1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
82 static void get_zero (REAL_VALUE_TYPE
*, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
85 static void get_inf (REAL_VALUE_TYPE
*, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
87 const REAL_VALUE_TYPE
*, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
90 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
92 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
94 const REAL_VALUE_TYPE
*);
95 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
96 const REAL_VALUE_TYPE
*, int);
97 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
98 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
100 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
105 const REAL_VALUE_TYPE
*);
106 static void normalize (REAL_VALUE_TYPE
*);
108 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
109 const REAL_VALUE_TYPE
*, int);
110 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
111 const REAL_VALUE_TYPE
*);
112 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
113 const REAL_VALUE_TYPE
*);
114 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
119 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE
* real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE
*, int);
124 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
126 /* Initialize R with a positive zero. */
129 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
131 memset (r
, 0, sizeof (*r
));
135 /* Initialize R with the canonical quiet NaN. */
138 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
140 memset (r
, 0, sizeof (*r
));
147 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
149 memset (r
, 0, sizeof (*r
));
157 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
159 memset (r
, 0, sizeof (*r
));
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
169 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
172 unsigned long sticky
= 0;
173 unsigned int i
, ofs
= 0;
175 if (n
>= HOST_BITS_PER_LONG
)
177 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
179 n
&= HOST_BITS_PER_LONG
- 1;
184 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
185 for (i
= 0; i
< SIGSZ
; ++i
)
188 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
189 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
190 << (HOST_BITS_PER_LONG
- n
)));
195 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
196 r
->sig
[i
] = a
->sig
[ofs
+ i
];
197 for (; i
< SIGSZ
; ++i
)
204 /* Right-shift the significand of A by N bits; put the result in the
208 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
211 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
213 n
&= HOST_BITS_PER_LONG
- 1;
216 for (i
= 0; i
< SIGSZ
; ++i
)
219 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
220 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
221 << (HOST_BITS_PER_LONG
- n
)));
226 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
227 r
->sig
[i
] = a
->sig
[ofs
+ i
];
228 for (; i
< SIGSZ
; ++i
)
233 /* Left-shift the significand of A by N bits; put the result in the
237 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
240 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
242 n
&= HOST_BITS_PER_LONG
- 1;
245 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
246 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
247 for (; i
< SIGSZ
; ++i
)
248 r
->sig
[SIGSZ
-1-i
] = 0;
251 for (i
= 0; i
< SIGSZ
; ++i
)
254 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
255 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
256 >> (HOST_BITS_PER_LONG
- n
)));
260 /* Likewise, but N is specialized to 1. */
263 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
267 for (i
= SIGSZ
- 1; i
> 0; --i
)
268 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
269 r
->sig
[0] = a
->sig
[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
276 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
277 const REAL_VALUE_TYPE
*b
)
282 for (i
= 0; i
< SIGSZ
; ++i
)
284 unsigned long ai
= a
->sig
[i
];
285 unsigned long ri
= ai
+ b
->sig
[i
];
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
306 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
307 const REAL_VALUE_TYPE
*b
, int carry
)
311 for (i
= 0; i
< SIGSZ
; ++i
)
313 unsigned long ai
= a
->sig
[i
];
314 unsigned long ri
= ai
- b
->sig
[i
];
330 /* Negate the significand A, placing the result in R. */
333 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
338 for (i
= 0; i
< SIGSZ
; ++i
)
340 unsigned long ri
, ai
= a
->sig
[i
];
359 /* Compare significands. Return tri-state vs zero. */
362 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
366 for (i
= SIGSZ
- 1; i
>= 0; --i
)
368 unsigned long ai
= a
->sig
[i
];
369 unsigned long bi
= b
->sig
[i
];
380 /* Return true if A is nonzero. */
383 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
387 for (i
= SIGSZ
- 1; i
>= 0; --i
)
394 /* Set bit N of the significand of R. */
397 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
399 r
->sig
[n
/ HOST_BITS_PER_LONG
]
400 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
403 /* Clear bit N of the significand of R. */
406 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
408 r
->sig
[n
/ HOST_BITS_PER_LONG
]
409 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
412 /* Test bit N of the significand of R. */
415 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
424 /* Clear bits 0..N-1 of the significand of R. */
427 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
429 int i
, w
= n
/ HOST_BITS_PER_LONG
;
431 for (i
= 0; i
< w
; ++i
)
434 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
441 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
442 const REAL_VALUE_TYPE
*b
)
445 int i
, bit
= SIGNIFICAND_BITS
- 1;
446 unsigned long msb
, inexact
;
449 memset (r
->sig
, 0, sizeof (r
->sig
));
455 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
456 lshift_significand_1 (&u
, &u
);
458 if (msb
|| cmp_significands (&u
, b
) >= 0)
460 sub_significands (&u
, &u
, b
, 0);
461 set_significand_bit (r
, bit
);
466 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
478 normalize (REAL_VALUE_TYPE
*r
)
483 /* Find the first word that is nonzero. */
484 for (i
= SIGSZ
- 1; i
>= 0; i
--)
486 shift
+= HOST_BITS_PER_LONG
;
490 /* Zero significand flushes to zero. */
498 /* Find the first bit that is nonzero. */
500 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
506 exp
= REAL_EXP (r
) - shift
;
508 get_inf (r
, r
->sign
);
509 else if (exp
< -MAX_EXP
)
510 get_zero (r
, r
->sign
);
513 SET_REAL_EXP (r
, exp
);
514 lshift_significand (r
, r
, shift
);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
523 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
524 const REAL_VALUE_TYPE
*b
, int subtract_p
)
528 bool inexact
= false;
530 /* Determine if we need to add or subtract. */
532 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
534 switch (CLASS2 (a
->cl
, b
