2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
55 #include <vm/vm_extern.h>
57 #include <sys/msgport2.h>
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
64 * Time of day and interval timer support.
66 * These routines provide the kernel entry points to get and set
67 * the time-of-day and per-process interval timers. Subroutines
68 * here provide support for adding and subtracting timeval structures
69 * and decrementing interval timers, optionally reloading the interval
70 * timers when they expire.
73 static int nanosleep1(struct timespec
*rqt
, struct timespec
*rmt
);
74 static int settime(struct timeval
*);
75 static void timevalfix(struct timeval
*);
77 static int sleep_hard_us
= 100;
78 SYSCTL_INT(_kern
, OID_AUTO
, sleep_hard_us
, CTLFLAG_RW
, &sleep_hard_us
, 0, "")
81 settime(struct timeval
*tv
)
83 struct timeval delta
, tv1
, tv2
;
84 static struct timeval maxtime
, laststep
;
88 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
89 lwkt_setcpu_self(globaldata_find(0));
94 timevalsub(&delta
, &tv1
);
97 * If the system is secure, we do not allow the time to be
98 * set to a value earlier than 1 second less than the highest
99 * time we have yet seen. The worst a miscreant can do in
100 * this circumstance is "freeze" time. He couldn't go
103 * We similarly do not allow the clock to be stepped more
104 * than one second, nor more than once per second. This allows
105 * a miscreant to make the clock march double-time, but no worse.
107 if (securelevel
> 1) {
108 if (delta
.tv_sec
< 0 || delta
.tv_usec
< 0) {
110 * Update maxtime to latest time we've seen.
112 if (tv1
.tv_sec
> maxtime
.tv_sec
)
115 timevalsub(&tv2
, &maxtime
);
116 if (tv2
.tv_sec
< -1) {
117 tv
->tv_sec
= maxtime
.tv_sec
- 1;
118 kprintf("Time adjustment clamped to -1 second\n");
121 if (tv1
.tv_sec
== laststep
.tv_sec
) {
125 if (delta
.tv_sec
> 1) {
126 tv
->tv_sec
= tv1
.tv_sec
+ 1;
127 kprintf("Time adjustment clamped to +1 second\n");
133 ts
.tv_sec
= tv
->tv_sec
;
134 ts
.tv_nsec
= tv
->tv_usec
* 1000;
139 lwkt_setcpu_self(globaldata_find(origcpu
));
149 kern_clock_gettime(clockid_t clock_id
, struct timespec
*ats
)
157 case CLOCK_MONOTONIC
:
171 sys_clock_gettime(struct clock_gettime_args
*uap
)
176 error
= kern_clock_gettime(uap
->clock_id
, &ats
);
178 error
= copyout(&ats
, uap
->tp
, sizeof(ats
));
184 kern_clock_settime(clockid_t clock_id
, struct timespec
*ats
)
186 struct thread
*td
= curthread
;
190 if ((error
= priv_check(td
, PRIV_CLOCK_SETTIME
)) != 0)
192 if (clock_id
!= CLOCK_REALTIME
)
194 if (ats
->tv_nsec
< 0 || ats
->tv_nsec
>= 1000000000)
197 TIMESPEC_TO_TIMEVAL(&atv
, ats
);
198 error
= settime(&atv
);
206 sys_clock_settime(struct clock_settime_args
*uap
)
211 if ((error
= copyin(uap
->tp
, &ats
, sizeof(ats
))) != 0)
215 error
= kern_clock_settime(uap
->clock_id
, &ats
);
224 kern_clock_getres(clockid_t clock_id
, struct timespec
*ts
)
230 case CLOCK_MONOTONIC
:
232 * Round up the result of the division cheaply
233 * by adding 1. Rounding up is especially important
234 * if rounding down would give 0. Perfect rounding
238 ts
->tv_nsec
= 1000000000 / sys_cputimer
->freq
+ 1;
253 sys_clock_getres(struct clock_getres_args
*uap
)
258 error
= kern_clock_getres(uap
->clock_id
, &ts
);
260 error
= copyout(&ts
, uap
->tp
, sizeof(ts
));
268 * This is a general helper function for nanosleep() (aka sleep() aka
271 * If there is less then one tick's worth of time left and
272 * we haven't done a yield, or the remaining microseconds is
273 * ridiculously low, do a yield. This avoids having
274 * to deal with systimer overheads when the system is under
275 * heavy loads. If we have done a yield already then use
276 * a systimer and an uninterruptable thread wait.
