kernel - kqueue - refactor kqueue_scan(), rename tick to ustick
[dragonfly.git] / sys / kern / sys_generic.c
blob8078bc6e7f1182dde3b3cac575ab6b1fc86c7e4b
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94
39 * $FreeBSD: src/sys/kern/sys_generic.c,v 1.55.2.10 2001/03/17 10:39:32 peter Exp $
40 * $DragonFly: src/sys/kern/sys_generic.c,v 1.49 2008/05/05 22:09:44 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/proc.h>
53 #include <sys/signalvar.h>
54 #include <sys/socketvar.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/kern_syscall.h>
58 #include <sys/malloc.h>
59 #include <sys/mapped_ioctl.h>
60 #include <sys/poll.h>
61 #include <sys/queue.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/buf.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
72 #include <sys/file2.h>
73 #include <sys/mplock2.h>
75 #include <machine/limits.h>
77 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
78 static MALLOC_DEFINE(M_IOCTLMAP, "ioctlmap", "mapped ioctl handler buffer");
79 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
80 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
82 static int doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex,
83 struct timeval *tv, int *res);
84 static int pollscan (struct proc *, struct pollfd *, u_int, int *);
85 static int selscan (struct proc *, fd_mask **, fd_mask **,
86 int, int *);
87 static int dofileread(int, struct file *, struct uio *, int, size_t *);
88 static int dofilewrite(int, struct file *, struct uio *, int, size_t *);
91 * Read system call.
93 * MPSAFE
95 int
96 sys_read(struct read_args *uap)
98 struct thread *td = curthread;
99 struct uio auio;
100 struct iovec aiov;
101 int error;
103 if ((ssize_t)uap->nbyte < 0)
104 error = EINVAL;
106 aiov.iov_base = uap->buf;
107 aiov.iov_len = uap->nbyte;
108 auio.uio_iov = &aiov;
109 auio.uio_iovcnt = 1;
110 auio.uio_offset = -1;
111 auio.uio_resid = uap->nbyte;
112 auio.uio_rw = UIO_READ;
113 auio.uio_segflg = UIO_USERSPACE;
114 auio.uio_td = td;
116 error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
117 return(error);
121 * Positioned (Pread) read system call
123 * MPSAFE
126 sys_extpread(struct extpread_args *uap)
128 struct thread *td = curthread;
129 struct uio auio;
130 struct iovec aiov;
131 int error;
132 int flags;
134 if ((ssize_t)uap->nbyte < 0)
135 return(EINVAL);
137 aiov.iov_base = uap->buf;
138 aiov.iov_len = uap->nbyte;
139 auio.uio_iov = &aiov;
140 auio.uio_iovcnt = 1;
141 auio.uio_offset = uap->offset;
142 auio.uio_resid = uap->nbyte;
143 auio.uio_rw = UIO_READ;
144 auio.uio_segflg = UIO_USERSPACE;
145 auio.uio_td = td;
147 flags = uap->flags & O_FMASK;
148 if (uap->offset != (off_t)-1)
149 flags |= O_FOFFSET;
151 error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
152 return(error);
156 * Scatter read system call.
158 * MPSAFE
161 sys_readv(struct readv_args *uap)
163 struct thread *td = curthread;
164 struct uio auio;
165 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
166 int error;
168 error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
169 &auio.uio_resid);
170 if (error)
171 return (error);
172 auio.uio_iov = iov;
173 auio.uio_iovcnt = uap->iovcnt;
174 auio.uio_offset = -1;
175 auio.uio_rw = UIO_READ;
176 auio.uio_segflg = UIO_USERSPACE;
177 auio.uio_td = td;
179 error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
181 iovec_free(&iov, aiov);
182 return (error);
187 * Scatter positioned read system call.