->cl
))
536 case CLASS2 (rvc_zero
, rvc_zero
):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r
, sign
& !subtract_p
);
541 case CLASS2 (rvc_zero
, rvc_normal
):
542 case CLASS2 (rvc_zero
, rvc_inf
):
543 case CLASS2 (rvc_zero
, rvc_nan
):
545 case CLASS2 (rvc_normal
, rvc_nan
):
546 case CLASS2 (rvc_inf
, rvc_nan
):
547 case CLASS2 (rvc_nan
, rvc_nan
):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal
, rvc_inf
):
552 r
->sign
= sign
^ subtract_p
;
555 case CLASS2 (rvc_normal
, rvc_zero
):
556 case CLASS2 (rvc_inf
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_zero
):
559 case CLASS2 (rvc_nan
, rvc_normal
):
560 case CLASS2 (rvc_nan
, rvc_inf
):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf
, rvc_normal
):
567 case CLASS2 (rvc_inf
, rvc_inf
):
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r
, 0);
572 /* Inf + Inf = Inf. */
576 case CLASS2 (rvc_normal
, rvc_normal
):
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
587 const REAL_VALUE_TYPE
*t
;
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp
>= SIGNIFICAND_BITS
)
607 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
613 if (sub_significands (r
, a
, b
, inexact
))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
620 neg_significand (r
, r
);
625 if (add_significands (r
, a
, b
))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
630 inexact
|= sticky_rshift_significand (r
, r
, 1);
631 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
642 SET_REAL_EXP (r
, exp
);
643 /* Zero out the remaining fields. */
647 /* Re-normalize the result. */
650 /* Special case: if the subtraction results in zero, the result
652 if (r
->cl
== rvc_zero
)
655 r
->sig
[0] |= inexact
;
660 /* Calculate R = A * B. Return true if the result may be inexact. */
663 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
664 const REAL_VALUE_TYPE
*b
)
666 REAL_VALUE_TYPE u
, t
, *rr
;
667 unsigned int i
, j
, k
;
668 int sign
= a
->sign
^ b
->sign
;
669 bool inexact
= false;
671 switch (CLASS2 (a
->cl
, b
->cl
))
673 case CLASS2 (rvc_zero
, rvc_zero
):
674 case CLASS2 (rvc_zero
, rvc_normal
):
675 case CLASS2 (rvc_normal
, rvc_zero
):
676 /* +-0 * ANY = 0 with appropriate sign. */
680 case CLASS2 (rvc_zero
, rvc_nan
):
681 case CLASS2 (rvc_normal
, rvc_nan
):
682 case CLASS2 (rvc_inf
, rvc_nan
):
683 case CLASS2 (rvc_nan
, rvc_nan
):
684 /* ANY * NaN = NaN. */
689 case CLASS2 (rvc_nan
, rvc_zero
):
690 case CLASS2 (rvc_nan
, rvc_normal
):
691 case CLASS2 (rvc_nan
, rvc_inf
):
692 /* NaN * ANY = NaN. */
697 case CLASS2 (rvc_zero
, rvc_inf
):
698 case CLASS2 (rvc_inf
, rvc_zero
):
700 get_canonical_qnan (r
, sign
);
703 case CLASS2 (rvc_inf
, rvc_inf
):
704 case CLASS2 (rvc_normal
, rvc_inf
):
705 case CLASS2 (rvc_inf
, rvc_normal
):
706 /* Inf * Inf = Inf, R * Inf = Inf */
710 case CLASS2 (rvc_normal
, rvc_normal
):
717 if (r
== a
|| r
== b
)
723 /* Collect all the partial products. Since we don't have sure access
724 to a widening multiply, we split each long into two half-words.
726 Consider the long-hand form of a four half-word multiplication:
736 We construct partial products of the widened half-word products
737 that are known to not overlap, e.g. DF+DH. Each such partial
738 product is given its proper exponent, which allows us to sum them
739 and obtain the finished product. */
741 for (i
= 0; i
< SIGSZ
* 2; ++i
)
743 unsigned long ai
= a
->sig
[i
/ 2];
745 ai
>>= HOST_BITS_PER_LONG
/ 2;
747 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
752 for (j
= 0; j
< 2; ++j
)
754 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
755 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
764 /* Would underflow to zero, which we shouldn't bother adding. */
769 memset (&u
, 0, sizeof (u
));
771 SET_REAL_EXP (&u
, exp
);
773 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
775 unsigned long bi
= b
->sig
[k
/ 2];
777 bi
>>= HOST_BITS_PER_LONG
/ 2;
779 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
781 u
.sig
[k
/ 2] = ai
* bi
;
785 inexact
|= do_add (rr
, rr
, &u
, 0);
796 /* Calculate R = A / B. Return true if the result may be inexact. */
799 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
800 const REAL_VALUE_TYPE
*b
)
802 int exp
, sign
= a
->sign
^ b
->sign
;
803 REAL_VALUE_TYPE t
, *rr
;
806 switch (CLASS2 (a
->cl
, b
->cl
))
808 case CLASS2 (rvc_zero
, rvc_zero
):
810 case CLASS2 (rvc_inf
, rvc_inf
):
811 /* Inf / Inf = NaN. */
812 get_canonical_qnan (r
, sign
);
815 case CLASS2 (rvc_zero
, rvc_normal
):
816 case CLASS2 (rvc_zero
, rvc_inf
):
818 case CLASS2 (rvc_normal
, rvc_inf
):
823 case CLASS2 (rvc_normal
, rvc_zero
):
825 case CLASS2 (rvc_inf
, rvc_zero
):
830 case CLASS2 (rvc_zero
, rvc_nan
):
831 case CLASS2 (rvc_normal
, rvc_nan
):
832 case CLASS2 (rvc_inf
, rvc_nan
):
833 case CLASS2 (rvc_nan
, rvc_nan
):
834 /* ANY / NaN = NaN. */
839 case CLASS2 (rvc_nan
, rvc_zero
):
840 case CLASS2 (rvc_nan
, rvc_normal
):
841 case CLASS2 (rvc_nan
, rvc_inf
):
842 /* NaN / ANY = NaN. */
847 case CLASS2 (rvc_inf
, rvc_normal
):
852 case CLASS2 (rvc_normal
, rvc_normal
):
859 if (r
== a
|| r
== b
)
864 /* Make sure all fields in the result are initialized. */
869 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
880 SET_REAL_EXP (rr
, exp
);
882 inexact
= div_significands (rr
, a
, b
);
884 /* Re-normalize the result. */
886 rr
->sig
[0] |= inexact
;
894 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
895 one of the two operands is a NaN. */
898 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
903 switch (CLASS2 (a
->cl
, b
->cl
))
905 case CLASS2 (rvc_zero
, rvc_zero
):
906 /* Sign of zero doesn't matter for compares. */
909 case CLASS2 (rvc_inf
, rvc_zero
):
910 case CLASS2 (rvc_inf
, rvc_normal
):
911 case CLASS2 (rvc_normal
, rvc_zero
):
912 return (a
->sign
? -1 : 1);
914 case CLASS2 (rvc_inf
, rvc_inf
):
915 return -a
->sign
- -b
->sign
;
917 case CLASS2 (rvc_zero
, rvc_normal
):
918 case CLASS2 (rvc_zero
, rvc_inf
):
919 case CLASS2 (rvc_normal
, rvc_inf
):
920 return (b
->sign
? 1 : -1);
922 case CLASS2 (rvc_zero
, rvc_nan
):
923 case CLASS2 (rvc_normal
, rvc_nan
):
924 case CLASS2 (rvc_inf
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_nan
):
926 case CLASS2 (rvc_nan
, rvc_zero
):
927 case CLASS2 (rvc_nan
, rvc_normal
):
928 case CLASS2 (rvc_nan
, rvc_inf
):
931 case CLASS2 (rvc_normal
, rvc_normal
):
938 if (a
->sign
!= b
->sign
)
939 return -a
->sign
- -b
->sign
;
941 if (REAL_EXP (a
) > REAL_EXP (b
))
943 else if (REAL_EXP (a
) < REAL_EXP (b
))
946 ret
= cmp_significands (a
, b
);
948 return (a
->sign
? -ret
: ret
);
951 /* Return A truncated to an integral value toward zero. */
954 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
966 if (REAL_EXP (r
) <= 0)
967 get_zero (r
, r
->sign
);
968 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
969 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
977 /* Perform the binary or unary operation described by CODE.
