmstats.v_free_count = 0;
280 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
281 pa = phys_avail[i];
282 if (i == biggestone)
283 last_pa = new_end;
284 else
285 last_pa = phys_avail[i + 1];
286 while (pa < last_pa && npages-- > 0) {
287 vm_add_new_page(pa);
288 pa += PAGE_SIZE;
291 return (mapped);
295 * Scan comparison function for Red-Black tree scans. An inclusive
296 * (start,end) is expected. Other fields are not used.
299 rb_vm_page_scancmp(struct vm_page *p, void *data)
301 struct rb_vm_page_scan_info *info = data;
303 if (p->pindex < info->start_pindex)
304 return(-1);
305 if (p->pindex > info->end_pindex)
306 return(1);
307 return(0);
311 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
313 if (p1->pindex < p2->pindex)
314 return(-1);
315 if (p1->pindex > p2->pindex)
316 return(1);
317 return(0);
321 * The opposite of vm_page_hold(). A page can be freed while being held,
322 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq()
323 * in this case to actually free it once the hold count drops to 0.
325 * This routine must be called at splvm().
327 void
328 vm_page_unhold(vm_page_t mem)
330 --mem->hold_count;
331 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
332 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
333 vm_page_busy(mem);
334 vm_page_free_toq(mem);
339 * Inserts the given mem entry into the object and object list.
341 * The pagetables are not updated but will presumably fault the page
342 * in if necessary, or if a kernel page the caller will at some point
343 * enter the page into the kernel's pmap. We are not allowed to block
344 * here so we *can't* do this anyway.
346 * This routine may not block.
347 * This routine must be called with a critical section held.
349 void
350 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
352 ASSERT_IN_CRIT_SECTION();
353 if (m->object != NULL)
354 panic("vm_page_insert: already inserted");
357 * Record the object/offset pair in this page
359 m->object = object;
360 m->pindex = pindex;
363 * Insert it into the object.
365 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
366 object->generation++;
369 * show that the object has one more resident page.
371 object->resident_page_count++;
374 * Since we are inserting a new and possibly dirty page,
375 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
377 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
378 vm_object_set_writeable_dirty(object);
382 * Removes the given vm_page_t from the global (object,index) hash table
383 * and from the object's memq.
385 * The underlying pmap entry (if any) is NOT removed here.
386 * This routine may not block.
388 * The page must be BUSY and will remain BUSY on return. No spl needs to be
389 * held on call to this routine.
391 * note: FreeBSD side effect was to unbusy the page on return. We leave
392 * it busy.
394 void
395 vm_page_remove(vm_page_t m)
397 vm_object_t object;
399 crit_enter();
400 if (m->object == NULL) {
401 crit_exit();
402 return;
405 if ((m->flags & PG_BUSY) == 0)
406 panic("vm_page_remove: page not busy");
408 object = m->object;
411 * Remove the page from the object and update the object.
413 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
414 object->resident_page_count--;
415 object->generation++;
416 m->object = NULL;
418 crit_exit();
422 * Locate and return the page at (object, pindex), or NULL if the
423 * page could not be found.
425 * This routine will operate properly without spl protection, but
426 * the returned page could be in flux if it is busy. Because an
427 * interrupt can race a caller's busy check (unbusying and freeing the
428 * page we return before the caller is able to check the busy bit),
429 * the caller should generally call this routine with a critical
430 * section held.
432 * Callers may call this routine without spl protection if they know
433 * 'for sure' that the page will not be ripped out from under them
434 * by an interrupt.
436 vm_page_t
437 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
439 vm_page_t m;
442 * Search the hash table for this object/offset pair
444 crit_enter();
445 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
446 crit_exit();
447 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
448 return(m);
452 * vm_page_rename()
454 * Move the given memory entry from its current object to the specified
455 * target object/offset.
457 * The object must be locked.
458 * This routine may not block.
460 * Note: This routine will raise itself to splvm(), the caller need not.
462 * Note: Swap associated with the page must be invalidated by the move. We
463 * have to do this for several reasons: (1) we aren't freeing the
464 * page, (2) we are dirtying the page, (3) the VM system is probably
465 * moving the page from object A to B, and will then later move
466 * the backing store from A to B and we can't have a conflict.
468 * Note: We *always* dirty the page. It is necessary both for the
469 * fact that we moved it, and because we may be invalidating
470 * swap. If the page is on the cache, we have to deactivate it
471 * or vm_page_dirty() will panic. Dirty pages are not allowed
472 * on the cache.