278 * If there is more then a tick's worth of time left,
279 * calculate the baseline ticks and use an interruptable
280 * tsleep, then handle the fine-grained delay on the next
281 * loop. This usually results in two sleeps occuring, a long one
287 ns1_systimer(systimer_t info
)
289 lwkt_schedule(info
->data
);
293 nanosleep1(struct timespec
*rqt
, struct timespec
*rmt
)
296 struct timespec ts
, ts2
, ts3
;
301 if (rqt
->tv_nsec
< 0 || rqt
->tv_nsec
>= 1000000000)
303 if (rqt
->tv_sec
< 0 || (rqt
->tv_sec
== 0 && rqt
->tv_nsec
== 0))
306 timespecadd(&ts
, rqt
); /* ts = target timestamp compare */
307 TIMESPEC_TO_TIMEVAL(&tv
, rqt
); /* tv = sleep interval */
312 struct systimer info
;
314 ticks
= tv
.tv_usec
/ ustick
; /* approximate */
316 if (tv
.tv_sec
== 0 && ticks
== 0) {
317 thread_t td
= curthread
;
318 if (tried_yield
|| tv
.tv_usec
< sleep_hard_us
) {
322 crit_enter_quick(td
);
323 systimer_init_oneshot(&info
, ns1_systimer
,
325 lwkt_deschedule_self(td
);
328 systimer_del(&info
); /* make sure it's gone */
330 error
= iscaught(td
->td_lwp
);
331 } else if (tv
.tv_sec
== 0) {
332 error
= tsleep(&nanowait
, PCATCH
, "nanslp", ticks
);
334 ticks
= tvtohz_low(&tv
); /* also handles overflow */
335 error
= tsleep(&nanowait
, PCATCH
, "nanslp", ticks
);
338 if (error
&& error
!= EWOULDBLOCK
) {
339 if (error
== ERESTART
)
342 timespecsub(&ts
, &ts2
);
349 if (timespeccmp(&ts2
, &ts
, >=))
352 timespecsub(&ts3
, &ts2
);
353 TIMESPEC_TO_TIMEVAL(&tv
, &ts3
);
361 sys_nanosleep(struct nanosleep_args
*uap
)
367 error
= copyin(uap
->rqtp
, &rqt
, sizeof(rqt
));
371 error
= nanosleep1(&rqt
, &rmt
);
374 * copyout the residual if nanosleep was interrupted.
376 if (error
&& uap
->rmtp
) {
379 error2
= copyout(&rmt
, uap
->rmtp
, sizeof(rmt
));
390 sys_gettimeofday(struct gettimeofday_args
*uap
)
397 if ((error
= copyout((caddr_t
)&atv
, (caddr_t
)uap
->tp
,
402 error
= copyout((caddr_t
)&tz
, (caddr_t
)uap
->tzp
,
411 sys_settimeofday(struct settimeofday_args
*uap
)
413 struct thread
*td
= curthread
;
418 if ((error
= priv_check(td
, PRIV_SETTIMEOFDAY
)))
420 /* Verify all parameters before changing time. */
422 if ((error
= copyin((caddr_t
)uap
->tv
, (caddr_t
)&atv
,
425 if (atv
.tv_usec
< 0 || atv
.tv_usec
>= 1000000)
429 (error
= copyin((caddr_t
)uap
->tzp
, (caddr_t
)&atz
, sizeof(atz
))))
433 if (uap
->tv
&& (error
= settime(&atv
))) {
444 kern_adjtime_common(void)
446 if ((ntp_delta
>= 0 && ntp_delta
< ntp_default_tick_delta
) ||
447 (ntp_delta
< 0 && ntp_delta
> -ntp_default_tick_delta
))
448 ntp_tick_delta
= ntp_delta
;
449 else if (ntp_delta
> ntp_big_delta
)
450 ntp_tick_delta
= 10 * ntp_default_tick_delta
;
451 else if (ntp_delta
< -ntp_big_delta
)
452 ntp_tick_delta
= -10 * ntp_default_tick_delta
;
453 else if (ntp_delta
> 0)
454 ntp_tick_delta
= ntp_default_tick_delta
;
456 ntp_tick_delta
= -ntp_default_tick_delta
;
460 kern_adjtime(int64_t delta
, int64_t *odelta
)
464 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
465 lwkt_setcpu_self(globaldata_find(0));
470 kern_adjtime_common();
474 lwkt_setcpu_self(globaldata_find(origcpu
));
478 kern_get_ntp_delta(int64_t *delta
)
482 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
483 lwkt_setcpu_self(globaldata_find(0));
490 lwkt_setcpu_self(globaldata_find(origcpu
));
494 kern_reladjtime(int64_t delta
)
498 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
499 lwkt_setcpu_self(globaldata_find(0));
503 kern_adjtime_common();
507 lwkt_setcpu_self(globaldata_find(origcpu
));
511 kern_adjfreq(int64_t rate
)
515 if ((origcpu
= mycpu
->gd_cpuid
) != 0)
516 lwkt_setcpu_self(globaldata_find(0));
519 ntp_tick_permanent
= rate
;
523 lwkt_setcpu_self(globaldata_find(origcpu
));
530 sys_adjtime(struct adjtime_args
*uap
)
532 struct thread
*td
= curthread
;
534 int64_t ndelta
, odelta
;
537 if ((error
= priv_check(td
, PRIV_ADJTIME
)))
539 error
= copyin(uap
->delta
, &atv
, sizeof(struct timeval
));
544 * Compute the total correction and the rate at which to apply it.
