2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40 * $DragonFly: src/sys/kern/kern_fork.c,v 1.77 2008/05/18 20:02:02 nth Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
67 #include <sys/vmmeter.h>
68 #include <sys/thread2.h>
69 #include <sys/signal2.h>
70 #include <sys/spinlock2.h>
72 static MALLOC_DEFINE(M_ATFORK
, "atfork", "atfork callback");
75 * These are the stuctures used to create a callout list for things to do
76 * when forking a process
80 TAILQ_ENTRY(forklist
) next
;
83 TAILQ_HEAD(forklist_head
, forklist
);
84 static struct forklist_head fork_list
= TAILQ_HEAD_INITIALIZER(fork_list
);
86 static struct lwp
*lwp_fork(struct lwp
*, struct proc
*, int flags
);
88 int forksleep
; /* Place for fork1() to sleep on. */
91 * Red-Black tree support for LWPs
95 rb_lwp_compare(struct lwp
*lp1
, struct lwp
*lp2
)
97 if (lp1
->lwp_tid
< lp2
->lwp_tid
)
99 if (lp1
->lwp_tid
> lp2
->lwp_tid
)
104 RB_GENERATE2(lwp_rb_tree
, lwp
, u
.lwp_rbnode
, rb_lwp_compare
, lwpid_t
, lwp_tid
);
109 sys_fork(struct fork_args
*uap
)
111 struct lwp
*lp
= curthread
->td_lwp
;
115 error
= fork1(lp
, RFFDG
| RFPROC
| RFPGLOCK
, &p2
);
117 start_forked_proc(lp
, p2
);
118 uap
->sysmsg_fds
[0] = p2
->p_pid
;
119 uap
->sysmsg_fds
[1] = 0;
126 sys_vfork(struct vfork_args
*uap
)
128 struct lwp
*lp
= curthread
->td_lwp
;
132 error
= fork1(lp
, RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
| RFPGLOCK
, &p2
);
134 start_forked_proc(lp
, p2
);
135 uap
->sysmsg_fds
[0] = p2
->p_pid
;
136 uap
->sysmsg_fds
[1] = 0;
142 * Handle rforks. An rfork may (1) operate on the current process without
143 * creating a new, (2) create a new process that shared the current process's
144 * vmspace, signals, and/or descriptors, or (3) create a new process that does
145 * not share these things (normal fork).
147 * Note that we only call start_forked_proc() if a new process is actually
150 * rfork { int flags }
153 sys_rfork(struct rfork_args
*uap
)
155 struct lwp
*lp
= curthread
->td_lwp
;
159 if ((uap
->flags
& RFKERNELONLY
) != 0)
162 error
= fork1(lp
, uap
->flags
| RFPGLOCK
, &p2
);
165 start_forked_proc(lp
, p2
);
166 uap
->sysmsg_fds
[0] = p2
? p2
->p_pid
: 0;
167 uap
->sysmsg_fds
[1] = 0;
173 sys_lwp_create(struct lwp_create_args
*uap
)
175 struct proc
*p
= curproc
;
177 struct lwp_params params
;
180 error
= copyin(uap
->params
, ¶ms
, sizeof(params
));
184 plimit_lwp_fork(p
); /* force exclusive access */
185 lp
= lwp_fork(curthread
->td_lwp
, p
, RFPROC
);
186 error
= cpu_prepare_lwp(lp
, ¶ms
);
187 if (params
.tid1
!= NULL
&&
188 (error
= copyout(&lp
->lwp_tid
, params
.tid1
, sizeof(lp
->lwp_tid
))))
190 if (params
.tid2
!= NULL
&&
191 (error
= copyout(&lp
->lwp_tid
, params
.tid2
, sizeof(lp
->lwp_tid
))))
195 * Now schedule the new lwp.
197 p
->p_usched
->resetpriority(lp
);
199 lp
->lwp_stat
= LSRUN
;
200 p
->p_usched
->setrunqueue(lp
);
206 lwp_rb_tree_RB_REMOVE(&p
->p_lwp_tree
, lp
);
208 /* lwp_dispose expects an exited lwp, and a held proc */
209 lp
->lwp_flag
|= LWP_WEXIT
;
210 lp
->lwp_thread
->td_flags
|= TDF_EXITING
;
217 int nprocs
= 1; /* process 0 */
220 fork1(struct lwp
*lp1
, int flags
, struct proc
**procp
)
222 struct proc
*p1
= lp1
->lwp_proc
;
223 struct proc
*p2
, *pptr
;
227 static int curfail
= 0;
228 static struct timeval lastfail
;
230 struct filedesc_to_leader
*fdtol
;
232 if ((flags
& (RFFDG
|RFCFDG
)) == (RFFDG
|RFCFDG
))
236 * Here we don't create a new process, but we divorce
237 * certain parts of a process from itself.