978 For a unary operation, leave OP1 NULL. This function returns
979 true if the result may be inexact due to loss of precision. */
982 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
983 const REAL_VALUE_TYPE
*op1
)
985 enum tree_code code
= icode
;
990 return do_add (r
, op0
, op1
, 0);
993 return do_add (r
, op0
, op1
, 1);
996 return do_multiply (r
, op0
, op1
);
999 return do_divide (r
, op0
, op1
);
1002 if (op1
->cl
== rvc_nan
)
1004 else if (do_compare (op0
, op1
, -1) < 0)
1011 if (op1
->cl
== rvc_nan
)
1013 else if (do_compare (op0
, op1
, 1) < 0)
1029 case FIX_TRUNC_EXPR
:
1030 do_fix_trunc (r
, op0
);
1039 /* Legacy. Similar, but return the result directly. */
1042 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1043 const REAL_VALUE_TYPE
*op1
)
1046 real_arithmetic (&r
, icode
, op0
, op1
);
1051 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1052 const REAL_VALUE_TYPE
*op1
)
1054 enum tree_code code
= icode
;
1059 return do_compare (op0
, op1
, 1) < 0;
1061 return do_compare (op0
, op1
, 1) <= 0;
1063 return do_compare (op0
, op1
, -1) > 0;
1065 return do_compare (op0
, op1
, -1) >= 0;
1067 return do_compare (op0
, op1
, -1) == 0;
1069 return do_compare (op0
, op1
, -1) != 0;
1070 case UNORDERED_EXPR
:
1071 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1073 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1075 return do_compare (op0
, op1
, -1) < 0;
1077 return do_compare (op0
, op1
, -1) <= 0;
1079 return do_compare (op0
, op1
, 1) > 0;
1081 return do_compare (op0
, op1
, 1) >= 0;
1083 return do_compare (op0
, op1
, 0) == 0;
1085 return do_compare (op0
, op1
, 0) != 0;
1092 /* Return floor log2(R). */
1095 real_exponent (const REAL_VALUE_TYPE
*r
)
1103 return (unsigned int)-1 >> 1;
1105 return REAL_EXP (r
);
1111 /* R = OP0 * 2**EXP. */
1114 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1125 exp
+= REAL_EXP (op0
);
1127 get_inf (r
, r
->sign
);
1128 else if (exp
< -MAX_EXP
)
1129 get_zero (r
, r
->sign
);
1131 SET_REAL_EXP (r
, exp
);
1139 /* Determine whether a floating-point value X is infinite. */
1142 real_isinf (const REAL_VALUE_TYPE
*r
)
1144 return (r
->cl
== rvc_inf
);
1147 /* Determine whether a floating-point value X is a NaN. */
1150 real_isnan (const REAL_VALUE_TYPE
*r
)
1152 return (r
->cl
== rvc_nan
);
1155 /* Determine whether a floating-point value X is negative. */
1158 real_isneg (const REAL_VALUE_TYPE
*r
)
1163 /* Determine whether a floating-point value X is minus zero. */
1166 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1168 return r
->sign
&& r
->cl
== rvc_zero
;
1171 /* Compare two floating-point objects for bitwise identity. */
1174 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1180 if (a
->sign
!= b
->sign
)
1190 if (REAL_EXP (a
) != REAL_EXP (b
))
1195 if (a
->signalling
!= b
->signalling
)
1197 /* The significand is ignored for canonical NaNs. */
1198 if (a
->canonical
|| b
->canonical
)
1199 return a
->canonical
== b
->canonical
;
1206 for (i
= 0; i
< SIGSZ
; ++i
)
1207 if (a
->sig
[i
] != b
->sig
[i
])
1213 /* Try to change R into its exact multiplicative inverse in machine
1214 mode MODE. Return true if successful. */
1217 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1219 const REAL_VALUE_TYPE
*one
= real_digit (1);
1223 if (r
->cl
!= rvc_normal
)
1226 /* Check for a power of two: all significand bits zero except the MSB. */
1227 for (i
= 0; i
< SIGSZ
-1; ++i
)
1230 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1233 /* Find the inverse and truncate to the required mode. */
1234 do_divide (&u
, one
, r
);
1235 real_convert (&u
, mode
, &u
);
1237 /* The rounding may have overflowed. */
1238 if (u
.cl
!= rvc_normal
)
1240 for (i
= 0; i
< SIGSZ
-1; ++i
)
1243 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1250 /* Render R as an integer. */
1253 real_to_integer (const REAL_VALUE_TYPE
*r
)
1255 unsigned HOST_WIDE_INT i
;
1266 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1272 if (REAL_EXP (r
) <= 0)
1274 /* Only force overflow for unsigned overflow. Signed overflow is
1275 undefined, so it doesn't matter what we return, and some callers
1276 expect to be able to use this routine for both signed and
1277 unsigned conversions. */
1278 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1281 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1282 i
= r
->sig
[SIGSZ
-1];
1285 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1286 i
= r
->sig
[SIGSZ
-1];
1287 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1288 i
|= r
->sig
[SIGSZ
-2];
1291 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1302 /* Likewise, but to an integer pair, HI+LOW. */
1305 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1306 const REAL_VALUE_TYPE
*r
)
1309 HOST_WIDE_INT low
, high
;
1322 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1336 /* Only force overflow for unsigned overflow. Signed overflow is
1337 undefined, so it doesn't matter what we return, and some callers
1338 expect to be able to use this routine for both signed and
1339 unsigned conversions. */
1340 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1343 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1344 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1346 high
= t
.sig
[SIGSZ
-1];
1347 low
= t
.sig
[SIGSZ
-2];
1351 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1352 high
= t
.sig
[SIGSZ
-1];
1353 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1354 high
|= t
.sig
[SIGSZ
-2];
1356 low
= t
.sig
[SIGSZ
-3];
1357 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1358 low
|= t
.sig
[SIGSZ
-4];
1366 low
= -low
, high
= ~high
;
1378 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1379 of NUM / DEN. Return the quotient and place the remainder in NUM.