545 * Round the adjustment down to a whole multiple of the per-tick
546 * delta, so that after some number of incremental changes in
547 * hardclock(), tickdelta will become zero, lest the correction
548 * overshoot and start taking us away from the desired final time.
550 ndelta
= (int64_t)atv
.tv_sec
* 1000000000 + atv
.tv_usec
* 1000;
552 kern_adjtime(ndelta
, &odelta
);
556 atv
.tv_sec
= odelta
/ 1000000000;
557 atv
.tv_usec
= odelta
% 1000000000 / 1000;
558 copyout(&atv
, uap
->olddelta
, sizeof(struct timeval
));
564 sysctl_adjtime(SYSCTL_HANDLER_ARGS
)
569 if (req
->newptr
!= NULL
) {
570 if (priv_check(curthread
, PRIV_ROOT
))
572 error
= SYSCTL_IN(req
, &delta
, sizeof(delta
));
575 kern_reladjtime(delta
);
579 kern_get_ntp_delta(&delta
);
580 error
= SYSCTL_OUT(req
, &delta
, sizeof(delta
));
585 * delta is in nanoseconds.
588 sysctl_delta(SYSCTL_HANDLER_ARGS
)
590 int64_t delta
, old_delta
;
593 if (req
->newptr
!= NULL
) {
594 if (priv_check(curthread
, PRIV_ROOT
))
596 error
= SYSCTL_IN(req
, &delta
, sizeof(delta
));
599 kern_adjtime(delta
, &old_delta
);
602 if (req
->oldptr
!= NULL
)
603 kern_get_ntp_delta(&old_delta
);
604 error
= SYSCTL_OUT(req
, &old_delta
, sizeof(old_delta
));
609 * frequency is in nanoseconds per second shifted left 32.
610 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
613 sysctl_adjfreq(SYSCTL_HANDLER_ARGS
)
618 if (req
->newptr
!= NULL
) {
619 if (priv_check(curthread
, PRIV_ROOT
))
621 error
= SYSCTL_IN(req
, &freqdelta
, sizeof(freqdelta
));
626 kern_adjfreq(freqdelta
);
629 if (req
->oldptr
!= NULL
)
630 freqdelta
= ntp_tick_permanent
* hz
;
631 error
= SYSCTL_OUT(req
, &freqdelta
, sizeof(freqdelta
));
638 SYSCTL_NODE(_kern
, OID_AUTO
, ntp
, CTLFLAG_RW
, 0, "NTP related controls");
639 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, permanent
,
640 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
641 sysctl_adjfreq
, "Q", "permanent correction per second");
642 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, delta
,
643 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
644 sysctl_delta
, "Q", "one-time delta");
645 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, big_delta
, CTLFLAG_RD
,
646 &ntp_big_delta
, sizeof(ntp_big_delta
), "Q",
647 "threshold for fast adjustment");
648 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, tick_delta
, CTLFLAG_RD
,
649 &ntp_tick_delta
, sizeof(ntp_tick_delta
), "LU",
650 "per-tick adjustment");
651 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, default_tick_delta
, CTLFLAG_RD
,
652 &ntp_default_tick_delta
, sizeof(ntp_default_tick_delta
), "LU",
653 "default per-tick adjustment");
654 SYSCTL_OPAQUE(_kern_ntp
, OID_AUTO
, next_leap_second
, CTLFLAG_RW
,
655 &ntp_leap_second
, sizeof(ntp_leap_second
), "LU",
657 SYSCTL_INT(_kern_ntp
, OID_AUTO
, insert_leap_second
, CTLFLAG_RW
,
658 &ntp_leap_insert
, 0, "insert or remove leap second");
659 SYSCTL_PROC(_kern_ntp
, OID_AUTO
, adjust
,
660 CTLTYPE_QUAD
|CTLFLAG_RW
, 0, 0,
661 sysctl_adjtime
, "Q", "relative adjust for delta");
664 * Get value of an interval timer. The process virtual and
665 * profiling virtual time timers are kept in the p_stats area, since
666 * they can be swapped out. These are kept internally in the
667 * way they are specified externally: in time until they expire.
