HAMMER 60F/Many: Mirroring
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blobc0a53d897b0c07bab86746a39055c3f7e5995f12
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.95 2008/07/07 03:49:50 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_free_inode(hammer_inode_t ip);
44 static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
45 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
46 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
47 static int hammer_setup_parent_inodes(hammer_inode_t ip);
48 static int hammer_setup_parent_inodes_helper(hammer_record_t record);
49 static void hammer_inode_wakereclaims(hammer_inode_t ip);
51 #ifdef DEBUG_TRUNCATE
52 extern struct hammer_inode *HammerTruncIp;
53 #endif
56 * RB-Tree support for inode structures
58 int
59 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
61 if (ip1->obj_localization < ip2->obj_localization)
62 return(-1);
63 if (ip1->obj_localization > ip2->obj_localization)
64 return(1);
65 if (ip1->obj_id < ip2->obj_id)
66 return(-1);
67 if (ip1->obj_id > ip2->obj_id)
68 return(1);
69 if (ip1->obj_asof < ip2->obj_asof)
70 return(-1);
71 if (ip1->obj_asof > ip2->obj_asof)
72 return(1);
73 return(0);
77 * RB-Tree support for inode structures / special LOOKUP_INFO
79 static int
80 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
82 if (info->obj_localization < ip->obj_localization)
83 return(-1);
84 if (info->obj_localization > ip->obj_localization)
85 return(1);
86 if (info->obj_id < ip->obj_id)
87 return(-1);
88 if (info->obj_id > ip->obj_id)
89 return(1);
90 if (info->obj_asof < ip->obj_asof)
91 return(-1);
92 if (info->obj_asof > ip->obj_asof)
93 return(1);
94 return(0);
98 * Used by hammer_scan_inode_snapshots() to locate all of an object's
99 * snapshots. Note that the asof field is not tested, which we can get
100 * away with because it is the lowest-priority field.
102 static int
103 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
105 hammer_inode_info_t info = data;
107 if (ip->obj_localization > info->obj_localization)
108 return(1);
109 if (ip->obj_localization < info->obj_localization)
110 return(-1);
111 if (ip->obj_id > info->obj_id)
112 return(1);
113 if (ip->obj_id < info->obj_id)
114 return(-1);
115 return(0);
119 * RB-Tree support for pseudofs structures
121 static int
122 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
124 if (p1->localization < p2->localization)
125 return(-1);
126 if (p1->localization > p2->localization)
127 return(1);
128 return(0);
132 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
133 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
134 hammer_inode_info_cmp, hammer_inode_info_t);
135 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
136 hammer_pfs_rb_compare, u_int32_t, localization);
139 * The kernel is not actively referencing this vnode but is still holding
140 * it cached.
142 * This is called from the frontend.
145 hammer_vop_inactive(struct vop_inactive_args *ap)
147 struct hammer_inode *ip = VTOI(ap->a_vp);
150 * Degenerate case
152 if (ip == NULL) {
153 vrecycle(ap->a_vp);
154 return(0);
158 * If the inode no longer has visibility in the filesystem try to
159 * recycle it immediately, even if the inode is dirty. Recycling
160 * it quickly allows the system to reclaim buffer cache and VM
161 * resources which can matter a lot in a heavily loaded system.
163 * This can deadlock in vfsync() if we aren't careful.
165 * Do not queue the inode to the flusher if we still have visibility,
166 * otherwise namespace calls such as chmod will unnecessarily generate
167 * multiple inode updates.
169 hammer_inode_unloadable_check(ip, 0);
170 if (ip->ino_data.nlinks == 0) {
171 if (ip->flags & HAMMER_INODE_MODMASK)
172 hammer_flush_inode(ip, 0);
173 vrecycle(ap->a_vp);
175 return(0);
179 * Release the vnode association. This is typically (but not always)
180 * the last reference on the inode.
182 * Once the association is lost we are on our own with regards to
183 * flushing the inode.
186 hammer_vop_reclaim(struct vop_reclaim_args *ap)
188 struct hammer_inode *ip;
189 hammer_mount_t hmp;
190 struct vnode *vp;
192 vp = ap->a_vp;
194 if ((ip = vp->v_data) != NULL) {
195 hmp = ip->hmp;
196 vp->v_data = NULL;
197 ip->vp = NULL;
199 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
200 ++hammer_count_reclaiming;
201 ++hmp->inode_reclaims;
202 ip->flags |= HAMMER_INODE_RECLAIM;
203 if (hmp->inode_reclaims > HAMMER_RECLAIM_FLUSH &&
204 (hmp->inode_reclaims & 255) == 0) {
205 hammer_flusher_async(hmp);
208 hammer_rel_inode(ip, 1);
210 return(0);
214 * Return a locked vnode for the specified inode. The inode must be
215 * referenced but NOT LOCKED on entry and will remain referenced on
216 * return.
218 * Called from the frontend.
221 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
223 hammer_mount_t hmp;
224 struct vnode *vp;
225 int error = 0;
227 hmp = ip->hmp;
229 for (;;) {
230 if ((vp = ip->vp) == NULL) {
231 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
232 if (error)
233 break;
234 hammer_lock_ex(&ip->lock);
235 if (ip->vp != NULL) {
236 hammer_unlock(&ip->lock);
237 vp->v_type = VBAD;
238 vx_put(vp);
239 continue;
241 hammer_ref(&ip->lock);
242 vp = *vpp;
243 ip->vp = vp;
244 vp->v_type =
245 hammer_get_vnode_type(ip->ino_data.obj_type);
247 hammer_inode_wakereclaims(ip);
249 switch(ip->ino_data.obj_type) {
250 case HAMMER_OBJTYPE_CDEV:
251 case HAMMER_OBJTYPE_BDEV:
252 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
253 addaliasu(vp, ip->ino_data.rmajor,
254 ip->ino_data.rminor);
255 break;
256 case HAMMER_OBJTYPE_FIFO:
257 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
258 break;
259 default:
260 break;
264 * Only mark as the root vnode if the ip is not
265 * historical, otherwise the VFS cache will get
266 * confused. The other half of the special handling
267 * is in hammer_vop_nlookupdotdot().
269 * Pseudo-filesystem roots also do not count.
271 if (ip->obj_id == HAMMER_OBJID_ROOT &&
272 ip->obj_asof == hmp->asof &&
273 ip->obj_localization == 0) {
274 vp->v_flag |= VROOT;
277 vp->v_data = (void *)ip;
278 /* vnode locked by getnewvnode() */
279 /* make related vnode dirty if inode dirty? */
280 hammer_unlock(&ip->lock);
281 if (vp->v_type == VREG)
282 vinitvmio(vp, ip->ino_data.size);
283 break;
287 * loop if the vget fails (aka races), or if the vp
288 * no longer matches ip->vp.
290 if (vget(vp, LK_EXCLUSIVE) == 0) {
291 if (vp == ip->vp)
292 break;
293 vput(vp);
296 *vpp = vp;
297 return(error);
301 * Locate all copies of the inode for obj_id compatible with the specified
302 * asof, reference, and issue the related call-back. This routine is used
303 * for direct-io invalidation and does not create any new inodes.
305 void
306 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
307 int (*callback)(hammer_inode_t ip, void *data),
308 void *data)
310 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
311 hammer_inode_info_cmp_all_history,
312 callback, iinfo);
316 * Acquire a HAMMER inode. The returned inode is not locked. These functions
317 * do not attach or detach the related vnode (use hammer_get_vnode() for
318 * that).
320 * The flags argument is only applied for newly created inodes, and only
321 * certain flags are inherited.
323 * Called from the frontend.
325 struct hammer_inode *
326 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
327 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
328 int flags, int *errorp)
330 hammer_mount_t hmp = trans->hmp;
331 struct hammer_inode_info iinfo;
332 struct hammer_cursor cursor;
333 struct hammer_inode *ip;
337 * Determine if we already have an inode cached. If we do then
338 * we are golden.
340 iinfo.obj_id = obj_id;
341 iinfo.obj_asof = asof;
342 iinfo.obj_localization = localization;
343 loop:
344 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
345 if (ip) {
346 hammer_ref(&ip->lock);
347 *errorp = 0;
348 return(ip);
352 * Allocate a new inode structure and deal with races later.
354 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
355 ++hammer_count_inodes;
356 ++hmp->count_inodes;
357 ip->obj_id = obj_id;
358 ip->obj_asof = iinfo.obj_asof;
359 ip->obj_localization = localization;
360 ip->hmp = hmp;
361 ip->flags = flags & HAMMER_INODE_RO;
362 ip->cache[0].ip = ip;
363 ip->cache[1].ip = ip;
364 if (hmp->ronly)
365 ip->flags |= HAMMER_INODE_RO;
366 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
367 0x7FFFFFFFFFFFFFFFLL;
368 RB_INIT(&ip->rec_tree);
369 TAILQ_INIT(&ip->target_list);
370 hammer_ref(&ip->lock);
373 * Locate the on-disk inode.