189 * MPSAFE
192 sys_extpreadv(struct extpreadv_args *uap)
194 struct thread *td = curthread;
195 struct uio auio;
196 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
197 int error;
198 int flags;
200 error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
201 &auio.uio_resid);
202 if (error)
203 return (error);
204 auio.uio_iov = iov;
205 auio.uio_iovcnt = uap->iovcnt;
206 auio.uio_offset = uap->offset;
207 auio.uio_rw = UIO_READ;
208 auio.uio_segflg = UIO_USERSPACE;
209 auio.uio_td = td;
211 flags = uap->flags & O_FMASK;
212 if (uap->offset != (off_t)-1)
213 flags |= O_FOFFSET;
215 error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
217 iovec_free(&iov, aiov);
218 return(error);
222 * MPSAFE
225 kern_preadv(int fd, struct uio *auio, int flags, size_t *res)
227 struct thread *td = curthread;
228 struct proc *p = td->td_proc;
229 struct file *fp;
230 int error;
232 KKASSERT(p);
234 fp = holdfp(p->p_fd, fd, FREAD);
235 if (fp == NULL)
236 return (EBADF);
237 if (flags & O_FOFFSET && fp->f_type != DTYPE_VNODE) {
238 error = ESPIPE;
239 } else {
240 error = dofileread(fd, fp, auio, flags, res);
242 fdrop(fp);
243 return(error);
247 * Common code for readv and preadv that reads data in
248 * from a file using the passed in uio, offset, and flags.
250 * MPALMOSTSAFE - ktrace needs help
252 static int
253 dofileread(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
255 struct thread *td = curthread;
256 int error;
257 size_t len;
258 #ifdef KTRACE
259 struct iovec *ktriov = NULL;
260 struct uio ktruio;
261 #endif
263 #ifdef KTRACE
265 * if tracing, save a copy of iovec
267 if (KTRPOINT(td, KTR_GENIO)) {
268 int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
270 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
271 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
272 ktruio = *auio;
274 #endif
275 len = auio->uio_resid;
276 error = fo_read(fp, auio, fp->f_cred, flags);
277 if (error) {
278 if (auio->uio_resid != len && (error == ERESTART ||
279 error == EINTR || error == EWOULDBLOCK))
280 error = 0;
282 #ifdef KTRACE
283 if (ktriov != NULL) {
284 if (error == 0) {
285 ktruio.uio_iov = ktriov;
286 ktruio.uio_resid = len - auio->uio_resid;
287 get_mplock();
288 ktrgenio(td->td_lwp, fd, UIO_READ, &ktruio, error);
289 rel_mplock();
291 FREE(ktriov, M_TEMP);
293 #endif
294 if (error == 0)
295 *res = len - auio->uio_resid;
297 return(error);
301 * Write system call
303 * MPSAFE
306 sys_write(struct write_args *uap)
308 struct thread *td = curthread;
309 struct uio auio;
310 struct iovec aiov;
311 int error;
313 if ((ssize_t)uap->nbyte < 0)
314 error = EINVAL;
316 aiov.iov_base = (void *)(uintptr_t)uap->buf;
317 aiov.iov_len = uap->nbyte;
318 auio.uio_iov = &aiov;
319 auio.uio_iovcnt = 1;
320 auio.uio_offset = -1;
321 auio.uio_resid = uap->nbyte;
322 auio.uio_rw = UIO_WRITE;
323 auio.uio_segflg = UIO_USERSPACE;
324 auio.uio_td = td;
326 error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
328 return(error);
332 * Pwrite system call
334 * MPSAFE
337 sys_extpwrite(struct extpwrite_args *uap)
339 struct thread *td = curthread;
340 struct uio auio;
341 struct iovec aiov;
342 int error;
343 int flags;
345 if ((ssize_t)uap->nbyte < 0)
346 error = EINVAL;
348 aiov.iov_base = (void *)(uintptr_t)uap->buf;
349 aiov.iov_len = uap->nbyte;
350 auio.uio_iov = &aiov;
351 auio.uio_iovcnt = 1;
352 auio.uio_offset = uap->offset;
353 auio.uio_resid = uap->nbyte;
354 auio.uio_rw = UIO_WRITE;
355 auio.uio_segflg = UIO_USERSPACE;
356 auio.uio_td = td;
358 flags = uap->flags & O_FMASK;
359 if (uap->offset != (off_t)-1)
360 flags |= O_FOFFSET;
361 error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
362 return(error);
366 * MPSAFE
369 sys_writev(struct writev_args *uap)
