HAMMER 59C/Many: Stabilization pass - fixes for large file issues
[dragonfly.git] / sys / vfs / ufs / ffs_alloc.c
blobecdf04479268e132454c10efa8c031943581fce0
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
34 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.27 2006/12/29 17:10:20 swildner Exp $
38 #include "opt_quota.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
51 #include <machine/inttypes.h>
53 #include "quota.h"
54 #include "inode.h"
55 #include "ufs_extern.h"
56 #include "ufsmount.h"
58 #include "fs.h"
59 #include "ffs_extern.h"
61 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
62 int size);
64 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
65 static ufs_daddr_t
66 ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
67 #ifdef DIAGNOSTIC
68 static int ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void ffs_clusteracct (struct fs *, struct cg *, ufs_daddr_t,
71 int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 int);
74 static ino_t ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void ffs_fserr (struct fs *, uint, char *);
77 static u_long ffs_hashalloc
78 (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 int);
84 * Allocate a block in the filesystem.
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following heirarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
98 * inode for the file.
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 struct ucred *cred, ufs_daddr_t *bnp)
106 struct fs *fs;
107 ufs_daddr_t bno;
108 int cg;
109 #ifdef QUOTA
110 int error;
111 #endif
113 *bnp = 0;
114 fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 fs->fs_fsmnt);
120 panic("ffs_alloc: bad size");
122 if (cred == NOCRED)
123 panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 goto nospace;
127 if (cred->cr_uid != 0 &&
128 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 goto nospace;
130 #ifdef QUOTA
131 error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 if (error)
133 return (error);
134 #endif
135 if (bpref >= fs->fs_size)
136 bpref = 0;
137 if (bpref == 0)
138 cg = ino_to_cg(fs, ip->i_number);
139 else
140 cg = dtog(fs, bpref);
141 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 ffs_alloccg);
143 if (bno > 0) {
144 ip->i_blocks += btodb(size);
145 ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 *bnp = bno;
147 return (0);
149 #ifdef QUOTA
151 * Restore user's disk quota because allocation failed.
153 (void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 return (ENOSPC);
162 * Reallocate a fragment to a bigger size
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 int osize, int nsize, struct ucred *cred, struct buf **bpp)
173 struct fs *fs;
174 struct buf *bp;
175 int cg, request, error;
176 ufs_daddr_t bprev, bno;
178 *bpp = 0;
179 fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 kprintf(
184 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 nsize, fs->fs_fsmnt);
187 panic("ffs_realloccg: bad size");
189 if (cred == NOCRED)
190 panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 if (cred->cr_uid != 0 &&
193 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
194 goto nospace;
195 if ((bprev = ip->i_db[lbprev]) == 0) {
196 kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 fs->fs_fsmnt);
199 panic("ffs_realloccg: bad bprev");
202 * Allocate the extra space in the buffer.
204 error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 if (error) {
206 brelse(bp);
207 return (error);
210 if(bp->b_bio2.bio_offset == NOOFFSET) {
211 if( lbprev >= NDADDR)
212 panic("ffs_realloccg: lbprev out of range");
213 bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
216 #ifdef QUOTA
217 error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 if (error) {
219 brelse(bp);
220 return (error);
222 #endif
224 * Check for extension in the existing location.
226 cg = dtog(fs, bprev);
227 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 if (bno) {
229 if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 panic("ffs_realloccg: bad blockno");
231 ip->i_blocks += btodb(nsize - osize);
232 ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 allocbuf(bp, nsize);
234 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 *bpp = bp;
236 return (0);
239 * Allocate a new disk location.
241 if (bpref >= fs->fs_size)
242 bpref = 0;
243 switch ((int)fs->fs_optim) {
244 case FS_OPTSPACE:
246 * Allocate an exact sized fragment. Although this makes
247 * best use of space, we will waste time relocating it if
248 * the file continues to grow. If the fragmentation is
249 * less than half of the minimum free reserve, we choose
250 * to begin optimizing for time.
252 request = nsize;
253 if (fs->fs_minfree <= 5 ||
254 fs->fs_cstotal.cs_nffree >
255 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 break;
257 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 fs->fs_fsmnt);
259 fs->fs_optim = FS_OPTTIME;
260 break;
261 case FS_OPTTIME:
263 * At this point we have discovered a file that is trying to
264 * grow a small fragment to a larger fragment. To save time,
265 * we allocate a full sized block, then free the unused portion.
266 * If the file continues to grow, the `ffs_fragextend' call
267 * above will be able to grow it in place without further
268 * copying. If aberrant programs cause disk fragmentation to
269 * grow within 2% of the free reserve, we choose to begin
270 * optimizing for space.
272 request = fs->fs_bsize;
273 if (fs->fs_cstotal.cs_nffree <
274 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 break;
276 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 fs->fs_fsmnt);
278 fs->fs_optim = FS_OPTSPACE;
279 break;
280 default:
281 kprintf("dev = %s, optim = %ld, fs = %s\n",
282 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 panic("ffs_realloccg: bad optim");
284 /* NOTREACHED */
286 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 ffs_alloccg);
288 if (bno > 0) {
289 bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 if (!DOINGSOFTDEP(ITOV(ip)))
291 ffs_blkfree(ip, bprev, (long)osize);
292 if (nsize < request)
293 ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 (long)(request - nsize));
295 ip->i_blocks += btodb(nsize - osize);
296 ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 allocbuf(bp, nsize);
298 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 *bpp = bp;
300 return (0);
302 #ifdef QUOTA
304 * Restore user's disk quota because allocation failed.
306 (void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 brelse(bp);
309 nospace:
311 * no space available
313 ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 return (ENOSPC);
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
321 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
323 * The vnode and an array of buffer pointers for a range of sequential
324 * logical blocks to be made contiguous is given. The allocator attempts
325 * to find a range of sequential blocks starting as close as possible to
326 * an fs_rotdelay offset from the end of the allocation for the logical
327 * block immediately preceeding the current range. If successful, the
328 * physical block numbers in the buffer pointers and in the inode are
329 * changed to reflect the new allocation. If unsuccessful, the allocation
330 * is left unchanged. The success in doing the reallocation is returned.
331 * Note that the error return is not reflected back to the user. Rather
332 * the previous block allocation will be used.