1380 It is expected that NUM / DEN are close enough that the quotient is
1383 static unsigned long
1384 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1386 unsigned long q
, msb
;
1387 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1396 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1398 lshift_significand_1 (num
, num
);
1400 if (msb
|| cmp_significands (num
, den
) >= 0)
1402 sub_significands (num
, num
, den
, 0);
1406 while (--expn
>= expd
);
1408 SET_REAL_EXP (num
, expd
);
1414 /* Render R as a decimal floating point constant. Emit DIGITS significant
1415 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1416 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1419 #define M_LOG10_2 0.30102999566398119521
1422 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1423 size_t digits
, int crop_trailing_zeros
)
1425 const REAL_VALUE_TYPE
*one
, *ten
;
1426 REAL_VALUE_TYPE r
, pten
, u
, v
;
1427 int dec_exp
, cmp_one
, digit
;
1429 char *p
, *first
, *last
;
1436 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1441 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1444 /* ??? Print the significand as well, if not canonical? */
1445 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1451 /* Bound the number of digits printed by the size of the representation. */
1452 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1453 if (digits
== 0 || digits
> max_digits
)
1454 digits
= max_digits
;
1456 /* Estimate the decimal exponent, and compute the length of the string it
1457 will print as. Be conservative and add one to account for possible
1458 overflow or rounding error. */
1459 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1460 for (max_digits
= 1; dec_exp
; max_digits
++)
1463 /* Bound the number of digits printed by the size of the output buffer. */
1464 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1465 gcc_assert (max_digits
<= buf_size
);
1466 if (digits
> max_digits
)
1467 digits
= max_digits
;
1469 one
= real_digit (1);
1470 ten
= ten_to_ptwo (0);
1478 cmp_one
= do_compare (&r
, one
, 0);
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1487 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m
= floor_log2 (max_digits
);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1500 do_divide (&t
, &u
, ten_to_ptwo (m
));
1501 do_fix_trunc (&v
, &t
);
1502 if (cmp_significands (&v
, &t
) == 0)
1510 /* Revert the scaling to integer that we performed earlier. */
1511 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1512 - (SIGNIFICAND_BITS
- 1));
1515 /* Find power of 10. Do this by dividing out 10**2**M when
1516 this is larger than the current remainder. Fill PTEN with
1517 the power of 10 that we compute. */
1518 if (REAL_EXP (&r
) > 0)
1520 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1523 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1524 if (do_compare (&u
, ptentwo
, 0) >= 0)
1526 do_divide (&u
, &u
, ptentwo
);
1527 do_multiply (&pten
, &pten
, ptentwo
);
1534 /* We managed to divide off enough tens in the above reduction
1535 loop that we've now got a negative exponent. Fall into the
1536 less-than-one code to compute the proper value for PTEN. */
1543 /* Number is less than one. Pad significand with leading
1549 /* Stop if we'd shift bits off the bottom. */
1553 do_multiply (&u
, &v
, ten
);
1555 /* Stop if we're now >= 1. */
1556 if (REAL_EXP (&u
) > 0)
1564 /* Find power of 10. Do this by multiplying in P=10**2**M when
1565 the current remainder is smaller than 1/P. Fill PTEN with the
1566 power of 10 that we compute. */
1567 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1570 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1571 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1573 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1575 do_multiply (&v
, &v
, ptentwo
);
1576 do_multiply (&pten
, &pten
, ptentwo
);
1582 /* Invert the positive power of 10 that we've collected so far. */
1583 do_divide (&pten
, one
, &pten
);
1591 /* At this point, PTEN should contain the nearest power of 10 smaller
1592 than R, such that this division produces the first digit.
1594 Using a divide-step primitive that returns the complete integral
1595 remainder avoids the rounding error that would be produced if
1596 we were to use do_divide here and then simply multiply by 10 for
1597 each subsequent digit. */
1599 digit
= rtd_divmod (&r
, &pten
);
1601 /* Be prepared for error in that division via underflow ... */
1602 if (digit
== 0 && cmp_significand_0 (&r
))
1604 /* Multiply by 10 and try again. */
1605 do_multiply (&r
, &r
, ten
);
1606 digit
= rtd_divmod (&r
, &pten
);
1608 gcc_assert (digit
!= 0);
1611 /* ... or overflow. */
1621 gcc_assert (digit
<= 10);
1625 /* Generate subsequent digits. */
1626 while (--digits
> 0)
1628 do_multiply (&r
, &r
, ten
);
1629 digit
= rtd_divmod (&r
, &pten
);
1634 /* Generate one more digit with which to do rounding. */
1635 do_multiply (&r
, &r
, ten
);
1636 digit
= rtd_divmod (&r
, &pten
);
1638 /* Round the result. */
1641 /* Round to nearest. If R is nonzero there are additional
1642 nonzero digits to be extracted. */
1643 if (cmp_significand_0 (&r
))
1645 /* Round to even. */
1646 else if ((p
[-1] - '0') & 1)
1663 /* Carry out of the first digit. This means we had all 9's and
1664 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1672 /* Insert the decimal point. */
1673 first
[0] = first
[1];
1676 /* If requested, drop trailing zeros. Never crop past "1.0". */
1677 if (crop_trailing_zeros
)
1678 while (last
> first
+ 3 && last
[-1] == '0')
1681 /* Append the exponent. */
1682 sprintf (last
, "e%+d", dec_exp
);
1685 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1686 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1687 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1688 strip trailing zeros. */
1691 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1692 size_t digits
, int crop_trailing_zeros
)
1694 int i
, j
, exp
= REAL_EXP (r
);
1707 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1710 /* ??? Print the significand as well, if not canonical? */
1711 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1718 digits
= SIGNIFICAND_BITS
/ 4;
1720 /* Bound the number of digits printed by the size of the output buffer. */
1722 sprintf (exp_buf
, "p%+d", exp
);
1723 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1724 gcc_assert (max_digits
<= buf_size
);
1725 if (digits
> max_digits
)
1726 digits
= max_digits
;
1737 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1738 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1740 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1746 if (crop_trailing_zeros
)
1747 while (p
> first
+ 1 && p
[-1] == '0')
1750 sprintf (p
, "p%+d", exp
);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1757 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1769 else if (*str
== '+')
1772 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos
= SIGNIFICAND_BITS
- 4, d
;
1783 d
= hex_value (*str
);
1788 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1789 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1793 /* Ensure correct rounding by setting last bit if there is
1794 a subsequent nonzero digit. */
1802 if (pos
== SIGNIFICAND_BITS
- 4)
1809 d
= hex_value (*str
);
1814 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1815 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1819 /* Ensure correct rounding by setting last bit if there is
1820 a subsequent nonzero digit. */
1825 if (*str
== 'p' || *str
== 'P')
1827 bool exp_neg
= false;
1835 else if (*str
== '+')
1839 while (ISDIGIT (*str
))
1845 /* Overflowed the exponent. */
1860 SET_REAL_EXP (r
, exp
);
1866 /* Decimal floating point. */
1867 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1872 while (ISDIGIT (*str
))
1875 do_multiply (r
, r
, ten
);
1877 do_add (r
, r
, real_digit (d
), 0);
1882 if (r
->cl
== rvc_zero
)
1887 while (ISDIGIT (*str
))
1890 do_multiply (r
, r
, ten
);
1892 do_add (r
, r
, real_digit (d
), 0);
1897 if (*str
== 'e' || *str
== 'E')
1899 bool exp_neg
= false;
1907 else if (*str
== '+')
1911 while (ISDIGIT (*str
))