375 retry:
376 hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
377 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
378 cursor.key_beg.obj_id = ip->obj_id;
379 cursor.key_beg.key = 0;
380 cursor.key_beg.create_tid = 0;
381 cursor.key_beg.delete_tid = 0;
382 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
383 cursor.key_beg.obj_type = 0;
384 cursor.asof = iinfo.obj_asof;
385 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
386 HAMMER_CURSOR_ASOF;
388 *errorp = hammer_btree_lookup(&cursor);
389 if (*errorp == EDEADLK) {
390 hammer_done_cursor(&cursor);
391 goto retry;
395 * On success the B-Tree lookup will hold the appropriate
396 * buffer cache buffers and provide a pointer to the requested
397 * information. Copy the information to the in-memory inode
398 * and cache the B-Tree node to improve future operations.
400 if (*errorp == 0) {
401 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
402 ip->ino_data = cursor.data->inode;
405 * cache[0] tries to cache the location of the object inode.
406 * The assumption is that it is near the directory inode.
408 * cache[1] tries to cache the location of the object data.
409 * The assumption is that it is near the directory data.
411 hammer_cache_node(&ip->cache[0], cursor.node);
412 if (dip && dip->cache[1].node)
413 hammer_cache_node(&ip->cache[1], dip->cache[1].node);
416 * The file should not contain any data past the file size
417 * stored in the inode. Setting save_trunc_off to the
418 * file size instead of max reduces B-Tree lookup overheads
419 * on append by allowing the flusher to avoid checking for
420 * record overwrites.
422 ip->save_trunc_off = ip->ino_data.size;
425 * Locate and assign the pseudofs management structure to
426 * the inode.
428 if (dip && dip->obj_localization == ip->obj_localization) {
429 ip->pfsm = dip->pfsm;
430 hammer_ref(&ip->pfsm->lock);
431 } else {
432 *errorp = hammer_load_pseudofs(trans, ip);
437 * The inode is placed on the red-black tree and will be synced to
438 * the media when flushed or by the filesystem sync. If this races
439 * another instantiation/lookup the insertion will fail.
441 if (*errorp == 0) {
442 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
443 hammer_free_inode(ip);
444 hammer_done_cursor(&cursor);
445 goto loop;
447 ip->flags |= HAMMER_INODE_ONDISK;
448 } else {
449 if (ip->flags & HAMMER_INODE_RSV_INODES) {
450 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
451 --hmp->rsv_inodes;
454 hammer_free_inode(ip);
455 ip = NULL;
457 hammer_done_cursor(&cursor);
458 return (ip);
462 * Create a new filesystem object, returning the inode in *ipp. The
463 * returned inode will be referenced.
465 * The inode is created in-memory.
468 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
469 struct ucred *cred, hammer_inode_t dip,
470 int pseudofs, struct hammer_inode **ipp)
472 hammer_mount_t hmp;
473 hammer_inode_t ip;
474 uid_t xuid;
475 u_int32_t localization;
476 int error;
478 hmp = trans->hmp;
481 * Assign the localization domain. If if dip is NULL we are creating
482 * a pseudo-fs and must locate an unused localization domain.
484 if (pseudofs) {
485 for (localization = HAMMER_DEF_LOCALIZATION;
486 localization < HAMMER_LOCALIZE_PSEUDOFS_MASK;
487 localization += HAMMER_LOCALIZE_PSEUDOFS_INC) {
488 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
489 hmp->asof, localization,
490 0, &error);
491 if (ip == NULL) {
492 if (error != ENOENT)
493 return(error);
494 break;
496 if (ip)
497 hammer_rel_inode(ip, 0);
499 } else {
500 localization = dip->obj_localization;
503 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
504 ++hammer_count_inodes;
505 ++hmp->count_inodes;
508 * Allocate a new object id. If creating a new pseudo-fs the
509 * obj_id is 1.
511 if (pseudofs)
512 ip->obj_id = HAMMER_OBJID_ROOT;
513 else
514 ip->obj_id = hammer_alloc_objid(hmp, dip);
515 ip->obj_localization = localization;
517 KKASSERT(ip->obj_id != 0);
518 ip->obj_asof = hmp->asof;
519 ip->hmp = hmp;
520 ip->flush_state = HAMMER_FST_IDLE;
521 ip->flags = HAMMER_INODE_DDIRTY |
522 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
523 ip->cache[0].ip = ip;
524 ip->cache[1].ip = ip;
526 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
527 /* ip->save_trunc_off = 0; (already zero) */
528 RB_INIT(&ip->rec_tree);
529 TAILQ_INIT(&ip->target_list);
531 ip->ino_data.atime = trans->time;
532 ip->ino_data.mtime = trans->time;
533 ip->ino_data.size = 0;
534 ip->ino_data.nlinks = 0;
537 * A nohistory designator on the parent directory is inherited by
538 * the child. We will do this even for pseudo-fs creation... the
539 * sysad can turn it off.
541 ip->ino_data.uflags = dip->ino_data.uflags &
542 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
544 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
545 ip->ino_leaf.base.localization = ip->obj_localization +
546 HAMMER_LOCALIZE_INODE;
547 ip->ino_leaf.base.obj_id = ip->obj_id;
548 ip->ino_leaf.base.key = 0;
549 ip->ino_leaf.base.create_tid = 0;
550 ip->ino_leaf.base.delete_tid = 0;
551 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
552 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
554 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
555 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
556 ip->ino_data.mode = vap->va_mode;
557 ip->ino_data.ctime = trans->time;
560 * Setup the ".." pointer. This only needs to be done for directories
561 * but we do it for all objects as a recovery aid.
563 * The parent_obj_localization field only applies to pseudo-fs roots.
565 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
566 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
567 ip->obj_id == HAMMER_OBJID_ROOT) {
568 ip->ino_data.ext.obj.parent_obj_localization =
569 dip->obj_localization;
572 switch(ip->ino_leaf.base.obj_type) {
573 case HAMMER_OBJTYPE_CDEV:
574 case HAMMER_OBJTYPE_BDEV:
575 ip->ino_data.rmajor = vap->va_rmajor;
576 ip->ino_data.rminor = vap->va_rminor;
577 break;
578 default:
579 break;
583 * Calculate default uid/gid and overwrite with information from
584 * the vap.
586 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
587 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
588 &vap->va_mode);
589 ip->ino_data.mode = vap->va_mode;
591 if (vap->va_vaflags & VA_UID_UUID_VALID)
592 ip->ino_data.uid = vap->va_uid_uuid;
593 else if (vap->va_uid != (uid_t)VNOVAL)
594 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
595 else
596 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
598 if (vap->va_vaflags & VA_GID_UUID_VALID)
599 ip->ino_data.gid = vap->va_gid_uuid;
600 else if (vap->va_gid != (gid_t)VNOVAL)
601 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
602 else
603 ip->ino_data.gid = dip->ino_data.gid;
605 hammer_ref(&ip->lock);
607 if (dip->obj_localization == ip->obj_localization) {
608 ip->pfsm = dip->pfsm;
609 hammer_ref(&ip->pfsm->lock);
610 error = 0;
611 } else {
612 error = hammer_load_pseudofs(trans, ip);
615 if (error) {
616 hammer_free_inode(ip);
617 ip = NULL;
618 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
619 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
620 /* not reached */
621 hammer_free_inode(ip);
623 *ipp = ip;
624 return(error);
628 * Final cleanup / freeing of an inode structure
630 static void
631 hammer_free_inode(hammer_inode_t ip)
633 KKASSERT(ip->lock.refs == 1);
634 hammer_uncache_node(&ip->cache[0]);
635 hammer_uncache_node(&ip->cache[1]);
636 hammer_inode_wakereclaims(ip);
637 if (ip->objid_cache)
638 hammer_clear_objid(ip);
639 --hammer_count_inodes;
640 --ip->hmp->count_inodes;
641 if (ip->pfsm) {
642 hammer_rel_pseudofs(ip->hmp, ip->pfsm);
643 ip->pfsm = NULL;
645 kfree(ip, M_HAMMER);
646 ip = NULL;
650 * Retrieve pseudo-fs data.