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
345 * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
350 struct fs *fs;
351 struct inode *ip;
352 struct vnode *vp;
353 struct buf *sbp, *ebp;
354 ufs_daddr_t *bap, *sbap, *ebap = 0;
355 struct cluster_save *buflist;
356 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 off_t boffset;
359 #endif
360 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 int i, len, slen, start_lvl, end_lvl, pref, ssize;
363 if (doreallocblks == 0)
364 return (ENOSPC);
365 vp = ap->a_vp;
366 ip = VTOI(vp);
367 fs = ip->i_fs;
368 if (fs->fs_contigsumsize <= 0)
369 return (ENOSPC);
370 buflist = ap->a_buflist;
371 len = buflist->bs_nchildren;
372 start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 for (i = 0; i < len; i++)
376 if (!ffs_checkblk(ip,
377 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 panic("ffs_reallocblks: unallocated block 1");
379 for (i = 1; i < len; i++) {
380 if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 panic("ffs_reallocblks: non-logical cluster");
383 boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 for (i = 1; i < len - 1; i++)
386 if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
390 * If the latest allocation is in a new cylinder group, assume that
391 * the filesystem has decided to move and do not force it back to
392 * the previous cylinder group.
394 if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 return (ENOSPC);
397 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 return (ENOSPC);
401 * Get the starting offset and block map for the first block and
402 * the number of blocks that will fit into sbap starting at soff.
404 if (start_lvl == 0) {
405 sbap = &ip->i_db[0];
406 soff = start_lbn;
407 slen = NDADDR - soff;
408 } else {
409 idp = &start_ap[start_lvl - 1];
410 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 brelse(sbp);
412 return (ENOSPC);
414 sbap = (ufs_daddr_t *)sbp->b_data;
415 soff = idp->in_off;
416 slen = fs->fs_nindir - soff;
419 * Find the preferred location for the cluster.
421 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
423 * If the block range spans two block maps, get the second map.
425 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
426 ssize = len;
427 } else {
428 #ifdef DIAGNOSTIC
429 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
430 panic("ffs_reallocblk: start == end");
431 #endif
432 ssize = len - (idp->in_off + 1);
433 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
434 goto fail;
435 ebap = (ufs_daddr_t *)ebp->b_data;
439 * Make sure we aren't spanning more then two blockmaps. ssize is
440 * our calculation of the span we have to scan in the first blockmap,
441 * while slen is our calculation of the number of entries available
442 * in the first blockmap (from soff).
444 if (ssize > slen) {
445 panic("ffs_reallocblks: range spans more then two blockmaps!"
446 " start_lbn %ld len %d (%d/%d)",
447 (long)start_lbn, len, slen, ssize);
450 * Search the block map looking for an allocation of the desired size.
452 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
453 len, ffs_clusteralloc)) == 0)
454 goto fail;
456 * We have found a new contiguous block.
458 * First we have to replace the old block pointers with the new
459 * block pointers in the inode and indirect blocks associated
460 * with the file.
462 #ifdef DEBUG
463 if (prtrealloc)
464 kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
465 (uintmax_t)ip->i_number, start_lbn, end_lbn);
466 #endif
467 blkno = newblk;
468 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
469 if (i == ssize) {
470 bap = ebap;
471 soff = -i;
473 #ifdef DIAGNOSTIC
474 if (!ffs_checkblk(ip,
475 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
476 panic("ffs_reallocblks: unallocated block 2");
477 if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
478 panic("ffs_reallocblks: alloc mismatch");
479 #endif
480 #ifdef DEBUG
481 if (prtrealloc)
482 kprintf(" %d,", *bap);
483 #endif
484 if (DOINGSOFTDEP(vp)) {
485 if (sbap == &ip->i_db[0] && i < ssize)
486 softdep_setup_allocdirect(ip, start_lbn + i,
487 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
488 buflist->bs_children[i]);
489 else
490 softdep_setup_allocindir_page(ip, start_lbn + i,
491 i < ssize ? sbp : ebp, soff + i, blkno,
492 *bap, buflist->bs_children[i]);
494 *bap++ = blkno;
497 * Next we must write out the modified inode and indirect blocks.
498 * For strict correctness, the writes should be synchronous since
499 * the old block values may have been written to disk. In practise
500 * they are almost never written, but if we are concerned about
501 * strict correctness, the `doasyncfree' flag should be set to zero.
503 * The test on `doasyncfree' should be changed to test a flag
504 * that shows whether the associated buffers and inodes have
505 * been written. The flag should be set when the cluster is
506 * started and cleared whenever the buffer or inode is flushed.
507 * We can then check below to see if it is set, and do the
508 * synchronous write only when it has been cleared.
510 if (sbap != &ip->i_db[0]) {
511 if (doasyncfree)
512 bdwrite(sbp);
513 else
514 bwrite(sbp);
515 } else {
516 ip->i_flag |= IN_CHANGE | IN_UPDATE;
517 if (!doasyncfree)
518 ffs_update(vp, 1);
520 if (ssize < len) {
521 if (doasyncfree)
522 bdwrite(ebp);
523 else
524 bwrite(ebp);
527 * Last, free the old blocks and assign the new blocks to the buffers.
529 #ifdef DEBUG
530 if (prtrealloc)
531 kprintf("\n\tnew:");
532 #endif
533 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
534 if (!DOINGSOFTDEP(vp))
535 ffs_blkfree(ip,
536 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
537 fs->fs_bsize);
538 buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
539 #ifdef DIAGNOSTIC
540 if (!ffs_checkblk(ip,
541 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
542 panic("ffs_reallocblks: unallocated block 3");
543 #endif
544 #ifdef DEBUG
545 if (prtrealloc)
546 kprintf(" %d,", blkno);
547 #endif
549 #ifdef DEBUG
550 if (prtrealloc) {
551 prtrealloc--;
552 kprintf("\n");
554 #endif
555 return (0);
557 fail:
558 if (ssize < len)
559 brelse(ebp);
560 if (sbap != &ip->i_db[0])
561 brelse(sbp);
562 return (ENOSPC);
566 * Allocate an inode in the filesystem.
568 * If allocating a directory, use ffs_dirpref to select the inode.
569 * If allocating in a directory, the following hierarchy is followed:
570 * 1) allocate the preferred inode.
571 * 2) allocate an inode in the same cylinder group.
572 * 3) quadradically rehash into other cylinder groups, until an
573 * available inode is located.
574 * If no inode preference is given the following heirarchy is used
575 * to allocate an inode:
576 * 1) allocate an inode in cylinder group 0.
577 * 2) quadradically rehash into other cylinder groups, until an
578 * available inode is located.
581 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
583 struct inode *pip;
584 struct fs *fs;
585 struct inode *ip;
586 ino_t ino, ipref;
587 int cg, error;
589 *vpp = NULL;
590 pip = VTOI(pvp);
591 fs = pip->i_fs;
592 if (fs->fs_cstotal.cs_nifree == 0)
593 goto noinodes;
595 if ((mode & IFMT) == IFDIR)
596 ipref = ffs_dirpref(pip);
597 else
598 ipref = pip->i_number;
599 if (ipref >= fs->fs_ncg * fs->fs_ipg)
600 ipref = 0;
601 cg = ino_to_cg(fs, ipref);
603 * Track number of dirs created one after another
604 * in a same cg without intervening by files.