371 struct thread *td = curthread;
372 struct uio auio;
373 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
374 int error;
376 error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
377 &auio.uio_resid);
378 if (error)
379 return (error);
380 auio.uio_iov = iov;
381 auio.uio_iovcnt = uap->iovcnt;
382 auio.uio_offset = -1;
383 auio.uio_rw = UIO_WRITE;
384 auio.uio_segflg = UIO_USERSPACE;
385 auio.uio_td = td;
387 error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
389 iovec_free(&iov, aiov);
390 return (error);
395 * Gather positioned write system call
397 * MPSAFE
400 sys_extpwritev(struct extpwritev_args *uap)
402 struct thread *td = curthread;
403 struct uio auio;
404 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
405 int error;
406 int flags;
408 error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
409 &auio.uio_resid);
410 if (error)
411 return (error);
412 auio.uio_iov = iov;
413 auio.uio_iovcnt = uap->iovcnt;
414 auio.uio_offset = uap->offset;
415 auio.uio_rw = UIO_WRITE;
416 auio.uio_segflg = UIO_USERSPACE;
417 auio.uio_td = td;
419 flags = uap->flags & O_FMASK;
420 if (uap->offset != (off_t)-1)
421 flags |= O_FOFFSET;
423 error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
425 iovec_free(&iov, aiov);
426 return(error);
430 * MPSAFE
433 kern_pwritev(int fd, struct uio *auio, int flags, size_t *res)
435 struct thread *td = curthread;
436 struct proc *p = td->td_proc;
437 struct file *fp;
438 int error;
440 KKASSERT(p);
442 fp = holdfp(p->p_fd, fd, FWRITE);
443 if (fp == NULL)
444 return (EBADF);
445 else if ((flags & O_FOFFSET) && fp->f_type != DTYPE_VNODE) {
446 error = ESPIPE;
447 } else {
448 error = dofilewrite(fd, fp, auio, flags, res);
451 fdrop(fp);
452 return (error);
456 * Common code for writev and pwritev that writes data to
457 * a file using the passed in uio, offset, and flags.
459 * MPALMOSTSAFE - ktrace needs help
461 static int
462 dofilewrite(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
464 struct thread *td = curthread;
465 struct lwp *lp = td->td_lwp;
466 int error;
467 size_t len;
468 #ifdef KTRACE
469 struct iovec *ktriov = NULL;
470 struct uio ktruio;
471 #endif
473 #ifdef KTRACE
475 * if tracing, save a copy of iovec and uio
477 if (KTRPOINT(td, KTR_GENIO)) {
478 int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
480 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
481 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
482 ktruio = *auio;
484 #endif
485 len = auio->uio_resid;
486 error = fo_write(fp, auio, fp->f_cred, flags);
487 if (error) {
488 if (auio->uio_resid != len && (error == ERESTART ||
489 error == EINTR || error == EWOULDBLOCK))
490 error = 0;
491 /* Socket layer is responsible for issuing SIGPIPE. */
492 if (error == EPIPE) {
493 get_mplock();
494 lwpsignal(lp->lwp_proc, lp, SIGPIPE);
495 rel_mplock();
498 #ifdef KTRACE
499 if (ktriov != NULL) {
500 if (error == 0) {
501 ktruio.uio_iov = ktriov;
502 ktruio.uio_resid = len - auio->uio_resid;
503 get_mplock();
504 ktrgenio(lp, fd, UIO_WRITE, &ktruio, error);
505 rel_mplock();
507 FREE(ktriov, M_TEMP);
509 #endif
510 if (error == 0)
511 *res = len - auio->uio_resid;
513 return(error);
517 * Ioctl system call
519 * MPALMOSTSAFE
522 sys_ioctl(struct ioctl_args *uap)
524 int error;
526 get_mplock();
527 error = mapped_ioctl(uap->fd, uap->com, uap->data, NULL, &uap->sysmsg);
528 rel_mplock();
529 return (error);
532 struct ioctl_map_entry {
533 const char *subsys;
534 struct ioctl_map_range *cmd_ranges;
535 LIST_ENTRY(ioctl_map_entry) entries;
539 * The true heart of all ioctl syscall handlers (native, emulation).
540 * If map != NULL, it will be searched for a matching entry for com,
541 * and appropriate conversions/conversion functions will be utilized.