653 hammer_load_pseudofs(hammer_transaction_t trans, hammer_inode_t ip)
655 hammer_mount_t hmp = trans->hmp;
656 hammer_pseudofs_inmem_t pfsm;
657 struct hammer_cursor cursor;
658 int error;
659 int bytes;
661 retry:
662 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root,
663 ip->obj_localization);
664 if (pfsm) {
665 KKASSERT(ip->pfsm == NULL);
666 ip->pfsm = pfsm;
667 hammer_ref(&pfsm->lock);
668 return(0);
671 pfsm = kmalloc(sizeof(*pfsm), M_HAMMER, M_WAITOK | M_ZERO);
672 pfsm->localization = ip->obj_localization;
673 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
674 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
676 hammer_init_cursor(trans, &cursor, NULL, NULL);
677 cursor.key_beg.localization = ip->obj_localization +
678 HAMMER_LOCALIZE_MISC;
679 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
680 cursor.key_beg.create_tid = 0;
681 cursor.key_beg.delete_tid = 0;
682 cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
683 cursor.key_beg.obj_type = 0;
684 cursor.key_beg.key = HAMMER_FIXKEY_PSEUDOFS;
685 cursor.asof = HAMMER_MAX_TID;
686 cursor.flags |= HAMMER_CURSOR_ASOF;
688 error = hammer_btree_lookup(&cursor);
689 if (error == 0) {
690 error = hammer_btree_extract(&cursor, HAMMER_CURSOR_GET_DATA);
691 if (error == 0) {
692 bytes = cursor.leaf->data_len;
693 if (bytes > sizeof(pfsm->pfsd))
694 bytes = sizeof(pfsm->pfsd);
695 bcopy(cursor.data, &pfsm->pfsd, bytes);
697 } else if (error == ENOENT) {
698 error = 0;
701 hammer_done_cursor(&cursor);
703 if (error == 0) {
704 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
705 hammer_ref(&pfsm->lock);
706 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
707 kfree(pfsm, M_HAMMER);
708 goto retry;
710 ip->pfsm = pfsm;
713 * Certain aspects of the pseudofs configuration are reflected
714 * in the inode.
716 if (pfsm->pfsd.mirror_flags & HAMMER_PFSD_SLAVE) {
717 ip->flags |= HAMMER_INODE_RO;
718 ip->flags |= HAMMER_INODE_PFSD;
719 } else if (pfsm->pfsd.master_id >= 0) {
720 ip->flags |= HAMMER_INODE_PFSD;
722 } else {
723 kprintf("cannot load pfsm error %d\n", error);
724 kfree(pfsm, M_HAMMER);
726 return(error);
730 * Store pseudo-fs data. The backend will automatically delete any prior
731 * on-disk pseudo-fs data but we have to delete in-memory versions.
734 hammer_save_pseudofs(hammer_transaction_t trans, hammer_inode_t ip)
736 struct hammer_cursor cursor;
737 hammer_pseudofs_inmem_t pfsm;
738 hammer_record_t record;
739 int error;
741 retry:
742 pfsm = ip->pfsm;
743 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
744 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
745 cursor.key_beg.localization = ip->obj_localization +
746 HAMMER_LOCALIZE_MISC;
747 cursor.key_beg.obj_id = ip->obj_id;
748 cursor.key_beg.create_tid = 0;
749 cursor.key_beg.delete_tid = 0;
750 cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
751 cursor.key_beg.obj_type = 0;
752 cursor.key_beg.key = HAMMER_FIXKEY_PSEUDOFS;
753 cursor.asof = HAMMER_MAX_TID;
754 cursor.flags |= HAMMER_CURSOR_ASOF;
756 error = hammer_ip_lookup(&cursor);
757 if (error == 0 && hammer_cursor_inmem(&cursor)) {
758 record = cursor.iprec;
759 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
760 KKASSERT(cursor.deadlk_rec == NULL);
761 hammer_ref(&record->lock);
762 cursor.deadlk_rec = record;
763 error = EDEADLK;
764 } else {
765 record->flags |= HAMMER_RECF_DELETED_FE;
766 error = 0;
769 if (error == 0 || error == ENOENT) {
770 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
771 record->type = HAMMER_MEM_RECORD_GENERAL;
773 record->leaf.base.localization = ip->obj_localization +
774 HAMMER_LOCALIZE_MISC;
775 record->leaf.base.rec_type = HAMMER_RECTYPE_FIX;
776 record->leaf.base.key = HAMMER_FIXKEY_PSEUDOFS;
777 record->leaf.data_len = sizeof(pfsm->pfsd);
778 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
779 error = hammer_ip_add_record(trans, record);
781 hammer_done_cursor(&cursor);
782 if (error == EDEADLK)
783 goto retry;
784 if (error == 0) {
786 * Certain aspects of the pseudofs configuration are reflected
787 * in the inode. Note that we cannot mess with the as-of or
788 * clear the read-only state.
790 * If this inode represented a slave snapshot its asof will
791 * be set to a snapshot tid. When clearing slave mode any
792 * re-access of the inode via the parent directory will
793 * wind up using a different asof and thus will instantiate
794 * a new inode.
796 if (pfsm->pfsd.mirror_flags & HAMMER_PFSD_SLAVE) {
797 ip->flags |= HAMMER_INODE_RO;
798 ip->flags |= HAMMER_INODE_PFSD;
799 } else if (pfsm->pfsd.master_id >= 0) {
800 ip->flags |= HAMMER_INODE_PFSD;
801 } else {
802 ip->flags &= ~HAMMER_INODE_PFSD;
805 return(error);
808 void
809 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
811 hammer_unref(&pfsm->lock);
812 if (pfsm->lock.refs == 0) {
813 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
814 kfree(pfsm, M_HAMMER);
819 * Called by hammer_sync_inode().
821 static int
822 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
824 hammer_transaction_t trans = cursor->trans;
825 hammer_record_t record;
826 int error;
827 int redirty;
829 retry:
830 error = 0;
833 * If the inode has a presence on-disk then locate it and mark
834 * it deleted, setting DELONDISK.
836 * The record may or may not be physically deleted, depending on
837 * the retention policy.
839 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
840 HAMMER_INODE_ONDISK) {
841 hammer_normalize_cursor(cursor);
842 cursor->key_beg.localization = ip->obj_localization +
843 HAMMER_LOCALIZE_INODE;
844 cursor->key_beg.obj_id = ip->obj_id;
845 cursor->key_beg.key = 0;
846 cursor->key_beg.create_tid = 0;
847 cursor->key_beg.delete_tid = 0;
848 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
849 cursor->key_beg.obj_type = 0;
850 cursor->asof = ip->obj_asof;
851 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
852 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
853 cursor->flags |= HAMMER_CURSOR_BACKEND;
855 error = hammer_btree_lookup(cursor);
856 if (hammer_debug_inode)
857 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
858 if (error) {
859 kprintf("error %d\n", error);
860 Debugger("hammer_update_inode");
863 if (error == 0) {
864 error = hammer_ip_delete_record(cursor, ip, trans->tid);
865 if (hammer_debug_inode)
866 kprintf(" error %d\n", error);
867 if (error && error != EDEADLK) {
868 kprintf("error %d\n", error);
869 Debugger("hammer_update_inode2");
871 if (error == 0) {
872 ip->flags |= HAMMER_INODE_DELONDISK;
874 if (cursor->node)
875 hammer_cache_node(&ip->cache[0], cursor->node);
877 if (error == EDEADLK) {
878 hammer_done_cursor(cursor);
879 error = hammer_init_cursor(trans, cursor,
880 &ip->cache[0], ip);
881 if (hammer_debug_inode)
882 kprintf("IPDED %p %d\n", ip, error);
883 if (error == 0)
884 goto retry;
889 * Ok, write out the initial record or a new record (after deleting
890 * the old one), unless the DELETED flag is set. This routine will
891 * clear DELONDISK if it writes out a record.
893 * Update our inode statistics if this is the first application of
894 * the inode on-disk.
896 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
898 * Generate a record and write it to the media
900 record = hammer_alloc_mem_record(ip, 0);
901 record->type = HAMMER_MEM_RECORD_INODE;
902 record->flush_state = HAMMER_FST_FLUSH;
903 record->leaf = ip->sync_ino_leaf;
904 record->leaf.base.create_tid = trans->tid;
905 record->leaf.data_len = sizeof(ip->sync_ino_data);
906 record->leaf.create_ts = trans->time32;
907 record->data = (void *)&ip->sync_ino_data;
908 record->flags |= HAMMER_RECF_INTERLOCK_BE;
911 * If this flag is set we cannot sync the new file size
912 * because we haven't finished related truncations. The
913 * inode will be flushed in another flush group to finish
914 * the job.
916 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
917 ip->sync_ino_data.size != ip->ino_data.size) {
918 redirty = 1;
919 ip->sync_ino_data.size = ip->ino_data.size;
920 } else {
921 redirty = 0;
924 for (;;) {
925 error = hammer_ip_sync_record_cursor(cursor, record);
926 if (hammer_debug_inode)
927 kprintf("GENREC %p rec %08x %d\n",
928 ip, record->flags, error);
929 if (error != EDEADLK)
930 break;
931 hammer_done_cursor(cursor);
932 error = hammer_init_cursor(trans, cursor,
933 &ip->cache[0], ip);
934 if (hammer_debug_inode)
935 kprintf("GENREC reinit %d\n", error);
936 if (error)
937 break;
939 if (error) {
940 kprintf("error %d\n", error);
941 Debugger("hammer_update_inode3");
945 * The record isn't managed by the inode's record tree,
946 * destroy it whether we succeed or fail.
948 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
949 record->flags |= HAMMER_RECF_DELETED_FE;
950 record->flush_state = HAMMER_FST_IDLE;
951 hammer_rel_mem_record(record);
954 * Finish up.