606 if ((mode & IFMT) == IFDIR) {
607 if (fs->fs_contigdirs[cg] < 255)
608 fs->fs_contigdirs[cg]++;
609 } else {
610 if (fs->fs_contigdirs[cg] > 0)
611 fs->fs_contigdirs[cg]--;
613 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
614 (allocfcn_t *)ffs_nodealloccg);
615 if (ino == 0)
616 goto noinodes;
617 error = VFS_VGET(pvp->v_mount, ino, vpp);
618 if (error) {
619 ffs_vfree(pvp, ino, mode);
620 return (error);
622 ip = VTOI(*vpp);
623 if (ip->i_mode) {
624 kprintf("mode = 0%o, inum = %lu, fs = %s\n",
625 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
626 panic("ffs_valloc: dup alloc");
628 if (ip->i_blocks) { /* XXX */
629 kprintf("free inode %s/%lu had %ld blocks\n",
630 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
631 ip->i_blocks = 0;
633 ip->i_flags = 0;
635 * Set up a new generation number for this inode.
637 if (ip->i_gen == 0 || ++ip->i_gen == 0)
638 ip->i_gen = krandom() / 2 + 1;
639 return (0);
640 noinodes:
641 ffs_fserr(fs, cred->cr_uid, "out of inodes");
642 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
643 return (ENOSPC);
647 * Find a cylinder group to place a directory.
649 * The policy implemented by this algorithm is to allocate a
650 * directory inode in the same cylinder group as its parent
651 * directory, but also to reserve space for its files inodes
652 * and data. Restrict the number of directories which may be
653 * allocated one after another in the same cylinder group
654 * without intervening allocation of files.
656 * If we allocate a first level directory then force allocation
657 * in another cylinder group.
659 static ino_t
660 ffs_dirpref(struct inode *pip)
662 struct fs *fs;
663 int cg, prefcg, dirsize, cgsize;
664 int64_t dirsize64;
665 int avgifree, avgbfree, avgndir, curdirsize;
666 int minifree, minbfree, maxndir;
667 int mincg, minndir;
668 int maxcontigdirs;
670 fs = pip->i_fs;
672 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
673 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
674 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
677 * Force allocation in another cg if creating a first level dir.
679 if (ITOV(pip)->v_flag & VROOT) {
680 prefcg = karc4random() % fs->fs_ncg;
681 mincg = prefcg;
682 minndir = fs->fs_ipg;
683 for (cg = prefcg; cg < fs->fs_ncg; cg++)
684 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
685 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
686 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
687 mincg = cg;
688 minndir = fs->fs_cs(fs, cg).cs_ndir;
690 for (cg = 0; cg < prefcg; cg++)
691 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
692 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
693 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
694 mincg = cg;
695 minndir = fs->fs_cs(fs, cg).cs_ndir;
697 return ((ino_t)(fs->fs_ipg * mincg));
701 * Count various limits which used for
702 * optimal allocation of a directory inode.
704 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
705 minifree = avgifree - avgifree / 4;
706 if (minifree < 1)
707 minifree = 1;
708 minbfree = avgbfree - avgbfree / 4;
709 if (minbfree < 1)
710 minbfree = 1;
711 cgsize = fs->fs_fsize * fs->fs_fpg;
714 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
715 * multiplying them may overflow a 32 bit integer.
717 dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
718 if (dirsize64 > 0x7fffffff) {
719 maxcontigdirs = 1;
720 } else {
721 dirsize = (int)dirsize64;
722 curdirsize = avgndir ?
723 (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
724 if (dirsize < curdirsize)
725 dirsize = curdirsize;
726 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
727 if (fs->fs_avgfpdir > 0)
728 maxcontigdirs = min(maxcontigdirs,
729 fs->fs_ipg / fs->fs_avgfpdir);
730 if (maxcontigdirs == 0)
731 maxcontigdirs = 1;
735 * Limit number of dirs in one cg and reserve space for
736 * regular files, but only if we have no deficit in
737 * inodes or space.
739 prefcg = ino_to_cg(fs, pip->i_number);
740 for (cg = prefcg; cg < fs->fs_ncg; cg++)
741 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
742 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
743 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
744 if (fs->fs_contigdirs[cg] < maxcontigdirs)
745 return ((ino_t)(fs->fs_ipg * cg));
747 for (cg = 0; cg < prefcg; cg++)
748 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
749 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
750 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
751 if (fs->fs_contigdirs[cg] < maxcontigdirs)
752 return ((ino_t)(fs->fs_ipg * cg));
755 * This is a backstop when we have deficit in space.
757 for (cg = prefcg; cg < fs->fs_ncg; cg++)
758 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
759 return ((ino_t)(fs->fs_ipg * cg));
760 for (cg = 0; cg < prefcg; cg++)
761 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
762 break;
763 return ((ino_t)(fs->fs_ipg * cg));
767 * Select the desired position for the next block in a file. The file is
768 * logically divided into sections. The first section is composed of the
769 * direct blocks. Each additional section contains fs_maxbpg blocks.
771 * If no blocks have been allocated in the first section, the policy is to
772 * request a block in the same cylinder group as the inode that describes
773 * the file. If no blocks have been allocated in any other section, the
774 * policy is to place the section in a cylinder group with a greater than
775 * average number of free blocks. An appropriate cylinder group is found
776 * by using a rotor that sweeps the cylinder groups. When a new group of
777 * blocks is needed, the sweep begins in the cylinder group following the
778 * cylinder group from which the previous allocation was made. The sweep
779 * continues until a cylinder group with greater than the average number
780 * of free blocks is found. If the allocation is for the first block in an
781 * indirect block, the information on the previous allocation is unavailable;
782 * here a best guess is made based upon the logical block number being
783 * allocated.
785 * If a section is already partially allocated, the policy is to
786 * contiguously allocate fs_maxcontig blocks. The end of one of these
787 * contiguous blocks and the beginning of the next is physically separated
788 * so that the disk head will be in transit between them for at least
789 * fs_rotdelay milliseconds. This is to allow time for the processor to
790 * schedule another I/O transfer.
792 ufs_daddr_t
793 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
795 struct fs *fs;
796 int cg;
797 int avgbfree, startcg;
798 ufs_daddr_t nextblk;
800 fs = ip->i_fs;
801 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
802 if (lbn < NDADDR + NINDIR(fs)) {
803 cg = ino_to_cg(fs, ip->i_number);
804 return (fs->fs_fpg * cg + fs->fs_frag);
807 * Find a cylinder with greater than average number of
808 * unused data blocks.
