2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
19 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20 * $DragonFly: src/sys/kern/sys_pipe.c,v 1.48 2008/05/10 01:25:55 dillon Exp $
24 * This file contains a high-performance replacement for the socket-based
25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
26 * all features of sockets, but does do everything that pipes normally
31 * This code has two modes of operation, a small write mode and a large
32 * write mode. The small write mode acts like conventional pipes with
33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
35 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36 * the receiving process can copy it directly from the pages in the sending
39 * If the sending process receives a signal, it is possible that it will
40 * go away, and certainly its address space can change, because control
41 * is returned back to the user-mode side. In that case, the pipe code
42 * arranges to copy the buffer supplied by the user process, to a pageable
43 * kernel buffer, and the receiving process will grab the data from the
44 * pageable kernel buffer. Since signals don't happen all that often,
45 * the copy operation is normally eliminated.
47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48 * happen for small transfers so that the system will not spend all of
49 * its time context switching. PIPE_SIZE is constrained by the
50 * amount of kernel virtual memory.
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
57 #include <sys/fcntl.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
68 #include <sys/vnode.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
78 #include <vm/vm_param.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
88 #include <sys/file2.h>
90 #include <machine/cpufunc.h>
93 * interfaces to the outside world
95 static int pipe_read (struct file
*fp
, struct uio
*uio
,
96 struct ucred
*cred
, int flags
);
97 static int pipe_write (struct file
*fp
, struct uio
*uio
,
98 struct ucred
*cred
, int flags
);
99 static int pipe_close (struct file
*fp
);
100 static int pipe_shutdown (struct file
*fp
, int how
);
101 static int pipe_poll (struct file
*fp
, int events
, struct ucred
*cred
);
102 static int pipe_kqfilter (struct file
*fp
, struct knote
*kn
);
103 static int pipe_stat (struct file
*fp
, struct stat
*sb
, struct ucred
*cred
);
104 static int pipe_ioctl (struct file
*fp
, u_long cmd
, caddr_t data
, struct ucred
*cred
);
106 static struct fileops pipeops
= {
107 .fo_read
= pipe_read
,
108 .fo_write
= pipe_write
,
109 .fo_ioctl
= pipe_ioctl
,
110 .fo_poll
= pipe_poll
,
111 .fo_kqfilter
= pipe_kqfilter
,
112 .fo_stat
= pipe_stat
,
113 .fo_close
= pipe_close
,
114 .fo_shutdown
= pipe_shutdown
117 static void filt_pipedetach(struct knote
*kn
);
118 static int filt_piperead(struct knote
*kn
, long hint
);
119 static int filt_pipewrite(struct knote
*kn
, long hint
);
121 static struct filterops pipe_rfiltops
=
122 { 1, NULL
, filt_pipedetach
, filt_piperead
};
123 static struct filterops pipe_wfiltops
=
124 { 1, NULL
, filt_pipedetach
, filt_pipewrite
};
126 MALLOC_DEFINE(M_PIPE
, "pipe", "pipe structures");
129 * Default pipe buffer size(s), this can be kind-of large now because pipe
130 * space is pageable. The pipe code will try to maintain locality of
131 * reference for performance reasons, so small amounts of outstanding I/O
132 * will not wipe the cache.
134 #define MINPIPESIZE (PIPE_SIZE/3)
135 #define MAXPIPESIZE (2*PIPE_SIZE/3)
138 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
139 * is there so that on large systems, we don't exhaust it.
141 #define MAXPIPEKVA (8*1024*1024)
144 * Limit for direct transfers, we cannot, of course limit
145 * the amount of kva for pipes in general though.
147 #define LIMITPIPEKVA (16*1024*1024)
150 * Limit the number of "big" pipes
152 #define LIMITBIGPIPES 32
153 #define PIPEQ_MAX_CACHE 16 /* per-cpu pipe structure cache */
155 static int pipe_maxbig
= LIMITBIGPIPES
;
156 static int pipe_maxcache
= PIPEQ_MAX_CACHE
;
157 static int pipe_bigcount
;
158 static int pipe_nbig
;
159 static int pipe_bcache_alloc
;
160 static int pipe_bkmem_alloc
;
162 * There's a bug in the sfbuf-based direct write code, not yet located.
163 * Disable it for now.
