Deal with the netgraph NULL function dereference on shutdown()
[dragonfly.git] / sys / kern / uipc_usrreq.c
blobc12e78a49a73ada890e46971616dbe46d965619e
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35 * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.44 2008/09/06 05:44:58 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/domain.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/mbuf.h>
48 #include <sys/nlookup.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
63 static MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
64 static unp_gen_t unp_gencnt;
65 static u_int unp_count;
67 static struct unp_head unp_shead, unp_dhead;
70 * Unix communications domain.
72 * TODO:
73 * RDM
74 * rethink name space problems
75 * need a proper out-of-band
76 * lock pushdown
78 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
79 static ino_t unp_ino; /* prototype for fake inode numbers */
81 static int unp_attach (struct socket *, struct pru_attach_info *);
82 static void unp_detach (struct unpcb *);
83 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
84 static int unp_connect (struct socket *,struct sockaddr *,
85 struct thread *);
86 static void unp_disconnect (struct unpcb *);
87 static void unp_shutdown (struct unpcb *);
88 static void unp_drop (struct unpcb *, int);
89 static void unp_gc (void);
90 static int unp_gc_clearmarks(struct file *, void *);
91 static int unp_gc_checkmarks(struct file *, void *);
92 static int unp_gc_checkrefs(struct file *, void *);
93 static void unp_scan (struct mbuf *, void (*)(struct file *, void *),
94 void *data);
95 static void unp_mark (struct file *, void *data);
96 static void unp_discard (struct file *, void *);
97 static int unp_internalize (struct mbuf *, struct thread *);
98 static int unp_listen (struct unpcb *, struct thread *);
100 static int
101 uipc_abort(struct socket *so)
103 struct unpcb *unp = so->so_pcb;
105 if (unp == NULL)
106 return EINVAL;
107 unp_drop(unp, ECONNABORTED);
108 unp_detach(unp);
109 sofree(so);
110 return 0;
113 static int
114 uipc_accept(struct socket *so, struct sockaddr **nam)
116 struct unpcb *unp = so->so_pcb;
118 if (unp == NULL)
119 return EINVAL;
122 * Pass back name of connected socket,
123 * if it was bound and we are still connected
124 * (our peer may have closed already!).
126 if (unp->unp_conn && unp->unp_conn->unp_addr) {
127 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
128 } else {
129 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
131 return 0;
134 static int
135 uipc_attach(struct socket *so, int proto, struct pru_attach_info *ai)
137 struct unpcb *unp = so->so_pcb;
139 if (unp != NULL)
140 return EISCONN;
141 return unp_attach(so, ai);
144 static int
145 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
147 struct unpcb *unp = so->so_pcb;
149 if (unp == NULL)
150 return EINVAL;
151 return unp_bind(unp, nam, td);
154 static int
155 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
157 struct unpcb *unp = so->so_pcb;
159 if (unp == NULL)
160 return EINVAL;
161 return unp_connect(so, nam, td);
164 static int
165 uipc_connect2(struct socket *so1, struct socket *so2)
167 struct unpcb *unp = so1->so_pcb;
169 if (unp == NULL)
170 return EINVAL;
172 return unp_connect2(so1, so2);
175 /* control is EOPNOTSUPP */
177 static int
178 uipc_detach(struct socket *so)
180 struct unpcb *unp = so->so_pcb;
182 if (unp == NULL)
183 return EINVAL;
185 unp_detach(unp);
186 return 0;
189 static int
190 uipc_disconnect(struct socket *so)
192 struct unpcb *unp = so->so_pcb;
194 if (unp == NULL)
195 return EINVAL;
196 unp_disconnect(unp);
197 return 0;
200 static int
201 uipc_listen(struct socket *so, struct thread *td)
203 struct unpcb *unp = so->so_pcb;
205 if (unp == NULL || unp->unp_vnode == NULL)
206 return EINVAL;
207 return unp_listen(unp, td);
210 static int
211 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
213 struct unpcb *unp = so->so_pcb;
215 if (unp == NULL)
216 return EINVAL;
217 if (unp->unp_conn && unp->unp_conn->unp_addr)
218 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
219 else {
221 * XXX: It seems that this test always fails even when
222 * connection is established. So, this else clause is
223 * added as workaround to return PF_LOCAL sockaddr.
225 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
227 return 0;
230 static int
231 uipc_rcvd(struct socket *so, int flags)
233 struct unpcb *unp = so->so_pcb;
234 struct socket *so2;
236 if (unp == NULL)
237 return EINVAL;
238 switch (so->so_type) {
239 case SOCK_DGRAM:
240 panic("uipc_rcvd DGRAM?");
241 /*NOTREACHED*/
243 case SOCK_STREAM:
244 case SOCK_SEQPACKET:
245 if (unp->unp_conn == NULL)
246 break;
248 * Because we are transfering mbufs directly to the
249 * peer socket we have to use SSB_STOP on the sender
250 * to prevent it from building up infinite mbufs.
