kernel - kqueue - refactor kqueue_scan(), rename tick to ustick
[dragonfly.git] / sys / kern / vfs_sync.c
blob0567e0d713c94208f49485fcdb6115480c02c372
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_sync.c,v 1.18 2008/05/18 05:54:25 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
83 #include <sys/buf2.h>
84 #include <sys/thread2.h>
87 * The workitem queue.
89 #define SYNCER_MAXDELAY 32
90 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
91 time_t syncdelay = 30; /* max time to delay syncing data */
92 SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
93 &syncdelay, 0, "VFS data synchronization delay");
94 time_t filedelay = 30; /* time to delay syncing files */
95 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
96 &filedelay, 0, "File synchronization delay");
97 time_t dirdelay = 29; /* time to delay syncing directories */
98 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
99 &dirdelay, 0, "Directory synchronization delay");
100 time_t metadelay = 28; /* time to delay syncing metadata */
101 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
102 &metadelay, 0, "VFS metadata synchronization delay");
103 static int rushjob; /* number of slots to run ASAP */
104 static int stat_rush_requests; /* number of times I/O speeded up */
105 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
106 &stat_rush_requests, 0, "");
108 static int syncer_delayno = 0;
109 static long syncer_mask;
110 static struct lwkt_token syncer_token;
111 LIST_HEAD(synclist, vnode);
112 static struct synclist *syncer_workitem_pending;
115 * Called from vfsinit()
117 void
118 vfs_sync_init(void)
120 syncer_workitem_pending = hashinit(syncer_maxdelay, M_DEVBUF,
121 &syncer_mask);
122 syncer_maxdelay = syncer_mask + 1;
123 lwkt_token_init(&syncer_token);
127 * The workitem queue.
129 * It is useful to delay writes of file data and filesystem metadata
130 * for tens of seconds so that quickly created and deleted files need
131 * not waste disk bandwidth being created and removed. To realize this,
132 * we append vnodes to a "workitem" queue. When running with a soft
133 * updates implementation, most pending metadata dependencies should
134 * not wait for more than a few seconds. Thus, mounted on block devices
135 * are delayed only about a half the time that file data is delayed.
136 * Similarly, directory updates are more critical, so are only delayed
137 * about a third the time that file data is delayed. Thus, there are
138 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
139 * one each second (driven off the filesystem syncer process). The
140 * syncer_delayno variable indicates the next queue that is to be processed.
141 * Items that need to be processed soon are placed in this queue:
143 * syncer_workitem_pending[syncer_delayno]
145 * A delay of fifteen seconds is done by placing the request fifteen
146 * entries later in the queue:
148 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
153 * Add an item to the syncer work queue.
155 * MPSAFE
157 void
158 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
160 lwkt_tokref ilock;
161 int slot;
163 lwkt_gettoken(&ilock, &syncer_token);
165 if (vp->v_flag & VONWORKLST)
166 LIST_REMOVE(vp, v_synclist);
167 if (delay > syncer_maxdelay - 2)
168 delay = syncer_maxdelay - 2;
169 slot = (syncer_delayno + delay) & syncer_mask;
171 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
172 vsetflags(vp, VONWORKLST);
174 lwkt_reltoken(&ilock);
177 struct thread *updatethread;
178 static void sched_sync (void);
179 static struct kproc_desc up_kp = {
180 "syncer",
181 sched_sync,
182 &updatethread
184 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
187 * System filesystem synchronizer daemon.
189 void
190 sched_sync(void)
192 struct thread *td = curthread;
193 struct synclist *slp;
194 struct vnode *vp;
195 lwkt_tokref ilock;
196 lwkt_tokref vlock;
197 long starttime;
199 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
200 SHUTDOWN_PRI_LAST);
202 for (;;) {
203 kproc_suspend_loop();
205 starttime = time_second;
206 lwkt_gettoken(&ilock, &syncer_token);
209 * Push files whose dirty time has expired. Be careful
210 * of interrupt race on slp queue.
212 slp = &syncer_workitem_pending[syncer_delayno];
213 syncer_delayno += 1;
214 if (syncer_delayno == syncer_maxdelay)
215 syncer_delayno = 0;
217 while ((vp = LIST_FIRST(slp)) != NULL) {
218 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
219 VOP_FSYNC(vp, MNT_LAZY, 0);
220 vput(vp);
224 * If the vnode is still at the head of the list
225 * we were not able to completely flush it. To
226 * give other vnodes a fair shake we move it to
227 * a later slot.
229 * Note that v_tag VT_VFS vnodes can remain on the
230 * worklist with no dirty blocks, but sync_fsync()
231 * moves it to a later slot so we will never see it
232 * here.
234 if (LIST_FIRST(slp) == vp) {
235 lwkt_gettoken(&vlock, &vp->v_token);
236 if (LIST_FIRST(slp) == vp) {
237 if (RB_EMPTY(&vp->v_rbdirty_tree) &&
238 !vn_isdisk(vp, NULL)) {
239 panic("sched_sync: fsync "
240 "failed vp %p tag %d",
241 vp, vp->v_tag);
243 vn_syncer_add_to_worklist(vp, syncdelay);
245 lwkt_reltoken(&vlock);
248 lwkt_reltoken(&ilock);
251 * Do sync processing for each mount.
253 bio_ops_sync(NULL);
256 * The variable rushjob allows the kernel to speed up the
257 * processing of the filesystem syncer process. A rushjob
258 * value of N tells the filesystem syncer to process the next
259 * N seconds worth of work on its queue ASAP. Currently rushjob
260 * is used by the soft update code to speed up the filesystem
261 * syncer process when the incore state is getting so far
262 * ahead of the disk that the kernel memory pool is being
263 * threatened with exhaustion.