956 if (error == 0) {
957 if (hammer_debug_inode)
958 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
959 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
960 HAMMER_INODE_ATIME |
961 HAMMER_INODE_MTIME);
962 ip->flags &= ~HAMMER_INODE_DELONDISK;
963 if (redirty)
964 ip->sync_flags |= HAMMER_INODE_DDIRTY;
967 * Root volume count of inodes
969 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
970 hammer_modify_volume_field(trans,
971 trans->rootvol,
972 vol0_stat_inodes);
973 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
974 hammer_modify_volume_done(trans->rootvol);
975 ip->flags |= HAMMER_INODE_ONDISK;
976 if (hammer_debug_inode)
977 kprintf("NOWONDISK %p\n", ip);
983 * If the inode has been destroyed, clean out any left-over flags
984 * that may have been set by the frontend.
986 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
987 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
988 HAMMER_INODE_ATIME |
989 HAMMER_INODE_MTIME);
991 return(error);
995 * Update only the itimes fields.
997 * ATIME can be updated without generating any UNDO. MTIME is updated
998 * with UNDO so it is guaranteed to be synchronized properly in case of
999 * a crash.
1001 * Neither field is included in the B-Tree leaf element's CRC, which is how
1002 * we can get away with updating ATIME the way we do.
1004 static int
1005 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1007 hammer_transaction_t trans = cursor->trans;
1008 int error;
1010 retry:
1011 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1012 HAMMER_INODE_ONDISK) {
1013 return(0);
1016 hammer_normalize_cursor(cursor);
1017 cursor->key_beg.localization = ip->obj_localization +
1018 HAMMER_LOCALIZE_INODE;
1019 cursor->key_beg.obj_id = ip->obj_id;
1020 cursor->key_beg.key = 0;
1021 cursor->key_beg.create_tid = 0;
1022 cursor->key_beg.delete_tid = 0;
1023 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1024 cursor->key_beg.obj_type = 0;
1025 cursor->asof = ip->obj_asof;
1026 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1027 cursor->flags |= HAMMER_CURSOR_ASOF;
1028 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1029 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1030 cursor->flags |= HAMMER_CURSOR_BACKEND;
1032 error = hammer_btree_lookup(cursor);
1033 if (error) {
1034 kprintf("error %d\n", error);
1035 Debugger("hammer_update_itimes1");
1037 if (error == 0) {
1038 hammer_cache_node(&ip->cache[0], cursor->node);
1039 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1041 * Updating MTIME requires an UNDO. Just cover
1042 * both atime and mtime.
1044 hammer_modify_buffer(trans, cursor->data_buffer,
1045 HAMMER_ITIMES_BASE(&cursor->data->inode),
1046 HAMMER_ITIMES_BYTES);
1047 cursor->data->inode.atime = ip->sync_ino_data.atime;
1048 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1049 hammer_modify_buffer_done(cursor->data_buffer);
1050 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1052 * Updating atime only can be done in-place with
1053 * no UNDO.
1055 hammer_modify_buffer(trans, cursor->data_buffer,
1056 NULL, 0);
1057 cursor->data->inode.atime = ip->sync_ino_data.atime;
1058 hammer_modify_buffer_done(cursor->data_buffer);
1060 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1062 if (error == EDEADLK) {
1063 hammer_done_cursor(cursor);
1064 error = hammer_init_cursor(trans, cursor,
1065 &ip->cache[0], ip);
1066 if (error == 0)
1067 goto retry;
1069 return(error);
1073 * Release a reference on an inode, flush as requested.
1075 * On the last reference we queue the inode to the flusher for its final
1076 * disposition.
1078 void
1079 hammer_rel_inode(struct hammer_inode *ip, int flush)
1081 hammer_mount_t hmp = ip->hmp;
1084 * Handle disposition when dropping the last ref.
1086 for (;;) {
1087 if (ip->lock.refs == 1) {
1089 * Determine whether on-disk action is needed for
1090 * the inode's final disposition.
1092 KKASSERT(ip->vp == NULL);
1093 hammer_inode_unloadable_check(ip, 0);
1094 if (ip->flags & HAMMER_INODE_MODMASK) {
1095 if (hmp->rsv_inodes > desiredvnodes) {
1096 hammer_flush_inode(ip,
1097 HAMMER_FLUSH_SIGNAL);
1098 } else {
1099 hammer_flush_inode(ip, 0);
1101 } else if (ip->lock.refs == 1) {
1102 hammer_unload_inode(ip);
1103 break;
1105 } else {
1106 if (flush)
1107 hammer_flush_inode(ip, 0);
1110 * The inode still has multiple refs, try to drop
1111 * one ref.
1113 KKASSERT(ip->lock.refs >= 1);
1114 if (ip->lock.refs > 1) {
1115 hammer_unref(&ip->lock);
1116 break;
1123 * Unload and destroy the specified inode. Must be called with one remaining
1124 * reference. The reference is disposed of.
1126 * This can only be called in the context of the flusher.
1128 static int
1129 hammer_unload_inode(struct hammer_inode *ip)
1131 hammer_mount_t hmp = ip->hmp;
1133 KASSERT(ip->lock.refs == 1,
1134 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
1135 KKASSERT(ip->vp == NULL);
1136 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1137 KKASSERT(ip->cursor_ip_refs == 0);
1138 KKASSERT(ip->lock.lockcount == 0);
1139 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1141 KKASSERT(RB_EMPTY(&ip->rec_tree));
1142 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1144 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1146 hammer_free_inode(ip);
1147 return(0);
1151 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1152 * the read-only flag for cached inodes.
1154 * This routine is called from a RB_SCAN().
1157 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1159 hammer_mount_t hmp = ip->hmp;
1161 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1162 ip->flags |= HAMMER_INODE_RO;
1163 else
1164 ip->flags &= ~HAMMER_INODE_RO;
1165 return(0);
1169 * A transaction has modified an inode, requiring updates as specified by
1170 * the passed flags.
1172 * HAMMER_INODE_DDIRTY: Inode data has been updated
1173 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1174 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1175 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1176 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1178 void
1179 hammer_modify_inode(hammer_inode_t ip, int flags)
1181 KKASSERT(ip->hmp->ronly == 0 ||
1182 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1183 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1184 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1185 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1186 ip->flags |= HAMMER_INODE_RSV_INODES;
1187 ++ip->hmp->rsv_inodes;
1190 ip->flags |= flags;
1194 * Request that an inode be flushed. This whole mess cannot block and may
1195 * recurse (if not synchronous). Once requested HAMMER will attempt to
1196 * actively flush the inode until the flush can be done.
1198 * The inode may already be flushing, or may be in a setup state. We can
1199 * place the inode in a flushing state if it is currently idle and flag it
1200 * to reflush if it is currently flushing.
1202 * If the HAMMER_FLUSH_SYNCHRONOUS flag is specified we will attempt to
1203 * flush the indoe synchronously using the caller's context.
1205 void
1206 hammer_flush_inode(hammer_inode_t ip, int flags)
1208 int good;
1211 * Trivial 'nothing to flush' case. If the inode is ina SETUP
1212 * state we have to put it back into an IDLE state so we can
1213 * drop the extra ref.
1215 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1216 if (ip->flush_state == HAMMER_FST_SETUP) {
1217 ip->flush_state = HAMMER_FST_IDLE;
1218 hammer_rel_inode(ip, 0);
1220 return;
1224 * Our flush action will depend on the current state.
1226 switch(ip->flush_state) {
1227 case HAMMER_FST_IDLE:
1229 * We have no dependancies and can flush immediately. Some
1230 * our children may not be flushable so we have to re-test
1231 * with that additional knowledge.
1233 hammer_flush_inode_core(ip, flags);
1234 break;
1235 case HAMMER_FST_SETUP:
1237 * Recurse upwards through dependancies via target_list
1238 * and start their flusher actions going if possible.
1240 * 'good' is our connectivity. -1 means we have none and
1241 * can't flush, 0 means there weren't any dependancies, and
1242 * 1 means we have good connectivity.
1244 good = hammer_setup_parent_inodes(ip);
1247 * We can continue if good >= 0. Determine how many records
1248 * under our inode can be flushed (and mark them).
1250 if (good >= 0) {
1251 hammer_flush_inode_core(ip, flags);
1252 } else {
1253 ip->flags |= HAMMER_INODE_REFLUSH;
1254 if (flags & HAMMER_FLUSH_SIGNAL) {
1255 ip->flags |= HAMMER_INODE_RESIGNAL;
1256 hammer_flusher_async(ip->hmp);
1259 break;
1260 default:
1262 * We are already flushing, flag the inode to reflush
1263 * if needed after it completes its current flush.
1265 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1266 ip->flags |= HAMMER_INODE_REFLUSH;
1267 if (flags & HAMMER_FLUSH_SIGNAL) {
1268 ip->flags |= HAMMER_INODE_RESIGNAL;
1269 hammer_flusher_async(ip->hmp);
1271 break;
1276 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1277 * ip which reference our ip.