810 if (indx == 0 || bap[indx - 1] == 0)
811 startcg =
812 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
813 else
814 startcg = dtog(fs, bap[indx - 1]) + 1;
815 startcg %= fs->fs_ncg;
816 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
817 for (cg = startcg; cg < fs->fs_ncg; cg++)
818 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
819 fs->fs_cgrotor = cg;
820 return (fs->fs_fpg * cg + fs->fs_frag);
822 for (cg = 0; cg <= startcg; cg++)
823 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
824 fs->fs_cgrotor = cg;
825 return (fs->fs_fpg * cg + fs->fs_frag);
827 return (0);
830 * One or more previous blocks have been laid out. If less
831 * than fs_maxcontig previous blocks are contiguous, the
832 * next block is requested contiguously, otherwise it is
833 * requested rotationally delayed by fs_rotdelay milliseconds.
835 nextblk = bap[indx - 1] + fs->fs_frag;
836 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
837 bap[indx - fs->fs_maxcontig] +
838 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
839 return (nextblk);
841 * Here we convert ms of delay to frags as:
842 * (frags) = (ms) * (rev/sec) * (sect/rev) /
843 * ((sect/frag) * (ms/sec))
844 * then round up to the next block.
846 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
847 (NSPF(fs) * 1000), fs->fs_frag);
848 return (nextblk);
852 * Implement the cylinder overflow algorithm.
854 * The policy implemented by this algorithm is:
855 * 1) allocate the block in its requested cylinder group.
856 * 2) quadradically rehash on the cylinder group number.
857 * 3) brute force search for a free block.
859 /*VARARGS5*/
860 static u_long
861 ffs_hashalloc(struct inode *ip, int cg, long pref,
862 int size, /* size for data blocks, mode for inodes */
863 allocfcn_t *allocator)
865 struct fs *fs;
866 long result; /* XXX why not same type as we return? */
867 int i, icg = cg;
869 fs = ip->i_fs;
871 * 1: preferred cylinder group
873 result = (*allocator)(ip, cg, pref, size);
874 if (result)
875 return (result);
877 * 2: quadratic rehash
879 for (i = 1; i < fs->fs_ncg; i *= 2) {
880 cg += i;
881 if (cg >= fs->fs_ncg)
882 cg -= fs->fs_ncg;
883 result = (*allocator)(ip, cg, 0, size);
884 if (result)
885 return (result);
888 * 3: brute force search
889 * Note that we start at i == 2, since 0 was checked initially,
890 * and 1 is always checked in the quadratic rehash.
892 cg = (icg + 2) % fs->fs_ncg;
893 for (i = 2; i < fs->fs_ncg; i++) {
894 result = (*allocator)(ip, cg, 0, size);
895 if (result)
896 return (result);
897 cg++;
898 if (cg == fs->fs_ncg)
899 cg = 0;
901 return (0);
905 * Determine whether a fragment can be extended.
907 * Check to see if the necessary fragments are available, and
908 * if they are, allocate them.
910 static ufs_daddr_t
911 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
913 struct fs *fs;
914 struct cg *cgp;
915 struct buf *bp;
916 long bno;
917 int frags, bbase;
918 int i, error;
919 uint8_t *blksfree;
921 fs = ip->i_fs;
922 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
923 return (0);
924 frags = numfrags(fs, nsize);
925 bbase = fragnum(fs, bprev);
926 if (bbase > fragnum(fs, (bprev + frags - 1))) {
927 /* cannot extend across a block boundary */
928 return (0);
930 KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
931 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
932 (int)fs->fs_cgsize, &bp);
933 if (error) {
934 brelse(bp);
935 return (0);
937 cgp = (struct cg *)bp->b_data;
938 if (!cg_chkmagic(cgp)) {
939 brelse(bp);
940 return (0);
942 cgp->cg_time = time_second;
943 bno = dtogd(fs, bprev);
944 blksfree = cg_blksfree(cgp);
945 for (i = numfrags(fs, osize); i < frags; i++) {
946 if (isclr(blksfree, bno + i)) {
947 brelse(bp);
948 return (0);
953 * the current fragment can be extended
954 * deduct the count on fragment being extended into
955 * increase the count on the remaining fragment (if any)
956 * allocate the extended piece
958 * ---oooooooooonnnnnnn111----
959 * [-----frags-----]
960 * ^ ^
961 * bbase fs_frag
963 for (i = frags; i < fs->fs_frag - bbase; i++) {
964 if (isclr(blksfree, bno + i))
965 break;
969 * Size of original free frag is [i - numfrags(fs, osize)]
970 * Size of remaining free frag is [i - frags]
972 cgp->cg_frsum[i - numfrags(fs, osize)]--;
973 if (i != frags)
974 cgp->cg_frsum[i - frags]++;
975 for (i = numfrags(fs, osize); i < frags; i++) {
976 clrbit(blksfree, bno + i);
977 cgp->cg_cs.cs_nffree--;
978 fs->fs_cstotal.cs_nffree--;
979 fs->fs_cs(fs, cg).cs_nffree--;
981 fs->fs_fmod = 1;
982 if (DOINGSOFTDEP(ITOV(ip)))
983 softdep_setup_blkmapdep(bp, fs, bprev);
984 bdwrite(bp);
985 return (bprev);
989 * Determine whether a block can be allocated.
991 * Check to see if a block of the appropriate size is available,
992 * and if it is, allocate it.
994 static ufs_daddr_t
995 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
997 struct fs *fs;
998 struct cg *cgp;
999 struct buf *bp;
1000 int i;
1001 ufs_daddr_t bno, blkno;
1002 int allocsiz, error, frags;
1003 uint8_t *blksfree;
1005 fs = ip->i_fs;
1006 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1007 return (0);
1008 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1009 (int)fs->fs_cgsize, &bp);
1010 if (error) {
1011 brelse(bp);
1012 return (0);
1014 cgp = (struct cg *)bp->b_data;
1015 if (!cg_chkmagic(cgp) ||
1016 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1017 brelse(bp);
1018 return (0);
1020 cgp->cg_time = time_second;
1021 if (size == fs->fs_bsize) {
1022 bno = ffs_alloccgblk(ip, bp, bpref);
1023 bdwrite(bp);
1024 return (bno);
1027 * Check to see if any fragments of sufficient size are already
1028 * available. Fit the data into a larger fragment if necessary,
1029 * before allocating a whole new block.