165 static int pipe_dwrite_enable
= 0; /* 0:copy, 1:kmem/sfbuf 2:force */
166 static int pipe_dwrite_sfbuf
= 1; /* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
167 /* 3:sfbuf_dmap w/ forced invlpg */
169 SYSCTL_NODE(_kern
, OID_AUTO
, pipe
, CTLFLAG_RW
, 0, "Pipe operation");
170 SYSCTL_INT(_kern_pipe
, OID_AUTO
, nbig
,
171 CTLFLAG_RD
, &pipe_nbig
, 0, "numer of big pipes allocated");
172 SYSCTL_INT(_kern_pipe
, OID_AUTO
, bigcount
,
173 CTLFLAG_RW
, &pipe_bigcount
, 0, "number of times pipe expanded");
174 SYSCTL_INT(_kern_pipe
, OID_AUTO
, maxcache
,
175 CTLFLAG_RW
, &pipe_maxcache
, 0, "max pipes cached per-cpu");
176 SYSCTL_INT(_kern_pipe
, OID_AUTO
, maxbig
,
177 CTLFLAG_RW
, &pipe_maxbig
, 0, "max number of big pipes");
178 SYSCTL_INT(_kern_pipe
, OID_AUTO
, dwrite_enable
,
179 CTLFLAG_RW
, &pipe_dwrite_enable
, 0, "1:enable/2:force direct writes");
180 SYSCTL_INT(_kern_pipe
, OID_AUTO
, dwrite_sfbuf
,
181 CTLFLAG_RW
, &pipe_dwrite_sfbuf
, 0,
182 "(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
183 #if !defined(NO_PIPE_SYSCTL_STATS)
184 SYSCTL_INT(_kern_pipe
, OID_AUTO
, bcache_alloc
,
185 CTLFLAG_RW
, &pipe_bcache_alloc
, 0, "pipe buffer from pcpu cache");
186 SYSCTL_INT(_kern_pipe
, OID_AUTO
, bkmem_alloc
,
187 CTLFLAG_RW
, &pipe_bkmem_alloc
, 0, "pipe buffer from kmem");
190 static void pipeclose (struct pipe
*cpipe
);
191 static void pipe_free_kmem (struct pipe
*cpipe
);
192 static int pipe_create (struct pipe
**cpipep
);
193 static __inline
int pipelock (struct pipe
*cpipe
, int catch);
194 static __inline
void pipeunlock (struct pipe
*cpipe
);
195 static __inline
void pipeselwakeup (struct pipe
*cpipe
);
196 #ifndef PIPE_NODIRECT
197 static int pipe_build_write_buffer (struct pipe
*wpipe
, struct uio
*uio
);
198 static int pipe_direct_write (struct pipe
*wpipe
, struct uio
*uio
);
199 static void pipe_clone_write_buffer (struct pipe
*wpipe
);
201 static int pipespace (struct pipe
*cpipe
, int size
);
204 * The pipe system call for the DTYPE_PIPE type of pipes
206 * pipe_ARgs(int dummy)
211 sys_pipe(struct pipe_args
*uap
)
213 struct thread
*td
= curthread
;
214 struct proc
*p
= td
->td_proc
;
215 struct file
*rf
, *wf
;
216 struct pipe
*rpipe
, *wpipe
;
221 rpipe
= wpipe
= NULL
;
222 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
228 rpipe
->pipe_state
|= PIPE_DIRECTOK
;
229 wpipe
->pipe_state
|= PIPE_DIRECTOK
;
232 * Select the direct-map features to use for this pipe. Since the
233 * sysctl's can change on the fly we record the settings when the
236 * Generally speaking the system will default to what we consider
237 * to be the best-balanced and most stable option. Right now this
238 * is SFBUF1. Modes 2 and 3 are considered experiemental at the
241 wpipe
->pipe_feature
= PIPE_COPY
;
242 if (pipe_dwrite_enable
) {
243 switch(pipe_dwrite_sfbuf
) {
245 wpipe
->pipe_feature
= PIPE_KMEM
;
248 wpipe
->pipe_feature
= PIPE_SFBUF1
;
252 wpipe
->pipe_feature
= PIPE_SFBUF2
;
256 rpipe
->pipe_feature
= wpipe
->pipe_feature
;
258 error
= falloc(p
, &rf
, &fd1
);
264 uap
->sysmsg_fds
[0] = fd1
;
267 * Warning: once we've gotten past allocation of the fd for the
268 * read-side, we can only drop the read side via fdrop() in order
269 * to avoid races against processes which manage to dup() the read
270 * side while we are blocked trying to allocate the write side.
272 rf
->f_type
= DTYPE_PIPE
;
273 rf
->f_flag
= FREAD
| FWRITE
;
274 rf
->f_ops
= &pipeops
;
276 error
= falloc(p
, &wf
, &fd2
);
278 fsetfd(p
, NULL
, fd1
);
280 /* rpipe has been closed by fdrop(). */
284 wf
->f_type
= DTYPE_PIPE
;
285 wf
->f_flag
= FREAD
| FWRITE
;
286 wf
->f_ops
= &pipeops
;
288 uap
->sysmsg_fds
[1] = fd2
;
290 rpipe
->pipe_peer
= wpipe
;
291 wpipe
->pipe_peer
= rpipe
;
302 * Allocate kva for pipe circular buffer, the space is pageable
303 * This routine will 'realloc' the size of a pipe safely, if it fails
304 * it will retain the old buffer.
305 * If it fails it will return ENOMEM.
308 pipespace(struct pipe
*cpipe
, int size
)
310 struct vm_object
*object
;
314 npages
= round_page(size
) / PAGE_SIZE
;
315 object
= cpipe
->pipe_buffer
.object
;
318 * [re]create the object if necessary and reserve space for it
319 * in the kernel_map. The object and memory are pageable. On
320 * success, free the old resources before assigning the new
323 if (object
== NULL
|| object
->size
!= npages
) {
324 object
= vm_object_allocate(OBJT_DEFAULT
, npages
);
325 buffer
= (caddr_t
)vm_map_min(&kernel_map
);
327 error
= vm_map_find(&kernel_map
, object
, 0,
328 (vm_offset_t
*)&buffer
, size
,
331 VM_PROT_ALL
, VM_PROT_ALL
,
334 if (error
!= KERN_SUCCESS
) {
335 vm_object_deallocate(object
);
338 pipe_free_kmem(cpipe
);
339 cpipe
->pipe_buffer
.object
= object
;
340 cpipe
->pipe_buffer
.buffer
= buffer
;
341 cpipe
->pipe_buffer
.size
= size
;
346 cpipe
->pipe_buffer
.in
= 0;
347 cpipe
->pipe_buffer
.out
= 0;
348 cpipe
->pipe_buffer
.cnt
= 0;
353 * Initialize and allocate VM and memory for pipe, pulling the pipe from
354 * our per-cpu cache if possible. For now make sure it is sized for the
355 * smaller PIPE_SIZE default.