1279 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1280 * so for now do not ref/deref the structures. Note that if we use the
1281 * ref/rel code later, the rel CAN block.
1283 static int
1284 hammer_setup_parent_inodes(hammer_inode_t ip)
1286 hammer_record_t depend;
1287 #if 0
1288 hammer_record_t next;
1289 hammer_inode_t pip;
1290 #endif
1291 int good;
1292 int r;
1294 good = 0;
1295 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1296 r = hammer_setup_parent_inodes_helper(depend);
1297 KKASSERT(depend->target_ip == ip);
1298 if (r < 0 && good == 0)
1299 good = -1;
1300 if (r > 0)
1301 good = 1;
1303 return(good);
1305 #if 0
1306 retry:
1307 good = 0;
1308 next = TAILQ_FIRST(&ip->target_list);
1309 if (next) {
1310 hammer_ref(&next->lock);
1311 hammer_ref(&next->ip->lock);
1313 while ((depend = next) != NULL) {
1314 if (depend->target_ip == NULL) {
1315 pip = depend->ip;
1316 hammer_rel_mem_record(depend);
1317 hammer_rel_inode(pip, 0);
1318 goto retry;
1320 KKASSERT(depend->target_ip == ip);
1321 next = TAILQ_NEXT(depend, target_entry);
1322 if (next) {
1323 hammer_ref(&next->lock);
1324 hammer_ref(&next->ip->lock);
1326 r = hammer_setup_parent_inodes_helper(depend);
1327 if (r < 0 && good == 0)
1328 good = -1;
1329 if (r > 0)
1330 good = 1;
1331 pip = depend->ip;
1332 hammer_rel_mem_record(depend);
1333 hammer_rel_inode(pip, 0);
1335 return(good);
1336 #endif
1340 * This helper function takes a record representing the dependancy between
1341 * the parent inode and child inode.
1343 * record->ip = parent inode
1344 * record->target_ip = child inode
1346 * We are asked to recurse upwards and convert the record from SETUP
1347 * to FLUSH if possible.
1349 * Return 1 if the record gives us connectivity
1351 * Return 0 if the record is not relevant
1353 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1355 static int
1356 hammer_setup_parent_inodes_helper(hammer_record_t record)
1358 hammer_mount_t hmp;
1359 hammer_inode_t pip;
1360 int good;
1362 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1363 pip = record->ip;
1364 hmp = pip->hmp;
1367 * If the record is already flushing, is it in our flush group?
1369 * If it is in our flush group but it is a general record or a
1370 * delete-on-disk, it does not improve our connectivity (return 0),
1371 * and if the target inode is not trying to destroy itself we can't
1372 * allow the operation yet anyway (the second return -1).
1374 if (record->flush_state == HAMMER_FST_FLUSH) {
1375 if (record->flush_group != hmp->flusher.next) {
1376 pip->flags |= HAMMER_INODE_REFLUSH;
1377 return(-1);
1379 if (record->type == HAMMER_MEM_RECORD_ADD)
1380 return(1);
1381 /* GENERAL or DEL */
1382 return(0);
1386 * It must be a setup record. Try to resolve the setup dependancies
1387 * by recursing upwards so we can place ip on the flush list.
1389 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1391 good = hammer_setup_parent_inodes(pip);
1394 * We can't flush ip because it has no connectivity (XXX also check
1395 * nlinks for pre-existing connectivity!). Flag it so any resolution
1396 * recurses back down.
1398 if (good < 0) {
1399 pip->flags |= HAMMER_INODE_REFLUSH;
1400 return(good);
1404 * We are go, place the parent inode in a flushing state so we can
1405 * place its record in a flushing state. Note that the parent
1406 * may already be flushing. The record must be in the same flush
1407 * group as the parent.
1409 if (pip->flush_state != HAMMER_FST_FLUSH)
1410 hammer_flush_inode_core(pip, HAMMER_FLUSH_RECURSION);
1411 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1412 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1414 #if 0
1415 if (record->type == HAMMER_MEM_RECORD_DEL &&
1416 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1418 * Regardless of flushing state we cannot sync this path if the
1419 * record represents a delete-on-disk but the target inode
1420 * is not ready to sync its own deletion.
1422 * XXX need to count effective nlinks to determine whether
1423 * the flush is ok, otherwise removing a hardlink will
1424 * just leave the DEL record to rot.
1426 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1427 return(-1);
1428 } else
1429 #endif
1430 if (pip->flush_group == pip->hmp->flusher.next) {
1432 * This is the record we wanted to synchronize. If the
1433 * record went into a flush state while we blocked it
1434 * had better be in the correct flush group.
1436 if (record->flush_state != HAMMER_FST_FLUSH) {
1437 record->flush_state = HAMMER_FST_FLUSH;
1438 record->flush_group = pip->flush_group;
1439 hammer_ref(&record->lock);
1440 } else {
1441 KKASSERT(record->flush_group == pip->flush_group);
1443 if (record->type == HAMMER_MEM_RECORD_ADD)
1444 return(1);
1447 * A general or delete-on-disk record does not contribute
1448 * to our visibility. We can still flush it, however.
1450 return(0);
1451 } else {
1453 * We couldn't resolve the dependancies, request that the
1454 * inode be flushed when the dependancies can be resolved.
1456 pip->flags |= HAMMER_INODE_REFLUSH;
1457 return(-1);
1462 * This is the core routine placing an inode into the FST_FLUSH state.
1464 static void
1465 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1467 int go_count;
1470 * Set flush state and prevent the flusher from cycling into
1471 * the next flush group. Do not place the ip on the list yet.
1472 * Inodes not in the idle state get an extra reference.
1474 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1475 if (ip->flush_state == HAMMER_FST_IDLE)
1476 hammer_ref(&ip->lock);
1477 ip->flush_state = HAMMER_FST_FLUSH;
1478 ip->flush_group = ip->hmp->flusher.next;
1479 ++ip->hmp->flusher.group_lock;
1480 ++ip->hmp->count_iqueued;
1481 ++hammer_count_iqueued;
1484 * We need to be able to vfsync/truncate from the backend.
1486 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1487 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1488 ip->flags |= HAMMER_INODE_VHELD;
1489 vref(ip->vp);
1493 * Figure out how many in-memory records we can actually flush
1494 * (not including inode meta-data, buffers, etc).
1496 * Do not add new records to the flush if this is a recursion or
1497 * if we must still complete a flush from the previous flush cycle.
1499 if (flags & HAMMER_FLUSH_RECURSION) {
1500 go_count = 1;
1501 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1502 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1503 hammer_syncgrp_child_callback, NULL);
1504 go_count = 1;
1505 } else {
1506 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1507 hammer_setup_child_callback, NULL);
1511 * This is a more involved test that includes go_count. If we
1512 * can't flush, flag the inode and return. If go_count is 0 we
1513 * were are unable to flush any records in our rec_tree and
1514 * must ignore the XDIRTY flag.
1516 if (go_count == 0) {
1517 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1518 ip->flags |= HAMMER_INODE_REFLUSH;
1520 --ip->hmp->count_iqueued;
1521 --hammer_count_iqueued;
1523 ip->flush_state = HAMMER_FST_SETUP;
1524 if (ip->flags & HAMMER_INODE_VHELD) {
1525 ip->flags &= ~HAMMER_INODE_VHELD;
1526 vrele(ip->vp);
1528 if (flags & HAMMER_FLUSH_SIGNAL) {
1529 ip->flags |= HAMMER_INODE_RESIGNAL;
1530 hammer_flusher_async(ip->hmp);
1532 if (--ip->hmp->flusher.group_lock == 0)
1533 wakeup(&ip->hmp->flusher.group_lock);
1534 return;
1539 * Snapshot the state of the inode for the backend flusher.
1541 * We continue to retain save_trunc_off even when all truncations
1542 * have been resolved as an optimization to determine if we can
1543 * skip the B-Tree lookup for overwrite deletions.
1545 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1546 * and stays in ip->flags. Once set, it stays set until the
1547 * inode is destroyed.
1549 * NOTE: If a truncation from a previous flush cycle had to be
1550 * continued into this one, the TRUNCATED flag will still be
1551 * set in sync_flags as will WOULDBLOCK. When this occurs
1552 * we CANNOT safely integrate a new truncation from the front-end
1553 * because there may be data records in-memory assigned a flush
1554 * state from the previous cycle that are supposed to be flushed
1555 * before the next frontend truncation.
1557 if ((ip->flags & (HAMMER_INODE_TRUNCATED | HAMMER_INODE_WOULDBLOCK)) ==
1558 HAMMER_INODE_TRUNCATED) {
1559 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1560 ip->sync_trunc_off = ip->trunc_off;
1561 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1562 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1563 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1566 * The save_trunc_off used to cache whether the B-Tree
1567 * holds any records past that point is not used until
1568 * after the truncation has succeeded, so we can safely
1569 * set it now.