252 so2 = unp->unp_conn->unp_socket;
253 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
254 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
256 so2->so_snd.ssb_flags &= ~SSB_STOP;
257 sowwakeup(so2);
259 break;
261 default:
262 panic("uipc_rcvd unknown socktype");
264 return 0;
267 /* pru_rcvoob is EOPNOTSUPP */
269 static int
270 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
271 struct mbuf *control, struct thread *td)
273 int error = 0;
274 struct unpcb *unp = so->so_pcb;
275 struct socket *so2;
277 if (unp == NULL) {
278 error = EINVAL;
279 goto release;
281 if (flags & PRUS_OOB) {
282 error = EOPNOTSUPP;
283 goto release;
286 if (control && (error = unp_internalize(control, td)))
287 goto release;
289 switch (so->so_type) {
290 case SOCK_DGRAM:
292 struct sockaddr *from;
294 if (nam) {
295 if (unp->unp_conn) {
296 error = EISCONN;
297 break;
299 error = unp_connect(so, nam, td);
300 if (error)
301 break;
302 } else {
303 if (unp->unp_conn == NULL) {
304 error = ENOTCONN;
305 break;
308 so2 = unp->unp_conn->unp_socket;
309 if (unp->unp_addr)
310 from = (struct sockaddr *)unp->unp_addr;
311 else
312 from = &sun_noname;
313 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
314 sorwakeup(so2);
315 m = NULL;
316 control = NULL;
317 } else {
318 error = ENOBUFS;
320 if (nam)
321 unp_disconnect(unp);
322 break;
325 case SOCK_STREAM:
326 case SOCK_SEQPACKET:
327 /* Connect if not connected yet. */
329 * Note: A better implementation would complain
330 * if not equal to the peer's address.
332 if (!(so->so_state & SS_ISCONNECTED)) {
333 if (nam) {
334 error = unp_connect(so, nam, td);
335 if (error)
336 break; /* XXX */
337 } else {
338 error = ENOTCONN;
339 break;
343 if (so->so_state & SS_CANTSENDMORE) {
344 error = EPIPE;
345 break;
347 if (unp->unp_conn == NULL)
348 panic("uipc_send connected but no connection?");
349 so2 = unp->unp_conn->unp_socket;
351 * Send to paired receive port, and then reduce
352 * send buffer hiwater marks to maintain backpressure.
353 * Wake up readers.
355 if (control) {
356 if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
357 control = NULL;
358 m = NULL;
360 } else if (so->so_type == SOCK_SEQPACKET) {
361 sbappendrecord(&so2->so_rcv.sb, m);
362 m = NULL;
363 } else {
364 sbappend(&so2->so_rcv.sb, m);
365 m = NULL;
369 * Because we are transfering mbufs directly to the
370 * peer socket we have to use SSB_STOP on the sender
371 * to prevent it from building up infinite mbufs.
373 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
374 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
376 so->so_snd.ssb_flags |= SSB_STOP;
378 sorwakeup(so2);
379 break;
381 default:
382 panic("uipc_send unknown socktype");
386 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
388 if (flags & PRUS_EOF) {
389 socantsendmore(so);
390 unp_shutdown(unp);
393 if (control && error != 0)
394 unp_dispose(control);
396 release:
397 if (control)
398 m_freem(control);
399 if (m)
400 m_freem(m);
401 return error;
404 static int
405 uipc_sense(struct socket *so, struct stat *sb)
407 struct unpcb *unp = so->so_pcb;
409 if (unp == NULL)
410 return EINVAL;
411 sb->st_blksize = so->so_snd.ssb_hiwat;
412 sb->st_dev = NOUDEV;
413 if (unp->unp_ino == 0) /* make up a non-zero inode number */
414 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
415 sb->st_ino = unp->unp_ino;
416 return (0);
419 static int
420 uipc_shutdown(struct socket *so)
422 struct unpcb *unp = so->so_pcb;
424 if (unp == NULL)
425 return EINVAL;
426 socantsendmore(so);
427 unp_shutdown(unp);
428 return 0;
431 static int
432 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
434 struct unpcb *unp = so->so_pcb;
436 if (unp == NULL)
437 return EINVAL;
438 if (unp->unp_addr)
439 *nam = dup_sockaddr((struct sockaddr *)unp->unp_addr);
440 return 0;
443 struct pr_usrreqs uipc_usrreqs = {
444 .pru_abort = uipc_abort,
445 .pru_accept = uipc_accept,
446 .pru_attach = uipc_attach,
447 .pru_bind = uipc_bind,
448 .pru_connect = uipc_connect,
449 .pru_connect2 = uipc_connect2,
450 .pru_control = pru_control_notsupp,
451 .pru_detach = uipc_detach,
452 .pru_disconnect = uipc_disconnect,