544 mapped_ioctl(int fd, u_long com, caddr_t uspc_data, struct ioctl_map *map,
545 struct sysmsg *msg)
547 struct thread *td = curthread;
548 struct proc *p = td->td_proc;
549 struct ucred *cred;
550 struct file *fp;
551 struct ioctl_map_range *iomc = NULL;
552 int error;
553 u_int size;
554 u_long ocom = com;
555 caddr_t data, memp;
556 int tmp;
557 #define STK_PARAMS 128
558 union {
559 char stkbuf[STK_PARAMS];
560 long align;
561 } ubuf;
563 KKASSERT(p);
564 cred = td->td_ucred;
566 fp = holdfp(p->p_fd, fd, FREAD|FWRITE);
567 if (fp == NULL)
568 return(EBADF);
570 if (map != NULL) { /* obey translation map */
571 u_long maskcmd;
572 struct ioctl_map_entry *e;
574 maskcmd = com & map->mask;
576 LIST_FOREACH(e, &map->mapping, entries) {
577 for (iomc = e->cmd_ranges; iomc->start != 0 ||
578 iomc->maptocmd != 0 || iomc->wrapfunc != NULL ||
579 iomc->mapfunc != NULL;
580 iomc++) {
581 if (maskcmd >= iomc->start &&
582 maskcmd <= iomc->end)
583 break;
586 /* Did we find a match? */
587 if (iomc->start != 0 || iomc->maptocmd != 0 ||
588 iomc->wrapfunc != NULL || iomc->mapfunc != NULL)
589 break;
592 if (iomc == NULL ||
593 (iomc->start == 0 && iomc->maptocmd == 0
594 && iomc->wrapfunc == NULL && iomc->mapfunc == NULL)) {
595 kprintf("%s: 'ioctl' fd=%d, cmd=0x%lx ('%c',%d) not implemented\n",
596 map->sys, fd, maskcmd,
597 (int)((maskcmd >> 8) & 0xff),
598 (int)(maskcmd & 0xff));
599 error = EINVAL;
600 goto done;
604 * If it's a non-range one to one mapping, maptocmd should be
605 * correct. If it's a ranged one to one mapping, we pass the
606 * original value of com, and for a range mapped to a different
607 * range, we always need a mapping function to translate the
608 * ioctl to our native ioctl. Ex. 6500-65ff <-> 9500-95ff
610 if (iomc->start == iomc->end && iomc->maptocmd == iomc->maptoend) {
611 com = iomc->maptocmd;
612 } else if (iomc->start == iomc->maptocmd && iomc->end == iomc->maptoend) {
613 if (iomc->mapfunc != NULL)
614 com = iomc->mapfunc(iomc->start, iomc->end,
615 iomc->start, iomc->end,
616 com, com);
617 } else {
618 if (iomc->mapfunc != NULL) {
619 com = iomc->mapfunc(iomc->start, iomc->end,
620 iomc->maptocmd, iomc->maptoend,
621 com, ocom);
622 } else {
623 kprintf("%s: Invalid mapping for fd=%d, cmd=%#lx ('%c',%d)\n",
624 map->sys, fd, maskcmd,
625 (int)((maskcmd >> 8) & 0xff),
626 (int)(maskcmd & 0xff));
627 error = EINVAL;
628 goto done;
633 switch (com) {
634 case FIONCLEX:
635 error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
636 goto done;
637 case FIOCLEX:
638 error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
639 goto done;
643 * Interpret high order word to find amount of data to be
644 * copied to/from the user's address space.
646 size = IOCPARM_LEN(com);
647 if (size > IOCPARM_MAX) {
648 error = ENOTTY;
649 goto done;
652 memp = NULL;
653 if (size > sizeof (ubuf.stkbuf)) {
654 memp = kmalloc(size, M_IOCTLOPS, M_WAITOK);
655 data = memp;
656 } else {
657 data = ubuf.stkbuf;
659 if ((com & IOC_IN) != 0) {
660 if (size != 0) {
661 error = copyin(uspc_data, data, (size_t)size);
662 if (error) {
663 if (memp != NULL)
664 kfree(memp, M_IOCTLOPS);
665 goto done;
667 } else {
668 *(caddr_t *)data = uspc_data;
670 } else if ((com & IOC_OUT) != 0 && size) {
672 * Zero the buffer so the user always
673 * gets back something deterministic.