358 pipe_create(struct pipe
**cpipep
)
360 globaldata_t gd
= mycpu
;
364 if ((cpipe
= gd
->gd_pipeq
) != NULL
) {
365 gd
->gd_pipeq
= cpipe
->pipe_peer
;
367 cpipe
->pipe_peer
= NULL
;
369 cpipe
= kmalloc(sizeof(struct pipe
), M_PIPE
, M_WAITOK
|M_ZERO
);
372 if ((error
= pipespace(cpipe
, PIPE_SIZE
)) != 0)
374 vfs_timestamp(&cpipe
->pipe_ctime
);
375 cpipe
->pipe_atime
= cpipe
->pipe_ctime
;
376 cpipe
->pipe_mtime
= cpipe
->pipe_ctime
;
382 * lock a pipe for I/O, blocking other access
385 pipelock(struct pipe
*cpipe
, int catch)
389 while (cpipe
->pipe_state
& PIPE_LOCK
) {
390 cpipe
->pipe_state
|= PIPE_LWANT
;
391 error
= tsleep(cpipe
, (catch ? PCATCH
: 0), "pipelk", 0);
395 cpipe
->pipe_state
|= PIPE_LOCK
;
400 * unlock a pipe I/O lock
403 pipeunlock(struct pipe
*cpipe
)
406 cpipe
->pipe_state
&= ~PIPE_LOCK
;
407 if (cpipe
->pipe_state
& PIPE_LWANT
) {
408 cpipe
->pipe_state
&= ~PIPE_LWANT
;
414 pipeselwakeup(struct pipe
*cpipe
)
417 if (cpipe
->pipe_state
& PIPE_SEL
) {
418 cpipe
->pipe_state
&= ~PIPE_SEL
;
419 selwakeup(&cpipe
->pipe_sel
);
421 if ((cpipe
->pipe_state
& PIPE_ASYNC
) && cpipe
->pipe_sigio
)
422 pgsigio(cpipe
->pipe_sigio
, SIGIO
, 0);
423 KNOTE(&cpipe
->pipe_sel
.si_note
, 0);
427 * MPALMOSTSAFE (acquires mplock)
430 pipe_read(struct file
*fp
, struct uio
*uio
, struct ucred
*cred
, int fflags
)
439 rpipe
= (struct pipe
*) fp
->f_data
;
441 error
= pipelock(rpipe
, 1);
445 if (fflags
& O_FBLOCKING
)
447 else if (fflags
& O_FNONBLOCKING
)
449 else if (fp
->f_flag
& O_NONBLOCK
)
454 while (uio
->uio_resid
) {
457 if (rpipe
->pipe_buffer
.cnt
> 0) {
459 * normal pipe buffer receive
461 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
462 if (size
> rpipe
->pipe_buffer
.cnt
)
463 size
= rpipe
->pipe_buffer
.cnt
;
464 if (size
> (u_int
) uio
->uio_resid
)
465 size
= (u_int
) uio
->uio_resid
;
467 error
= uiomove(&rpipe
->pipe_buffer
.buffer
468 [rpipe
->pipe_buffer
.out
],
473 rpipe
->pipe_buffer
.out
+= size
;
474 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
475 rpipe
->pipe_buffer
.out
= 0;
477 rpipe
->pipe_buffer
.cnt
-= size
;
480 * If there is no more to read in the pipe, reset
481 * its pointers to the beginning. This improves
484 if (rpipe
->pipe_buffer
.cnt
== 0) {
485 rpipe
->pipe_buffer
.in
= 0;
486 rpipe
->pipe_buffer
.out
= 0;
489 #ifndef PIPE_NODIRECT
490 } else if (rpipe
->pipe_kva
&&
491 rpipe
->pipe_feature
== PIPE_KMEM
&&
492 (rpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
))
496 * Direct copy using source-side kva mapping
498 size
= rpipe
->pipe_map
.xio_bytes
-
499 rpipe
->pipe_buffer
.out
;
500 if (size
> (u_int
)uio
->uio_resid
)
501 size
= (u_int
)uio
->uio_resid
;
502 va
= (caddr_t
)rpipe
->pipe_kva
+
503 xio_kvaoffset(&rpipe
->pipe_map
, rpipe
->pipe_buffer
.out
);
504 error
= uiomove(va
, size
, uio
);
508 rpipe
->pipe_buffer
.out
+= size
;
509 if (rpipe
->pipe_buffer
.out
== rpipe
->pipe_map
.xio_bytes
) {
510 rpipe
->pipe_state
|= PIPE_DIRECTIP
;
511 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
512 /* reset out index for copy mode */
513 rpipe
->pipe_buffer
.out
= 0;
516 } else if (rpipe
->pipe_buffer
.out
!= rpipe
->pipe_map
.xio_bytes
&&
518 rpipe
->pipe_feature
== PIPE_SFBUF2
&&
519 (rpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
))
523 * Direct copy, bypassing a kernel buffer. We cannot
524 * mess with the direct-write buffer until
525 * PIPE_DIRECTIP is cleared. In order to prevent
526 * the pipe_write code from racing itself in
527 * direct_write, we set DIRECTIP when we clear
528 * DIRECTW after we have exhausted the buffer.