1571 if (ip->save_trunc_off > ip->sync_trunc_off)
1572 ip->save_trunc_off = ip->sync_trunc_off;
1574 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1575 ~HAMMER_INODE_TRUNCATED);
1576 ip->sync_ino_leaf = ip->ino_leaf;
1577 ip->sync_ino_data = ip->ino_data;
1578 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1579 #ifdef DEBUG_TRUNCATE
1580 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1581 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1582 #endif
1585 * The flusher list inherits our inode and reference.
1587 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1588 if (--ip->hmp->flusher.group_lock == 0)
1589 wakeup(&ip->hmp->flusher.group_lock);
1591 if (flags & HAMMER_FLUSH_SIGNAL) {
1592 hammer_flusher_async(ip->hmp);
1597 * Callback for scan of ip->rec_tree. Try to include each record in our
1598 * flush. ip->flush_group has been set but the inode has not yet been
1599 * moved into a flushing state.
1601 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1602 * both inodes.
1604 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1605 * the caller from shortcutting the flush.
1607 static int
1608 hammer_setup_child_callback(hammer_record_t rec, void *data)
1610 hammer_inode_t target_ip;
1611 hammer_inode_t ip;
1612 int r;
1615 * Deleted records are ignored. Note that the flush detects deleted
1616 * front-end records at multiple points to deal with races. This is
1617 * just the first line of defense. The only time DELETED_FE cannot
1618 * be set is when HAMMER_RECF_INTERLOCK_BE is set.
1620 * Don't get confused between record deletion and, say, directory
1621 * entry deletion. The deletion of a directory entry that is on
1622 * the media has nothing to do with the record deletion flags.
1624 * The flush_group for a record already in a flush state must
1625 * be updated. This case can only occur if the inode deleting
1626 * too many records had to be moved to the next flush group.
1628 if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE)) {
1629 if (rec->flush_state == HAMMER_FST_FLUSH) {
1630 KKASSERT(rec->ip->flags & HAMMER_INODE_WOULDBLOCK);
1631 rec->flush_group = rec->ip->flush_group;
1632 r = 1;
1633 } else {
1634 r = 0;
1636 return(r);
1640 * If the record is in an idle state it has no dependancies and
1641 * can be flushed.
1643 ip = rec->ip;
1644 r = 0;
1646 switch(rec->flush_state) {
1647 case HAMMER_FST_IDLE:
1649 * Record has no setup dependancy, we can flush it.
1651 KKASSERT(rec->target_ip == NULL);
1652 rec->flush_state = HAMMER_FST_FLUSH;
1653 rec->flush_group = ip->flush_group;
1654 hammer_ref(&rec->lock);
1655 r = 1;
1656 break;
1657 case HAMMER_FST_SETUP:
1659 * Record has a setup dependancy. Try to include the
1660 * target ip in the flush.
1662 * We have to be careful here, if we do not do the right
1663 * thing we can lose track of dirty inodes and the system
1664 * will lockup trying to allocate buffers.
1666 target_ip = rec->target_ip;
1667 KKASSERT(target_ip != NULL);
1668 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1669 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1671 * If the target IP is already flushing in our group
1672 * we are golden, otherwise make sure the target
1673 * reflushes.
1675 if (target_ip->flush_group == ip->flush_group) {
1676 rec->flush_state = HAMMER_FST_FLUSH;
1677 rec->flush_group = ip->flush_group;
1678 hammer_ref(&rec->lock);
1679 r = 1;
1680 } else {
1681 target_ip->flags |= HAMMER_INODE_REFLUSH;
1683 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1685 * If the target IP is not flushing we can force
1686 * it to flush, even if it is unable to write out
1687 * any of its own records we have at least one in
1688 * hand that we CAN deal with.
1690 rec->flush_state = HAMMER_FST_FLUSH;
1691 rec->flush_group = ip->flush_group;
1692 hammer_ref(&rec->lock);
1693 hammer_flush_inode_core(target_ip,
1694 HAMMER_FLUSH_RECURSION);
1695 r = 1;
1696 } else {
1698 * General or delete-on-disk record.
1700 * XXX this needs help. If a delete-on-disk we could
1701 * disconnect the target. If the target has its own
1702 * dependancies they really need to be flushed.
1704 * XXX
1706 rec->flush_state = HAMMER_FST_FLUSH;
1707 rec->flush_group = ip->flush_group;
1708 hammer_ref(&rec->lock);
1709 hammer_flush_inode_core(target_ip,
1710 HAMMER_FLUSH_RECURSION);
1711 r = 1;
1713 break;
1714 case HAMMER_FST_FLUSH:
1716 * If the WOULDBLOCK flag is set records may have been left
1717 * over from a previous flush attempt and should be moved
1718 * to the current flush group. If it is not set then all
1719 * such records had better have been flushed already or
1720 * already associated with the current flush group.
1722 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1723 rec->flush_group = ip->flush_group;
1724 } else {
1725 KKASSERT(rec->flush_group == ip->flush_group);
1727 r = 1;
1728 break;
1730 return(r);
1734 * This version just moves records already in a flush state to the new
1735 * flush group and that is it.
1737 static int
1738 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
1740 hammer_inode_t ip = rec->ip;
1742 switch(rec->flush_state) {
1743 case HAMMER_FST_FLUSH:
1744 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1745 rec->flush_group = ip->flush_group;
1746 } else {
1747 KKASSERT(rec->flush_group == ip->flush_group);
1749 break;
1750 default:
1751 break;
1753 return(0);
1757 * Wait for a previously queued flush to complete. Not only do we need to
1758 * wait for the inode to sync out, we also may have to run the flusher again
1759 * to get it past the UNDO position pertaining to the flush so a crash does
1760 * not 'undo' our flush.
1762 void
1763 hammer_wait_inode(hammer_inode_t ip)
1765 hammer_mount_t hmp = ip->hmp;
1766 int sync_group;
1767 int waitcount;
1769 sync_group = ip->flush_group;
1770 waitcount = (ip->flags & HAMMER_INODE_REFLUSH) ? 2 : 1;
1772 if (ip->flush_state == HAMMER_FST_SETUP) {
1773 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1775 /* XXX can we make this != FST_IDLE ? check SETUP depends */
1776 while (ip->flush_state == HAMMER_FST_FLUSH &&
1777 (ip->flush_group - sync_group) < waitcount) {
1778 ip->flags |= HAMMER_INODE_FLUSHW;
1779 tsleep(&ip->flags, 0, "hmrwin", 0);
1781 while (hmp->flusher.done - sync_group < waitcount) {
1782 kprintf("Y");
1783 hammer_flusher_sync(hmp);
1788 * Called by the backend code when a flush has been completed.
1789 * The inode has already been removed from the flush list.
1791 * A pipelined flush can occur, in which case we must re-enter the
1792 * inode on the list and re-copy its fields.
1794 void
1795 hammer_flush_inode_done(hammer_inode_t ip)
1797 hammer_mount_t hmp;
1798 int dorel;
1800 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1802 hmp = ip->hmp;
1805 * Merge left-over flags back into the frontend and fix the state.
1806 * Incomplete truncations are retained by the backend.
1808 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
1809 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
1812 * The backend may have adjusted nlinks, so if the adjusted nlinks
1813 * does not match the fronttend set the frontend's RDIRTY flag again.
1815 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1816 ip->flags |= HAMMER_INODE_DDIRTY;
1819 * Fix up the dirty buffer status.
1821 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1822 ip->flags |= HAMMER_INODE_BUFS;
1826 * Re-set the XDIRTY flag if some of the inode's in-memory records
1827 * could not be flushed.
1829 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1830 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1831 (!RB_EMPTY(&ip->rec_tree) &&
1832 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1835 * Do not lose track of inodes which no longer have vnode
1836 * assocations, otherwise they may never get flushed again.
1838 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1839 ip->flags |= HAMMER_INODE_REFLUSH;
1842 * Clean up the vnode ref
1844 if (ip->flags & HAMMER_INODE_VHELD) {
1845 ip->flags &= ~HAMMER_INODE_VHELD;
1846 vrele(ip->vp);
1850 * Adjust flush_state. The target state (idle or setup) shouldn't
1851 * be terribly important since we will reflush if we really need
1852 * to do anything.
1854 * If the WOULDBLOCK flag is set we must re-flush immediately
1855 * to continue a potentially large deletion. The flag also causes
1856 * the hammer_setup_child_callback() to move records in the old
1857 * flush group to the new one.
1859 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1860 ip->flush_state = HAMMER_FST_IDLE;
1861 hammer_flush_inode_core(ip, HAMMER_FLUSH_SIGNAL);
1862 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
1863 dorel = 1;
1864 } else if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1865 ip->flush_state = HAMMER_FST_IDLE;
1866 dorel = 1;
1867 } else {
1868 ip->flush_state = HAMMER_FST_SETUP;
1869 dorel = 0;
1872 --hmp->count_iqueued;
1873 --hammer_count_iqueued;
1876 * If the frontend made more changes and requested another flush,
1877 * then try to get it running.