474 void
475 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
477 crit_enter();
478 vm_page_remove(m);
479 vm_page_insert(m, new_object, new_pindex);
480 if (m->queue - m->pc == PQ_CACHE)
481 vm_page_deactivate(m);
482 vm_page_dirty(m);
483 vm_page_wakeup(m);
484 crit_exit();
488 * vm_page_unqueue() without any wakeup. This routine is used when a page
489 * is being moved between queues or otherwise is to remain BUSYied by the
490 * caller.
492 * This routine must be called at splhigh().
493 * This routine may not block.
495 void
496 vm_page_unqueue_nowakeup(vm_page_t m)
498 int queue = m->queue;
499 struct vpgqueues *pq;
501 if (queue != PQ_NONE) {
502 pq = &vm_page_queues[queue];
503 m->queue = PQ_NONE;
504 TAILQ_REMOVE(&pq->pl, m, pageq);
505 (*pq->cnt)--;
506 pq->lcnt--;
511 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
512 * if necessary.
514 * This routine must be called at splhigh().
515 * This routine may not block.
517 void
518 vm_page_unqueue(vm_page_t m)
520 int queue = m->queue;
521 struct vpgqueues *pq;
523 if (queue != PQ_NONE) {
524 m->queue = PQ_NONE;
525 pq = &vm_page_queues[queue];
526 TAILQ_REMOVE(&pq->pl, m, pageq);
527 (*pq->cnt)--;
528 pq->lcnt--;
529 if ((queue - m->pc) == PQ_CACHE) {
530 if (vm_paging_needed())
531 pagedaemon_wakeup();
537 * vm_page_list_find()
539 * Find a page on the specified queue with color optimization.
541 * The page coloring optimization attempts to locate a page that does
542 * not overload other nearby pages in the object in the cpu's L1 or L2
543 * caches. We need this optimization because cpu caches tend to be
544 * physical caches, while object spaces tend to be virtual.
546 * This routine must be called at splvm().
547 * This routine may not block.
549 * Note that this routine is carefully inlined. A non-inlined version
550 * is available for outside callers but the only critical path is
551 * from within this source file.
553 static __inline
554 vm_page_t
555 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
557 vm_page_t m;
559 if (prefer_zero)
560 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
561 else
562 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
563 if (m == NULL)
564 m = _vm_page_list_find2(basequeue, index);
565 return(m);
568 static vm_page_t
569 _vm_page_list_find2(int basequeue, int index)
571 int i;
572 vm_page_t m = NULL;
573 struct vpgqueues *pq;
575 pq = &vm_page_queues[basequeue];
578 * Note that for the first loop, index+i and index-i wind up at the
579 * same place. Even though this is not totally optimal, we've already
580 * blown it by missing the cache case so we do not care.
583 for(i = PQ_L2_SIZE / 2; i > 0; --i) {
584 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
585 break;
587 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
588 break;
590 return(m);
593 vm_page_t
594 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
596 return(_vm_page_list_find(basequeue, index, prefer_zero));
600 * Find a page on the cache queue with color optimization. As pages
601 * might be found, but not applicable, they are deactivated. This
602 * keeps us from using potentially busy cached pages.
604 * This routine must be called with a critical section held.
605 * This routine may not block.
607 vm_page_t
608 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
610 vm_page_t m;
612 while (TRUE) {
613 m = _vm_page_list_find(
614 PQ_CACHE,
615 (pindex + object->pg_color) & PQ_L2_MASK,
616 FALSE
618 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
619 m->hold_count || m->wire_count)) {
620 vm_page_deactivate(m);
621 continue;
623 return m;
625 /* not reached */
629 * Find a free or zero page, with specified preference. We attempt to
630 * inline the nominal case and fall back to _vm_page_select_free()
631 * otherwise.
633 * This routine must be called with a critical section held.
634 * This routine may not block.
636 static __inline vm_page_t
637 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
639 vm_page_t m;
641 m = _vm_page_list_find(
642 PQ_FREE,
643 (pindex + object->pg_color) & PQ_L2_MASK,
644 prefer_zero
646 return(m);
650 * vm_page_alloc()
652 * Allocate and return a memory cell associated with this VM object/offset
653 * pair.
655 * page_req classes:
657 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
658 * VM_ALLOC_SYSTEM greater free drain
659 * VM_ALLOC_INTERRUPT allow free list to be completely drained
660 * VM_ALLOC_ZERO advisory request for pre-zero'd page
662 * The object must be locked.