1917 /* Overflowed the exponent. */
1931 times_pten (r
, exp
);
1946 /* Legacy. Similar, but return the result directly. */
1949 real_from_string2 (const char *s
, enum machine_mode mode
)
1953 real_from_string (&r
, s
);
1954 if (mode
!= VOIDmode
)
1955 real_convert (&r
, mode
, &r
);
1960 /* Initialize R from the integer pair HIGH+LOW. */
1963 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
1964 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
1967 if (low
== 0 && high
== 0)
1971 memset (r
, 0, sizeof (*r
));
1973 r
->sign
= high
< 0 && !unsigned_p
;
1974 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
1985 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
1987 r
->sig
[SIGSZ
-1] = high
;
1988 r
->sig
[SIGSZ
-2] = low
;
1992 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
1993 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1994 r
->sig
[SIGSZ
-2] = high
;
1995 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1996 r
->sig
[SIGSZ
-4] = low
;
2002 if (mode
!= VOIDmode
)
2003 real_convert (r
, mode
, r
);
2006 /* Returns 10**2**N. */
2008 static const REAL_VALUE_TYPE
*
2011 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2013 gcc_assert (n
>= 0);
2014 gcc_assert (n
< EXP_BITS
);
2016 if (tens
[n
].cl
== rvc_zero
)
2018 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2020 HOST_WIDE_INT t
= 10;
2023 for (i
= 0; i
< n
; ++i
)
2026 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2030 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2031 do_multiply (&tens
[n
], t
, t
);
2038 /* Returns 10**(-2**N). */
2040 static const REAL_VALUE_TYPE
*
2041 ten_to_mptwo (int n
)
2043 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2045 gcc_assert (n
>= 0);
2046 gcc_assert (n
< EXP_BITS
);
2048 if (tens
[n
].cl
== rvc_zero
)
2049 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2056 static const REAL_VALUE_TYPE
*
2059 static REAL_VALUE_TYPE num
[10];
2061 gcc_assert (n
>= 0);
2062 gcc_assert (n
<= 9);
2064 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2065 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2070 /* Multiply R by 10**EXP. */
2073 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2075 REAL_VALUE_TYPE pten
, *rr
;
2076 bool negative
= (exp
< 0);
2082 pten
= *real_digit (1);
2088 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2090 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2093 do_divide (r
, r
, &pten
);
2096 /* Fills R with +Inf. */
2099 real_inf (REAL_VALUE_TYPE
*r
)
2104 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2105 we force a QNaN, else we force an SNaN. The string, if not empty,
2106 is parsed as a number and placed in the significand. Return true
2107 if the string was successfully parsed. */
2110 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2111 enum machine_mode mode
)
2113 const struct real_format
*fmt
;
2115 fmt
= REAL_MODE_FORMAT (mode
);
2121 get_canonical_qnan (r
, 0);
2123 get_canonical_snan (r
, 0);
2129 memset (r
, 0, sizeof (*r
));
2132 /* Parse akin to strtol into the significand of R. */
2134 while (ISSPACE (*str
))
2138 else if (*str
== '+')
2148 while ((d
= hex_value (*str
)) < base
)
2155 lshift_significand (r
, r
, 3);
2158 lshift_significand (r
, r
, 4);
2161 lshift_significand_1 (&u
, r
);
2162 lshift_significand (r
, r
, 3);
2163 add_significands (r
, r
, &u
);
2171 add_significands (r
, r
, &u
);
2176 /* Must have consumed the entire string for success. */
2180 /* Shift the significand into place such that the bits
2181 are in the most significant bits for the format. */
2182 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2184 /* Our MSB is always unset for NaNs. */
2185 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2187 /* Force quiet or signalling NaN. */
2188 r
->signalling
= !quiet
;
2194 /* Fills R with the largest finite value representable in mode MODE.
2195 If SIGN is nonzero, R is set to the most negative finite value. */
2198 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2200 const struct real_format
*fmt
;
2203 fmt
= REAL_MODE_FORMAT (mode
);
2210 SET_REAL_EXP (r
, fmt
->emax
* fmt
->log2_b
);
2212 np2
= SIGNIFICAND_BITS
- fmt
->p
* fmt
->log2_b
;
2213 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2214 clear_significand_below (r
, np2
);
2217 /* Fills R with 2**N. */
2220 real_2expN (REAL_VALUE_TYPE
*r
, int n
)
2222 memset (r
, 0, sizeof (*r
));
2227 else if (n
< -MAX_EXP
)
2232 SET_REAL_EXP (r
, n
);
2233 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2239 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2242 unsigned long sticky
;
2246 p2
= fmt
->p
* fmt
->log2_b
;
2247 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2248 emax2
= fmt
->emax
* fmt
->log2_b
;
2250 np2
= SIGNIFICAND_BITS
- p2
;
2254 get_zero (r
, r
->sign
);
2256 if (!fmt
->has_signed_zero
)
2261 get_inf (r
, r
->sign
);
2266 clear_significand_below (r
, np2
);
2276 /* If we're not base2, normalize the exponent to a multiple of
2278 if (fmt
->log2_b
!= 1)
2280 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2283 shift
= fmt
->log2_b
- shift
;
2284 r
->sig
[0] |= sticky_rshift_significand (r
, r
, shift
);
2285 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2289 /* Check the range of the exponent. If we're out of range,
2290 either underflow or overflow. */
2291 if (REAL_EXP (r
) > emax2
)
2293 else if (REAL_EXP (r
) <= emin2m1
)
2297 if (!fmt
->has_denorm
)
2299 /* Don't underflow completely until we've had a chance to round. */
2300 if (REAL_EXP (r
) < emin2m1
)
2305 diff
= emin2m1
- REAL_EXP (r
) + 1;
2309 /* De-normalize the significand. */
2310 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2311 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2315 /* There are P2 true significand bits, followed by one guard bit,
2316 followed by one sticky bit, followed by stuff. Fold nonzero
2317 stuff into the sticky bit. */
2320 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2321 sticky
|= r
->sig
[i
];
2323 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2325 guard
= test_significand_bit (r
, np2
- 1);
2326 lsb
= test_significand_bit (r
, np2
);
2328 /* Round to even. */
2329 if (guard
&& (sticky
|| lsb
))
2333 set_significand_bit (&u
, np2
);
2335 if (add_significands (r
, r
, &u
))
2337 /* Overflow. Means the significand had been all ones, and
2338 is now all zeros. Need to increase the exponent, and
2339 possibly re-normalize it. */
2340 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2341 if (REAL_EXP (r
) > emax2
)
2343 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2345 if (fmt
->log2_b
!= 1)
2347 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2350 shift
= fmt
->log2_b
- shift
;
2351 rshift_significand (r
, r
, shift
);
2352 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2353 if (REAL_EXP (r
) > emax2
)
2360 /* Catch underflow that we deferred until after rounding. */
2361 if (REAL_EXP (r
) <= emin2m1
)
2364 /* Clear out trailing garbage. */
2365 clear_significand_below (r
, np2
);
2368 /* Extend or truncate to a new mode. */
2371 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2372 const REAL_VALUE_TYPE
*a
)
2374 const struct real_format
*fmt
;
2376 fmt
= REAL_MODE_FORMAT (mode
);
2380 round_for_format (fmt
, r
);
2382 /* round_for_format de-normalizes denormals. Undo just that part. */
2383 if (r
->cl
== rvc_normal
)
2387 /* Legacy. Likewise, except return the struct directly. */
2390 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2393 real_convert (&r
, mode
, &a
);
2397 /* Return true if truncating to MODE is exact. */
2400 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2402 const struct real_format
*fmt
;
2406 fmt
= REAL_MODE_FORMAT (mode
);
2409 /* Don't allow conversion to denormals. */
2410 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2411 if (REAL_EXP (a
) <= emin2m1
)
2414 /* After conversion to the new mode, the value must be identical. */
2415 real_convert (&t
, mode
, a
);
2416 return real_identical (&t
, a
);
2419 /* Write R to the given target format. Place the words of the result
2420 in target word order in BUF. There are always 32 bits in each
2421 long, no matter the size of the host long.