1879 if (ip->flags & HAMMER_INODE_REFLUSH) {
1880 ip->flags &= ~HAMMER_INODE_REFLUSH;
1881 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1882 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1883 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1884 } else {
1885 hammer_flush_inode(ip, 0);
1890 * If the inode is now clean drop the space reservation.
1892 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1893 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1894 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1895 --hmp->rsv_inodes;
1899 * Finally, if the frontend is waiting for a flush to complete,
1900 * wake it up.
1902 if (ip->flush_state != HAMMER_FST_FLUSH) {
1903 if (ip->flags & HAMMER_INODE_FLUSHW) {
1904 ip->flags &= ~HAMMER_INODE_FLUSHW;
1905 wakeup(&ip->flags);
1908 if (dorel)
1909 hammer_rel_inode(ip, 0);
1913 * Called from hammer_sync_inode() to synchronize in-memory records
1914 * to the media.
1916 static int
1917 hammer_sync_record_callback(hammer_record_t record, void *data)
1919 hammer_cursor_t cursor = data;
1920 hammer_transaction_t trans = cursor->trans;
1921 int error;
1924 * Skip records that do not belong to the current flush.
1926 ++hammer_stats_record_iterations;
1927 if (record->flush_state != HAMMER_FST_FLUSH)
1928 return(0);
1930 #if 1
1931 if (record->flush_group != record->ip->flush_group) {
1932 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1933 Debugger("blah2");
1934 return(0);
1936 #endif
1937 KKASSERT(record->flush_group == record->ip->flush_group);
1940 * Interlock the record using the BE flag. Once BE is set the
1941 * frontend cannot change the state of FE.
1943 * NOTE: If FE is set prior to us setting BE we still sync the
1944 * record out, but the flush completion code converts it to
1945 * a delete-on-disk record instead of destroying it.
1947 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1948 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1951 * The backend may have already disposed of the record.
1953 if (record->flags & HAMMER_RECF_DELETED_BE) {
1954 error = 0;
1955 goto done;
1959 * If the whole inode is being deleting all on-disk records will
1960 * be deleted very soon, we can't sync any new records to disk
1961 * because they will be deleted in the same transaction they were
1962 * created in (delete_tid == create_tid), which will assert.
1964 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1965 * that we currently panic on.
1967 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1968 switch(record->type) {
1969 case HAMMER_MEM_RECORD_DATA:
1971 * We don't have to do anything, if the record was
1972 * committed the space will have been accounted for
1973 * in the blockmap.
1975 /* fall through */
1976 case HAMMER_MEM_RECORD_GENERAL:
1977 record->flags |= HAMMER_RECF_DELETED_FE;
1978 record->flags |= HAMMER_RECF_DELETED_BE;
1979 error = 0;
1980 goto done;
1981 case HAMMER_MEM_RECORD_ADD:
1982 panic("hammer_sync_record_callback: illegal add "
1983 "during inode deletion record %p", record);
1984 break; /* NOT REACHED */
1985 case HAMMER_MEM_RECORD_INODE:
1986 panic("hammer_sync_record_callback: attempt to "
1987 "sync inode record %p?", record);
1988 break; /* NOT REACHED */
1989 case HAMMER_MEM_RECORD_DEL:
1991 * Follow through and issue the on-disk deletion
1993 break;
1998 * If DELETED_FE is set special handling is needed for directory
1999 * entries. Dependant pieces related to the directory entry may
2000 * have already been synced to disk. If this occurs we have to
2001 * sync the directory entry and then change the in-memory record
2002 * from an ADD to a DELETE to cover the fact that it's been
2003 * deleted by the frontend.
2005 * A directory delete covering record (MEM_RECORD_DEL) can never
2006 * be deleted by the frontend.
2008 * Any other record type (aka DATA) can be deleted by the frontend.
2009 * XXX At the moment the flusher must skip it because there may
2010 * be another data record in the flush group for the same block,
2011 * meaning that some frontend data changes can leak into the backend's
2012 * synchronization point.
2014 if (record->flags & HAMMER_RECF_DELETED_FE) {
2015 if (record->type == HAMMER_MEM_RECORD_ADD) {
2016 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2017 } else {
2018 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2019 record->flags |= HAMMER_RECF_DELETED_BE;
2020 error = 0;
2021 goto done;
2026 * Assign the create_tid for new records. Deletions already
2027 * have the record's entire key properly set up.
2029 if (record->type != HAMMER_MEM_RECORD_DEL)
2030 record->leaf.base.create_tid = trans->tid;
2031 record->leaf.create_ts = trans->time32;
2032 for (;;) {
2033 error = hammer_ip_sync_record_cursor(cursor, record);
2034 if (error != EDEADLK)
2035 break;
2036 hammer_done_cursor(cursor);
2037 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2038 record->ip);
2039 if (error)
2040 break;
2042 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2044 if (error) {
2045 error = -error;
2046 if (error != -ENOSPC) {
2047 kprintf("hammer_sync_record_callback: sync failed rec "
2048 "%p, error %d\n", record, error);
2049 Debugger("sync failed rec");
2052 done:
2053 hammer_flush_record_done(record, error);
2054 return(error);
2058 * XXX error handling
2061 hammer_sync_inode(hammer_inode_t ip)
2063 struct hammer_transaction trans;
2064 struct hammer_cursor cursor;
2065 hammer_node_t tmp_node;
2066 hammer_record_t depend;
2067 hammer_record_t next;
2068 int error, tmp_error;
2069 u_int64_t nlinks;
2071 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2072 return(0);
2074 hammer_start_transaction_fls(&trans, ip->hmp);
2075 error = hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2076 if (error)
2077 goto done;
2080 * Any directory records referencing this inode which are not in
2081 * our current flush group must adjust our nlink count for the
2082 * purposes of synchronization to disk.
2084 * Records which are in our flush group can be unlinked from our
2085 * inode now, potentially allowing the inode to be physically
2086 * deleted.
2088 * This cannot block.
2090 nlinks = ip->ino_data.nlinks;
2091 next = TAILQ_FIRST(&ip->target_list);
2092 while ((depend = next) != NULL) {
2093 next = TAILQ_NEXT(depend, target_entry);
2094 if (depend->flush_state == HAMMER_FST_FLUSH &&
2095 depend->flush_group == ip->hmp->flusher.act) {
2097 * If this is an ADD that was deleted by the frontend
2098 * the frontend nlinks count will have already been
2099 * decremented, but the backend is going to sync its
2100 * directory entry and must account for it. The
2101 * record will be converted to a delete-on-disk when
2102 * it gets synced.
2104 * If the ADD was not deleted by the frontend we
2105 * can remove the dependancy from our target_list.
2107 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2108 ++nlinks;
2109 } else {
2110 TAILQ_REMOVE(&ip->target_list, depend,
2111 target_entry);
2112 depend->target_ip = NULL;
2114 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2116 * Not part of our flush group
2118 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2119 switch(depend->type) {
2120 case HAMMER_MEM_RECORD_ADD:
2121 --nlinks;
2122 break;
2123 case HAMMER_MEM_RECORD_DEL:
2124 ++nlinks;
2125 break;
2126 default:
2127 break;
2133 * Set dirty if we had to modify the link count.
2135 if (ip->sync_ino_data.nlinks != nlinks) {
2136 KKASSERT((int64_t)nlinks >= 0);
2137 ip->sync_ino_data.nlinks = nlinks;
2138 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2142 * If there is a trunction queued destroy any data past the (aligned)
2143 * truncation point. Userland will have dealt with the buffer
2144 * containing the truncation point for us.
2146 * We don't flush pending frontend data buffers until after we've
2147 * dealt with the truncation.
2149 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2151 * Interlock trunc_off. The VOP front-end may continue to
2152 * make adjustments to it while we are blocked.
2154 off_t trunc_off;
2155 off_t aligned_trunc_off;
2156 int blkmask;
2158 trunc_off = ip->sync_trunc_off;
2159 blkmask = hammer_blocksize(trunc_off) - 1;
2160 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2163 * Delete any whole blocks on-media. The front-end has
2164 * already cleaned out any partial block and made it
2165 * pending. The front-end may have updated trunc_off
2166 * while we were blocked so we only use sync_trunc_off.
2168 * This operation can blow out the buffer cache, EWOULDBLOCK
2169 * means we were unable to complete the deletion. The
2170 * deletion will update sync_trunc_off in that case.
2172 error = hammer_ip_delete_range(&cursor, ip,
2173 aligned_trunc_off,
2174 0x7FFFFFFFFFFFFFFFLL, 2);
2175 if (error == EWOULDBLOCK) {
2176 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2177 error = 0;
2178 goto defer_buffer_flush;
2181 if (error)
2182 Debugger("hammer_ip_delete_range errored");
2185 * Clear the truncation flag on the backend after we have
2186 * complete the deletions. Backend data is now good again
2187 * (including new records we are about to sync, below).