530 if (pipe_dwrite_sfbuf
== 3)
531 rpipe
->pipe_kvamask
= 0;
532 pmap_qenter2(rpipe
->pipe_kva
, rpipe
->pipe_map
.xio_pages
,
533 rpipe
->pipe_map
.xio_npages
,
534 &rpipe
->pipe_kvamask
);
535 size
= rpipe
->pipe_map
.xio_bytes
-
536 rpipe
->pipe_buffer
.out
;
537 if (size
> (u_int
)uio
->uio_resid
)
538 size
= (u_int
)uio
->uio_resid
;
539 va
= (caddr_t
)rpipe
->pipe_kva
+ xio_kvaoffset(&rpipe
->pipe_map
, rpipe
->pipe_buffer
.out
);
540 error
= uiomove(va
, size
, uio
);
544 rpipe
->pipe_buffer
.out
+= size
;
545 if (rpipe
->pipe_buffer
.out
== rpipe
->pipe_map
.xio_bytes
) {
546 rpipe
->pipe_state
|= PIPE_DIRECTIP
;
547 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
548 /* reset out index for copy mode */
549 rpipe
->pipe_buffer
.out
= 0;
552 } else if (rpipe
->pipe_buffer
.out
!= rpipe
->pipe_map
.xio_bytes
&&
553 rpipe
->pipe_feature
== PIPE_SFBUF1
&&
554 (rpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
))
558 * Direct copy, bypassing a kernel buffer. We cannot
559 * mess with the direct-write buffer until
560 * PIPE_DIRECTIP is cleared. In order to prevent
561 * the pipe_write code from racing itself in
562 * direct_write, we set DIRECTIP when we clear
563 * DIRECTW after we have exhausted the buffer.
565 error
= xio_uio_copy(&rpipe
->pipe_map
, rpipe
->pipe_buffer
.out
, uio
, &size
);
569 rpipe
->pipe_buffer
.out
+= size
;
570 if (rpipe
->pipe_buffer
.out
== rpipe
->pipe_map
.xio_bytes
) {
571 rpipe
->pipe_state
|= PIPE_DIRECTIP
;
572 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
573 /* reset out index for copy mode */
574 rpipe
->pipe_buffer
.out
= 0;
580 * detect EOF condition
581 * read returns 0 on EOF, no need to set error
583 if (rpipe
->pipe_state
& PIPE_EOF
)
587 * If the "write-side" has been blocked, wake it up now.
589 if (rpipe
->pipe_state
& PIPE_WANTW
) {
590 rpipe
->pipe_state
&= ~PIPE_WANTW
;
595 * Break if some data was read.
601 * Unlock the pipe buffer for our remaining
602 * processing. We will either break out with an
603 * error or we will sleep and relock to loop.
608 * Handle non-blocking mode operation or
609 * wait for more data.
614 rpipe
->pipe_state
|= PIPE_WANTR
;
615 if ((error
= tsleep(rpipe
, PCATCH
|PNORESCHED
,
616 "piperd", 0)) == 0) {
617 error
= pipelock(rpipe
, 1);
627 vfs_timestamp(&rpipe
->pipe_atime
);
632 * PIPE_WANT processing only makes sense if pipe_busy is 0.
634 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
635 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
637 } else if (rpipe
->pipe_buffer
.cnt
< MINPIPESIZE
) {
639 * Handle write blocking hysteresis.
641 if (rpipe
->pipe_state
& PIPE_WANTW
) {
642 rpipe
->pipe_state
&= ~PIPE_WANTW
;
647 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)
648 pipeselwakeup(rpipe
);
653 #ifndef PIPE_NODIRECT
655 * Map the sending processes' buffer into kernel space and wire it.
656 * This is similar to a physical write operation.
659 pipe_build_write_buffer(struct pipe
*wpipe
, struct uio
*uio
)
664 size
= (u_int
) uio
->uio_iov
->iov_len
;
665 if (size
> wpipe
->pipe_buffer
.size
)
666 size
= wpipe
->pipe_buffer
.size
;
668 if (uio
->uio_segflg
== UIO_SYSSPACE
) {
669 error
= xio_init_kbuf(&wpipe
->pipe_map
, uio
->uio_iov
->iov_base
,
672 error
= xio_init_ubuf(&wpipe
->pipe_map
, uio
->uio_iov
->iov_base
,
675 wpipe
->pipe_buffer
.out
= 0;
680 * Create a kernel map for KMEM and SFBUF2 copy modes. SFBUF2 will
681 * map the pages on the target while KMEM maps the pages now.
683 switch(wpipe
->pipe_feature
) {
686 if (wpipe
->pipe_kva
== NULL
) {
688 kmem_alloc_nofault(&kernel_map
, XIO_INTERNAL_SIZE
);
689 wpipe
->pipe_kvamask
= 0;
691 if (wpipe
->pipe_feature
== PIPE_KMEM
) {
692 pmap_qenter(wpipe
->pipe_kva
, wpipe
->pipe_map
.xio_pages
,
693 wpipe
->pipe_map
.xio_npages
);
701 * And update the uio data. The XIO might have loaded fewer bytes
702 * then requested so reload 'size'.