453 .pru_listen = uipc_listen,
454 .pru_peeraddr = uipc_peeraddr,
455 .pru_rcvd = uipc_rcvd,
456 .pru_rcvoob = pru_rcvoob_notsupp,
457 .pru_send = uipc_send,
458 .pru_sense = uipc_sense,
459 .pru_shutdown = uipc_shutdown,
460 .pru_sockaddr = uipc_sockaddr,
461 .pru_sosend = sosend,
462 .pru_soreceive = soreceive,
463 .pru_sopoll = sopoll
467 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
469 struct unpcb *unp = so->so_pcb;
470 int error = 0;
472 switch (sopt->sopt_dir) {
473 case SOPT_GET:
474 switch (sopt->sopt_name) {
475 case LOCAL_PEERCRED:
476 if (unp->unp_flags & UNP_HAVEPC)
477 soopt_from_kbuf(sopt, &unp->unp_peercred,
478 sizeof(unp->unp_peercred));
479 else {
480 if (so->so_type == SOCK_STREAM)
481 error = ENOTCONN;
482 else if (so->so_type == SOCK_SEQPACKET)
483 error = ENOTCONN;
484 else
485 error = EINVAL;
487 break;
488 default:
489 error = EOPNOTSUPP;
490 break;
492 break;
493 case SOPT_SET:
494 default:
495 error = EOPNOTSUPP;
496 break;
498 return (error);
502 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
503 * for stream sockets, although the total for sender and receiver is
504 * actually only PIPSIZ.
506 * Datagram sockets really use the sendspace as the maximum datagram size,
507 * and don't really want to reserve the sendspace. Their recvspace should
508 * be large enough for at least one max-size datagram plus address.
510 * We want the local send/recv space to be significant larger then lo0's
511 * mtu of 16384.
513 #ifndef PIPSIZ
514 #define PIPSIZ 57344
515 #endif
516 static u_long unpst_sendspace = PIPSIZ;
517 static u_long unpst_recvspace = PIPSIZ;
518 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
519 static u_long unpdg_recvspace = 4*1024;
521 static int unp_rights; /* file descriptors in flight */
522 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
524 SYSCTL_DECL(_net_local_seqpacket);
525 SYSCTL_DECL(_net_local_stream);
526 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
527 &unpst_sendspace, 0, "");
528 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
529 &unpst_recvspace, 0, "");
531 SYSCTL_DECL(_net_local_dgram);
532 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
533 &unpdg_sendspace, 0, "");
534 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
535 &unpdg_recvspace, 0, "");
537 SYSCTL_DECL(_net_local);
538 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
540 static int
541 unp_attach(struct socket *so, struct pru_attach_info *ai)
543 struct unpcb *unp;
544 int error;
546 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
547 switch (so->so_type) {
549 case SOCK_STREAM:
550 case SOCK_SEQPACKET:
551 error = soreserve(so, unpst_sendspace, unpst_recvspace,
552 ai->sb_rlimit);
553 break;
555 case SOCK_DGRAM:
556 error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
557 ai->sb_rlimit);
558 break;
560 default:
561 panic("unp_attach");
563 if (error)
564 return (error);
566 unp = kmalloc(sizeof(*unp), M_UNPCB, M_NOWAIT|M_ZERO);
567 if (unp == NULL)
568 return (ENOBUFS);
569 unp->unp_gencnt = ++unp_gencnt;
570 unp_count++;
571 LIST_INIT(&unp->unp_refs);
572 unp->unp_socket = so;
573 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */
574 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
575 : &unp_shead, unp, unp_link);
576 so->so_pcb = (caddr_t)unp;
577 return (0);
580 static void
581 unp_detach(struct unpcb *unp)
583 LIST_REMOVE(unp, unp_link);
584 unp->unp_gencnt = ++unp_gencnt;
585 --unp_count;
586 if (unp->unp_vnode) {
587 unp->unp_vnode->v_socket = NULL;
588 vrele(unp->unp_vnode);
589 unp->unp_vnode = NULL;
591 if (unp->unp_conn)
592 unp_disconnect(unp);
593 while (!LIST_EMPTY(&unp->unp_refs))
594 unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
595 soisdisconnected(unp->unp_socket);
596 unp->unp_socket->so_pcb = NULL;
597 if (unp_rights) {
599 * Normally the receive buffer is flushed later,
600 * in sofree, but if our receive buffer holds references
601 * to descriptors that are now garbage, we will dispose
602 * of those descriptor references after the garbage collector
603 * gets them (resulting in a "panic: closef: count < 0").