669 * The real time interval timer is kept in the process table slot
670 * for the process, and its value (it_value) is kept as an
671 * absolute time rather than as a delta, so that it is easy to keep
672 * periodic real-time signals from drifting.
674 * Virtual time timers are processed in the hardclock() routine of
675 * kern_clock.c. The real time timer is processed by a timeout
676 * routine, called from the softclock() routine. Since a callout
677 * may be delayed in real time due to interrupt processing in the system,
678 * it is possible for the real time timeout routine (realitexpire, given below),
679 * to be delayed in real time past when it is supposed to occur. It
680 * does not suffice, therefore, to reload the real timer .it_value from the
681 * real time timers .it_interval. Rather, we compute the next time in
682 * absolute time the timer should go off.
687 sys_getitimer(struct getitimer_args
*uap
)
689 struct proc
*p
= curproc
;
691 struct itimerval aitv
;
693 if (uap
->which
> ITIMER_PROF
)
697 if (uap
->which
== ITIMER_REAL
) {
699 * Convert from absolute to relative time in .it_value
700 * part of real time timer. If time for real time timer
701 * has passed return 0, else return difference between
702 * current time and time for the timer to go off.
704 aitv
= p
->p_realtimer
;
705 if (timevalisset(&aitv
.it_value
)) {
706 getmicrouptime(&ctv
);
707 if (timevalcmp(&aitv
.it_value
, &ctv
, <))
708 timevalclear(&aitv
.it_value
);
710 timevalsub(&aitv
.it_value
, &ctv
);
713 aitv
= p
->p_timer
[uap
->which
];
717 return (copyout(&aitv
, uap
->itv
, sizeof (struct itimerval
)));
724 sys_setitimer(struct setitimer_args
*uap
)
726 struct itimerval aitv
;
728 struct itimerval
*itvp
;
729 struct proc
*p
= curproc
;
732 if (uap
->which
> ITIMER_PROF
)
735 if (itvp
&& (error
= copyin((caddr_t
)itvp
, (caddr_t
)&aitv
,
736 sizeof(struct itimerval
))))
738 if ((uap
->itv
= uap
->oitv
) &&
739 (error
= sys_getitimer((struct getitimer_args
*)uap
)))
743 if (itimerfix(&aitv
.it_value
))
745 if (!timevalisset(&aitv
.it_value
))
746 timevalclear(&aitv
.it_interval
);
747 else if (itimerfix(&aitv
.it_interval
))
751 if (uap
->which
== ITIMER_REAL
) {
752 if (timevalisset(&p
->p_realtimer
.it_value
))
753 callout_stop(&p
->p_ithandle
);
754 if (timevalisset(&aitv
.it_value
))
755 callout_reset(&p
->p_ithandle
,
756 tvtohz_high(&aitv
.it_value
), realitexpire
, p
);
757 getmicrouptime(&ctv
);
758 timevaladd(&aitv
.it_value
, &ctv
);
759 p
->p_realtimer
= aitv
;
761 p
->p_timer
[uap
->which
] = aitv
;
769 * Real interval timer expired:
770 * send process whose timer expired an alarm signal.
771 * If time is not set up to reload, then just return.
772 * Else compute next time timer should go off which is > current time.
773 * This is where delay in processing this timeout causes multiple
774 * SIGALRM calls to be compressed into one.
775 * tvtohz_high() always adds 1 to allow for the time until the next clock
776 * interrupt being strictly less than 1 clock tick, but we don't want
777 * that here since we want to appear to be in sync with the clock
778 * interrupt even when we're delayed.
781 realitexpire(void *arg
)
784 struct timeval ctv
, ntv
;
786 p
= (struct proc
*)arg
;
788 if (!timevalisset(&p
->p_realtimer
.it_interval
)) {
789 timevalclear(&p
->p_realtimer
.it_value
);
794 timevaladd(&p
->p_realtimer
.it_value
,
795 &p
->p_realtimer
.it_interval
);
796 getmicrouptime(&ctv
);
797 if (timevalcmp(&p
->p_realtimer
.it_value
, &ctv
, >)) {
798 ntv
= p
->p_realtimer
.it_value
;
799 timevalsub(&ntv
, &ctv
);
800 callout_reset(&p
->p_ithandle
, tvtohz_low(&ntv
),
810 * Check that a proposed value to load into the .it_value or
811 * .it_interval part of an interval timer is acceptable, and
812 * fix it to have at least minimal value (i.e. if it is less
813 * than the resolution of the clock, round it up.)