239 if ((flags
& RFPROC
) == 0) {
241 * This kind of stunt does not work anymore if
242 * there are native threads (lwps) running
244 if (p1
->p_nthreads
!= 1)
247 vm_fork(p1
, 0, flags
);
250 * Close all file descriptors.
252 if (flags
& RFCFDG
) {
253 struct filedesc
*fdtmp
;
260 * Unshare file descriptors (from parent.)
263 if (p1
->p_fd
->fd_refcnt
> 1) {
264 struct filedesc
*newfd
;
275 * Interlock against process group signal delivery. If signals
276 * are pending after the interlock is obtained we have to restart
277 * the system call to process the signals. If we don't the child
278 * can miss a pgsignal (such as ^C) sent during the fork.
280 * We can't use CURSIG() here because it will process any STOPs
281 * and cause the process group lock to be held indefinitely. If
282 * a STOP occurs, the fork will be restarted after the CONT.
286 if ((flags
& RFPGLOCK
) && (pgrp
= p1
->p_pgrp
) != NULL
) {
287 lockmgr(&pgrp
->pg_lock
, LK_SHARED
);
295 * Although process entries are dynamically created, we still keep
296 * a global limit on the maximum number we will create. Don't allow
297 * a nonprivileged user to use the last ten processes; don't let root
298 * exceed the limit. The variable nprocs is the current number of
299 * processes, maxproc is the limit.
301 uid
= p1
->p_ucred
->cr_ruid
;
302 if ((nprocs
>= maxproc
- 10 && uid
!= 0) || nprocs
>= maxproc
) {
303 if (ppsratecheck(&lastfail
, &curfail
, 1))
304 kprintf("maxproc limit exceeded by uid %d, please "
305 "see tuning(7) and login.conf(5).\n", uid
);
306 tsleep(&forksleep
, 0, "fork", hz
/ 2);
311 * Increment the nprocs resource before blocking can occur. There
312 * are hard-limits as to the number of processes that can run.
317 * Increment the count of procs running with this uid. Don't allow
318 * a nonprivileged user to exceed their current limit.
320 ok
= chgproccnt(p1
->p_ucred
->cr_ruidinfo
, 1,
321 (uid
!= 0) ? p1
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
: 0);
324 * Back out the process count
327 if (ppsratecheck(&lastfail
, &curfail
, 1))
328 kprintf("maxproc limit exceeded by uid %d, please "
329 "see tuning(7) and login.conf(5).\n", uid
);
330 tsleep(&forksleep
, 0, "fork", hz
/ 2);
335 /* Allocate new proc. */
336 p2
= kmalloc(sizeof(struct proc
), M_PROC
, M_WAITOK
|M_ZERO
);
339 * Setup linkage for kernel based threading XXX lwp
341 if (flags
& RFTHREAD
) {
342 p2
->p_peers
= p1
->p_peers
;
344 p2
->p_leader
= p1
->p_leader
;
349 RB_INIT(&p2
->p_lwp_tree
);
350 spin_init(&p2
->p_spin
);
351 p2
->p_lasttid
= -1; /* first tid will be 0 */
354 * Setting the state to SIDL protects the partially initialized
355 * process once it starts getting hooked into the rest of the system.
358 proc_add_allproc(p2
);
361 * Make a proc table entry for the new process.
362 * The whole structure was zeroed above, so copy the section that is
363 * copied directly from the parent.
365 bcopy(&p1
->p_startcopy
, &p2
->p_startcopy
,
366 (unsigned) ((caddr_t
)&p2
->p_endcopy
- (caddr_t
)&p2
->p_startcopy
));
369 * Duplicate sub-structures as needed.
370 * Increase reference counts on shared objects.
372 if (p1
->p_flag
& P_PROFIL
)
374 p2
->p_ucred
= crhold(p1
->p_ucred
);
376 kprintf("Debug: p_lock race averted\n");
379 if (jailed(p2
->p_ucred
))
380 p2
->p_flag
|= P_JAILED
;
383 p2
->p_args
->ar_ref
++;
385 p2
->p_usched
= p1
->p_usched
;
387 if (flags
& RFSIGSHARE
) {
388 p2
->p_sigacts
= p1
->p_sigacts
;
389 p2
->p_sigacts
->ps_refcnt
++;
391 p2
->p_sigacts
= (struct sigacts
*)kmalloc(sizeof(*p2
->p_sigacts
),
392 M_SUBPROC
, M_WAITOK
);
393 bcopy(p1
->p_sigacts
, p2
->p_sigacts
, sizeof(*p2
->p_sigacts
));
394 p2
->p_sigacts
->ps_refcnt
= 1;
396 if (flags
& RFLINUXTHPN
)
397 p2
->p_sigparent
= SIGUSR1
;
399 p2
->p_sigparent
= SIGCHLD
;
401 /* bump references to the text vnode (for procfs) */
402 p2
->p_textvp
= p1
->p_textvp
;
407 * Handle file descriptors
409 if (flags
& RFCFDG
) {
410 p2
->p_fd
= fdinit(p1
);
412 } else if (flags
& RFFDG
) {
413 p2
->p_fd
= fdcopy(p1
);
416 p2
->p_fd
= fdshare(p1
);
417 if (p1
->p_fdtol
== NULL
)
419 filedesc_to_leader_alloc(NULL
,
421 if ((flags
& RFTHREAD
) != 0) {
423 * Shared file descriptor table and
424 * shared process leaders.
