kernel - kqueue - refactor kqueue_scan(), rename tick to ustick
[dragonfly.git] / sys / kern / kern_intr.c
blobc615fade235fac1262fd5c871117d21e51e5ca10
1 /*
2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/random.h>
39 #include <sys/serialize.h>
40 #include <sys/interrupt.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
44 #include <machine/frame.h>
46 #include <sys/interrupt.h>
48 #include <sys/thread2.h>
49 #include <sys/mplock2.h>
51 struct info_info;
53 typedef struct intrec {
54 struct intrec *next;
55 struct intr_info *info;
56 inthand2_t *handler;
57 void *argument;
58 char *name;
59 int intr;
60 int intr_flags;
61 struct lwkt_serialize *serializer;
62 } *intrec_t;
64 struct intr_info {
65 intrec_t i_reclist;
66 struct thread i_thread;
67 struct random_softc i_random;
68 int i_running;
69 long i_count; /* interrupts dispatched */
70 int i_mplock_required;
71 int i_fast;
72 int i_slow;
73 int i_state;
74 int i_errorticks;
75 unsigned long i_straycount;
76 } intr_info_ary[MAX_INTS];
78 int max_installed_hard_intr;
79 int max_installed_soft_intr;
81 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
83 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
84 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
85 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
86 static void ithread_handler(void *arg);
87 static void ithread_emergency(void *arg);
88 static void report_stray_interrupt(int intr, struct intr_info *info);
89 static void int_moveto_destcpu(int *, int *, int);
90 static void int_moveto_origcpu(int, int);
91 #ifdef SMP
92 static void intr_get_mplock(void);
93 #endif
95 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
97 static struct systimer emergency_intr_timer;
98 static struct thread emergency_intr_thread;
100 #define ISTATE_NOTHREAD 0
101 #define ISTATE_NORMAL 1
102 #define ISTATE_LIVELOCKED 2
104 #ifdef SMP
105 static int intr_mpsafe = 1;
106 static int intr_migrate = 0;
107 static int intr_migrate_count;
108 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
109 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
110 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
111 SYSCTL_INT(_kern, OID_AUTO, intr_migrate,
112 CTLFLAG_RW, &intr_migrate, 0, "Migrate to cpu holding BGL");
113 SYSCTL_INT(_kern, OID_AUTO, intr_migrate_count,
114 CTLFLAG_RW, &intr_migrate_count, 0, "");
115 #endif
116 static int livelock_limit = 40000;
117 static int livelock_lowater = 20000;
118 static int livelock_debug = -1;
119 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
120 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
121 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
122 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
123 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
124 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
126 static int emergency_intr_enable = 0; /* emergency interrupt polling */
127 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
128 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
129 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
131 static int emergency_intr_freq = 10; /* emergency polling frequency */
132 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
133 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
134 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
137 * Sysctl support routines
139 static int
140 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
142 int error, enabled;
144 enabled = emergency_intr_enable;
145 error = sysctl_handle_int(oidp, &enabled, 0, req);
146 if (error || req->newptr == NULL)
147 return error;
148 emergency_intr_enable = enabled;
149 if (emergency_intr_enable) {
150 systimer_adjust_periodic(&emergency_intr_timer,
151 emergency_intr_freq);
152 } else {
153 systimer_adjust_periodic(&emergency_intr_timer, 1);
155 return 0;
158 static int
159 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
161 int error, phz;
163 phz = emergency_intr_freq;
164 error = sysctl_handle_int(oidp, &phz, 0, req);
165 if (error || req->newptr == NULL)
166 return error;
167 if (phz <= 0)
168 return EINVAL;
169 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
170 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
172 emergency_intr_freq = phz;
173 if (emergency_intr_enable) {
174 systimer_adjust_periodic(&emergency_intr_timer,
175 emergency_intr_freq);
176 } else {
177 systimer_adjust_periodic(&emergency_intr_timer, 1);
179 return 0;
183 * Register an SWI or INTerrupt handler.