663 * This routine may not block.
664 * The returned page will be marked PG_BUSY
666 * Additional special handling is required when called from an interrupt
667 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
668 * in this case.
670 vm_page_t
671 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
673 vm_page_t m = NULL;
675 KASSERT(!vm_page_lookup(object, pindex),
676 ("vm_page_alloc: page already allocated"));
677 KKASSERT(page_req &
678 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
681 * The pager is allowed to eat deeper into the free page list.
683 if (curthread == pagethread)
684 page_req |= VM_ALLOC_SYSTEM;
686 crit_enter();
687 loop:
688 if (vmstats.v_free_count > vmstats.v_free_reserved ||
689 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
690 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
691 vmstats.v_free_count > vmstats.v_interrupt_free_min)
694 * The free queue has sufficient free pages to take one out.
696 if (page_req & VM_ALLOC_ZERO)
697 m = vm_page_select_free(object, pindex, TRUE);
698 else
699 m = vm_page_select_free(object, pindex, FALSE);
700 } else if (page_req & VM_ALLOC_NORMAL) {
702 * Allocatable from the cache (non-interrupt only). On
703 * success, we must free the page and try again, thus
704 * ensuring that vmstats.v_*_free_min counters are replenished.
706 #ifdef INVARIANTS
707 if (curthread->td_preempted) {
708 kprintf("vm_page_alloc(): warning, attempt to allocate"
709 " cache page from preempting interrupt\n");
710 m = NULL;
711 } else {
712 m = vm_page_select_cache(object, pindex);
714 #else
715 m = vm_page_select_cache(object, pindex);
716 #endif
718 * On success move the page into the free queue and loop.
720 if (m != NULL) {
721 KASSERT(m->dirty == 0,
722 ("Found dirty cache page %p", m));
723 vm_page_busy(m);
724 vm_page_protect(m, VM_PROT_NONE);
725 vm_page_free(m);
726 goto loop;
730 * On failure return NULL
732 crit_exit();
733 #if defined(DIAGNOSTIC)
734 if (vmstats.v_cache_count > 0)
735 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
736 #endif
737 vm_pageout_deficit++;
738 pagedaemon_wakeup();
739 return (NULL);
740 } else {
742 * No pages available, wakeup the pageout daemon and give up.
744 crit_exit();
745 vm_pageout_deficit++;
746 pagedaemon_wakeup();
747 return (NULL);
751 * Good page found. The page has not yet been busied. We are in
752 * a critical section.
754 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
755 KASSERT(m->dirty == 0,
756 ("vm_page_alloc: free/cache page %p was dirty", m));
759 * Remove from free queue
761 vm_page_unqueue_nowakeup(m);
764 * Initialize structure. Only the PG_ZERO flag is inherited. Set
765 * the page PG_BUSY
767 if (m->flags & PG_ZERO) {
768 vm_page_zero_count--;
769 m->flags = PG_ZERO | PG_BUSY;
770 } else {
771 m->flags = PG_BUSY;
773 m->wire_count = 0;
774 m->hold_count = 0;
775 m->act_count = 0;
776 m->busy = 0;
777 m->valid = 0;
780 * vm_page_insert() is safe prior to the crit_exit(). Note also that
781 * inserting a page here does not insert it into the pmap (which
782 * could cause us to block allocating memory). We cannot block
783 * anywhere.
785 vm_page_insert(m, object, pindex);
788 * Don't wakeup too often - wakeup the pageout daemon when
789 * we would be nearly out of memory.
791 if (vm_paging_needed())
792 pagedaemon_wakeup();
794 crit_exit();
797 * A PG_BUSY page is returned.
799 return (m);
803 * Block until free pages are available for allocation, called in various
804 * places before memory allocations.
806 void
807 vm_wait(void)
809 crit_enter();
810 if (curthread == pagethread) {
811 vm_pageout_pages_needed = 1;
812 tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
813 } else {
814 if (!vm_pages_needed) {
815 vm_pages_needed = 1;
816 wakeup(&vm_pages_needed);
818 tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
820 crit_exit();
824 * Block until free pages are available for allocation
826 * Called only in vm_fault so that processes page faulting can be
827 * easily tracked.
829 * Sleeps at a lower priority than vm_wait() so that vm_wait()ing
830 * processes will be able to grab memory first. Do not change
831 * this balance without careful testing first.