605 sorflush(unp->unp_socket);
606 unp_gc();
608 if (unp->unp_addr)
609 kfree(unp->unp_addr, M_SONAME);
610 kfree(unp, M_UNPCB);
613 static int
614 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
616 struct proc *p = td->td_proc;
617 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
618 struct vnode *vp;
619 struct vattr vattr;
620 int error, namelen;
621 struct nlookupdata nd;
622 char buf[SOCK_MAXADDRLEN];
624 if (unp->unp_vnode != NULL)
625 return (EINVAL);
626 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
627 if (namelen <= 0)
628 return (EINVAL);
629 strncpy(buf, soun->sun_path, namelen);
630 buf[namelen] = 0; /* null-terminate the string */
631 error = nlookup_init(&nd, buf, UIO_SYSSPACE,
632 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
633 if (error == 0)
634 error = nlookup(&nd);
635 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
636 error = EADDRINUSE;
637 if (error)
638 goto done;
640 VATTR_NULL(&vattr);
641 vattr.va_type = VSOCK;
642 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
643 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
644 if (error == 0) {
645 vp->v_socket = unp->unp_socket;
646 unp->unp_vnode = vp;
647 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
648 vn_unlock(vp);
650 done:
651 nlookup_done(&nd);
652 return (error);
655 static int
656 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
658 struct proc *p = td->td_proc;
659 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
660 struct vnode *vp;
661 struct socket *so2, *so3;
662 struct unpcb *unp, *unp2, *unp3;
663 int error, len;
664 struct nlookupdata nd;
665 char buf[SOCK_MAXADDRLEN];
667 KKASSERT(p);
669 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
670 if (len <= 0)
671 return EINVAL;
672 strncpy(buf, soun->sun_path, len);
673 buf[len] = 0;
675 vp = NULL;
676 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
677 if (error == 0)
678 error = nlookup(&nd);
679 if (error == 0)
680 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
681 nlookup_done(&nd);
682 if (error)
683 return (error);
685 if (vp->v_type != VSOCK) {
686 error = ENOTSOCK;
687 goto bad;
689 error = VOP_ACCESS(vp, VWRITE, p->p_ucred);
690 if (error)
691 goto bad;
692 so2 = vp->v_socket;
693 if (so2 == NULL) {
694 error = ECONNREFUSED;
695 goto bad;
697 if (so->so_type != so2->so_type) {
698 error = EPROTOTYPE;
699 goto bad;
701 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
702 if (!(so2->so_options & SO_ACCEPTCONN) ||
703 (so3 = sonewconn(so2, 0)) == NULL) {
704 error = ECONNREFUSED;
705 goto bad;
707 unp = so->so_pcb;
708 unp2 = so2->so_pcb;
709 unp3 = so3->so_pcb;
710 if (unp2->unp_addr)
711 unp3->unp_addr = (struct sockaddr_un *)
712 dup_sockaddr((struct sockaddr *)unp2->unp_addr);
715 * unp_peercred management:
717 * The connecter's (client's) credentials are copied
718 * from its process structure at the time of connect()
719 * (which is now).
721 cru2x(p->p_ucred, &unp3->unp_peercred);
722 unp3->unp_flags |= UNP_HAVEPC;
724 * The receiver's (server's) credentials are copied
725 * from the unp_peercred member of socket on which the
726 * former called listen(); unp_listen() cached that
727 * process's credentials at that time so we can use
728 * them now.