185 void *
186 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
187 struct lwkt_serialize *serializer)
189 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
190 panic("register_swi: bad intr %d", intr);
191 return(register_int(intr, handler, arg, name, serializer, 0));
194 void *
195 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
196 struct lwkt_serialize *serializer)
198 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
199 panic("register_swi: bad intr %d", intr);
200 return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE));
203 void *
204 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
205 struct lwkt_serialize *serializer, int intr_flags)
207 struct intr_info *info;
208 struct intrec **list;
209 intrec_t rec;
210 int orig_cpuid, cpuid;
212 if (intr < 0 || intr >= MAX_INTS)
213 panic("register_int: bad intr %d", intr);
214 if (name == NULL)
215 name = "???";
216 info = &intr_info_ary[intr];
219 * Construct an interrupt handler record
221 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
222 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
223 strcpy(rec->name, name);
225 rec->info = info;
226 rec->handler = handler;
227 rec->argument = arg;
228 rec->intr = intr;
229 rec->intr_flags = intr_flags;
230 rec->next = NULL;
231 rec->serializer = serializer;
234 * Create an emergency polling thread and set up a systimer to wake
235 * it up.
237 if (emergency_intr_thread.td_kstack == NULL) {
238 lwkt_create(ithread_emergency, NULL, NULL,
239 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
240 "ithread emerg");
241 systimer_init_periodic_nq(&emergency_intr_timer,
242 emergency_intr_timer_callback, &emergency_intr_thread,
243 (emergency_intr_enable ? emergency_intr_freq : 1));
246 int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
249 * Create an interrupt thread if necessary, leave it in an unscheduled
250 * state.
252 if (info->i_state == ISTATE_NOTHREAD) {
253 info->i_state = ISTATE_NORMAL;
254 lwkt_create((void *)ithread_handler, (void *)(intptr_t)intr, NULL,
255 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
256 "ithread %d", intr);
257 if (intr >= FIRST_SOFTINT)
258 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
259 else
260 lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
261 info->i_thread.td_preemptable = lwkt_preempt;
264 list = &info->i_reclist;
267 * Keep track of how many fast and slow interrupts we have.
268 * Set i_mplock_required if any handler in the chain requires
269 * the MP lock to operate.
271 if ((intr_flags & INTR_MPSAFE) == 0)
272 info->i_mplock_required = 1;
273 if (intr_flags & INTR_FAST)
274 ++info->i_fast;
275 else
276 ++info->i_slow;
279 * Enable random number generation keying off of this interrupt.
281 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
282 info->i_random.sc_enabled = 1;
283 info->i_random.sc_intr = intr;
287 * Add the record to the interrupt list.
289 crit_enter();
290 while (*list != NULL)
291 list = &(*list)->next;
292 *list = rec;
293 crit_exit();
296 * Update max_installed_hard_intr to make the emergency intr poll
297 * a bit more efficient.
299 if (intr < FIRST_SOFTINT) {
300 if (max_installed_hard_intr <= intr)
301 max_installed_hard_intr = intr + 1;
302 } else {
303 if (max_installed_soft_intr <= intr)
304 max_installed_soft_intr = intr + 1;
308 * Setup the machine level interrupt vector
310 * XXX temporary workaround for some ACPI brokedness. ACPI installs
311 * its interrupt too early, before the IOAPICs have been configured,
312 * which means the IOAPIC is not enabled by the registration of the
313 * ACPI interrupt. Anything else sharing that IRQ will wind up not
314 * being enabled. Temporarily work around the problem by always
315 * installing and enabling on every new interrupt handler, even
316 * if one has already been setup on that irq.
318 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
319 if (machintr_vector_setup(intr, intr_flags))
320 kprintf("machintr_vector_setup: failed on irq %d\n", intr);
323 int_moveto_origcpu(orig_cpuid, cpuid);
325 return(rec);
328 void
329 unregister_swi(void *id)
331 unregister_int(id);
334 void
335 unregister_int(void *id)
337 struct intr_info *info;
338 struct intrec **list;
339 intrec_t rec;
340 int intr, orig_cpuid, cpuid;
342 intr = ((intrec_t)id)->intr;
344 if (intr < 0 || intr >= MAX_INTS)
345 panic("register_int: bad intr %d", intr);
347 info = &intr_info_ary[intr];
349 int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
352 * Remove the interrupt descriptor, adjust the descriptor count,
353 * and teardown the machine level vector if this was the last interrupt.