833 void
834 vm_waitpfault(void)
836 crit_enter();
837 if (!vm_pages_needed) {
838 vm_pages_needed = 1;
839 wakeup(&vm_pages_needed);
841 tsleep(&vmstats.v_free_count, 0, "pfault", 0);
842 crit_exit();
846 * Put the specified page on the active list (if appropriate). Ensure
847 * that act_count is at least ACT_INIT but do not otherwise mess with it.
849 * The page queues must be locked.
850 * This routine may not block.
852 void
853 vm_page_activate(vm_page_t m)
855 crit_enter();
856 if (m->queue != PQ_ACTIVE) {
857 if ((m->queue - m->pc) == PQ_CACHE)
858 mycpu->gd_cnt.v_reactivated++;
860 vm_page_unqueue(m);
862 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
863 m->queue = PQ_ACTIVE;
864 vm_page_queues[PQ_ACTIVE].lcnt++;
865 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
866 m, pageq);
867 if (m->act_count < ACT_INIT)
868 m->act_count = ACT_INIT;
869 vmstats.v_active_count++;
871 } else {
872 if (m->act_count < ACT_INIT)
873 m->act_count = ACT_INIT;
875 crit_exit();
879 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
880 * routine is called when a page has been added to the cache or free
881 * queues.
883 * This routine may not block.
884 * This routine must be called at splvm()
886 static __inline void
887 vm_page_free_wakeup(void)
890 * if pageout daemon needs pages, then tell it that there are
891 * some free.
893 if (vm_pageout_pages_needed &&
894 vmstats.v_cache_count + vmstats.v_free_count >=
895 vmstats.v_pageout_free_min
897 wakeup(&vm_pageout_pages_needed);
898 vm_pageout_pages_needed = 0;
902 * wakeup processes that are waiting on memory if we hit a
903 * high water mark. And wakeup scheduler process if we have
904 * lots of memory. this process will swapin processes.
906 if (vm_pages_needed && !vm_page_count_min()) {
907 vm_pages_needed = 0;
908 wakeup(&vmstats.v_free_count);
913 * vm_page_free_toq:
915 * Returns the given page to the PQ_FREE list, disassociating it with
916 * any VM object.
918 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
919 * return (the page will have been freed). No particular spl is required
920 * on entry.
922 * This routine may not block.
924 void
925 vm_page_free_toq(vm_page_t m)
927 struct vpgqueues *pq;
929 crit_enter();
930 mycpu->gd_cnt.v_tfree++;
932 KKASSERT((m->flags & PG_MAPPED) == 0);
934 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
935 kprintf(
936 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
937 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
938 m->hold_count);
939 if ((m->queue - m->pc) == PQ_FREE)
940 panic("vm_page_free: freeing free page");
941 else
942 panic("vm_page_free: freeing busy page");
946 * unqueue, then remove page. Note that we cannot destroy
947 * the page here because we do not want to call the pager's
948 * callback routine until after we've put the page on the
949 * appropriate free queue.
951 vm_page_unqueue_nowakeup(m);
952 vm_page_remove(m);
955 * No further management of fictitious pages occurs beyond object
956 * and queue removal.
958 if ((m->flags & PG_FICTITIOUS) != 0) {
959 vm_page_wakeup(m);
960 crit_exit();
961 return;
964 m->valid = 0;
965 vm_page_undirty(m);
967 if (m->wire_count != 0) {
968 if (m->wire_count > 1) {
969 panic(
970 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
971 m->wire_count, (long)m->pindex);
973 panic("vm_page_free: freeing wired page");
977 * Clear the UNMANAGED flag when freeing an unmanaged page.
979 if (m->flags & PG_UNMANAGED) {
980 m->flags &= ~PG_UNMANAGED;
983 if (m->hold_count != 0) {
984 m->flags &= ~PG_ZERO;
985 m->queue = PQ_HOLD;
986 } else {
987 m->queue = PQ_FREE + m->pc;
989 pq = &vm_page_queues[m->queue];
990 pq->lcnt++;
991 ++(*pq->cnt);
994 * Put zero'd pages on the end ( where we look for zero'd pages
995 * first ) and non-zerod pages at the head.
997 if (m->flags & PG_ZERO) {
998 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
999 ++vm_page_zero_count;
1000 } else {
1001 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1003 vm_page_wakeup(m);
1004 vm_page_free_wakeup();
1005 crit_exit();
1009 * vm_page_unmanage()
1011 * Prevent PV management from being done on the page. The page is
1012 * removed from the paging queues as if it were wired, and as a
1013 * consequence of no longer being managed the pageout daemon will not
1014 * touch it (since there is no way to locate the pte mappings for the
1015 * page). madvise() calls that mess with the pmap will also no longer
1016 * operate on the page.