1031 blksfree = cg_blksfree(cgp);
1032 frags = numfrags(fs, size);
1033 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1034 if (cgp->cg_frsum[allocsiz] != 0)
1035 break;
1037 if (allocsiz == fs->fs_frag) {
1039 * No fragments were available, allocate a whole block and
1040 * cut the requested fragment (of size frags) out of it.
1042 if (cgp->cg_cs.cs_nbfree == 0) {
1043 brelse(bp);
1044 return (0);
1046 bno = ffs_alloccgblk(ip, bp, bpref);
1047 bpref = dtogd(fs, bno);
1048 for (i = frags; i < fs->fs_frag; i++)
1049 setbit(blksfree, bpref + i);
1052 * Calculate the number of free frags still remaining after
1053 * we have cut out the requested allocation. Indicate that
1054 * a fragment of that size is now available for future
1055 * allocation.
1057 i = fs->fs_frag - frags;
1058 cgp->cg_cs.cs_nffree += i;
1059 fs->fs_cstotal.cs_nffree += i;
1060 fs->fs_cs(fs, cg).cs_nffree += i;
1061 fs->fs_fmod = 1;
1062 cgp->cg_frsum[i]++;
1063 bdwrite(bp);
1064 return (bno);
1068 * cg_frsum[] has told us that a free fragment of allocsiz size is
1069 * available. Find it, then clear the bitmap bits associated with
1070 * the size we want.
1072 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1073 if (bno < 0) {
1074 brelse(bp);
1075 return (0);
1077 for (i = 0; i < frags; i++)
1078 clrbit(blksfree, bno + i);
1079 cgp->cg_cs.cs_nffree -= frags;
1080 fs->fs_cstotal.cs_nffree -= frags;
1081 fs->fs_cs(fs, cg).cs_nffree -= frags;
1082 fs->fs_fmod = 1;
1085 * Account for the allocation. The original searched size that we
1086 * found is no longer available. If we cut out a smaller piece then
1087 * a smaller fragment is now available.
1089 cgp->cg_frsum[allocsiz]--;
1090 if (frags != allocsiz)
1091 cgp->cg_frsum[allocsiz - frags]++;
1092 blkno = cg * fs->fs_fpg + bno;
1093 if (DOINGSOFTDEP(ITOV(ip)))
1094 softdep_setup_blkmapdep(bp, fs, blkno);
1095 bdwrite(bp);
1096 return ((u_long)blkno);
1100 * Allocate a block in a cylinder group.
1102 * This algorithm implements the following policy:
1103 * 1) allocate the requested block.
1104 * 2) allocate a rotationally optimal block in the same cylinder.
1105 * 3) allocate the next available block on the block rotor for the
1106 * specified cylinder group.
1107 * Note that this routine only allocates fs_bsize blocks; these
1108 * blocks may be fragmented by the routine that allocates them.
1110 static ufs_daddr_t
1111 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1113 struct fs *fs;
1114 struct cg *cgp;
1115 ufs_daddr_t bno, blkno;
1116 int cylno, pos, delta;
1117 short *cylbp;
1118 int i;
1119 uint8_t *blksfree;
1121 fs = ip->i_fs;
1122 cgp = (struct cg *)bp->b_data;
1123 blksfree = cg_blksfree(cgp);
1124 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1125 bpref = cgp->cg_rotor;
1126 goto norot;
1128 bpref = blknum(fs, bpref);
1129 bpref = dtogd(fs, bpref);
1131 * if the requested block is available, use it
1133 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1134 bno = bpref;
1135 goto gotit;
1137 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1139 * Block layout information is not available.
1140 * Leaving bpref unchanged means we take the
1141 * next available free block following the one
1142 * we just allocated. Hopefully this will at
1143 * least hit a track cache on drives of unknown
1144 * geometry (e.g. SCSI).
1146 goto norot;
1149 * check for a block available on the same cylinder
1151 cylno = cbtocylno(fs, bpref);
1152 if (cg_blktot(cgp)[cylno] == 0)
1153 goto norot;
1155 * check the summary information to see if a block is
1156 * available in the requested cylinder starting at the
1157 * requested rotational position and proceeding around.
1159 cylbp = cg_blks(fs, cgp, cylno);
1160 pos = cbtorpos(fs, bpref);
1161 for (i = pos; i < fs->fs_nrpos; i++)
1162 if (cylbp[i] > 0)
1163 break;
1164 if (i == fs->fs_nrpos)
1165 for (i = 0; i < pos; i++)
1166 if (cylbp[i] > 0)
1167 break;
1168 if (cylbp[i] > 0) {
1170 * found a rotational position, now find the actual
1171 * block. A panic if none is actually there.
1173 pos = cylno % fs->fs_cpc;
1174 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1175 if (fs_postbl(fs, pos)[i] == -1) {
1176 kprintf("pos = %d, i = %d, fs = %s\n",
1177 pos, i, fs->fs_fsmnt);
1178 panic("ffs_alloccgblk: cyl groups corrupted");
1180 for (i = fs_postbl(fs, pos)[i];; ) {
1181 if (ffs_isblock(fs, blksfree, bno + i)) {
1182 bno = blkstofrags(fs, (bno + i));
1183 goto gotit;
1185 delta = fs_rotbl(fs)[i];
1186 if (delta <= 0 ||
1187 delta + i > fragstoblks(fs, fs->fs_fpg))
1188 break;
1189 i += delta;
1191 kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1192 panic("ffs_alloccgblk: can't find blk in cyl");
1194 norot:
1196 * no blocks in the requested cylinder, so take next
1197 * available one in this cylinder group.
1199 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1200 if (bno < 0)
1201 return (0);
1202 cgp->cg_rotor = bno;
1203 gotit:
1204 blkno = fragstoblks(fs, bno);
1205 ffs_clrblock(fs, blksfree, (long)blkno);
1206 ffs_clusteracct(fs, cgp, blkno, -1);
1207 cgp->cg_cs.cs_nbfree--;
1208 fs->fs_cstotal.cs_nbfree--;
1209 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1210 cylno = cbtocylno(fs, bno);
1211 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1212 cg_blktot(cgp)[cylno]--;
1213 fs->fs_fmod = 1;
1214 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1215 if (DOINGSOFTDEP(ITOV(ip)))
1216 softdep_setup_blkmapdep(bp, fs, blkno);
1217 return (blkno);
1221 * Determine whether a cluster can be allocated.
1223 * We do not currently check for optimal rotational layout if there
1224 * are multiple choices in the same cylinder group. Instead we just
1225 * take the first one that we find following bpref.