355 crit_enter();
356 list = &info->i_reclist;
357 while ((rec = *list) != NULL) {
358 if (rec == id)
359 break;
360 list = &rec->next;
362 if (rec) {
363 intrec_t rec0;
365 *list = rec->next;
366 if (rec->intr_flags & INTR_FAST)
367 --info->i_fast;
368 else
369 --info->i_slow;
370 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
371 machintr_vector_teardown(intr);
374 * Clear i_mplock_required if no handlers in the chain require the
375 * MP lock.
377 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
378 if ((rec0->intr_flags & INTR_MPSAFE) == 0)
379 break;
381 if (rec0 == NULL)
382 info->i_mplock_required = 0;
385 crit_exit();
387 int_moveto_origcpu(orig_cpuid, cpuid);
390 * Free the record.
392 if (rec != NULL) {
393 kfree(rec->name, M_DEVBUF);
394 kfree(rec, M_DEVBUF);
395 } else {
396 kprintf("warning: unregister_int: int %d handler for %s not found\n",
397 intr, ((intrec_t)id)->name);
401 const char *
402 get_registered_name(int intr)
404 intrec_t rec;
406 if (intr < 0 || intr >= MAX_INTS)
407 panic("register_int: bad intr %d", intr);
409 if ((rec = intr_info_ary[intr].i_reclist) == NULL)
410 return(NULL);
411 else if (rec->next)
412 return("mux");
413 else
414 return(rec->name);
418 count_registered_ints(int intr)
420 struct intr_info *info;
422 if (intr < 0 || intr >= MAX_INTS)
423 panic("register_int: bad intr %d", intr);
424 info = &intr_info_ary[intr];
425 return(info->i_fast + info->i_slow);
428 long
429 get_interrupt_counter(int intr)
431 struct intr_info *info;
433 if (intr < 0 || intr >= MAX_INTS)
434 panic("register_int: bad intr %d", intr);
435 info = &intr_info_ary[intr];
436 return(info->i_count);
440 void
441 swi_setpriority(int intr, int pri)
443 struct intr_info *info;
445 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
446 panic("register_swi: bad intr %d", intr);
447 info = &intr_info_ary[intr];
448 if (info->i_state != ISTATE_NOTHREAD)
449 lwkt_setpri(&info->i_thread, pri);
452 void
453 register_randintr(int intr)
455 struct intr_info *info;
457 if (intr < 0 || intr >= MAX_INTS)
458 panic("register_randintr: bad intr %d", intr);
459 info = &intr_info_ary[intr];
460 info->i_random.sc_intr = intr;
461 info->i_random.sc_enabled = 1;
464 void
465 unregister_randintr(int intr)
467 struct intr_info *info;
469 if (intr < 0 || intr >= MAX_INTS)
470 panic("register_swi: bad intr %d", intr);
471 info = &intr_info_ary[intr];
472 info->i_random.sc_enabled = -1;
476 next_registered_randintr(int intr)
478 struct intr_info *info;
480 if (intr < 0 || intr >= MAX_INTS)
481 panic("register_swi: bad intr %d", intr);
482 while (intr < MAX_INTS) {
483 info = &intr_info_ary[intr];
484 if (info->i_random.sc_enabled > 0)
485 break;
486 ++intr;
488 return(intr);
492 * Dispatch an interrupt. If there's nothing to do we have a stray
493 * interrupt and can just return, leaving the interrupt masked.
495 * We need to schedule the interrupt and set its i_running bit. If
496 * we are not on the interrupt thread's cpu we have to send a message
497 * to the correct cpu that will issue the desired action (interlocking
498 * with the interrupt thread's critical section). We do NOT attempt to
499 * reschedule interrupts whos i_running bit is already set because
500 * this would prematurely wakeup a livelock-limited interrupt thread.