427 fdtol
->fdl_refcount
++;
430 * Shared file descriptor table, and
431 * different process leaders
433 fdtol
= filedesc_to_leader_alloc(p1
->p_fdtol
, p2
);
437 p2
->p_limit
= plimit_fork(p1
);
440 * Preserve some more flags in subprocess. P_PROFIL has already
443 p2
->p_flag
|= p1
->p_flag
& P_SUGID
;
444 if (p1
->p_session
->s_ttyvp
!= NULL
&& p1
->p_flag
& P_CONTROLT
)
445 p2
->p_flag
|= P_CONTROLT
;
446 if (flags
& RFPPWAIT
)
447 p2
->p_flag
|= P_PPWAIT
;
450 * Inherit the virtual kernel structure (allows a virtual kernel
451 * to fork to simulate multiple cpus).
454 vkernel_inherit(p1
, p2
);
457 * Once we are on a pglist we may receive signals. XXX we might
458 * race a ^C being sent to the process group by not receiving it
459 * at all prior to this line.
461 LIST_INSERT_AFTER(p1
, p2
, p_pglist
);
464 * Attach the new process to its parent.
466 * If RFNOWAIT is set, the newly created process becomes a child
467 * of init. This effectively disassociates the child from the
470 if (flags
& RFNOWAIT
)
475 LIST_INSERT_HEAD(&pptr
->p_children
, p2
, p_sibling
);
476 LIST_INIT(&p2
->p_children
);
477 varsymset_init(&p2
->p_varsymset
, &p1
->p_varsymset
);
478 callout_init(&p2
->p_ithandle
);
482 * Copy traceflag and tracefile if enabled. If not inherited,
483 * these were zeroed above but we still could have a trace race
484 * so make sure p2's p_tracenode is NULL.
486 if ((p1
->p_traceflag
& KTRFAC_INHERIT
) && p2
->p_tracenode
== NULL
) {
487 p2
->p_traceflag
= p1
->p_traceflag
;
488 p2
->p_tracenode
= ktrinherit(p1
->p_tracenode
);
493 * This begins the section where we must prevent the parent
494 * from being swapped.
496 * Gets PRELE'd in the caller in start_forked_proc().
500 vm_fork(p1
, p2
, flags
);
503 * Create the first lwp associated with the new proc.
504 * It will return via a different execution path later, directly
505 * into userland, after it was put on the runq by
506 * start_forked_proc().
508 lwp_fork(lp1
, p2
, flags
);
510 if (flags
== (RFFDG
| RFPROC
| RFPGLOCK
)) {
511 mycpu
->gd_cnt
.v_forks
++;
512 mycpu
->gd_cnt
.v_forkpages
+= p2
->p_vmspace
->vm_dsize
+ p2
->p_vmspace
->vm_ssize
;
513 } else if (flags
== (RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
| RFPGLOCK
)) {
514 mycpu
->gd_cnt
.v_vforks
++;
515 mycpu
->gd_cnt
.v_vforkpages
+= p2
->p_vmspace
->vm_dsize
+ p2
->p_vmspace
->vm_ssize
;
516 } else if (p1
== &proc0
) {
517 mycpu
->gd_cnt
.v_kthreads
++;
518 mycpu
->gd_cnt
.v_kthreadpages
+= p2
->p_vmspace
->vm_dsize
+ p2
->p_vmspace
->vm_ssize
;
520 mycpu
->gd_cnt
.v_rforks
++;
521 mycpu
->gd_cnt
.v_rforkpages
+= p2
->p_vmspace
->vm_dsize
+ p2
->p_vmspace
->vm_ssize
;
525 * Both processes are set up, now check if any loadable modules want
526 * to adjust anything.
527 * What if they have an error? XXX
529 TAILQ_FOREACH(ep
, &fork_list
, next
) {
530 (*ep
->function
)(p1
, p2
, flags
);
534 * Set the start time. Note that the process is not runnable. The
535 * caller is responsible for making it runnable.
537 microtime(&p2
->p_start
);
538 p2
->p_acflag
= AFORK
;
541 * tell any interested parties about the new process
543 KNOTE(&p1
->p_klist
, NOTE_FORK
| p2
->p_pid
);
546 * Return child proc pointer to parent.