1227 static ufs_daddr_t
1228 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1230 struct fs *fs;
1231 struct cg *cgp;
1232 struct buf *bp;
1233 int i, got, run, bno, bit, map;
1234 u_char *mapp;
1235 int32_t *lp;
1236 uint8_t *blksfree;
1238 fs = ip->i_fs;
1239 if (fs->fs_maxcluster[cg] < len)
1240 return (0);
1241 if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1242 (int)fs->fs_cgsize, &bp)) {
1243 goto fail;
1245 cgp = (struct cg *)bp->b_data;
1246 if (!cg_chkmagic(cgp))
1247 goto fail;
1250 * Check to see if a cluster of the needed size (or bigger) is
1251 * available in this cylinder group.
1253 lp = &cg_clustersum(cgp)[len];
1254 for (i = len; i <= fs->fs_contigsumsize; i++)
1255 if (*lp++ > 0)
1256 break;
1257 if (i > fs->fs_contigsumsize) {
1259 * This is the first time looking for a cluster in this
1260 * cylinder group. Update the cluster summary information
1261 * to reflect the true maximum sized cluster so that
1262 * future cluster allocation requests can avoid reading
1263 * the cylinder group map only to find no clusters.
1265 lp = &cg_clustersum(cgp)[len - 1];
1266 for (i = len - 1; i > 0; i--)
1267 if (*lp-- > 0)
1268 break;
1269 fs->fs_maxcluster[cg] = i;
1270 goto fail;
1273 * Search the cluster map to find a big enough cluster.
1274 * We take the first one that we find, even if it is larger
1275 * than we need as we prefer to get one close to the previous
1276 * block allocation. We do not search before the current
1277 * preference point as we do not want to allocate a block
1278 * that is allocated before the previous one (as we will
1279 * then have to wait for another pass of the elevator
1280 * algorithm before it will be read). We prefer to fail and
1281 * be recalled to try an allocation in the next cylinder group.
1283 if (dtog(fs, bpref) != cg)
1284 bpref = 0;
1285 else
1286 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1287 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1288 map = *mapp++;
1289 bit = 1 << (bpref % NBBY);
1290 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1291 if ((map & bit) == 0) {
1292 run = 0;
1293 } else {
1294 run++;
1295 if (run == len)
1296 break;
1298 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1299 bit <<= 1;
1300 } else {
1301 map = *mapp++;
1302 bit = 1;
1305 if (got >= cgp->cg_nclusterblks)
1306 goto fail;
1308 * Allocate the cluster that we have found.
1310 blksfree = cg_blksfree(cgp);
1311 for (i = 1; i <= len; i++) {
1312 if (!ffs_isblock(fs, blksfree, got - run + i))
1313 panic("ffs_clusteralloc: map mismatch");
1315 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1316 if (dtog(fs, bno) != cg)
1317 panic("ffs_clusteralloc: allocated out of group");
1318 len = blkstofrags(fs, len);
1319 for (i = 0; i < len; i += fs->fs_frag) {
1320 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1321 panic("ffs_clusteralloc: lost block");
1323 bdwrite(bp);
1324 return (bno);
1326 fail:
1327 brelse(bp);
1328 return (0);
1332 * Determine whether an inode can be allocated.
1334 * Check to see if an inode is available, and if it is,
1335 * allocate it using the following policy:
1336 * 1) allocate the requested inode.
1337 * 2) allocate the next available inode after the requested
1338 * inode in the specified cylinder group.
1339 * 3) the inode must not already be in the inode hash table. We
1340 * can encounter such a case because the vnode reclamation sequence
1341 * frees the bit
1342 * 3) the inode must not already be in the inode hash, otherwise it
1343 * may be in the process of being deallocated. This can occur
1344 * because the bitmap is updated before the inode is removed from
1345 * hash. If we were to reallocate the inode the caller could wind
1346 * up returning a vnode/inode combination which is in an indeterminate
1347 * state.
1349 static ino_t
1350 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1352 struct fs *fs;
1353 struct cg *cgp;
1354 struct buf *bp;
1355 uint8_t *inosused;
1356 uint8_t map;
1357 int error, len, arraysize, i;
1358 int icheckmiss;
1359 ufs_daddr_t ibase;
1361 fs = ip->i_fs;
1362 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1363 return (0);
1364 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1365 (int)fs->fs_cgsize, &bp);
1366 if (error) {
1367 brelse(bp);
1368 return (0);
1370 cgp = (struct cg *)bp->b_data;
1371 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1372 brelse(bp);
1373 return (0);
1375 inosused = cg_inosused(cgp);
1376 icheckmiss = 0;
1379 * Quick check, reuse the most recently free inode or continue
1380 * a scan from where we left off the last time.
1382 ibase = cg * fs->fs_ipg;
1383 if (ipref) {
1384 ipref %= fs->fs_ipg;
1385 if (isclr(inosused, ipref)) {
1386 if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0)
1387 goto gotit;
1392 * Scan the inode bitmap starting at irotor, be sure to handle
1393 * the edge case by going back to the beginning of the array.
1395 * If the number of inodes is not byte-aligned, the unused bits
1396 * should be set to 1. This will be sanity checked in gotit. Note
1397 * that we have to be sure not to overlap the beginning and end
1398 * when irotor is in the middle of a byte as this will cause the
1399 * same bitmap byte to be checked twice. To solve this problem we
1400 * just convert everything to a byte index for the loop.
1402 ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3; /* byte index */
1403 len = (fs->fs_ipg + 7) >> 3; /* byte size */
1404 arraysize = len;
1406 while (len > 0) {
1407 map = inosused[ipref];
1408 if (map != 255) {
1409 for (i = 0; i < NBBY; ++i) {
1411 * If we find a free bit we have to make sure
1412 * that the inode is not in the middle of
1413 * being destroyed. The inode should not exist
1414 * in the inode hash.
1416 * Adjust the rotor to try to hit the
1417 * quick-check up above.
1419 if ((map & (1 << i)) == 0) {
1420 if (ufs_ihashcheck(ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1421 ipref = (ipref << 3) + i;
1422 cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1423 goto gotit;
1425 ++icheckmiss;
1431 * Setup for the next byte, start at the beginning again if
1432 * we hit the end of the array.
1434 if (++ipref == arraysize)
1435 ipref = 0;
1436 --len;
1438 if (icheckmiss == cgp->cg_cs.cs_nifree) {
1439 brelse(bp);
1440 return(0);
1442 kprintf("fs = %s\n", fs->fs_fsmnt);
1443 panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1444 icheckmiss, cgp->cg_cs.cs_nifree);
1445 /* NOTREACHED */
1448 * ipref is a bit index as of the gotit label.