2423 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2426 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2427 const struct real_format
*fmt
)
2433 round_for_format (fmt
, &r
);
2437 (*fmt
->encode
) (fmt
, buf
, &r
);
2442 /* Similar, but look up the format from MODE. */
2445 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2447 const struct real_format
*fmt
;
2449 fmt
= REAL_MODE_FORMAT (mode
);
2452 return real_to_target_fmt (buf
, r
, fmt
);
2455 /* Read R from the given target format. Read the words of the result
2456 in target word order in BUF. There are always 32 bits in each
2457 long, no matter the size of the host long. */
2460 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2461 const struct real_format
*fmt
)
2463 (*fmt
->decode
) (fmt
, r
, buf
);
2466 /* Similar, but look up the format from MODE. */
2469 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2471 const struct real_format
*fmt
;
2473 fmt
= REAL_MODE_FORMAT (mode
);
2476 (*fmt
->decode
) (fmt
, r
, buf
);
2479 /* Return the number of bits in the significand for MODE. */
2480 /* ??? Legacy. Should get access to real_format directly. */
2483 significand_size (enum machine_mode mode
)
2485 const struct real_format
*fmt
;
2487 fmt
= REAL_MODE_FORMAT (mode
);
2491 return fmt
->p
* fmt
->log2_b
;
2494 /* Return a hash value for the given real value. */
2495 /* ??? The "unsigned int" return value is intended to be hashval_t,
2496 but I didn't want to pull hashtab.h into real.h. */
2499 real_hash (const REAL_VALUE_TYPE
*r
)
2504 h
= r
->cl
| (r
->sign
<< 2);
2512 h
|= REAL_EXP (r
) << 3;
2517 h
^= (unsigned int)-1;
2526 if (sizeof(unsigned long) > sizeof(unsigned int))
2527 for (i
= 0; i
< SIGSZ
; ++i
)
2529 unsigned long s
= r
->sig
[i
];
2530 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2533 for (i
= 0; i
< SIGSZ
; ++i
)
2539 /* IEEE single-precision format. */
2541 static void encode_ieee_single (const struct real_format
*fmt
,
2542 long *, const REAL_VALUE_TYPE
*);
2543 static void decode_ieee_single (const struct real_format
*,
2544 REAL_VALUE_TYPE
*, const long *);
2547 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2548 const REAL_VALUE_TYPE
*r
)
2550 unsigned long image
, sig
, exp
;
2551 unsigned long sign
= r
->sign
;
2552 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2555 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2566 image
|= 0x7fffffff;
2574 if (r
->signalling
== fmt
->qnan_msb_set
)
2578 /* We overload qnan_msb_set here: it's only clear for
2579 mips_ieee_single, which wants all mantissa bits but the
2580 quiet/signalling one set in canonical NaNs (at least
2582 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2583 sig
|= (1 << 22) - 1;
2591 image
|= 0x7fffffff;
2595 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2596 whereas the intermediate representation is 0.F x 2**exp.
2597 Which means we're off by one. */
2601 exp
= REAL_EXP (r
) + 127 - 1;
2614 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2617 unsigned long image
= buf
[0] & 0xffffffff;
2618 bool sign
= (image
>> 31) & 1;
2619 int exp
= (image
>> 23) & 0xff;
2621 memset (r
, 0, sizeof (*r
));
2622 image
<<= HOST_BITS_PER_LONG
- 24;
2627 if (image
&& fmt
->has_denorm
)
2631 SET_REAL_EXP (r
, -126);
2632 r
->sig
[SIGSZ
-1] = image
<< 1;
2635 else if (fmt
->has_signed_zero
)
2638 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2644 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2645 ^ fmt
->qnan_msb_set
);
2646 r
->sig
[SIGSZ
-1] = image
;
2658 SET_REAL_EXP (r
, exp
- 127 + 1);
2659 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2663 const struct real_format ieee_single_format
=
2682 const struct real_format mips_single_format
=
2702 /* IEEE double-precision format. */
2704 static void encode_ieee_double (const struct real_format
*fmt
,
2705 long *, const REAL_VALUE_TYPE
*);
2706 static void decode_ieee_double (const struct real_format
*,
2707 REAL_VALUE_TYPE
*, const long *);
2710 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2711 const REAL_VALUE_TYPE
*r
)
2713 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2714 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2716 image_hi
= r
->sign
<< 31;
2719 if (HOST_BITS_PER_LONG
== 64)
2721 sig_hi
= r
->sig
[SIGSZ
-1];
2722 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2723 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2727 sig_hi
= r
->sig
[SIGSZ
-1];
2728 sig_lo
= r
->sig
[SIGSZ
-2];
2729 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2730 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2740 image_hi
|= 2047 << 20;
2743 image_hi
|= 0x7fffffff;
2744 image_lo
= 0xffffffff;
2752 sig_hi
= sig_lo
= 0;
2753 if (r
->signalling
== fmt
->qnan_msb_set
)
2754 sig_hi
&= ~(1 << 19);
2757 /* We overload qnan_msb_set here: it's only clear for
2758 mips_ieee_single, which wants all mantissa bits but the
2759 quiet/signalling one set in canonical NaNs (at least
2761 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2763 sig_hi
|= (1 << 19) - 1;
2764 sig_lo
= 0xffffffff;
2766 else if (sig_hi
== 0 && sig_lo
== 0)
2769 image_hi
|= 2047 << 20;
2775 image_hi
|= 0x7fffffff;
2776 image_lo
= 0xffffffff;
2781 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2782 whereas the intermediate representation is 0.F x 2**exp.