730 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
731 ("unp_connect: listener without cached peercred"));
732 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
733 sizeof(unp->unp_peercred));
734 unp->unp_flags |= UNP_HAVEPC;
736 so2 = so3;
738 error = unp_connect2(so, so2);
739 bad:
740 vput(vp);
741 return (error);
745 unp_connect2(struct socket *so, struct socket *so2)
747 struct unpcb *unp = so->so_pcb;
748 struct unpcb *unp2;
750 if (so2->so_type != so->so_type)
751 return (EPROTOTYPE);
752 unp2 = so2->so_pcb;
753 unp->unp_conn = unp2;
754 switch (so->so_type) {
756 case SOCK_DGRAM:
757 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
758 soisconnected(so);
759 break;
761 case SOCK_STREAM:
762 case SOCK_SEQPACKET:
763 unp2->unp_conn = unp;
764 soisconnected(so);
765 soisconnected(so2);
766 break;
768 default:
769 panic("unp_connect2");
771 return (0);
774 static void
775 unp_disconnect(struct unpcb *unp)
777 struct unpcb *unp2 = unp->unp_conn;
779 if (unp2 == NULL)
780 return;
782 unp->unp_conn = NULL;
784 switch (unp->unp_socket->so_type) {
785 case SOCK_DGRAM:
786 LIST_REMOVE(unp, unp_reflink);
787 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
788 break;
789 case SOCK_STREAM:
790 case SOCK_SEQPACKET:
791 soisdisconnected(unp->unp_socket);
792 unp2->unp_conn = NULL;
793 soisdisconnected(unp2->unp_socket);
794 break;
798 #ifdef notdef
799 void
800 unp_abort(struct unpcb *unp)
803 unp_detach(unp);
805 #endif
807 static int
808 prison_unpcb(struct thread *td, struct unpcb *unp)
810 struct proc *p;
812 if (td == NULL)
813 return (0);
814 if ((p = td->td_proc) == NULL)
815 return (0);
816 if (!p->p_ucred->cr_prison)
817 return (0);
818 if (p->p_fd->fd_rdir == unp->unp_rvnode)
819 return (0);
820 return (1);
823 static int
824 unp_pcblist(SYSCTL_HANDLER_ARGS)
826 int error, i, n;
827 struct unpcb *unp, **unp_list;
828 unp_gen_t gencnt;
829 struct unp_head *head;
831 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
833 KKASSERT(curproc != NULL);
836 * The process of preparing the PCB list is too time-consuming and
837 * resource-intensive to repeat twice on every request.
839 if (req->oldptr == NULL) {
840 n = unp_count;
841 req->oldidx = (n + n/8) * sizeof(struct xunpcb);
842 return 0;
845 if (req->newptr != NULL)
846 return EPERM;
849 * OK, now we're committed to doing something.
851 gencnt = unp_gencnt;
852 n = unp_count;
854 unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
856 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
857 unp = LIST_NEXT(unp, unp_link)) {
858 if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
859 unp_list[i++] = unp;
861 n = i; /* in case we lost some during malloc */
863 error = 0;
864 for (i = 0; i < n; i++) {
865 unp = unp_list[i];
866 if (unp->unp_gencnt <= gencnt) {
867 struct xunpcb xu;
868 xu.xu_len = sizeof xu;
869 xu.xu_unpp = unp;
871 * XXX - need more locking here to protect against
872 * connect/disconnect races for SMP.
874 if (unp->unp_addr)
875 bcopy(unp->unp_addr, &xu.xu_addr,
876 unp->unp_addr->sun_len);
877 if (unp->unp_conn && unp->unp_conn->unp_addr)
878 bcopy(unp->unp_conn->unp_addr,
879 &xu.xu_caddr,
880 unp->unp_conn->unp_addr->sun_len);
881 bcopy(unp, &xu.xu_unp, sizeof *unp);
882 sotoxsocket(unp->unp_socket, &xu.xu_socket);
883 error = SYSCTL_OUT(req, &xu, sizeof xu);
886 kfree(unp_list, M_TEMP);
887 return error;
890 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
891 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
892 "List of active local datagram sockets");
893 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
894 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
895 "List of active local stream sockets");
896 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
897 (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
898 "List of active local seqpacket stream sockets");
900 static void
901 unp_shutdown(struct unpcb *unp)
903 struct socket *so;
905 if ((unp->unp_socket->so_type == SOCK_STREAM ||
906 unp->unp_socket->so_type == SOCK_SEQPACKET) &&
907 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
908 socantrcvmore(so);
912 static void
913 unp_drop(struct unpcb *unp, int err)
915 struct socket *so = unp->unp_socket;
917 so->so_error = err;
918 unp_disconnect(unp);
921 #ifdef notdef
922 void
923 unp_drain(void)
927 #endif
930 unp_externalize(struct mbuf *rights)
932 struct proc *p = curproc; /* XXX */
933 int i;
934 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
935 int *fdp;
936 struct file **rp;
937 struct file *fp;
938 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
939 / sizeof (struct file *);
940 int f;
943 * if the new FD's will not fit, then we free them all
945 if (!fdavail(p, newfds)) {
946 rp = (struct file **)CMSG_DATA(cm);
947 for (i = 0; i < newfds; i++) {
948 fp = *rp;
950 * zero the pointer before calling unp_discard,
951 * since it may end up in unp_gc()..
953 *rp++ = 0;
954 unp_discard(fp, NULL);
956 return (EMSGSIZE);
959 * now change each pointer to an fd in the global table to
960 * an integer that is the index to the local fd table entry
961 * that we set up to point to the global one we are transferring.