1450 gotit:
1451 KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1452 cgp->cg_time = time_second;
1453 if (DOINGSOFTDEP(ITOV(ip)))
1454 softdep_setup_inomapdep(bp, ip, ibase + ipref);
1455 setbit(inosused, ipref);
1456 cgp->cg_cs.cs_nifree--;
1457 fs->fs_cstotal.cs_nifree--;
1458 fs->fs_cs(fs, cg).cs_nifree--;
1459 fs->fs_fmod = 1;
1460 if ((mode & IFMT) == IFDIR) {
1461 cgp->cg_cs.cs_ndir++;
1462 fs->fs_cstotal.cs_ndir++;
1463 fs->fs_cs(fs, cg).cs_ndir++;
1465 bdwrite(bp);
1466 return (ibase + ipref);
1470 * Free a block or fragment.
1472 * The specified block or fragment is placed back in the
1473 * free map. If a fragment is deallocated, a possible
1474 * block reassembly is checked.
1476 void
1477 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1479 struct fs *fs;
1480 struct cg *cgp;
1481 struct buf *bp;
1482 ufs_daddr_t blkno;
1483 int i, error, cg, blk, frags, bbase;
1484 uint8_t *blksfree;
1486 fs = ip->i_fs;
1487 VOP_FREEBLKS(ip->i_devvp, fsbtodoff(fs, bno), size);
1488 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1489 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1490 kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1491 devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1492 fs->fs_fsmnt);
1493 panic("ffs_blkfree: bad size");
1495 cg = dtog(fs, bno);
1496 if ((uint)bno >= fs->fs_size) {
1497 kprintf("bad block %ld, ino %lu\n",
1498 (long)bno, (u_long)ip->i_number);
1499 ffs_fserr(fs, ip->i_uid, "bad block");
1500 return;
1504 * Load the cylinder group
1506 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1507 (int)fs->fs_cgsize, &bp);
1508 if (error) {
1509 brelse(bp);
1510 return;
1512 cgp = (struct cg *)bp->b_data;
1513 if (!cg_chkmagic(cgp)) {
1514 brelse(bp);
1515 return;
1517 cgp->cg_time = time_second;
1518 bno = dtogd(fs, bno);
1519 blksfree = cg_blksfree(cgp);
1521 if (size == fs->fs_bsize) {
1523 * Free a whole block
1525 blkno = fragstoblks(fs, bno);
1526 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1527 kprintf("dev = %s, block = %ld, fs = %s\n",
1528 devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1529 panic("ffs_blkfree: freeing free block");
1531 ffs_setblock(fs, blksfree, blkno);
1532 ffs_clusteracct(fs, cgp, blkno, 1);
1533 cgp->cg_cs.cs_nbfree++;
1534 fs->fs_cstotal.cs_nbfree++;
1535 fs->fs_cs(fs, cg).cs_nbfree++;
1536 i = cbtocylno(fs, bno);
1537 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1538 cg_blktot(cgp)[i]++;
1539 } else {
1541 * Free a fragment within a block.
1543 * bno is the starting block number of the fragment being
1544 * freed.
1546 * bbase is the starting block number for the filesystem
1547 * block containing the fragment.
1549 * blk is the current bitmap for the fragments within the
1550 * filesystem block containing the fragment.
1552 * frags is the number of fragments being freed
1554 * Call ffs_fragacct() to account for the removal of all
1555 * current fragments, then adjust the bitmap to free the
1556 * requested fragment, and finally call ffs_fragacct() again
1557 * to regenerate the accounting.
1559 bbase = bno - fragnum(fs, bno);
1560 blk = blkmap(fs, blksfree, bbase);
1561 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1562 frags = numfrags(fs, size);
1563 for (i = 0; i < frags; i++) {
1564 if (isset(blksfree, bno + i)) {
1565 kprintf("dev = %s, block = %ld, fs = %s\n",
1566 devtoname(ip->i_dev), (long)(bno + i),
1567 fs->fs_fsmnt);
1568 panic("ffs_blkfree: freeing free frag");
1570 setbit(blksfree, bno + i);
1572 cgp->cg_cs.cs_nffree += i;
1573 fs->fs_cstotal.cs_nffree += i;
1574 fs->fs_cs(fs, cg).cs_nffree += i;
1577 * Add back in counts associated with the new frags
1579 blk = blkmap(fs, blksfree, bbase);
1580 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1583 * If a complete block has been reassembled, account for it
1585 blkno = fragstoblks(fs, bbase);
1586 if (ffs_isblock(fs, blksfree, blkno)) {
1587 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1588 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1589 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1590 ffs_clusteracct(fs, cgp, blkno, 1);
1591 cgp->cg_cs.cs_nbfree++;
1592 fs->fs_cstotal.cs_nbfree++;
1593 fs->fs_cs(fs, cg).cs_nbfree++;
1594 i = cbtocylno(fs, bbase);
1595 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1596 cg_blktot(cgp)[i]++;
1599 fs->fs_fmod = 1;
1600 bdwrite(bp);
1603 #ifdef DIAGNOSTIC
1605 * Verify allocation of a block or fragment. Returns true if block or
1606 * fragment is allocated, false if it is free.
1608 static int
1609 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1611 struct fs *fs;
1612 struct cg *cgp;
1613 struct buf *bp;
1614 int i, error, frags, free;
1615 uint8_t *blksfree;
1617 fs = ip->i_fs;
1618 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1619 kprintf("bsize = %ld, size = %ld, fs = %s\n",
1620 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1621 panic("ffs_checkblk: bad size");
1623 if ((uint)bno >= fs->fs_size)
1624 panic("ffs_checkblk: bad block %d", bno);
1625 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1626 (int)fs->fs_cgsize, &bp);
1627 if (error)
1628 panic("ffs_checkblk: cg bread failed");
1629 cgp = (struct cg *)bp->b_data;
1630 if (!cg_chkmagic(cgp))
1631 panic("ffs_checkblk: cg magic mismatch");
1632 blksfree = cg_blksfree(cgp);
1633 bno = dtogd(fs, bno);
1634 if (size == fs->fs_bsize) {
1635 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1636 } else {
1637 frags = numfrags(fs, size);
1638 for (free = 0, i = 0; i < frags; i++)
1639 if (isset(blksfree, bno + i))
1640 free++;
1641 if (free != 0 && free != frags)
1642 panic("ffs_checkblk: partially free fragment");
1644 brelse(bp);
1645 return (!free);
1647 #endif /* DIAGNOSTIC */
1650 * Free an inode.
1653 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1655 if (DOINGSOFTDEP(pvp)) {
1656 softdep_freefile(pvp, ino, mode);
1657 return (0);
1659 return (ffs_freefile(pvp, ino, mode));
1663 * Do the actual free operation.