704 size
= wpipe
->pipe_map
.xio_bytes
;
705 uio
->uio_iov
->iov_len
-= size
;
706 uio
->uio_iov
->iov_base
+= size
;
707 if (uio
->uio_iov
->iov_len
== 0)
709 uio
->uio_resid
-= size
;
710 uio
->uio_offset
+= size
;
715 * In the case of a signal, the writing process might go away. This
716 * code copies the data into the circular buffer so that the source
717 * pages can be freed without loss of data.
719 * Note that in direct mode pipe_buffer.out is used to track the
720 * XIO offset. We are converting the direct mode into buffered mode
721 * which changes the meaning of pipe_buffer.out.
724 pipe_clone_write_buffer(struct pipe
*wpipe
)
729 offset
= wpipe
->pipe_buffer
.out
;
730 size
= wpipe
->pipe_map
.xio_bytes
- offset
;
732 KKASSERT(size
<= wpipe
->pipe_buffer
.size
);
734 wpipe
->pipe_buffer
.in
= size
;
735 wpipe
->pipe_buffer
.out
= 0;
736 wpipe
->pipe_buffer
.cnt
= size
;
737 wpipe
->pipe_state
&= ~(PIPE_DIRECTW
| PIPE_DIRECTIP
);
739 xio_copy_xtok(&wpipe
->pipe_map
, offset
, wpipe
->pipe_buffer
.buffer
, size
);
740 xio_release(&wpipe
->pipe_map
);
741 if (wpipe
->pipe_kva
) {
742 pmap_qremove(wpipe
->pipe_kva
, XIO_INTERNAL_PAGES
);
743 kmem_free(&kernel_map
, wpipe
->pipe_kva
, XIO_INTERNAL_SIZE
);
744 wpipe
->pipe_kva
= NULL
;
749 * This implements the pipe buffer write mechanism. Note that only
750 * a direct write OR a normal pipe write can be pending at any given time.
751 * If there are any characters in the pipe buffer, the direct write will
752 * be deferred until the receiving process grabs all of the bytes from
753 * the pipe buffer. Then the direct mapping write is set-up.
756 pipe_direct_write(struct pipe
*wpipe
, struct uio
*uio
)
761 while (wpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
)) {
762 if (wpipe
->pipe_state
& PIPE_WANTR
) {
763 wpipe
->pipe_state
&= ~PIPE_WANTR
;
766 wpipe
->pipe_state
|= PIPE_WANTW
;
767 error
= tsleep(wpipe
, PCATCH
, "pipdww", 0);
770 if (wpipe
->pipe_state
& PIPE_EOF
) {
775 KKASSERT(wpipe
->pipe_map
.xio_bytes
== 0);
776 if (wpipe
->pipe_buffer
.cnt
> 0) {
777 if (wpipe
->pipe_state
& PIPE_WANTR
) {
778 wpipe
->pipe_state
&= ~PIPE_WANTR
;
782 wpipe
->pipe_state
|= PIPE_WANTW
;
783 error
= tsleep(wpipe
, PCATCH
, "pipdwc", 0);
786 if (wpipe
->pipe_state
& PIPE_EOF
) {
794 * Build our direct-write buffer
796 wpipe
->pipe_state
|= PIPE_DIRECTW
| PIPE_DIRECTIP
;
797 error
= pipe_build_write_buffer(wpipe
, uio
);
800 wpipe
->pipe_state
&= ~PIPE_DIRECTIP
;
803 * Wait until the receiver has snarfed the data. Since we are likely
804 * going to sleep we optimize the case and yield synchronously,
805 * possibly avoiding the tsleep().
808 while (!error
&& (wpipe
->pipe_state
& PIPE_DIRECTW
)) {
809 if (wpipe
->pipe_state
& PIPE_EOF
) {
811 xio_release(&wpipe
->pipe_map
);
812 if (wpipe
->pipe_kva
) {
813 pmap_qremove(wpipe
->pipe_kva
, XIO_INTERNAL_PAGES
);
814 kmem_free(&kernel_map
, wpipe
->pipe_kva
, XIO_INTERNAL_SIZE
);
815 wpipe
->pipe_kva
= NULL
;
818 pipeselwakeup(wpipe
);
822 if (wpipe
->pipe_state
& PIPE_WANTR
) {
823 wpipe
->pipe_state
&= ~PIPE_WANTR
;
826 pipeselwakeup(wpipe
);
827 error
= tsleep(wpipe
, PCATCH
|PNORESCHED
, "pipdwt", 0);
830 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
832 * this bit of trickery substitutes a kernel buffer for
833 * the process that might be going away.
835 pipe_clone_write_buffer(wpipe
);
836 KKASSERT((wpipe
->pipe_state
& PIPE_DIRECTIP
) == 0);
839 * note: The pipe_kva mapping is not qremove'd here. For
840 * legacy PIPE_KMEM mode this constitutes an improvement
841 * over the original FreeBSD-4 algorithm. For PIPE_SFBUF2
842 * mode the kva mapping must not be removed to get the
845 * For testing purposes we will give the original algorithm
846 * the benefit of the doubt 'what it could have been', and
847 * keep the optimization.
849 KKASSERT(wpipe
->pipe_state
& PIPE_DIRECTIP
);
850 xio_release(&wpipe
->pipe_map
);
851 wpipe
->pipe_state
&= ~PIPE_DIRECTIP
;
857 * Direct-write error, clear the direct write flags.
860 wpipe
->pipe_state
&= ~(PIPE_DIRECTW
| PIPE_DIRECTIP
);
864 * General error, wakeup the other side if it happens to be sleeping.