675 bzero(data, (size_t)size);
676 } else if ((com & IOC_VOID) != 0) {
677 *(caddr_t *)data = uspc_data;
680 switch (com) {
681 case FIONBIO:
682 if ((tmp = *(int *)data))
683 fp->f_flag |= FNONBLOCK;
684 else
685 fp->f_flag &= ~FNONBLOCK;
686 error = 0;
687 break;
689 case FIOASYNC:
690 if ((tmp = *(int *)data))
691 fp->f_flag |= FASYNC;
692 else
693 fp->f_flag &= ~FASYNC;
694 error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred, msg);
695 break;
697 default:
699 * If there is a override function,
700 * call it instead of directly routing the call
702 if (map != NULL && iomc->wrapfunc != NULL)
703 error = iomc->wrapfunc(fp, com, ocom, data, cred);
704 else
705 error = fo_ioctl(fp, com, data, cred, msg);
707 * Copy any data to user, size was
708 * already set and checked above.
710 if (error == 0 && (com & IOC_OUT) != 0 && size != 0)
711 error = copyout(data, uspc_data, (size_t)size);
712 break;
714 if (memp != NULL)
715 kfree(memp, M_IOCTLOPS);
716 done:
717 fdrop(fp);
718 return(error);
722 mapped_ioctl_register_handler(struct ioctl_map_handler *he)
724 struct ioctl_map_entry *ne;
726 KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL &&
727 he->subsys != NULL && *he->subsys != '\0');
729 ne = kmalloc(sizeof(struct ioctl_map_entry), M_IOCTLMAP, M_WAITOK);
731 ne->subsys = he->subsys;
732 ne->cmd_ranges = he->cmd_ranges;
734 LIST_INSERT_HEAD(&he->map->mapping, ne, entries);
736 return(0);
740 mapped_ioctl_unregister_handler(struct ioctl_map_handler *he)
742 struct ioctl_map_entry *ne;
744 KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL);
746 LIST_FOREACH(ne, &he->map->mapping, entries) {
747 if (ne->cmd_ranges != he->cmd_ranges)
748 continue;
749 LIST_REMOVE(ne, entries);
750 kfree(ne, M_IOCTLMAP);
751 return(0);
753 return(EINVAL);
756 static int nselcoll; /* Select collisions since boot */
757 int selwait;
758 SYSCTL_INT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, "");
761 * Select system call.
763 * MPALMOSTSAFE
766 sys_select(struct select_args *uap)
768 struct timeval ktv;
769 struct timeval *ktvp;
770 int error;
773 * Get timeout if any.
775 if (uap->tv != NULL) {
776 error = copyin(uap->tv, &ktv, sizeof (ktv));
777 if (error)
778 return (error);
779 error = itimerfix(&ktv);
780 if (error)
781 return (error);
782 ktvp = &ktv;
783 } else {
784 ktvp = NULL;
788 * Do real work.
790 get_mplock();
791 error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
792 &uap->sysmsg_result);
793 rel_mplock();
795 return (error);
800 * Pselect system call.
802 * MPALMOSTSAFE
805 sys_pselect(struct pselect_args *uap)
807 struct thread *td = curthread;
808 struct lwp *lp = td->td_lwp;
809 struct timespec kts;
810 struct timeval ktv;
811 struct timeval *ktvp;
812 sigset_t sigmask;
813 int error;
816 * Get timeout if any and convert it.
817 * Round up during conversion to avoid timeout going off early.
819 if (uap->ts != NULL) {
820 error = copyin(uap->ts, &kts, sizeof (kts));
821 if (error)
822 return (error);
823 ktv.tv_sec = kts.tv_sec;
824 ktv.tv_usec = (kts.tv_nsec + 999) / 1000;
825 error = itimerfix(&ktv);
826 if (error)
827 return (error);
828 ktvp = &ktv;
829 } else {
830 ktvp = NULL;
834 * Install temporary signal mask if any provided.
836 if (uap->sigmask != NULL) {
837 error = copyin(uap->sigmask, &sigmask, sizeof(sigmask));
838 if (error)
839 return (error);
840 get_mplock();
841 lp->lwp_oldsigmask = lp->lwp_sigmask;
842 SIG_CANTMASK(sigmask);
843 lp->lwp_sigmask = sigmask;
844 } else {
845 get_mplock();
849 * Do real job.