502 * i_running is only tested/set on the same cpu as the interrupt thread.
504 * We are NOT in a critical section, which will allow the scheduled
505 * interrupt to preempt us. The MP lock might *NOT* be held here.
507 #ifdef SMP
509 static void
510 sched_ithd_remote(void *arg)
512 sched_ithd((int)(intptr_t)arg);
515 #endif
517 void
518 sched_ithd(int intr)
520 struct intr_info *info;
522 info = &intr_info_ary[intr];
524 ++info->i_count;
525 if (info->i_state != ISTATE_NOTHREAD) {
526 if (info->i_reclist == NULL) {
527 report_stray_interrupt(intr, info);
528 } else {
529 #ifdef SMP
530 if (info->i_thread.td_gd == mycpu) {
531 if (info->i_running == 0) {
532 info->i_running = 1;
533 if (info->i_state != ISTATE_LIVELOCKED)
534 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
536 } else {
537 lwkt_send_ipiq(info->i_thread.td_gd,
538 sched_ithd_remote, (void *)(intptr_t)intr);
540 #else
541 if (info->i_running == 0) {
542 info->i_running = 1;
543 if (info->i_state != ISTATE_LIVELOCKED)
544 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
546 #endif
548 } else {
549 report_stray_interrupt(intr, info);
553 static void
554 report_stray_interrupt(int intr, struct intr_info *info)
556 ++info->i_straycount;
557 if (info->i_straycount < 10) {
558 if (info->i_errorticks == ticks)
559 return;
560 info->i_errorticks = ticks;
561 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
562 intr, mycpuid);
563 } else if (info->i_straycount == 10) {
564 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
565 "there will be no further reports\n",
566 info->i_straycount, intr, mycpuid);
571 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
572 * might not be held).
574 static void
575 ithread_livelock_wakeup(systimer_t st)
577 struct intr_info *info;
579 info = &intr_info_ary[(int)(intptr_t)st->data];
580 if (info->i_state != ISTATE_NOTHREAD)
581 lwkt_schedule(&info->i_thread);
585 * Schedule ithread within fast intr handler
587 * XXX Protect sched_ithd() call with gd_intr_nesting_level?
588 * Interrupts aren't enabled, but still...
590 static __inline void
591 ithread_fast_sched(int intr, thread_t td)
593 ++td->td_nest_count;
596 * We are already in critical section, exit it now to
597 * allow preemption.
599 crit_exit_quick(td);
600 sched_ithd(intr);
601 crit_enter_quick(td);
603 --td->td_nest_count;
607 * This function is called directly from the ICU or APIC vector code assembly
608 * to process an interrupt. The critical section and interrupt deferral
609 * checks have already been done but the function is entered WITHOUT
610 * a critical section held. The BGL may or may not be held.
612 * Must return non-zero if we do not want the vector code to re-enable
613 * the interrupt (which we don't if we have to schedule the interrupt)
615 int ithread_fast_handler(struct intrframe *frame);
618 ithread_fast_handler(struct intrframe *frame)
620 int intr;
621 struct intr_info *info;
622 struct intrec **list;
623 int must_schedule;
624 #ifdef SMP
625 int got_mplock;
626 #endif
627 intrec_t rec, next_rec;
628 globaldata_t gd;
629 thread_t td;
631 intr = frame->if_vec;
632 gd = mycpu;
633 td = curthread;
635 /* We must be in critical section. */
636 KKASSERT(td->td_pri >= TDPRI_CRIT);
638 info = &intr_info_ary[intr];
641 * If we are not processing any FAST interrupts, just schedule the thing.
643 if (info->i_fast == 0) {
644 ++gd->gd_cnt.v_intr;
645 ithread_fast_sched(intr, td);
646 return(1);
650 * This should not normally occur since interrupts ought to be
651 * masked if the ithread has been scheduled or is running.
653 if (info->i_running)
654 return(1);
657 * Bump the interrupt nesting level to process any FAST interrupts.
658 * Obtain the MP lock as necessary. If the MP lock cannot be obtained,
659 * schedule the interrupt thread to deal with the issue instead.