873 * MPALMOSTSAFE - acquires mplock
876 pipe_write(struct file
*fp
, struct uio
*uio
, struct ucred
*cred
, int fflags
)
881 struct pipe
*wpipe
, *rpipe
;
884 rpipe
= (struct pipe
*) fp
->f_data
;
885 wpipe
= rpipe
->pipe_peer
;
888 * detect loss of pipe read side, issue SIGPIPE if lost.
890 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
896 if (fflags
& O_FBLOCKING
)
898 else if (fflags
& O_FNONBLOCKING
)
900 else if (fp
->f_flag
& O_NONBLOCK
)
906 * If it is advantageous to resize the pipe buffer, do
909 if ((uio
->uio_resid
> PIPE_SIZE
) &&
910 (pipe_nbig
< pipe_maxbig
) &&
911 (wpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
)) == 0 &&
912 (wpipe
->pipe_buffer
.size
<= PIPE_SIZE
) &&
913 (wpipe
->pipe_buffer
.cnt
== 0) &&
914 (error
= pipelock(wpipe
, 1)) == 0) {
916 * Recheck after lock.
918 if ((pipe_nbig
< pipe_maxbig
) &&
919 (wpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
)) == 0 &&
920 (wpipe
->pipe_buffer
.size
<= PIPE_SIZE
) &&
921 (wpipe
->pipe_buffer
.cnt
== 0)) {
922 if (pipespace(wpipe
, BIG_PIPE_SIZE
) == 0) {
931 * If an early error occured unbusy and return, waking up any pending
936 if ((wpipe
->pipe_busy
== 0) &&
937 (wpipe
->pipe_state
& PIPE_WANT
)) {
938 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
945 KASSERT(wpipe
->pipe_buffer
.buffer
!= NULL
, ("pipe buffer gone"));
947 orig_resid
= uio
->uio_resid
;
949 while (uio
->uio_resid
) {
952 #ifndef PIPE_NODIRECT
954 * If direct process-to-process writes are enabled and
955 * the buffer is large enough, and this is blocking IO,
956 * then use the direct write feature.
958 * If the pipe was opened at a time when the direct write
959 * feature was not enabled pipe_feature will be set to
960 * PIPE_COPY and we do not use the feature.
962 * The direct write mechanism will detect the reader going
965 if ((uio
->uio_iov
->iov_len
>= PIPE_MINDIRECT
||
966 pipe_dwrite_enable
> 1) &&
967 nbio
== 0 && pipe_dwrite_enable
&&
968 wpipe
->pipe_feature
!= PIPE_COPY
970 error
= pipe_direct_write( wpipe
, uio
);
978 * Pipe buffered writes cannot be coincidental with
979 * direct writes. We wait until the currently executing
980 * direct write is completed before we start filling the
981 * pipe buffer. We break out if a signal occurs or the
985 while (wpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
)) {
986 if (wpipe
->pipe_state
& PIPE_WANTR
) {
987 wpipe
->pipe_state
&= ~PIPE_WANTR
;
990 error
= tsleep(wpipe
, PCATCH
, "pipbww", 0);
991 if (wpipe
->pipe_state
& PIPE_EOF
)
996 if (wpipe
->pipe_state
& PIPE_EOF
) {
1001 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1003 /* Writes of size <= PIPE_BUF must be atomic. */
1004 if ((space
< uio
->uio_resid
) && (orig_resid
<= PIPE_BUF
))
1008 * Write to fill, read size handles write hysteresis. Also
1009 * additional restrictions can cause select-based non-blocking
1013 if ((error
= pipelock(wpipe
,1)) == 0) {
1014 int size
; /* Transfer size */
1015 int segsize
; /* first segment to transfer */
1018 * It is possible for a direct write to
1019 * slip in on us... handle it here...
1021 if (wpipe
->pipe_state
& (PIPE_DIRECTW
|PIPE_DIRECTIP
)) {
1026 * If a process blocked in uiomove, our
1027 * value for space might be bad.
1029 * XXX will we be ok if the reader has gone
1032 if (space
> wpipe
->pipe_buffer
.size
-
1033 wpipe
->pipe_buffer
.cnt
) {
1039 * Transfer size is minimum of uio transfer
1040 * and free space in pipe buffer.
1042 if (space
> uio
->uio_resid
)
1043 size
= uio
->uio_resid
;
1047 * First segment to transfer is minimum of
1048 * transfer size and contiguous space in
1049 * pipe buffer. If first segment to transfer
1050 * is less than the transfer size, we've got
1051 * a wraparound in the buffer.
1053 segsize
= wpipe
->pipe_buffer
.size
-
1054 wpipe
->pipe_buffer
.in
;
1058 /* Transfer first segment */
1060 error
= uiomove(&wpipe
->pipe_buffer
.buffer
1061 [wpipe
->pipe_buffer
.in
],
1064 if (error
== 0 && segsize
< size
) {
1066 * Transfer remaining part now, to
1067 * support atomic writes. Wraparound
1070 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1071 wpipe
->pipe_buffer
.size
)
1072 panic("Expected pipe buffer wraparound disappeared");
1074 error
= uiomove(&wpipe
->pipe_buffer
.