1664 * The specified inode is placed back in the free map.
1667 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1669 struct fs *fs;
1670 struct cg *cgp;
1671 struct inode *pip;
1672 struct buf *bp;
1673 int error, cg;
1674 uint8_t *inosused;
1676 pip = VTOI(pvp);
1677 fs = pip->i_fs;
1678 if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1679 panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1680 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1681 cg = ino_to_cg(fs, ino);
1682 error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1683 (int)fs->fs_cgsize, &bp);
1684 if (error) {
1685 brelse(bp);
1686 return (error);
1688 cgp = (struct cg *)bp->b_data;
1689 if (!cg_chkmagic(cgp)) {
1690 brelse(bp);
1691 return (0);
1693 cgp->cg_time = time_second;
1694 inosused = cg_inosused(cgp);
1695 ino %= fs->fs_ipg;
1696 if (isclr(inosused, ino)) {
1697 kprintf("dev = %s, ino = %lu, fs = %s\n",
1698 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1699 if (fs->fs_ronly == 0)
1700 panic("ffs_vfree: freeing free inode");
1702 clrbit(inosused, ino);
1703 if (ino < cgp->cg_irotor)
1704 cgp->cg_irotor = ino;
1705 cgp->cg_cs.cs_nifree++;
1706 fs->fs_cstotal.cs_nifree++;
1707 fs->fs_cs(fs, cg).cs_nifree++;
1708 if ((mode & IFMT) == IFDIR) {
1709 cgp->cg_cs.cs_ndir--;
1710 fs->fs_cstotal.cs_ndir--;
1711 fs->fs_cs(fs, cg).cs_ndir--;
1713 fs->fs_fmod = 1;
1714 bdwrite(bp);
1715 return (0);
1719 * Find a block of the specified size in the specified cylinder group.
1721 * It is a panic if a request is made to find a block if none are
1722 * available.
1724 static ufs_daddr_t
1725 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1727 ufs_daddr_t bno;
1728 int start, len, loc, i;
1729 int blk, field, subfield, pos;
1730 uint8_t *blksfree;
1733 * find the fragment by searching through the free block
1734 * map for an appropriate bit pattern.
1736 if (bpref)
1737 start = dtogd(fs, bpref) / NBBY;
1738 else
1739 start = cgp->cg_frotor / NBBY;
1740 blksfree = cg_blksfree(cgp);
1741 len = howmany(fs->fs_fpg, NBBY) - start;
1742 loc = scanc((uint)len, (u_char *)&blksfree[start],
1743 (u_char *)fragtbl[fs->fs_frag],
1744 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1745 if (loc == 0) {
1746 len = start + 1; /* XXX why overlap here? */
1747 start = 0;
1748 loc = scanc((uint)len, (u_char *)&blksfree[0],
1749 (u_char *)fragtbl[fs->fs_frag],
1750 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1751 if (loc == 0) {
1752 kprintf("start = %d, len = %d, fs = %s\n",
1753 start, len, fs->fs_fsmnt);
1754 panic("ffs_alloccg: map corrupted");
1755 /* NOTREACHED */
1758 bno = (start + len - loc) * NBBY;
1759 cgp->cg_frotor = bno;
1761 * found the byte in the map
1762 * sift through the bits to find the selected frag
1764 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1765 blk = blkmap(fs, blksfree, bno);
1766 blk <<= 1;
1767 field = around[allocsiz];
1768 subfield = inside[allocsiz];
1769 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1770 if ((blk & field) == subfield)
1771 return (bno + pos);
1772 field <<= 1;
1773 subfield <<= 1;
1776 kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1777 panic("ffs_alloccg: block not in map");
1778 return (-1);
1782 * Update the cluster map because of an allocation or free.
1784 * Cnt == 1 means free; cnt == -1 means allocating.
1786 static void
1787 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1789 int32_t *sump;
1790 int32_t *lp;
1791 u_char *freemapp, *mapp;
1792 int i, start, end, forw, back, map, bit;
1794 if (fs->fs_contigsumsize <= 0)
1795 return;
1796 freemapp = cg_clustersfree(cgp);
1797 sump = cg_clustersum(cgp);
1799 * Allocate or clear the actual block.
1801 if (cnt > 0)
1802 setbit(freemapp, blkno);
1803 else
1804 clrbit(freemapp, blkno);
1806 * Find the size of the cluster going forward.
1808 start = blkno + 1;
1809 end = start + fs->fs_contigsumsize;
1810 if (end >= cgp->cg_nclusterblks)
1811 end = cgp->cg_nclusterblks;
1812 mapp = &freemapp[start / NBBY];
1813 map = *mapp++;
1814 bit = 1 << (start % NBBY);
1815 for (i = start; i < end; i++) {
1816 if ((map & bit) == 0)
1817 break;
1818 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1819 bit <<= 1;
1820 } else {
1821 map = *mapp++;
1822 bit = 1;
1825 forw = i - start;
1827 * Find the size of the cluster going backward.
1829 start = blkno - 1;
1830 end = start - fs->fs_contigsumsize;
1831 if (end < 0)
1832 end = -1;
1833 mapp = &freemapp[start / NBBY];
1834 map = *mapp--;
1835 bit = 1 << (start % NBBY);
1836 for (i = start; i > end; i--) {
1837 if ((map & bit) == 0)
1838 break;
1839 if ((i & (NBBY - 1)) != 0) {
1840 bit >>= 1;
1841 } else {
1842 map = *mapp--;
1843 bit = 1 << (NBBY - 1);
1846 back = start - i;
1848 * Account for old cluster and the possibly new forward and
1849 * back clusters.
1851 i = back + forw + 1;
1852 if (i > fs->fs_contigsumsize)
1853 i = fs->fs_contigsumsize;
1854 sump[i] += cnt;
1855 if (back > 0)
1856 sump[back] -= cnt;
1857 if (forw > 0)
1858 sump[forw] -= cnt;
1860 * Update cluster summary information.
1862 lp = &sump[fs->fs_contigsumsize];
1863 for (i = fs->fs_contigsumsize; i > 0; i--)
1864 if (*lp-- > 0)
1865 break;
1866 fs->fs_maxcluster[cgp->cg_cgx] = i;
1870 * Fserr prints the name of a filesystem with an error diagnostic.
1872 * The form of the error message is:
1873 * fs: error message
1875 static void
1876 ffs_fserr(struct fs *fs, uint uid, char *cp)
1878 struct thread *td = curthread;
1879 struct proc *p;
1881 if ((p = td->td_proc) != NULL) {
1882 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1883 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1884 } else {
1885 log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1886 td, uid, fs->fs_fsmnt, cp);