962 * If sizeof (struct file *) is bigger than or equal to sizeof int,
963 * then do it in forward order. In that case, an integer will
964 * always come in the same place or before its corresponding
965 * struct file pointer.
966 * If sizeof (struct file *) is smaller than sizeof int, then
967 * do it in reverse order.
969 if (sizeof (struct file *) >= sizeof (int)) {
970 fdp = (int *)(cm + 1);
971 rp = (struct file **)CMSG_DATA(cm);
972 for (i = 0; i < newfds; i++) {
973 if (fdalloc(p, 0, &f))
974 panic("unp_externalize");
975 fp = *rp++;
976 fsetfd(p, fp, f);
977 fdrop(fp);
978 spin_lock_wr(&unp_spin);
979 fp->f_msgcount--;
980 unp_rights--;
981 spin_unlock_wr(&unp_spin);
982 *fdp++ = f;
984 } else {
985 fdp = (int *)(cm + 1) + newfds - 1;
986 rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
987 for (i = 0; i < newfds; i++) {
988 if (fdalloc(p, 0, &f))
989 panic("unp_externalize");
990 fp = *rp--;
991 fsetfd(p, fp, f);
992 fdrop(fp);
993 spin_lock_wr(&unp_spin);
994 fp->f_msgcount--;
995 unp_rights--;
996 spin_unlock_wr(&unp_spin);
997 *fdp-- = f;
1002 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1003 * differs.
1005 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1006 rights->m_len = cm->cmsg_len;
1007 return (0);
1010 void
1011 unp_init(void)
1013 LIST_INIT(&unp_dhead);
1014 LIST_INIT(&unp_shead);
1015 spin_init(&unp_spin);
1018 static int
1019 unp_internalize(struct mbuf *control, struct thread *td)
1021 struct proc *p = td->td_proc;
1022 struct filedesc *fdescp;
1023 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1024 struct file **rp;
1025 struct file *fp;
1026 int i, fd, *fdp;
1027 struct cmsgcred *cmcred;
1028 int oldfds;
1029 u_int newlen;
1031 KKASSERT(p);
1032 fdescp = p->p_fd;
1033 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1034 cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len)
1035 return (EINVAL);
1038 * Fill in credential information.
1040 if (cm->cmsg_type == SCM_CREDS) {
1041 cmcred = (struct cmsgcred *)(cm + 1);
1042 cmcred->cmcred_pid = p->p_pid;
1043 cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1044 cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1045 cmcred->cmcred_euid = p->p_ucred->cr_uid;
1046 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1047 CMGROUP_MAX);
1048 for (i = 0; i < cmcred->cmcred_ngroups; i++)
1049 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1050 return(0);
1053 oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1055 * check that all the FDs passed in refer to legal OPEN files
1056 * If not, reject the entire operation.
1058 fdp = (int *)(cm + 1);
1059 for (i = 0; i < oldfds; i++) {
1060 fd = *fdp++;
1061 if ((unsigned)fd >= fdescp->fd_nfiles ||
1062 fdescp->fd_files[fd].fp == NULL)
1063 return (EBADF);
1064 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE)
1065 return (EOPNOTSUPP);
1068 * Now replace the integer FDs with pointers to
1069 * the associated global file table entry..
1070 * Allocate a bigger buffer as necessary. But if an cluster is not
1071 * enough, return E2BIG.
1073 newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1074 if (newlen > MCLBYTES)
1075 return (E2BIG);
1076 if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1077 if (control->m_flags & M_EXT)
1078 return (E2BIG);
1079 MCLGET(control, MB_WAIT);
1080 if (!(control->m_flags & M_EXT))
1081 return (ENOBUFS);
1083 /* copy the data to the cluster */
1084 memcpy(mtod(control, char *), cm, cm->cmsg_len);
1085 cm = mtod(control, struct cmsghdr *);
1089 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1090 * differs.
1092 control->m_len = cm->cmsg_len = newlen;
1095 * Transform the file descriptors into struct file pointers.
1096 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1097 * then do it in reverse order so that the int won't get until
1098 * we're done.
1099 * If sizeof (struct file *) is smaller than sizeof int, then
1100 * do it in forward order.