661 * To reduce overhead, just leave the MP lock held once it has been
662 * obtained.
664 ++gd->gd_intr_nesting_level;
665 ++gd->gd_cnt.v_intr;
666 must_schedule = info->i_slow;
667 #ifdef SMP
668 got_mplock = 0;
669 #endif
671 list = &info->i_reclist;
672 for (rec = *list; rec; rec = next_rec) {
673 next_rec = rec->next; /* rec may be invalid after call */
675 if (rec->intr_flags & INTR_FAST) {
676 #ifdef SMP
677 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
678 if (try_mplock() == 0) {
679 /* Couldn't get the MP lock; just schedule it. */
680 must_schedule = 1;
681 break;
683 got_mplock = 1;
685 #endif
686 if (rec->serializer) {
687 must_schedule += lwkt_serialize_handler_try(
688 rec->serializer, rec->handler,
689 rec->argument, frame);
690 } else {
691 rec->handler(rec->argument, frame);
697 * Cleanup
699 --gd->gd_intr_nesting_level;
700 #ifdef SMP
701 if (got_mplock)
702 rel_mplock();
703 #endif
706 * If we had a problem, or mixed fast and slow interrupt handlers are
707 * registered, schedule the ithread to catch the missed records (it
708 * will just re-run all of them). A return value of 0 indicates that
709 * all handlers have been run and the interrupt can be re-enabled, and
710 * a non-zero return indicates that the interrupt thread controls
711 * re-enablement.
713 if (must_schedule > 0)
714 ithread_fast_sched(intr, td);
715 else if (must_schedule == 0)
716 ++info->i_count;
717 return(must_schedule);
721 * Interrupt threads run this as their main loop.
723 * The handler begins execution outside a critical section and with the BGL
724 * held.
726 * The i_running state starts at 0. When an interrupt occurs, the hardware
727 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
728 * until all routines have run. We then call ithread_done() to reenable
729 * the HW interrupt and deschedule us until the next interrupt.
731 * We are responsible for atomically checking i_running and ithread_done()
732 * is responsible for atomically checking for platform-specific delayed
733 * interrupts. i_running for our irq is only set in the context of our cpu,
734 * so a critical section is a sufficient interlock.
736 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */
738 static void
739 ithread_handler(void *arg)
741 struct intr_info *info;
742 int use_limit;
743 __uint32_t lseconds;
744 int intr;
745 int mpheld;
746 struct intrec **list;
747 intrec_t rec, nrec;
748 globaldata_t gd;
749 struct systimer ill_timer; /* enforced freq. timer */
750 u_int ill_count; /* interrupt livelock counter */
752 ill_count = 0;
753 intr = (int)(intptr_t)arg;
754 info = &intr_info_ary[intr];
755 list = &info->i_reclist;
758 * The loop must be entered with one critical section held. The thread
759 * is created with TDF_MPSAFE so the MP lock is not held on start.
761 gd = mycpu;
762 lseconds = gd->gd_time_seconds;
763 crit_enter_gd(gd);
764 mpheld = 0;
766 for (;;) {
768 * The chain is only considered MPSAFE if all its interrupt handlers
769 * are MPSAFE. However, if intr_mpsafe has been turned off we
770 * always operate with the BGL.
772 #ifdef SMP
773 if (intr_mpsafe == 0) {
774 if (mpheld == 0) {
775 intr_get_mplock();
776 mpheld = 1;
778 } else if (info->i_mplock_required != mpheld) {
779 if (info->i_mplock_required) {
780 KKASSERT(mpheld == 0);
781 intr_get_mplock();
782 mpheld = 1;
783 } else {
784 KKASSERT(mpheld != 0);
785 rel_mplock();
786 mpheld = 0;
791 * scheduled cpu may have changed, see intr_get_mplock()
793 gd = mycpu;
794 #endif
797 * If an interrupt is pending, clear i_running and execute the
798 * handlers. Note that certain types of interrupts can re-trigger
799 * and set i_running again.