1018 * Beyond that the page is still reasonably 'normal'. Freeing the page
1019 * will clear the flag.
1021 * This routine is used by OBJT_PHYS objects - objects using unswappable
1022 * physical memory as backing store rather then swap-backed memory and
1023 * will eventually be extended to support 4MB unmanaged physical
1024 * mappings.
1026 * Must be called with a critical section held.
1028 void
1029 vm_page_unmanage(vm_page_t m)
1031 ASSERT_IN_CRIT_SECTION();
1032 if ((m->flags & PG_UNMANAGED) == 0) {
1033 if (m->wire_count == 0)
1034 vm_page_unqueue(m);
1036 vm_page_flag_set(m, PG_UNMANAGED);
1040 * Mark this page as wired down by yet another map, removing it from
1041 * paging queues as necessary.
1043 * The page queues must be locked.
1044 * This routine may not block.
1046 void
1047 vm_page_wire(vm_page_t m)
1050 * Only bump the wire statistics if the page is not already wired,
1051 * and only unqueue the page if it is on some queue (if it is unmanaged
1052 * it is already off the queues). Don't do anything with fictitious
1053 * pages because they are always wired.
1055 crit_enter();
1056 if ((m->flags & PG_FICTITIOUS) == 0) {
1057 if (m->wire_count == 0) {
1058 if ((m->flags & PG_UNMANAGED) == 0)
1059 vm_page_unqueue(m);
1060 vmstats.v_wire_count++;
1062 m->wire_count++;
1063 KASSERT(m->wire_count != 0,
1064 ("vm_page_wire: wire_count overflow m=%p", m));
1066 crit_exit();
1070 * Release one wiring of this page, potentially enabling it to be paged again.
1072 * Many pages placed on the inactive queue should actually go
1073 * into the cache, but it is difficult to figure out which. What
1074 * we do instead, if the inactive target is well met, is to put
1075 * clean pages at the head of the inactive queue instead of the tail.
1076 * This will cause them to be moved to the cache more quickly and
1077 * if not actively re-referenced, freed more quickly. If we just
1078 * stick these pages at the end of the inactive queue, heavy filesystem
1079 * meta-data accesses can cause an unnecessary paging load on memory bound
1080 * processes. This optimization causes one-time-use metadata to be
1081 * reused more quickly.
1083 * BUT, if we are in a low-memory situation we have no choice but to
1084 * put clean pages on the cache queue.
1086 * A number of routines use vm_page_unwire() to guarantee that the page
1087 * will go into either the inactive or active queues, and will NEVER
1088 * be placed in the cache - for example, just after dirtying a page.
1089 * dirty pages in the cache are not allowed.
1091 * The page queues must be locked.
1092 * This routine may not block.
1094 void
1095 vm_page_unwire(vm_page_t m, int activate)
1097 crit_enter();
1098 if (m->flags & PG_FICTITIOUS) {
1099 /* do nothing */
1100 } else if (m->wire_count <= 0) {
1101 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1102 } else {
1103 if (--m->wire_count == 0) {
1104 --vmstats.v_wire_count;
1105 if (m->flags & PG_UNMANAGED) {
1107 } else if (activate) {
1108 TAILQ_INSERT_TAIL(
1109 &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1110 m->queue = PQ_ACTIVE;
1111 vm_page_queues[PQ_ACTIVE].lcnt++;
1112 vmstats.v_active_count++;
1113 } else {
1114 vm_page_flag_clear(m, PG_WINATCFLS);
1115 TAILQ_INSERT_TAIL(
1116 &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1117 m->queue = PQ_INACTIVE;
1118 vm_page_queues[PQ_INACTIVE].lcnt++;
1119 vmstats.v_inactive_count++;
1123 crit_exit();
1128 * Move the specified page to the inactive queue. If the page has
1129 * any associated swap, the swap is deallocated.
1131 * Normally athead is 0 resulting in LRU operation. athead is set
1132 * to 1 if we want this page to be 'as if it were placed in the cache',
1133 * except without unmapping it from the process address space.
1135 * This routine may not block.
1137 static __inline void
1138 _vm_page_deactivate(vm_page_t m, int athead)
1141 * Ignore if already inactive.