265 if (rushjob > 0) {
266 rushjob -= 1;
267 continue;
270 * If it has taken us less than a second to process the
271 * current work, then wait. Otherwise start right over
272 * again. We can still lose time if any single round
273 * takes more than two seconds, but it does not really
274 * matter as we are just trying to generally pace the
275 * filesystem activity.
277 if (time_second == starttime)
278 tsleep(&lbolt_syncer, 0, "syncer", 0);
283 * Request the syncer daemon to speed up its work.
284 * We never push it to speed up more than half of its
285 * normal turn time, otherwise it could take over the cpu.
287 * YYY wchan field protected by the BGL.
290 speedup_syncer(void)
293 * Don't bother protecting the test. unsleep_and_wakeup_thread()
294 * will only do something real if the thread is in the right state.
296 wakeup(&lbolt_syncer);
297 if (rushjob < syncdelay / 2) {
298 rushjob += 1;
299 stat_rush_requests += 1;
300 return (1);
302 return(0);
306 * Routine to create and manage a filesystem syncer vnode.
308 static int sync_close(struct vop_close_args *);
309 static int sync_fsync(struct vop_fsync_args *);
310 static int sync_inactive(struct vop_inactive_args *);
311 static int sync_reclaim (struct vop_reclaim_args *);
312 static int sync_print(struct vop_print_args *);
314 static struct vop_ops sync_vnode_vops = {
315 .vop_default = vop_eopnotsupp,
316 .vop_close = sync_close,
317 .vop_fsync = sync_fsync,
318 .vop_inactive = sync_inactive,
319 .vop_reclaim = sync_reclaim,
320 .vop_print = sync_print,
323 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
325 VNODEOP_SET(sync_vnode_vops);
328 * Create a new filesystem syncer vnode for the specified mount point.
329 * This vnode is placed on the worklist and is responsible for sync'ing
330 * the filesystem.
332 * NOTE: read-only mounts are also placed on the worklist. The filesystem
333 * sync code is also responsible for cleaning up vnodes.
336 vfs_allocate_syncvnode(struct mount *mp)
338 struct vnode *vp;
339 static long start, incr, next;
340 int error;
342 /* Allocate a new vnode */
343 error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
344 if (error) {
345 mp->mnt_syncer = NULL;
346 return (error);
348 vp->v_type = VNON;
350 * Place the vnode onto the syncer worklist. We attempt to
351 * scatter them about on the list so that they will go off
352 * at evenly distributed times even if all the filesystems
353 * are mounted at once.
355 next += incr;
356 if (next == 0 || next > syncer_maxdelay) {
357 start /= 2;
358 incr /= 2;
359 if (start == 0) {
360 start = syncer_maxdelay / 2;
361 incr = syncer_maxdelay;
363 next = start;
365 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
368 * The mnt_syncer field inherits the vnode reference, which is
369 * held until later decomissioning.
371 mp->mnt_syncer = vp;
372 vx_unlock(vp);
373 return (0);
376 static int
377 sync_close(struct vop_close_args *ap)
379 return (0);
383 * Do a lazy sync of the filesystem.
385 * sync_fsync { struct vnode *a_vp, int a_waitfor }
387 static int
388 sync_fsync(struct vop_fsync_args *ap)
390 struct vnode *syncvp = ap->a_vp;
391 struct mount *mp = syncvp->v_mount;
392 int asyncflag;
395 * We only need to do something if this is a lazy evaluation.
397 if (ap->a_waitfor != MNT_LAZY)
398 return (0);
401 * Move ourselves to the back of the sync list.
403 vn_syncer_add_to_worklist(syncvp, syncdelay);
406 * Walk the list of vnodes pushing all that are dirty and
407 * not already on the sync list, and freeing vnodes which have
408 * no refs and whos VM objects are empty. vfs_msync() handles
409 * the VM issues and must be called whether the mount is readonly
410 * or not.
412 if (vfs_busy(mp, LK_NOWAIT) != 0)
413 return (0);
414 if (mp->mnt_flag & MNT_RDONLY) {
415 vfs_msync(mp, MNT_NOWAIT);
416 } else {
417 asyncflag = mp->mnt_flag & MNT_ASYNC;
418 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
419 vfs_msync(mp, MNT_NOWAIT);
420 VFS_SYNC(mp, MNT_LAZY);
421 if (asyncflag)
422 mp->mnt_flag |= MNT_ASYNC;
424 vfs_unbusy(mp);
425 return (0);
429 * The syncer vnode is no longer referenced.
431 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
433 static int
434 sync_inactive(struct vop_inactive_args *ap)
436 vgone_vxlocked(ap->a_vp);
437 return (0);
441 * The syncer vnode is no longer needed and is being decommissioned.
442 * This can only occur when the last reference has been released on
443 * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
445 * Modifications to the worklist must be protected with a critical
446 * section.
448 * sync_reclaim { struct vnode *a_vp }
450 static int
451 sync_reclaim(struct vop_reclaim_args *ap)
453 struct vnode *vp = ap->a_vp;
454 lwkt_tokref ilock;
456 lwkt_gettoken(&ilock, &syncer_token);
457 KKASSERT(vp->v_mount->mnt_syncer != vp);
458 if (vp->v_flag & VONWORKLST) {
459 LIST_REMOVE(vp, v_synclist);
460 vclrflags(vp, VONWORKLST);
462 lwkt_reltoken(&ilock);
464 return (0);
468 * Print out a syncer vnode.
470 * sync_print { struct vnode *a_vp }
472 static int
473 sync_print(struct vop_print_args *ap)
475 struct vnode *vp = ap->a_vp;
477 kprintf("syncer vnode");
478 lockmgr_printinfo(&vp->v_lock);
479 kprintf("\n");
480 return (0);