551 lockmgr(&pgrp
->pg_lock
, LK_RELEASE
);
556 lwp_fork(struct lwp
*origlp
, struct proc
*destproc
, int flags
)
561 lp
= kmalloc(sizeof(struct lwp
), M_LWP
, M_WAITOK
|M_ZERO
);
563 lp
->lwp_proc
= destproc
;
564 lp
->lwp_vmspace
= destproc
->p_vmspace
;
565 lp
->lwp_stat
= LSRUN
;
566 bcopy(&origlp
->lwp_startcopy
, &lp
->lwp_startcopy
,
567 (unsigned) ((caddr_t
)&lp
->lwp_endcopy
-
568 (caddr_t
)&lp
->lwp_startcopy
));
569 lp
->lwp_flag
|= origlp
->lwp_flag
& LWP_ALTSTACK
;
571 * Set cpbase to the last timeout that occured (not the upcoming
574 * A critical section is required since a timer IPI can update
575 * scheduler specific data.
578 lp
->lwp_cpbase
= mycpu
->gd_schedclock
.time
-
579 mycpu
->gd_schedclock
.periodic
;
580 destproc
->p_usched
->heuristic_forking(origlp
, lp
);
582 lp
->lwp_cpumask
&= usched_mastermask
;
585 * Assign a TID to the lp. Loop until the insert succeeds (returns
588 lp
->lwp_tid
= destproc
->p_lasttid
;
590 if (++lp
->lwp_tid
< 0)
592 } while (lwp_rb_tree_RB_INSERT(&destproc
->p_lwp_tree
, lp
) != NULL
);
593 destproc
->p_lasttid
= lp
->lwp_tid
;
594 destproc
->p_nthreads
++;
596 td
= lwkt_alloc_thread(NULL
, LWKT_THREAD_STACK
, -1, 0);
598 td
->td_proc
= destproc
;
600 td
->td_switch
= cpu_heavy_switch
;
602 KKASSERT(td
->td_mpcount
== 1);
604 lwkt_setpri(td
, TDPRI_KERN_USER
);
605 lwkt_set_comm(td
, "%s", destproc
->p_comm
);
608 * cpu_fork will copy and update the pcb, set up the kernel stack,
609 * and make the child ready to run.
611 cpu_fork(origlp
, lp
, flags
);
612 caps_fork(origlp
->lwp_thread
, lp
->lwp_thread
);
618 * The next two functionms are general routines to handle adding/deleting
619 * items on the fork callout list.
622 * Take the arguments given and put them onto the fork callout list,
623 * However first make sure that it's not already there.
624 * Returns 0 on success or a standard error number.
627 at_fork(forklist_fn function
)
632 /* let the programmer know if he's been stupid */
633 if (rm_at_fork(function
)) {
634 kprintf("WARNING: fork callout entry (%p) already present\n",
638 ep
= kmalloc(sizeof(*ep
), M_ATFORK
, M_WAITOK
|M_ZERO
);
639 ep
->function
= function
;
640 TAILQ_INSERT_TAIL(&fork_list
, ep
, next
);
645 * Scan the exit callout list for the given item and remove it..
646 * Returns the number of items removed (0 or 1)
649 rm_at_fork(forklist_fn function
)
653 TAILQ_FOREACH(ep
, &fork_list
, next
) {
654 if (ep
->function
== function
) {
655 TAILQ_REMOVE(&fork_list
, ep
, next
);
664 * Add a forked process to the run queue after any remaining setup, such
665 * as setting the fork handler, has been completed.
668 start_forked_proc(struct lwp
*lp1
, struct proc
*p2
)
670 struct lwp
*lp2
= ONLY_LWP_IN_PROC(p2
);
673 * Move from SIDL to RUN queue, and activate the process's thread.
674 * Activation of the thread effectively makes the process "a"
675 * current process, so we do not setrunqueue().
677 * YYY setrunqueue works here but we should clean up the trampoline
678 * code so we just schedule the LWKT thread and let the trampoline
679 * deal with the userland scheduler on return to userland.
681 KASSERT(p2
->p_stat
== SIDL
,
682 ("cannot start forked process, bad status: %p", p2
));
683 p2
->p_usched
->resetpriority(lp2
);
685 p2
->p_stat
= SACTIVE
;
686 lp2
->lwp_stat
= LSRUN
;
687 p2
->p_usched
->setrunqueue(lp2
);
691 * Now can be swapped.
693 PRELE(lp1
->lwp_proc
);
696 * Preserve synchronization semantics of vfork. If waiting for
697 * child to exec or exit, set P_PPWAIT on child, and sleep on our
698 * proc (in case of exit).
700 while (p2
->p_flag
& P_PPWAIT
)
701 tsleep(lp1
->lwp_proc
, 0, "ppwait", 0);