1143 if (m->queue == PQ_INACTIVE)
1144 return;
1146 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1147 if ((m->queue - m->pc) == PQ_CACHE)
1148 mycpu->gd_cnt.v_reactivated++;
1149 vm_page_flag_clear(m, PG_WINATCFLS);
1150 vm_page_unqueue(m);
1151 if (athead)
1152 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1153 else
1154 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1155 m->queue = PQ_INACTIVE;
1156 vm_page_queues[PQ_INACTIVE].lcnt++;
1157 vmstats.v_inactive_count++;
1161 void
1162 vm_page_deactivate(vm_page_t m)
1164 crit_enter();
1165 _vm_page_deactivate(m, 0);
1166 crit_exit();
1170 * vm_page_try_to_cache:
1172 * Returns 0 on failure, 1 on success
1175 vm_page_try_to_cache(vm_page_t m)
1177 crit_enter();
1178 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1179 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1180 crit_exit();
1181 return(0);
1183 vm_page_test_dirty(m);
1184 if (m->dirty) {
1185 crit_exit();
1186 return(0);
1188 vm_page_cache(m);
1189 crit_exit();
1190 return(1);
1194 * Attempt to free the page. If we cannot free it, we do nothing.
1195 * 1 is returned on success, 0 on failure.
1198 vm_page_try_to_free(vm_page_t m)
1200 crit_enter();
1201 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1202 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1203 crit_exit();
1204 return(0);
1206 vm_page_test_dirty(m);
1207 if (m->dirty) {
1208 crit_exit();
1209 return(0);
1211 vm_page_busy(m);
1212 vm_page_protect(m, VM_PROT_NONE);
1213 vm_page_free(m);
1214 crit_exit();
1215 return(1);
1219 * vm_page_cache
1221 * Put the specified page onto the page cache queue (if appropriate).
1223 * This routine may not block.
1225 void
1226 vm_page_cache(vm_page_t m)
1228 ASSERT_IN_CRIT_SECTION();
1230 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1231 m->wire_count || m->hold_count) {
1232 kprintf("vm_page_cache: attempting to cache busy/held page\n");
1233 return;
1237 * Already in the cache (and thus not mapped)
1239 if ((m->queue - m->pc) == PQ_CACHE) {
1240 KKASSERT((m->flags & PG_MAPPED) == 0);
1241 return;
1245 * Caller is required to test m->dirty, but note that the act of
1246 * removing the page from its maps can cause it to become dirty
1247 * on an SMP system due to another cpu running in usermode.
1249 if (m->dirty) {
1250 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1251 (long)m->pindex);
1255 * Remove all pmaps and indicate that the page is not
1256 * writeable or mapped. Our vm_page_protect() call may
1257 * have blocked (especially w/ VM_PROT_NONE), so recheck
1258 * everything.
1260 vm_page_busy(m);
1261 vm_page_protect(m, VM_PROT_NONE);
1262 vm_page_wakeup(m);
1263 if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1264 m->wire_count || m->hold_count) {
1265 /* do nothing */
1266 } else if (m->dirty) {
1267 vm_page_deactivate(m);
1268 } else {
1269 vm_page_unqueue_nowakeup(m);
1270 m->queue = PQ_CACHE + m->pc;
1271 vm_page_queues[m->queue].lcnt++;
1272 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1273 vmstats.v_cache_count++;
1274 vm_page_free_wakeup();
1279 * vm_page_dontneed()
1281 * Cache, deactivate, or do nothing as appropriate. This routine
1282 * is typically used by madvise() MADV_DONTNEED.
1284 * Generally speaking we want to move the page into the cache so
1285 * it gets reused quickly. However, this can result in a silly syndrome
1286 * due to the page recycling too quickly. Small objects will not be
1287 * fully cached. On the otherhand, if we move the page to the inactive
1288 * queue we wind up with a problem whereby very large objects
1289 * unnecessarily blow away our inactive and cache queues.
1291 * The solution is to move the pages based on a fixed weighting. We
1292 * either leave them alone, deactivate them, or move them to the cache,
1293 * where moving them to the cache has the highest weighting.
1294 * By forcing some pages into other queues we eventually force the
1295 * system to balance the queues, potentially recovering other unrelated
1296 * space from active. The idea is to not force this to happen too
1297 * often.