818 itimerfix(struct timeval
*tv
)
821 if (tv
->tv_sec
< 0 || tv
->tv_sec
> 100000000 ||
822 tv
->tv_usec
< 0 || tv
->tv_usec
>= 1000000)
824 if (tv
->tv_sec
== 0 && tv
->tv_usec
!= 0 && tv
->tv_usec
< ustick
)
825 tv
->tv_usec
= ustick
;
830 * Decrement an interval timer by a specified number
831 * of microseconds, which must be less than a second,
832 * i.e. < 1000000. If the timer expires, then reload
833 * it. In this case, carry over (usec - old value) to
834 * reduce the value reloaded into the timer so that
835 * the timer does not drift. This routine assumes
836 * that it is called in a context where the timers
837 * on which it is operating cannot change in value.
840 itimerdecr(struct itimerval
*itp
, int usec
)
843 if (itp
->it_value
.tv_usec
< usec
) {
844 if (itp
->it_value
.tv_sec
== 0) {
845 /* expired, and already in next interval */
846 usec
-= itp
->it_value
.tv_usec
;
849 itp
->it_value
.tv_usec
+= 1000000;
850 itp
->it_value
.tv_sec
--;
852 itp
->it_value
.tv_usec
-= usec
;
854 if (timevalisset(&itp
->it_value
))
856 /* expired, exactly at end of interval */
858 if (timevalisset(&itp
->it_interval
)) {
859 itp
->it_value
= itp
->it_interval
;
860 itp
->it_value
.tv_usec
-= usec
;
861 if (itp
->it_value
.tv_usec
< 0) {
862 itp
->it_value
.tv_usec
+= 1000000;
863 itp
->it_value
.tv_sec
--;
866 itp
->it_value
.tv_usec
= 0; /* sec is already 0 */
871 * Add and subtract routines for timevals.
872 * N.B.: subtract routine doesn't deal with
873 * results which are before the beginning,
874 * it just gets very confused in this case.
878 timevaladd(struct timeval
*t1
, const struct timeval
*t2
)
881 t1
->tv_sec
+= t2
->tv_sec
;
882 t1
->tv_usec
+= t2
->tv_usec
;
887 timevalsub(struct timeval
*t1
, const struct timeval
*t2
)
890 t1
->tv_sec
-= t2
->tv_sec
;
891 t1
->tv_usec
-= t2
->tv_usec
;
896 timevalfix(struct timeval
*t1
)
899 if (t1
->tv_usec
< 0) {
901 t1
->tv_usec
+= 1000000;
903 if (t1
->tv_usec
>= 1000000) {
905 t1
->tv_usec
-= 1000000;
910 * ratecheck(): simple time-based rate-limit checking.
913 ratecheck(struct timeval
*lasttime
, const struct timeval
*mininterval
)
915 struct timeval tv
, delta
;
918 getmicrouptime(&tv
); /* NB: 10ms precision */
920 timevalsub(&delta
, lasttime
);
923 * check for 0,0 is so that the message will be seen at least once,
924 * even if interval is huge.
926 if (timevalcmp(&delta
, mininterval
, >=) ||
927 (lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0)) {
936 * ppsratecheck(): packets (or events) per second limitation.
938 * Return 0 if the limit is to be enforced (e.g. the caller
939 * should drop a packet because of the rate limitation).
941 * maxpps of 0 always causes zero to be returned. maxpps of -1
942 * always causes 1 to be returned; this effectively defeats rate
945 * Note that we maintain the struct timeval for compatibility
946 * with other bsd systems. We reuse the storage and just monitor
947 * clock ticks for minimal overhead.
950 ppsratecheck(struct timeval
*lasttime
, int *curpps
, int maxpps
)
955 * Reset the last time and counter if this is the first call
956 * or more than a second has passed since the last update of
960 if (lasttime
->tv_sec
== 0 || (u_int
)(now
- lasttime
->tv_sec
) >= hz
) {
961 lasttime
->tv_sec
= now
;
963 return (maxpps
!= 0);
965 (*curpps
)++; /* NB: ignore potential overflow */
966 return (maxpps
< 0 || *curpps
< maxpps
);