801 * Each handler is run in a critical section. Note that we run both
802 * FAST and SLOW designated service routines.
804 if (info->i_running) {
805 ++ill_count;
806 info->i_running = 0;
808 if (*list == NULL)
809 report_stray_interrupt(intr, info);
811 for (rec = *list; rec; rec = nrec) {
812 nrec = rec->next;
813 if (rec->serializer) {
814 lwkt_serialize_handler_call(rec->serializer, rec->handler,
815 rec->argument, NULL);
816 } else {
817 rec->handler(rec->argument, NULL);
823 * This is our interrupt hook to add rate randomness to the random
824 * number generator.
826 if (info->i_random.sc_enabled > 0)
827 add_interrupt_randomness(intr);
830 * Unmask the interrupt to allow it to trigger again. This only
831 * applies to certain types of interrupts (typ level interrupts).
832 * This can result in the interrupt retriggering, but the retrigger
833 * will not be processed until we cycle our critical section.
835 * Only unmask interrupts while handlers are installed. It is
836 * possible to hit a situation where no handlers are installed
837 * due to a device driver livelocking and then tearing down its
838 * interrupt on close (the parallel bus being a good example).
840 if (*list)
841 machintr_intren(intr);
844 * Do a quick exit/enter to catch any higher-priority interrupt
845 * sources, such as the statclock, so thread time accounting
846 * will still work. This may also cause an interrupt to re-trigger.
848 crit_exit_gd(gd);
849 crit_enter_gd(gd);
852 * LIVELOCK STATE MACHINE
854 switch(info->i_state) {
855 case ISTATE_NORMAL:
857 * Reset the count each second.
859 if (lseconds != gd->gd_time_seconds) {
860 lseconds = gd->gd_time_seconds;
861 ill_count = 0;
865 * If we did not exceed the frequency limit, we are done.
866 * If the interrupt has not retriggered we deschedule ourselves.
868 if (ill_count <= livelock_limit) {
869 if (info->i_running == 0) {
870 #ifdef SMP
871 if (mpheld && intr_migrate) {
872 rel_mplock();
873 mpheld = 0;
875 #endif
876 lwkt_deschedule_self(gd->gd_curthread);
877 lwkt_switch();
879 break;
883 * Otherwise we are livelocked. Set up a periodic systimer
884 * to wake the thread up at the limit frequency.
886 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
887 intr, ill_count, livelock_limit);
888 info->i_state = ISTATE_LIVELOCKED;
889 if ((use_limit = livelock_limit) < 100)
890 use_limit = 100;
891 else if (use_limit > 500000)
892 use_limit = 500000;
893 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
894 (void *)(intptr_t)intr, use_limit);
895 /* fall through */
896 case ISTATE_LIVELOCKED:
898 * Wait for our periodic timer to go off. Since the interrupt
899 * has re-armed it can still set i_running, but it will not
900 * reschedule us while we are in a livelocked state.
902 lwkt_deschedule_self(gd->gd_curthread);
903 lwkt_switch();
906 * Check once a second to see if the livelock condition no
907 * longer applies.
909 if (lseconds != gd->gd_time_seconds) {
910 lseconds = gd->gd_time_seconds;
911 if (ill_count < livelock_lowater) {
912 info->i_state = ISTATE_NORMAL;
913 systimer_del(&ill_timer);
914 kprintf("intr %d at %d/%d hz, livelock removed\n",
915 intr, ill_count, livelock_lowater);
916 } else if (livelock_debug == intr ||
917 (bootverbose && cold)) {
918 kprintf("intr %d at %d/%d hz, in livelock\n",
919 intr, ill_count, livelock_lowater);
921 ill_count = 0;
923 break;
926 /* not reached */
929 #ifdef SMP
932 * An interrupt thread is trying to get the MP lock. To avoid cpu-bound
933 * code in the kernel on cpu X from interfering we chase the MP lock.