1299 void
1300 vm_page_dontneed(vm_page_t m)
1302 static int dnweight;
1303 int dnw;
1304 int head;
1306 dnw = ++dnweight;
1309 * occassionally leave the page alone
1311 crit_enter();
1312 if ((dnw & 0x01F0) == 0 ||
1313 m->queue == PQ_INACTIVE ||
1314 m->queue - m->pc == PQ_CACHE
1316 if (m->act_count >= ACT_INIT)
1317 --m->act_count;
1318 crit_exit();
1319 return;
1322 if (m->dirty == 0)
1323 vm_page_test_dirty(m);
1325 if (m->dirty || (dnw & 0x0070) == 0) {
1327 * Deactivate the page 3 times out of 32.
1329 head = 0;
1330 } else {
1332 * Cache the page 28 times out of every 32. Note that
1333 * the page is deactivated instead of cached, but placed
1334 * at the head of the queue instead of the tail.
1336 head = 1;
1338 _vm_page_deactivate(m, head);
1339 crit_exit();
1343 * Grab a page, blocking if it is busy and allocating a page if necessary.
1344 * A busy page is returned or NULL.
1346 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1347 * If VM_ALLOC_RETRY is not specified
1349 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1350 * always returned if we had blocked.
1351 * This routine will never return NULL if VM_ALLOC_RETRY is set.
1352 * This routine may not be called from an interrupt.
1353 * The returned page may not be entirely valid.
1355 * This routine may be called from mainline code without spl protection and
1356 * be guarenteed a busied page associated with the object at the specified
1357 * index.
1359 vm_page_t
1360 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1362 vm_page_t m;
1363 int generation;
1365 KKASSERT(allocflags &
1366 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1367 crit_enter();
1368 retrylookup:
1369 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1370 if (m->busy || (m->flags & PG_BUSY)) {
1371 generation = object->generation;
1373 while ((object->generation == generation) &&
1374 (m->busy || (m->flags & PG_BUSY))) {
1375 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1376 tsleep(m, 0, "pgrbwt", 0);
1377 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1378 m = NULL;
1379 goto done;
1382 goto retrylookup;
1383 } else {
1384 vm_page_busy(m);
1385 goto done;
1388 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1389 if (m == NULL) {
1390 vm_wait();
1391 if ((allocflags & VM_ALLOC_RETRY) == 0)
1392 goto done;
1393 goto retrylookup;
1395 done:
1396 crit_exit();
1397 return(m);
1401 * Mapping function for valid bits or for dirty bits in
1402 * a page. May not block.
1404 * Inputs are required to range within a page.
1406 __inline int
1407 vm_page_bits(int base, int size)
1409 int first_bit;
1410 int last_bit;
1412 KASSERT(
1413 base + size <= PAGE_SIZE,
1414 ("vm_page_bits: illegal base/size %d/%d", base, size)
1417 if (size == 0) /* handle degenerate case */
1418 return(0);
1420 first_bit = base >> DEV_BSHIFT;
1421 last_bit = (base + size - 1) >> DEV_BSHIFT;
1423 return ((2 << last_bit) - (1 << first_bit));
1427 * Sets portions of a page valid and clean. The arguments are expected
1428 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1429 * of any partial chunks touched by the range. The invalid portion of
1430 * such chunks will be zero'd.
1432 * This routine may not block.
1434 * (base + size) must be less then or equal to PAGE_SIZE.
1436 void
1437 vm_page_set_validclean(vm_page_t m, int base, int size)
1439 int pagebits;
1440 int frag;
1441 int endoff;
1443 if (size == 0) /* handle degenerate case */
1444 return;
1447 * If the base is not DEV_BSIZE aligned and the valid
1448 * bit is clear, we have to zero out a portion of the
1449 * first block.
1452 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1453 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1455 pmap_zero_page_area(
1456 VM_PAGE_TO_PHYS(m),
1457 frag,
1458 base - frag
1463 * If the ending offset is not DEV_BSIZE aligned and the
1464 * valid bit is clear, we have to zero out a portion of
1465 * the last block.
1468 endoff = base + size;
1470 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1471 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1473 pmap_zero_page_area(
1474 VM_PAGE_TO_PHYS(m),
1475 endoff,
1476 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1481 * Set valid, clear dirty bits. If validating the entire
1482 * page we can safely clear the pmap modify bit. We also
1483 * use this opportunity to clear the PG_NOSYNC flag. If a process
1484 * takes a write fault on a MAP_NOSYNC memory area the flag will
1485 * be set again.
1487 * We set valid bits inclusive of any overlap, but we can only
1488 * clear dirty bits for DEV_BSIZE chunks that are fully within
1489 * the range.