851 error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
852 &uap->sysmsg_result);
854 if (uap->sigmask != NULL) {
855 /* doselect() responsible for turning ERESTART into EINTR */
856 KKASSERT(error != ERESTART);
857 if (error == EINTR) {
859 * We can't restore the previous signal mask now
860 * because it could block the signal that interrupted
861 * us. So make a note to restore it after executing
862 * the handler.
864 lp->lwp_flag |= LWP_OLDMASK;
865 } else {
867 * No handler to run. Restore previous mask immediately.
869 lp->lwp_sigmask = lp->lwp_oldsigmask;
872 rel_mplock();
874 return (error);
878 * Common code for sys_select() and sys_pselect().
880 * in, out and ex are userland pointers. tv must point to validated
881 * kernel-side timeout value or NULL for infinite timeout. res must
882 * point to syscall return value.
884 static int
885 doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tv,
886 int *res)
888 struct lwp *lp = curthread->td_lwp;
889 struct proc *p = curproc;
892 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
893 * infds with the new FD_SETSIZE of 1024, and more than enough for
894 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
895 * of 256.
897 fd_mask s_selbits[howmany(2048, NFDBITS)];
898 fd_mask *ibits[3], *obits[3], *selbits, *sbp;
899 struct timeval atv, rtv, ttv;
900 int ncoll, error, timo;
901 u_int nbufbytes, ncpbytes, nfdbits;
903 if (nd < 0)
904 return (EINVAL);
905 if (nd > p->p_fd->fd_nfiles)
906 nd = p->p_fd->fd_nfiles; /* forgiving; slightly wrong */
909 * Allocate just enough bits for the non-null fd_sets. Use the
910 * preallocated auto buffer if possible.
912 nfdbits = roundup(nd, NFDBITS);
913 ncpbytes = nfdbits / NBBY;
914 nbufbytes = 0;
915 if (in != NULL)
916 nbufbytes += 2 * ncpbytes;
917 if (ou != NULL)
918 nbufbytes += 2 * ncpbytes;
919 if (ex != NULL)
920 nbufbytes += 2 * ncpbytes;
921 if (nbufbytes <= sizeof s_selbits)
922 selbits = &s_selbits[0];
923 else
924 selbits = kmalloc(nbufbytes, M_SELECT, M_WAITOK);
927 * Assign pointers into the bit buffers and fetch the input bits.
928 * Put the output buffers together so that they can be bzeroed
929 * together.
931 sbp = selbits;
932 #define getbits(name, x) \
933 do { \
934 if (name == NULL) \
935 ibits[x] = NULL; \
936 else { \
937 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \
938 obits[x] = sbp; \
939 sbp += ncpbytes / sizeof *sbp; \
940 error = copyin(name, ibits[x], ncpbytes); \
941 if (error != 0) \
942 goto done; \
944 } while (0)
945 getbits(in, 0);
946 getbits(ou, 1);
947 getbits(ex, 2);
948 #undef getbits
949 if (nbufbytes != 0)
950 bzero(selbits, nbufbytes / 2);
952 if (tv != NULL) {
953 atv = *tv;
954 getmicrouptime(&rtv);
955 timevaladd(&atv, &rtv);
956 } else {
957 atv.tv_sec = 0;
958 atv.tv_usec = 0;
960 timo = 0;
961 retry:
962 ncoll = nselcoll;
963 lp->lwp_flag |= LWP_SELECT;
964 error = selscan(p, ibits, obits, nd, res);
965 if (error || *res)
966 goto done;
967 if (atv.tv_sec || atv.tv_usec) {
968 getmicrouptime(&rtv);
969 if (timevalcmp(&rtv, &atv, >=))
970 goto done;
971 ttv = atv;
972 timevalsub(&ttv, &rtv);
973 timo = ttv.tv_sec > 24 * 60 * 60 ?