1076 size
- segsize
, uio
);
1079 wpipe
->pipe_buffer
.in
+= size
;
1080 if (wpipe
->pipe_buffer
.in
>=
1081 wpipe
->pipe_buffer
.size
) {
1082 if (wpipe
->pipe_buffer
.in
!= size
- segsize
+ wpipe
->pipe_buffer
.size
)
1083 panic("Expected wraparound bad");
1084 wpipe
->pipe_buffer
.in
= size
- segsize
;
1087 wpipe
->pipe_buffer
.cnt
+= size
;
1088 if (wpipe
->pipe_buffer
.cnt
> wpipe
->pipe_buffer
.size
)
1089 panic("Pipe buffer overflow");
1099 * If the "read-side" has been blocked, wake it up now
1100 * and yield to let it drain synchronously rather
1103 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1104 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1109 * don't block on non-blocking I/O
1117 * We have no more space and have something to offer,
1118 * wake up select/poll.
1120 pipeselwakeup(wpipe
);
1122 wpipe
->pipe_state
|= PIPE_WANTW
;
1123 error
= tsleep(wpipe
, PCATCH
|PNORESCHED
, "pipewr", 0);
1127 * If read side wants to go away, we just issue a signal
1130 if (wpipe
->pipe_state
& PIPE_EOF
) {
1139 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1140 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1142 } else if (wpipe
->pipe_buffer
.cnt
> 0) {
1144 * If we have put any characters in the buffer, we wake up
1147 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1148 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1154 * Don't return EPIPE if I/O was successful
1156 if ((wpipe
->pipe_buffer
.cnt
== 0) &&
1157 (uio
->uio_resid
== 0) &&
1163 vfs_timestamp(&wpipe
->pipe_mtime
);
1166 * We have something to offer,
1167 * wake up select/poll.
1169 if (wpipe
->pipe_buffer
.cnt
)
1170 pipeselwakeup(wpipe
);
1176 * MPALMOSTSAFE - acquires mplock
1178 * we implement a very minimal set of ioctls for compatibility with sockets.
1181 pipe_ioctl(struct file
*fp
, u_long cmd
, caddr_t data
, struct ucred
*cred
)
1187 mpipe
= (struct pipe
*)fp
->f_data
;
1192 mpipe
->pipe_state
|= PIPE_ASYNC
;
1194 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1199 if (mpipe
->pipe_state
& PIPE_DIRECTW
) {
1200 *(int *)data
= mpipe
->pipe_map
.xio_bytes
-
1201 mpipe
->pipe_buffer
.out
;
1203 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1208 error
= fsetown(*(int *)data
, &mpipe
->pipe_sigio
);
1211 *(int *)data
= fgetown(mpipe
->pipe_sigio
);
1215 /* This is deprecated, FIOSETOWN should be used instead. */
1216 error
= fsetown(-(*(int *)data
), &mpipe
->pipe_sigio
);
1220 /* This is deprecated, FIOGETOWN should be used instead. */
1221 *(int *)data
= -fgetown(mpipe
->pipe_sigio
);
1233 * MPALMOSTSAFE - acquires mplock
1236 pipe_poll(struct file
*fp
, int events
, struct ucred
*cred
)
1243 rpipe
= (struct pipe
*)fp
->f_data
;
1244 wpipe
= rpipe
->pipe_peer
;
1245 if (events
& (POLLIN
| POLLRDNORM
))
1246 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1247 (rpipe
->pipe_buffer
.cnt
> 0) ||
1248 (rpipe
->pipe_state
& PIPE_EOF
))
1249 revents
|= events
& (POLLIN
| POLLRDNORM
);
1251 if (events
& (POLLOUT
| POLLWRNORM
))
1252 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
) ||
1253 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1254 (wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
))
1255 revents
|= events
& (POLLOUT
| POLLWRNORM
);
1257 if ((rpipe
->pipe_state
& PIPE_EOF
) ||
1259 (wpipe
->pipe_state
& PIPE_EOF
))
1263 if (events
& (POLLIN
| POLLRDNORM
)) {
1264 selrecord(curthread
, &rpipe
->pipe_sel
);
1265 rpipe
->pipe_state
|= PIPE_SEL
;
1268 if (events
& (POLLOUT
| POLLWRNORM
)) {
1269 selrecord(curthread
, &wpipe
->pipe_sel
);
1270 wpipe
->pipe_state
|= PIPE_SEL
;
1278 * MPALMOSTSAFE - acquires mplock
1281 pipe_stat(struct file
*fp
, struct stat
*ub
, struct ucred
*cred
)
1286 pipe
= (struct pipe
*)fp
->f_data
;
1288 bzero((caddr_t
)ub
, sizeof(*ub
));
1289 ub
->st_mode
= S_IFIFO
;
1290 ub
->st_blksize
= pipe
->pipe_buffer
.size
;
1291 ub
->st_size
= pipe
->pipe_buffer
.cnt
;
1292 if (ub
->st_size
== 0 && (pipe
->pipe_state
& PIPE_DIRECTW
)) {
1293 ub
->st_size
= pipe
->pipe_map
.xio_bytes
-
1294 pipe
->pipe_buffer
.out
;
1296 ub
->st_blocks
= (ub
->st_size
+ ub
->st_blksize
- 1) / ub
->st_blksize
;
1297 ub
->st_atimespec
= pipe
->pipe_atime
;
1298 ub
->st_mtimespec
= pipe
->pipe_mtime
;
1299 ub
->st_ctimespec
= pipe
->pipe_ctime
;
1301 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1303 * XXX (st_dev, st_ino) should be unique.