2783 Which means we're off by one. */
2787 exp
= REAL_EXP (r
) + 1023 - 1;
2788 image_hi
|= exp
<< 20;
2797 if (FLOAT_WORDS_BIG_ENDIAN
)
2798 buf
[0] = image_hi
, buf
[1] = image_lo
;
2800 buf
[0] = image_lo
, buf
[1] = image_hi
;
2804 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2807 unsigned long image_hi
, image_lo
;
2811 if (FLOAT_WORDS_BIG_ENDIAN
)
2812 image_hi
= buf
[0], image_lo
= buf
[1];
2814 image_lo
= buf
[0], image_hi
= buf
[1];
2815 image_lo
&= 0xffffffff;
2816 image_hi
&= 0xffffffff;
2818 sign
= (image_hi
>> 31) & 1;
2819 exp
= (image_hi
>> 20) & 0x7ff;
2821 memset (r
, 0, sizeof (*r
));
2823 image_hi
<<= 32 - 21;
2824 image_hi
|= image_lo
>> 21;
2825 image_hi
&= 0x7fffffff;
2826 image_lo
<<= 32 - 21;
2830 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2834 SET_REAL_EXP (r
, -1022);
2835 if (HOST_BITS_PER_LONG
== 32)
2837 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2839 r
->sig
[SIGSZ
-1] = image_hi
;
2840 r
->sig
[SIGSZ
-2] = image_lo
;
2844 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2845 r
->sig
[SIGSZ
-1] = image_hi
;
2849 else if (fmt
->has_signed_zero
)
2852 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2854 if (image_hi
|| image_lo
)
2858 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2859 if (HOST_BITS_PER_LONG
== 32)
2861 r
->sig
[SIGSZ
-1] = image_hi
;
2862 r
->sig
[SIGSZ
-2] = image_lo
;
2865 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
2877 SET_REAL_EXP (r
, exp
- 1023 + 1);
2878 if (HOST_BITS_PER_LONG
== 32)
2880 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
2881 r
->sig
[SIGSZ
-2] = image_lo
;
2884 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
2888 const struct real_format ieee_double_format
=
2907 const struct real_format mips_double_format
=
2927 /* IEEE extended real format. This comes in three flavors: Intel's as
2928 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
2929 12- and 16-byte images may be big- or little endian; Motorola's is
2930 always big endian. */
2932 /* Helper subroutine which converts from the internal format to the
2933 12-byte little-endian Intel format. Functions below adjust this
2934 for the other possible formats. */
2936 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
2937 const REAL_VALUE_TYPE
*r
)
2939 unsigned long image_hi
, sig_hi
, sig_lo
;
2940 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2942 image_hi
= r
->sign
<< 15;
2943 sig_hi
= sig_lo
= 0;
2955 /* Intel requires the explicit integer bit to be set, otherwise
2956 it considers the value a "pseudo-infinity". Motorola docs
2957 say it doesn't care. */
2958 sig_hi
= 0x80000000;
2963 sig_lo
= sig_hi
= 0xffffffff;
2971 if (HOST_BITS_PER_LONG
== 32)
2973 sig_hi
= r
->sig
[SIGSZ
-1];
2974 sig_lo
= r
->sig
[SIGSZ
-2];
2978 sig_lo
= r
->sig
[SIGSZ
-1];
2979 sig_hi
= sig_lo
>> 31 >> 1;
2980 sig_lo
&= 0xffffffff;
2982 if (r
->signalling
== fmt
->qnan_msb_set
)
2983 sig_hi
&= ~(1 << 30);
2986 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
2989 /* Intel requires the explicit integer bit to be set, otherwise
2990 it considers the value a "pseudo-nan". Motorola docs say it
2992 sig_hi
|= 0x80000000;
2997 sig_lo
= sig_hi
= 0xffffffff;
3003 int exp
= REAL_EXP (r
);
3005 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3006 whereas the intermediate representation is 0.F x 2**exp.
3007 Which means we're off by one.
3009 Except for Motorola, which consider exp=0 and explicit
3010 integer bit set to continue to be normalized. In theory
3011 this discrepancy has been taken care of by the difference
3012 in fmt->emin in round_for_format. */
3019 gcc_assert (exp
>= 0);
3023 if (HOST_BITS_PER_LONG
== 32)
3025 sig_hi
= r
->sig
[SIGSZ
-1];
3026 sig_lo
= r
->sig
[SIGSZ
-2];
3030 sig_lo
= r
->sig
[SIGSZ
-1];
3031 sig_hi
= sig_lo
>> 31 >> 1;
3032 sig_lo
&= 0xffffffff;
3041 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3044 /* Convert from the internal format to the 12-byte Motorola format
3045 for an IEEE extended real. */
3047 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3048 const REAL_VALUE_TYPE
*r
)
3051 encode_ieee_extended (fmt
, intermed
, r
);
3053 /* Motorola chips are assumed always to be big-endian. Also, the
3054 padding in a Motorola extended real goes between the exponent and
3055 the mantissa. At this point the mantissa is entirely within
3056 elements 0 and 1 of intermed, and the exponent entirely within
3057 element 2, so all we have to do is swap the order around, and
3058 shift element 2 left 16 bits. */
3059 buf
[0] = intermed
[2] << 16;
3060 buf
[1] = intermed
[1];
3061 buf
[2] = intermed
[0];
3064 /* Convert from the internal format to the 12-byte Intel format for
3065 an IEEE extended real. */
3067 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3068 const REAL_VALUE_TYPE
*r
)
3070 if (FLOAT_WORDS_BIG_ENDIAN
)
3072 /* All the padding in an Intel-format extended real goes at the high
3073 end, which in this case is after the mantissa, not the exponent.
3074 Therefore we must shift everything down 16 bits. */
3076 encode_ieee_extended (fmt
, intermed
, r
);
3077 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3078 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3079 buf
[2] = (intermed
[0] << 16);
3082 /* encode_ieee_extended produces what we want directly. */
3083 encode_ieee_extended (fmt
, buf
, r
);
3086 /* Convert from the internal format to the 16-byte Intel format for
3087 an IEEE extended real. */
3089 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3090 const REAL_VALUE_TYPE
*r
)
3092 /* All the padding in an Intel-format extended real goes at the high end. */
3093 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3097 /* As above, we have a helper function which converts from 12-byte
3098 little-endian Intel format to internal format. Functions below
3099 adjust for the other possible formats. */
3101 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3104 unsigned long image_hi
, sig_hi
, sig_lo
;
3108 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3109 sig_lo
&= 0xffffffff;
3110 sig_hi
&= 0xffffffff;
3111 image_hi
&= 0xffffffff;
3113 sign
= (image_hi
>> 15) & 1;
3114 exp
= image_hi
& 0x7fff;
3116 memset (r
, 0, sizeof (*r
));
3120 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3125 /* When the IEEE format contains a hidden bit, we know that
3126 it's zero at this point, and so shift up the significand
3127 and decrease the exponent to match. In this case, Motorola
3128 defines the explicit integer bit to be valid, so we don't
3129 know whether the msb is set or not. */
3130 SET_REAL_EXP (r
, fmt
->emin
);
3131 if (HOST_BITS_PER_LONG
== 32)
3133 r
->sig
[SIGSZ
-1] = sig_hi
;
3134 r
->sig
[SIGSZ
-2] = sig_lo
;
3137 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3141 else if (fmt
->has_signed_zero
)
3144 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3146 /* See above re "pseudo-infinities" and "pseudo-nans".