1492 pagebits = vm_page_bits(base, size);
1493 m->valid |= pagebits;
1494 #if 0 /* NOT YET */
1495 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1496 frag = DEV_BSIZE - frag;
1497 base += frag;
1498 size -= frag;
1499 if (size < 0)
1500 size = 0;
1502 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1503 #endif
1504 m->dirty &= ~pagebits;
1505 if (base == 0 && size == PAGE_SIZE) {
1506 pmap_clear_modify(m);
1507 vm_page_flag_clear(m, PG_NOSYNC);
1511 void
1512 vm_page_clear_dirty(vm_page_t m, int base, int size)
1514 m->dirty &= ~vm_page_bits(base, size);
1518 * Make the page all-dirty.
1520 * Also make sure the related object and vnode reflect the fact that the
1521 * object may now contain a dirty page.
1523 void
1524 vm_page_dirty(vm_page_t m)
1526 #ifdef INVARIANTS
1527 int pqtype = m->queue - m->pc;
1528 #endif
1529 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1530 ("vm_page_dirty: page in free/cache queue!"));
1531 if (m->dirty != VM_PAGE_BITS_ALL) {
1532 m->dirty = VM_PAGE_BITS_ALL;
1533 if (m->object)
1534 vm_object_set_writeable_dirty(m->object);
1539 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1540 * valid and dirty bits for the effected areas are cleared.
1542 * May not block.
1544 void
1545 vm_page_set_invalid(vm_page_t m, int base, int size)
1547 int bits;
1549 bits = vm_page_bits(base, size);
1550 m->valid &= ~bits;
1551 m->dirty &= ~bits;
1552 m->object->generation++;
1556 * The kernel assumes that the invalid portions of a page contain
1557 * garbage, but such pages can be mapped into memory by user code.
1558 * When this occurs, we must zero out the non-valid portions of the
1559 * page so user code sees what it expects.
1561 * Pages are most often semi-valid when the end of a file is mapped
1562 * into memory and the file's size is not page aligned.
1564 void
1565 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1567 int b;
1568 int i;
1571 * Scan the valid bits looking for invalid sections that
1572 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1573 * valid bit may be set ) have already been zerod by
1574 * vm_page_set_validclean().
1576 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1577 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1578 (m->valid & (1 << i))
1580 if (i > b) {
1581 pmap_zero_page_area(
1582 VM_PAGE_TO_PHYS(m),
1583 b << DEV_BSHIFT,
1584 (i - b) << DEV_BSHIFT
1587 b = i + 1;
1592 * setvalid is TRUE when we can safely set the zero'd areas
1593 * as being valid. We can do this if there are no cache consistency
1594 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1596 if (setvalid)
1597 m->valid = VM_PAGE_BITS_ALL;
1601 * Is a (partial) page valid? Note that the case where size == 0
1602 * will return FALSE in the degenerate case where the page is entirely
1603 * invalid, and TRUE otherwise.
1605 * May not block.
1608 vm_page_is_valid(vm_page_t m, int base, int size)
1610 int bits = vm_page_bits(base, size);
1612 if (m->valid && ((m->valid & bits) == bits))
1613 return 1;
1614 else
1615 return 0;
1619 * update dirty bits from pmap/mmu. May not block.
1621 void
1622 vm_page_test_dirty(vm_page_t m)
1624 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1625 vm_page_dirty(m);
1630 * Issue an event on a VM page. Corresponding action structures are
1631 * removed from the page's list and called.
1633 void
1634 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1636 struct vm_page_action *scan, *next;
1638 LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1639 if (scan->event == event) {
1640 scan->event = VMEVENT_NONE;
1641 LIST_REMOVE(scan, entry);
1642 scan->func(m, scan);
1647 #include "opt_ddb.h"
1648 #ifdef DDB
1649 #include <sys/kernel.h>
1651 #include <ddb/ddb.h>
1653 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1655 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1656 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1657 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1658 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1659 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1660 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1661 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1662 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1663 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1664 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1667 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1669 int i;
1670 db_printf("PQ_FREE:");
1671 for(i=0;i<PQ_L2_SIZE;i++) {
1672 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1674 db_printf("\n");
1676 db_printf("PQ_CACHE:");
1677 for(i=0;i<PQ_L2_SIZE;i++) {
1678 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1680 db_printf("\n");
1682 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1683 vm_page_queues[PQ_ACTIVE].lcnt,
1684 vm_page_queues[PQ_INACTIVE].lcnt);
1686 #endif /* DDB */