974 24 * 60 * 60 * hz : tvtohz_high(&ttv);
976 crit_enter();
977 if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
978 crit_exit();
979 goto retry;
981 lp->lwp_flag &= ~LWP_SELECT;
983 error = tsleep((caddr_t)&selwait, PCATCH, "select", timo);
985 crit_exit();
986 if (error == 0)
987 goto retry;
988 done:
989 lp->lwp_flag &= ~LWP_SELECT;
990 /* select is not restarted after signals... */
991 if (error == ERESTART)
992 error = EINTR;
993 if (error == EWOULDBLOCK)
994 error = 0;
995 #define putbits(name, x) \
996 if (name && (error2 = copyout(obits[x], name, ncpbytes))) \
997 error = error2;
998 if (error == 0) {
999 int error2;
1001 putbits(in, 0);
1002 putbits(ou, 1);
1003 putbits(ex, 2);
1004 #undef putbits
1006 if (selbits != &s_selbits[0])
1007 kfree(selbits, M_SELECT);
1008 return (error);
1011 static int
1012 selscan(struct proc *p, fd_mask **ibits, fd_mask **obits, int nfd, int *res)
1014 int msk, i, fd;
1015 fd_mask bits;
1016 struct file *fp;
1017 int n = 0;
1018 /* Note: backend also returns POLLHUP/POLLERR if appropriate. */
1019 static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
1021 for (msk = 0; msk < 3; msk++) {
1022 if (ibits[msk] == NULL)
1023 continue;
1024 for (i = 0; i < nfd; i += NFDBITS) {
1025 bits = ibits[msk][i/NFDBITS];
1026 /* ffs(int mask) not portable, fd_mask is long */
1027 for (fd = i; bits && fd < nfd; fd++, bits >>= 1) {
1028 if (!(bits & 1))
1029 continue;
1030 fp = holdfp(p->p_fd, fd, -1);
1031 if (fp == NULL)
1032 return (EBADF);
1033 if (fo_poll(fp, flag[msk], fp->f_cred)) {
1034 obits[msk][(fd)/NFDBITS] |=
1035 ((fd_mask)1 << ((fd) % NFDBITS));
1036 n++;
1038 fdrop(fp);
1042 *res = n;
1043 return (0);
1047 * Poll system call.
1049 * MPALMOSTSAFE
1052 sys_poll(struct poll_args *uap)
1054 struct pollfd *bits;
1055 struct pollfd smallbits[32];
1056 struct timeval atv, rtv, ttv;
1057 int ncoll, error = 0, timo;
1058 u_int nfds;
1059 size_t ni;
1060 struct lwp *lp = curthread->td_lwp;
1061 struct proc *p = curproc;
1063 nfds = uap->nfds;
1065 * This is kinda bogus. We have fd limits, but that is not
1066 * really related to the size of the pollfd array. Make sure
1067 * we let the process use at least FD_SETSIZE entries and at
1068 * least enough for the current limits. We want to be reasonably
1069 * safe, but not overly restrictive.
1071 if (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && nfds > FD_SETSIZE)
1072 return (EINVAL);
1073 ni = nfds * sizeof(struct pollfd);
1074 if (ni > sizeof(smallbits))
1075 bits = kmalloc(ni, M_TEMP, M_WAITOK);
1076 else
1077 bits = smallbits;
1078 error = copyin(uap->fds, bits, ni);
1079 if (error)
1080 goto done;
1081 if (uap->timeout != INFTIM) {
1082 atv.tv_sec = uap->timeout / 1000;
1083 atv.tv_usec = (uap->timeout % 1000) * 1000;
1084 if (itimerfix(&atv)) {
1085 error = EINVAL;
1086 goto done;
1088 getmicrouptime(&rtv);
1089 timevaladd(&atv, &rtv);
1090 } else {
1091 atv.tv_sec = 0;
1092 atv.tv_usec = 0;
1094 timo = 0;
1095 retry:
1096 ncoll = nselcoll;
1097 lp->lwp_flag |= LWP_SELECT;
1098 get_mplock();
1099 error = pollscan(p, bits, nfds, &uap->sysmsg_result);
1100 rel_mplock();
1101 if (error || uap->sysmsg_result)
1102 goto done;
1103 if (atv.tv_sec || atv.tv_usec) {
1104 getmicrouptime(&rtv);
1105 if (timevalcmp(&rtv, &atv, >=))
1106 goto done;
1107 ttv = atv;
1108 timevalsub(&ttv, &rtv);
1109 timo = ttv.tv_sec > 24 * 60 * 60 ?