1102 if (sizeof (struct file *) >= sizeof (int)) {
1103 fdp = (int *)(cm + 1) + oldfds - 1;
1104 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1105 for (i = 0; i < oldfds; i++) {
1106 fp = fdescp->fd_files[*fdp--].fp;
1107 *rp-- = fp;
1108 fhold(fp);
1109 spin_lock_wr(&unp_spin);
1110 fp->f_msgcount++;
1111 unp_rights++;
1112 spin_unlock_wr(&unp_spin);
1114 } else {
1115 fdp = (int *)(cm + 1);
1116 rp = (struct file **)CMSG_DATA(cm);
1117 for (i = 0; i < oldfds; i++) {
1118 fp = fdescp->fd_files[*fdp++].fp;
1119 *rp++ = fp;
1120 fhold(fp);
1121 spin_lock_wr(&unp_spin);
1122 fp->f_msgcount++;
1123 unp_rights++;
1124 spin_unlock_wr(&unp_spin);
1127 return (0);
1131 * Garbage collect in-transit file descriptors that get lost due to
1132 * loops (i.e. when a socket is sent to another process over itself,
1133 * and more complex situations).
1135 * NOT MPSAFE - TODO socket flush code and maybe closef. Rest is MPSAFE.
1138 struct unp_gc_info {
1139 struct file **extra_ref;
1140 struct file *locked_fp;
1141 int defer;
1142 int index;
1143 int maxindex;
1146 static void
1147 unp_gc(void)
1149 struct unp_gc_info info;
1150 static boolean_t unp_gcing;
1151 struct file **fpp;
1152 int i;
1154 spin_lock_wr(&unp_spin);
1155 if (unp_gcing) {
1156 spin_unlock_wr(&unp_spin);
1157 return;
1159 unp_gcing = TRUE;
1160 spin_unlock_wr(&unp_spin);
1163 * before going through all this, set all FDs to
1164 * be NOT defered and NOT externally accessible
1166 info.defer = 0;
1167 allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1168 do {
1169 allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1170 } while (info.defer);
1173 * We grab an extra reference to each of the file table entries
1174 * that are not otherwise accessible and then free the rights
1175 * that are stored in messages on them.
1177 * The bug in the orginal code is a little tricky, so I'll describe
1178 * what's wrong with it here.
1180 * It is incorrect to simply unp_discard each entry for f_msgcount
1181 * times -- consider the case of sockets A and B that contain
1182 * references to each other. On a last close of some other socket,
1183 * we trigger a gc since the number of outstanding rights (unp_rights)
1184 * is non-zero. If during the sweep phase the gc code un_discards,
1185 * we end up doing a (full) closef on the descriptor. A closef on A
1186 * results in the following chain. Closef calls soo_close, which
1187 * calls soclose. Soclose calls first (through the switch
1188 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1189 * returns because the previous instance had set unp_gcing, and
1190 * we return all the way back to soclose, which marks the socket
1191 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1192 * to free up the rights that are queued in messages on the socket A,
1193 * i.e., the reference on B. The sorflush calls via the dom_dispose
1194 * switch unp_dispose, which unp_scans with unp_discard. This second
1195 * instance of unp_discard just calls closef on B.
1197 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1198 * which results in another closef on A. Unfortunately, A is already
1199 * being closed, and the descriptor has already been marked with
1200 * SS_NOFDREF, and soclose panics at this point.
1202 * Here, we first take an extra reference to each inaccessible
1203 * descriptor. Then, we call sorflush ourself, since we know
1204 * it is a Unix domain socket anyhow. After we destroy all the
1205 * rights carried in messages, we do a last closef to get rid
1206 * of our extra reference. This is the last close, and the
1207 * unp_detach etc will shut down the socket.
1209 * 91/09/19, bsy@cs.cmu.edu
1211 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1212 info.maxindex = 256;
1214 do {
1216 * Look for matches
1218 info.index = 0;
1219 allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1222 * For each FD on our hit list, do the following two things
1224 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1225 struct file *tfp = *fpp;
1226 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1227 sorflush((struct socket *)(tfp->f_data));
1229 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1230 closef(*fpp, NULL);
1231 } while (info.index == info.maxindex);
1232 kfree((caddr_t)info.extra_ref, M_FILE);
1233 unp_gcing = FALSE;
1237 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1239 static int
1240 unp_gc_checkrefs(struct file *fp, void *data)
1242 struct unp_gc_info *info = data;
1244 if (fp->f_count == 0)
1245 return(0);
1246 if (info->index == info->maxindex)
1247 return(-1);
1250 * If all refs are from msgs, and it's not marked accessible
1251 * then it must be referenced from some unreachable cycle
1252 * of (shut-down) FDs, so include it in our
1253 * list of FDs to remove
1255 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1256 info->extra_ref[info->index++] = fp;
1257 fhold(fp);
1259 return(0);
1263 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1265 static int
1266 unp_gc_clearmarks(struct file *fp, void *data __unused)
1268 fp->f_flag &= ~(FMARK|FDEFER);
1269 return(0);
1273 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1275 static int
1276 unp_gc_checkmarks(struct file *fp, void *data)
1278 struct unp_gc_info *info = data;
1279 struct socket *so;
1282 * If the file is not open, skip it
1284 if (fp->f_count == 0)
1285 return(0);
1287 * If we already marked it as 'defer' in a
1288 * previous pass, then try process it this time
1289 * and un-mark it
1291 if (fp->f_flag & FDEFER) {
1292 fp->f_flag &= ~FDEFER;
1293 --info->defer;
1294 } else {
1296 * if it's not defered, then check if it's
1297 * already marked.. if so skip it
1299 if (fp->f_flag & FMARK)
1300 return(0);
1302 * If all references are from messages
1303 * in transit, then skip it. it's not
1304 * externally accessible.