1310 * MPALMOSTSAFE - acquires mplock
1313 pipe_close(struct file
*fp
)
1318 cpipe
= (struct pipe
*)fp
->f_data
;
1319 fp
->f_ops
= &badfileops
;
1321 funsetown(cpipe
->pipe_sigio
);
1328 * Shutdown one or both directions of a full-duplex pipe.
1330 * MPALMOSTSAFE - acquires mplock
1333 pipe_shutdown(struct file
*fp
, int how
)
1340 rpipe
= (struct pipe
*)fp
->f_data
;
1346 rpipe
->pipe_state
|= PIPE_EOF
;
1347 pipeselwakeup(rpipe
);
1348 if (rpipe
->pipe_busy
)
1356 if (rpipe
&& (wpipe
= rpipe
->pipe_peer
) != NULL
) {
1357 wpipe
->pipe_state
|= PIPE_EOF
;
1358 pipeselwakeup(wpipe
);
1359 if (wpipe
->pipe_busy
)
1369 pipe_free_kmem(struct pipe
*cpipe
)
1371 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1372 if (cpipe
->pipe_buffer
.size
> PIPE_SIZE
)
1374 kmem_free(&kernel_map
,
1375 (vm_offset_t
)cpipe
->pipe_buffer
.buffer
,
1376 cpipe
->pipe_buffer
.size
);
1377 cpipe
->pipe_buffer
.buffer
= NULL
;
1378 cpipe
->pipe_buffer
.object
= NULL
;
1380 #ifndef PIPE_NODIRECT
1381 KKASSERT(cpipe
->pipe_map
.xio_bytes
== 0 &&
1382 cpipe
->pipe_map
.xio_offset
== 0 &&
1383 cpipe
->pipe_map
.xio_npages
== 0);
1391 pipeclose(struct pipe
*cpipe
)
1399 pipeselwakeup(cpipe
);
1402 * If the other side is blocked, wake it up saying that
1403 * we want to close it down.
1405 while (cpipe
->pipe_busy
) {
1407 cpipe
->pipe_state
|= PIPE_WANT
| PIPE_EOF
;
1408 tsleep(cpipe
, 0, "pipecl", 0);
1412 * Disconnect from peer
1414 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1415 pipeselwakeup(ppipe
);
1417 ppipe
->pipe_state
|= PIPE_EOF
;
1419 KNOTE(&ppipe
->pipe_sel
.si_note
, 0);
1420 ppipe
->pipe_peer
= NULL
;
1423 if (cpipe
->pipe_kva
) {
1424 pmap_qremove(cpipe
->pipe_kva
, XIO_INTERNAL_PAGES
);
1425 kmem_free(&kernel_map
, cpipe
->pipe_kva
, XIO_INTERNAL_SIZE
);
1426 cpipe
->pipe_kva
= NULL
;
1430 * free or cache resources
1433 if (gd
->gd_pipeqcount
>= pipe_maxcache
||
1434 cpipe
->pipe_buffer
.size
!= PIPE_SIZE
1436 pipe_free_kmem(cpipe
);
1437 kfree(cpipe
, M_PIPE
);
1439 KKASSERT(cpipe
->pipe_map
.xio_npages
== 0 &&
1440 cpipe
->pipe_map
.xio_bytes
== 0 &&
1441 cpipe
->pipe_map
.xio_offset
== 0);
1442 cpipe
->pipe_state
= 0;
1443 cpipe
->pipe_busy
= 0;
1444 cpipe
->pipe_peer
= gd
->gd_pipeq
;
1445 gd
->gd_pipeq
= cpipe
;
1446 ++gd
->gd_pipeqcount
;
1451 * MPALMOSTSAFE - acquires mplock
1454 pipe_kqfilter(struct file
*fp
, struct knote
*kn
)
1459 cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1461 switch (kn
->kn_filter
) {
1463 kn
->kn_fop
= &pipe_rfiltops
;
1466 kn
->kn_fop
= &pipe_wfiltops
;
1467 cpipe
= cpipe
->pipe_peer
;
1468 if (cpipe
== NULL
) {
1469 /* other end of pipe has been closed */
1477 kn
->kn_hook
= (caddr_t
)cpipe
;
1479 SLIST_INSERT_HEAD(&cpipe
->pipe_sel
.si_note
, kn
, kn_selnext
);
1485 filt_pipedetach(struct knote
*kn
)
1487 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_hook
;
1489 SLIST_REMOVE(&cpipe
->pipe_sel
.si_note
, kn
, knote
, kn_selnext
);
1494 filt_piperead(struct knote
*kn
, long hint
)
1496 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1497 struct pipe
*wpipe
= rpipe
->pipe_peer
;
1499 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1500 if ((kn
->kn_data
== 0) && (rpipe
->pipe_state
& PIPE_DIRECTW
)) {
1501 kn
->kn_data
= rpipe
->pipe_map
.xio_bytes
-
1502 rpipe
->pipe_buffer
.out
;
1505 if ((rpipe
->pipe_state
& PIPE_EOF
) ||
1506 (wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1507 kn
->kn_flags
|= EV_EOF
;
1510 return (kn
->kn_data
> 0);
1515 filt_pipewrite(struct knote
*kn
, long hint
)
1517 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1518 struct pipe
*wpipe
= rpipe
->pipe_peer
;
1520 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1522 kn
->kn_flags
|= EV_EOF
;
1525 kn
->kn_data
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1526 if (wpipe
->pipe_state
& PIPE_DIRECTW
)
1529 return (kn
->kn_data
>= PIPE_BUF
);