1110 24 * 60 * 60 * hz : tvtohz_high(&ttv);
1112 crit_enter();
1113 tsleep_interlock(&selwait, PCATCH);
1114 if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
1115 crit_exit();
1116 goto retry;
1118 lp->lwp_flag &= ~LWP_SELECT;
1119 error = tsleep(&selwait, PCATCH | PINTERLOCKED, "poll", timo);
1120 crit_exit();
1121 if (error == 0)
1122 goto retry;
1123 done:
1124 lp->lwp_flag &= ~LWP_SELECT;
1125 /* poll is not restarted after signals... */
1126 if (error == ERESTART)
1127 error = EINTR;
1128 if (error == EWOULDBLOCK)
1129 error = 0;
1130 if (error == 0) {
1131 error = copyout(bits, uap->fds, ni);
1132 if (error)
1133 goto out;
1135 out:
1136 if (ni > sizeof(smallbits))
1137 kfree(bits, M_TEMP);
1138 return (error);
1141 static int
1142 pollscan(struct proc *p, struct pollfd *fds, u_int nfd, int *res)
1144 int i;
1145 struct file *fp;
1146 int n = 0;
1148 for (i = 0; i < nfd; i++, fds++) {
1149 if (fds->fd >= p->p_fd->fd_nfiles) {
1150 fds->revents = POLLNVAL;
1151 n++;
1152 } else if (fds->fd < 0) {
1153 fds->revents = 0;
1154 } else {
1155 fp = holdfp(p->p_fd, fds->fd, -1);
1156 if (fp == NULL) {
1157 fds->revents = POLLNVAL;
1158 n++;
1159 } else {
1161 * Note: backend also returns POLLHUP and
1162 * POLLERR if appropriate.
1164 fds->revents = fo_poll(fp, fds->events,
1165 fp->f_cred);
1166 if (fds->revents != 0)
1167 n++;
1168 fdrop(fp);
1172 *res = n;
1173 return (0);
1177 * OpenBSD poll system call.
1178 * XXX this isn't quite a true representation.. OpenBSD uses select ops.
1180 * MPSAFE
1183 sys_openbsd_poll(struct openbsd_poll_args *uap)
1185 return (sys_poll((struct poll_args *)uap));
1188 /*ARGSUSED*/
1190 seltrue(cdev_t dev, int events)
1192 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1196 * Record a select request. A global wait must be used since a process/thread
1197 * might go away after recording its request.
1199 void
1200 selrecord(struct thread *selector, struct selinfo *sip)
1202 struct proc *p;
1203 struct lwp *lp = NULL;
1205 if (selector->td_lwp == NULL)
1206 panic("selrecord: thread needs a process");
1208 if (sip->si_pid == selector->td_proc->p_pid &&
1209 sip->si_tid == selector->td_lwp->lwp_tid)
1210 return;
1211 if (sip->si_pid && (p = pfind(sip->si_pid)))
1212 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1213 if (lp != NULL && lp->lwp_wchan == (caddr_t)&selwait) {
1214 sip->si_flags |= SI_COLL;
1215 } else {
1216 sip->si_pid = selector->td_proc->p_pid;
1217 sip->si_tid = selector->td_lwp->lwp_tid;
1222 * Do a wakeup when a selectable event occurs.
1224 void
1225 selwakeup(struct selinfo *sip)
1227 struct proc *p;
1228 struct lwp *lp = NULL;
1230 if (sip->si_pid == 0)
1231 return;
1232 if (sip->si_flags & SI_COLL) {
1233 nselcoll++;
1234 sip->si_flags &= ~SI_COLL;
1235 wakeup((caddr_t)&selwait); /* YYY fixable */
1237 p = pfind(sip->si_pid);
1238 sip->si_pid = 0;
1239 if (p == NULL)
1240 return;
1241 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1242 if (lp == NULL)
1243 return;
1245 crit_enter();
1246 if (lp->lwp_wchan == (caddr_t)&selwait) {
1248 * Flag the process to break the tsleep when
1249 * setrunnable is called, but only call setrunnable
1250 * here if the process is not in a stopped state.
1252 lp->lwp_flag |= LWP_BREAKTSLEEP;
1253 if (p->p_stat != SSTOP)
1254 setrunnable(lp);
1255 } else if (lp->lwp_flag & LWP_SELECT) {
1256 lp->lwp_flag &= ~LWP_SELECT;
1258 crit_exit();