935 static void
936 intr_get_mplock(void)
938 int owner;
940 if (intr_migrate == 0) {
941 get_mplock();
942 return;
944 while (try_mplock() == 0) {
945 owner = owner_mplock();
946 if (owner >= 0 && owner != mycpu->gd_cpuid) {
947 lwkt_migratecpu(owner);
948 ++intr_migrate_count;
949 } else {
950 lwkt_switch();
955 #endif
958 * Emergency interrupt polling thread. The thread begins execution
959 * outside a critical section with the BGL held.
961 * If emergency interrupt polling is enabled, this thread will
962 * execute all system interrupts not marked INTR_NOPOLL at the
963 * specified polling frequency.
965 * WARNING! This thread runs *ALL* interrupt service routines that
966 * are not marked INTR_NOPOLL, which basically means everything except
967 * the 8254 clock interrupt and the ATA interrupt. It has very high
968 * overhead and should only be used in situations where the machine
969 * cannot otherwise be made to work. Due to the severe performance
970 * degredation, it should not be enabled on production machines.
972 static void
973 ithread_emergency(void *arg __unused)
975 struct intr_info *info;
976 intrec_t rec, nrec;
977 int intr;
979 for (;;) {
980 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
981 info = &intr_info_ary[intr];
982 for (rec = info->i_reclist; rec; rec = nrec) {
983 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
984 if (rec->serializer) {
985 lwkt_serialize_handler_call(rec->serializer,
986 rec->handler, rec->argument, NULL);
987 } else {
988 rec->handler(rec->argument, NULL);
991 nrec = rec->next;
994 lwkt_deschedule_self(curthread);
995 lwkt_switch();
1000 * Systimer callback - schedule the emergency interrupt poll thread
1001 * if emergency polling is enabled.
1003 static
1004 void
1005 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
1007 if (emergency_intr_enable)
1008 lwkt_schedule(info->data);
1012 ithread_cpuid(int intr)
1014 const struct intr_info *info;
1016 KKASSERT(intr >= 0 && intr < MAX_INTS);
1017 info = &intr_info_ary[intr];
1019 if (info->i_state == ISTATE_NOTHREAD)
1020 return -1;
1021 return info->i_thread.td_gd->gd_cpuid;
1025 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1026 * The data for this machine dependent, and the declarations are in machine
1027 * dependent code. The layout of intrnames and intrcnt however is machine
1028 * independent.
1030 * We do not know the length of intrcnt and intrnames at compile time, so
1031 * calculate things at run time.
1034 static int
1035 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1037 struct intr_info *info;
1038 intrec_t rec;
1039 int error = 0;
1040 int len;
1041 int intr;
1042 char buf[64];
1044 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1045 info = &intr_info_ary[intr];
1047 len = 0;
1048 buf[0] = 0;
1049 for (rec = info->i_reclist; rec; rec = rec->next) {
1050 ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1051 (len ? "/" : ""), rec->name);
1052 len += strlen(buf + len);
1054 if (len == 0) {
1055 ksnprintf(buf, sizeof(buf), "irq%d", intr);
1056 len = strlen(buf);
1058 error = SYSCTL_OUT(req, buf, len + 1);
1060 return (error);
1064 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1065 NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1067 static int
1068 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1070 struct intr_info *info;
1071 int error = 0;
1072 int intr;
1074 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1075 info = &intr_info_ary[intr];
1077 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1078 if (error)
1079 goto failed;
1081 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1082 info = &intr_info_ary[intr];
1084 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1085 if (error)
1086 goto failed;
1088 failed:
1089 return(error);
1092 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1093 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1095 static void
1096 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1098 int orig_cpuid = mycpuid, cpuid;
1099 char envpath[32];
1101 cpuid = orig_cpuid;
1102 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1103 kgetenv_int(envpath, &cpuid);
1104 if (cpuid >= ncpus)
1105 cpuid = orig_cpuid;
1107 if (cpuid != orig_cpuid)
1108 lwkt_migratecpu(cpuid);
1110 *orig_cpuid0 = orig_cpuid;
1111 *cpuid0 = cpuid;
1114 static void
1115 int_moveto_origcpu(int orig_cpuid, int cpuid)
1117 if (cpuid != orig_cpuid)
1118 lwkt_migratecpu(orig_cpuid);