2189 * Leave sync_trunc_off intact. As we write additional
2190 * records the backend will update sync_trunc_off. This
2191 * tells the backend whether it can skip the overwrite
2192 * test. This should work properly even when the backend
2193 * writes full blocks where the truncation point straddles
2194 * the block because the comparison is against the base
2195 * offset of the record.
2197 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2198 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2199 } else {
2200 error = 0;
2204 * Now sync related records. These will typically be directory
2205 * entries or delete-on-disk records.
2207 * Not all records will be flushed, but clear XDIRTY anyway. We
2208 * will set it again in the frontend hammer_flush_inode_done()
2209 * if records remain.
2211 if (error == 0) {
2212 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2213 hammer_sync_record_callback, &cursor);
2214 if (tmp_error < 0)
2215 tmp_error = -error;
2216 if (tmp_error)
2217 error = tmp_error;
2219 hammer_cache_node(&ip->cache[1], cursor.node);
2222 * Re-seek for inode update, assuming our cache hasn't been ripped
2223 * out from under us.
2225 if (error == 0) {
2226 tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
2227 if (tmp_node) {
2228 hammer_cursor_downgrade(&cursor);
2229 hammer_lock_sh(&tmp_node->lock);
2230 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2231 hammer_cursor_seek(&cursor, tmp_node, 0);
2232 hammer_unlock(&tmp_node->lock);
2233 hammer_rel_node(tmp_node);
2235 error = 0;
2239 * If we are deleting the inode the frontend had better not have
2240 * any active references on elements making up the inode.
2242 * The call to hammer_ip_delete_clean() cleans up auxillary records
2243 * but not DB or DATA records. Those must have already been deleted
2244 * by the normal truncation mechanic.
2246 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2247 RB_EMPTY(&ip->rec_tree) &&
2248 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2249 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2250 int count1 = 0;
2252 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2253 if (error == 0) {
2254 ip->flags |= HAMMER_INODE_DELETED;
2255 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2256 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2257 KKASSERT(RB_EMPTY(&ip->rec_tree));
2260 * Set delete_tid in both the frontend and backend
2261 * copy of the inode record. The DELETED flag handles
2262 * this, do not set RDIRTY.
2264 ip->ino_leaf.base.delete_tid = trans.tid;
2265 ip->sync_ino_leaf.base.delete_tid = trans.tid;
2266 ip->ino_leaf.delete_ts = trans.time32;
2267 ip->sync_ino_leaf.delete_ts = trans.time32;
2271 * Adjust the inode count in the volume header
2273 if (ip->flags & HAMMER_INODE_ONDISK) {
2274 hammer_modify_volume_field(&trans,
2275 trans.rootvol,
2276 vol0_stat_inodes);
2277 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2278 hammer_modify_volume_done(trans.rootvol);
2280 } else {
2281 Debugger("hammer_ip_delete_clean errored");
2285 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2287 if (error)
2288 Debugger("RB_SCAN errored");
2290 defer_buffer_flush:
2292 * Now update the inode's on-disk inode-data and/or on-disk record.
2293 * DELETED and ONDISK are managed only in ip->flags.
2295 * In the case of a defered buffer flush we still update the on-disk
2296 * inode to satisfy visibility requirements if there happen to be
2297 * directory dependancies.
2299 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2300 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2302 * If deleted and on-disk, don't set any additional flags.
2303 * the delete flag takes care of things.
2305 * Clear flags which may have been set by the frontend.
2307 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2308 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2309 HAMMER_INODE_DELETING);
2310 break;
2311 case HAMMER_INODE_DELETED:
2313 * Take care of the case where a deleted inode was never
2314 * flushed to the disk in the first place.
2316 * Clear flags which may have been set by the frontend.
2318 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2319 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2320 HAMMER_INODE_DELETING);
2321 while (RB_ROOT(&ip->rec_tree)) {
2322 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2323 hammer_ref(&record->lock);
2324 KKASSERT(record->lock.refs == 1);
2325 record->flags |= HAMMER_RECF_DELETED_FE;
2326 record->flags |= HAMMER_RECF_DELETED_BE;
2327 hammer_rel_mem_record(record);
2329 break;
2330 case HAMMER_INODE_ONDISK:
2332 * If already on-disk, do not set any additional flags.
2334 break;
2335 default:
2337 * If not on-disk and not deleted, set DDIRTY to force
2338 * an initial record to be written.
2340 * Also set the create_tid in both the frontend and backend
2341 * copy of the inode record.
2343 ip->ino_leaf.base.create_tid = trans.tid;
2344 ip->ino_leaf.create_ts = trans.time32;
2345 ip->sync_ino_leaf.base.create_tid = trans.tid;
2346 ip->sync_ino_leaf.create_ts = trans.time32;
2347 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2348 break;
2352 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
2353 * is already on-disk the old record is marked as deleted.
2355 * If DELETED is set hammer_update_inode() will delete the existing
2356 * record without writing out a new one.
2358 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2360 if (ip->flags & HAMMER_INODE_DELETED) {
2361 error = hammer_update_inode(&cursor, ip);
2362 } else
2363 if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2364 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2365 error = hammer_update_itimes(&cursor, ip);
2366 } else
2367 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2368 error = hammer_update_inode(&cursor, ip);
2370 if (error)
2371 Debugger("hammer_update_itimes/inode errored");
2372 done:
2374 * Save the TID we used to sync the inode with to make sure we
2375 * do not improperly reuse it.
2377 hammer_done_cursor(&cursor);
2378 hammer_done_transaction(&trans);
2379 return(error);
2383 * This routine is called when the OS is no longer actively referencing
2384 * the inode (but might still be keeping it cached), or when releasing
2385 * the last reference to an inode.
2387 * At this point if the inode's nlinks count is zero we want to destroy
2388 * it, which may mean destroying it on-media too.
2390 void
2391 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2393 struct vnode *vp;
2396 * Set the DELETING flag when the link count drops to 0 and the
2397 * OS no longer has any opens on the inode.
2399 * The backend will clear DELETING (a mod flag) and set DELETED
2400 * (a state flag) when it is actually able to perform the
2401 * operation.
2403 if (ip->ino_data.nlinks == 0 &&
2404 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2405 ip->flags |= HAMMER_INODE_DELETING;
2406 ip->flags |= HAMMER_INODE_TRUNCATED;
2407 ip->trunc_off = 0;
2408 vp = NULL;
2409 if (getvp) {
2410 if (hammer_get_vnode(ip, &vp) != 0)
2411 return;
2415 * Final cleanup
2417 if (ip->vp) {
2418 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2419 vnode_pager_setsize(ip->vp, 0);
2421 if (getvp) {
2422 vput(vp);
2428 * Re-test an inode when a dependancy had gone away to see if we
2429 * can chain flush it.
2431 void
2432 hammer_test_inode(hammer_inode_t ip)
2434 if (ip->flags & HAMMER_INODE_REFLUSH) {
2435 ip->flags &= ~HAMMER_INODE_REFLUSH;
2436 hammer_ref(&ip->lock);
2437 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2438 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2439 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2440 } else {
2441 hammer_flush_inode(ip, 0);
2443 hammer_rel_inode(ip, 0);
2448 * Clear the RECLAIM flag on an inode. This occurs when the inode is
2449 * reassociated with a vp or just before it gets freed.
2451 * Wakeup one thread blocked waiting on reclaims to complete. Note that
2452 * the inode the thread is waiting on behalf of is a different inode then
2453 * the inode we are called with. This is to create a pipeline.
2455 static void
2456 hammer_inode_wakereclaims(hammer_inode_t ip)
2458 struct hammer_reclaim *reclaim;
2459 hammer_mount_t hmp = ip->hmp;
2461 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2462 return;
2464 --hammer_count_reclaiming;
2465 --hmp->inode_reclaims;
2466 ip->flags &= ~HAMMER_INODE_RECLAIM;
2468 if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
2469 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2470 reclaim->okydoky = 1;
2471 wakeup(reclaim);
2476 * Setup our reclaim pipeline. We only let so many detached (and dirty)
2477 * inodes build up before we start blocking.
2479 * When we block we don't care *which* inode has finished reclaiming,
2480 * as lone as one does. This is somewhat heuristical... we also put a
2481 * cap on how long we are willing to wait.
2483 void
2484 hammer_inode_waitreclaims(hammer_mount_t hmp)
2486 struct hammer_reclaim reclaim;
2487 int delay;
2489 if (hmp->inode_reclaims > HAMMER_RECLAIM_WAIT) {
2490 reclaim.okydoky = 0;
2491 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
2492 &reclaim, entry);
2493 } else {
2494 reclaim.okydoky = 1;
2497 if (reclaim.okydoky == 0) {
2498 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2499 HAMMER_RECLAIM_WAIT;
2500 if (delay >= 0)
2501 tsleep(&reclaim, 0, "hmrrcm", delay + 1);
2502 if (reclaim.okydoky == 0)
2503 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);