1306 if (fp->f_count == fp->f_msgcount)
1307 return(0);
1309 * If it got this far then it must be
1310 * externally accessible.
1312 fp->f_flag |= FMARK;
1315 * either it was defered, or it is externally
1316 * accessible and not already marked so.
1317 * Now check if it is possibly one of OUR sockets.
1319 if (fp->f_type != DTYPE_SOCKET ||
1320 (so = (struct socket *)fp->f_data) == NULL)
1321 return(0);
1322 if (so->so_proto->pr_domain != &localdomain ||
1323 !(so->so_proto->pr_flags & PR_RIGHTS))
1324 return(0);
1325 #ifdef notdef
1326 XXX note: exclusive fp->f_spin lock held
1327 if (so->so_rcv.sb_flags & SB_LOCK) {
1329 * This is problematical; it's not clear
1330 * we need to wait for the sockbuf to be
1331 * unlocked (on a uniprocessor, at least),
1332 * and it's also not clear what to do
1333 * if sbwait returns an error due to receipt
1334 * of a signal. If sbwait does return
1335 * an error, we'll go into an infinite
1336 * loop. Delete all of this for now.
1338 sbwait(&so->so_rcv);
1339 goto restart;
1341 #endif
1343 * So, Ok, it's one of our sockets and it IS externally
1344 * accessible (or was defered). Now we look
1345 * to see if we hold any file descriptors in its
1346 * message buffers. Follow those links and mark them
1347 * as accessible too.
1349 info->locked_fp = fp;
1350 /* spin_lock_wr(&so->so_rcv.sb_spin); */
1351 unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1352 /* spin_unlock_wr(&so->so_rcv.sb_spin);*/
1353 return (0);
1356 void
1357 unp_dispose(struct mbuf *m)
1359 if (m)
1360 unp_scan(m, unp_discard, NULL);
1363 static int
1364 unp_listen(struct unpcb *unp, struct thread *td)
1366 struct proc *p = td->td_proc;
1368 KKASSERT(p);
1369 cru2x(p->p_ucred, &unp->unp_peercred);
1370 unp->unp_flags |= UNP_HAVEPCCACHED;
1371 return (0);
1374 static void
1375 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1377 struct mbuf *m;
1378 struct file **rp;
1379 struct cmsghdr *cm;
1380 int i;
1381 int qfds;
1383 while (m0) {
1384 for (m = m0; m; m = m->m_next) {
1385 if (m->m_type == MT_CONTROL &&
1386 m->m_len >= sizeof(*cm)) {
1387 cm = mtod(m, struct cmsghdr *);
1388 if (cm->cmsg_level != SOL_SOCKET ||
1389 cm->cmsg_type != SCM_RIGHTS)
1390 continue;
1391 qfds = (cm->cmsg_len -
1392 (CMSG_DATA(cm) - (u_char *)cm))
1393 / sizeof (struct file *);
1394 rp = (struct file **)CMSG_DATA(cm);
1395 for (i = 0; i < qfds; i++)
1396 (*op)(*rp++, data);
1397 break; /* XXX, but saves time */
1400 m0 = m0->m_nextpkt;
1404 static void
1405 unp_mark(struct file *fp, void *data)
1407 struct unp_gc_info *info = data;
1409 if (info->locked_fp != fp)
1410 spin_lock_wr(&fp->f_spin);
1411 if ((fp->f_flag & FMARK) == 0) {
1412 ++info->defer;
1413 fp->f_flag |= (FMARK|FDEFER);
1415 if (info->locked_fp != fp)
1416 spin_unlock_wr(&fp->f_spin);
1419 static void
1420 unp_discard(struct file *fp, void *data __unused)
1422 spin_lock_wr(&unp_spin);
1423 fp->f_msgcount--;
1424 unp_rights--;
1425 spin_unlock_wr(&unp_spin);
1426 closef(fp, NULL);