3147 Short summary is that the MSB will likely always be
3148 set, and that we don't care about it. */
3149 sig_hi
&= 0x7fffffff;
3151 if (sig_hi
|| sig_lo
)
3155 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3156 if (HOST_BITS_PER_LONG
== 32)
3158 r
->sig
[SIGSZ
-1] = sig_hi
;
3159 r
->sig
[SIGSZ
-2] = sig_lo
;
3162 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3174 SET_REAL_EXP (r
, exp
- 16383 + 1);
3175 if (HOST_BITS_PER_LONG
== 32)
3177 r
->sig
[SIGSZ
-1] = sig_hi
;
3178 r
->sig
[SIGSZ
-2] = sig_lo
;
3181 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3185 /* Convert from the internal format to the 12-byte Motorola format
3186 for an IEEE extended real. */
3188 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3193 /* Motorola chips are assumed always to be big-endian. Also, the
3194 padding in a Motorola extended real goes between the exponent and
3195 the mantissa; remove it. */
3196 intermed
[0] = buf
[2];
3197 intermed
[1] = buf
[1];
3198 intermed
[2] = (unsigned long)buf
[0] >> 16;
3200 decode_ieee_extended (fmt
, r
, intermed
);
3203 /* Convert from the internal format to the 12-byte Intel format for
3204 an IEEE extended real. */
3206 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3209 if (FLOAT_WORDS_BIG_ENDIAN
)
3211 /* All the padding in an Intel-format extended real goes at the high
3212 end, which in this case is after the mantissa, not the exponent.
3213 Therefore we must shift everything up 16 bits. */
3216 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3217 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3218 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3220 decode_ieee_extended (fmt
, r
, intermed
);
3223 /* decode_ieee_extended produces what we want directly. */
3224 decode_ieee_extended (fmt
, r
, buf
);
3227 /* Convert from the internal format to the 16-byte Intel format for
3228 an IEEE extended real. */
3230 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3233 /* All the padding in an Intel-format extended real goes at the high end. */
3234 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3237 const struct real_format ieee_extended_motorola_format
=
3239 encode_ieee_extended_motorola
,
3240 decode_ieee_extended_motorola
,
3256 const struct real_format ieee_extended_intel_96_format
=
3258 encode_ieee_extended_intel_96
,
3259 decode_ieee_extended_intel_96
,
3275 const struct real_format ieee_extended_intel_128_format
=
3277 encode_ieee_extended_intel_128
,
3278 decode_ieee_extended_intel_128
,
3294 /* The following caters to i386 systems that set the rounding precision
3295 to 53 bits instead of 64, e.g. FreeBSD. */
3296 const struct real_format ieee_extended_intel_96_round_53_format
=
3298 encode_ieee_extended_intel_96
,
3299 decode_ieee_extended_intel_96
,
3315 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3316 numbers whose sum is equal to the extended precision value. The number
3317 with greater magnitude is first. This format has the same magnitude
3318 range as an IEEE double precision value, but effectively 106 bits of
3319 significand precision. Infinity and NaN are represented by their IEEE
3320 double precision value stored in the first number, the second number is
3321 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3323 static void encode_ibm_extended (const struct real_format
*fmt
,
3324 long *, const REAL_VALUE_TYPE
*);
3325 static void decode_ibm_extended (const struct real_format
*,
3326 REAL_VALUE_TYPE
*, const long *);
3329 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3330 const REAL_VALUE_TYPE
*r
)
3332 REAL_VALUE_TYPE u
, normr
, v
;
3333 const struct real_format
*base_fmt
;
3335 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3337 /* Renormlize R before doing any arithmetic on it. */
3339 if (normr
.cl
== rvc_normal
)
3342 /* u = IEEE double precision portion of significand. */
3344 round_for_format (base_fmt
, &u
);
3345 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3347 if (u
.cl
== rvc_normal
)
3349 do_add (&v
, &normr
, &u
, 1);
3350 /* Call round_for_format since we might need to denormalize. */
3351 round_for_format (base_fmt
, &v
);
3352 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3356 /* Inf, NaN, 0 are all representable as doubles, so the
3357 least-significant part can be 0.0. */
3364 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3367 REAL_VALUE_TYPE u
, v
;
3368 const struct real_format
*base_fmt
;
3370 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3371 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3373 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3375 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3376 do_add (r
, &u
, &v
, 0);
3382 const struct real_format ibm_extended_format
=
3384 encode_ibm_extended
,
3385 decode_ibm_extended
,
3401 const struct real_format mips_extended_format
=
3403 encode_ibm_extended
,
3404 decode_ibm_extended
,
3421 /* IEEE quad precision format. */
3423 static void encode_ieee_quad (const struct real_format
*fmt
,
3424 long *, const REAL_VALUE_TYPE
*);
3425 static void decode_ieee_quad (const struct real_format
*,
3426 REAL_VALUE_TYPE
*, const long *);
3429 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3430 const REAL_VALUE_TYPE
*r
)
3432 unsigned long image3
, image2
, image1
, image0
, exp
;
3433 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3436 image3
= r
->sign
<< 31;
3441 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3450 image3
|= 32767 << 16;
3453 image3
|= 0x7fffffff;
3454 image2
= 0xffffffff;
3455 image1
= 0xffffffff;
3456 image0
= 0xffffffff;
3463 image3
|= 32767 << 16;
3467 /* Don't use bits from the significand. The
3468 initialization above is right. */
3470 else if (HOST_BITS_PER_LONG
== 32)
3475 image3
|= u
.sig
[3] & 0xffff;
3480 image1
= image0
>> 31 >> 1;
3482 image3
|= (image2
>> 31 >> 1) & 0xffff;
3483 image0
&= 0xffffffff;
3484 image2
&= 0xffffffff;
3486 if (r
->signalling
== fmt
->qnan_msb_set
)
3490 /* We overload qnan_msb_set here: it's only clear for
3491 mips_ieee_single, which wants all mantissa bits but the
3492 quiet/signalling one set in canonical NaNs (at least
3494 if (r
->canonical
&& !fmt
->qnan_msb_set
)
3497 image2
= image1
= image0
= 0xffffffff;
3499 else if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3504 image3
|= 0x7fffffff;
3505 image2
= 0xffffffff;
3506 image1
= 0xffffffff;
3507 image0
= 0xffffffff;
3512 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3513 whereas the intermediate representation is 0.F x 2**exp.
3514 Which means we're off by one. */
3518 exp
= REAL_EXP (r
) + 16383 - 1;
3519 image3
|= exp
<< 16;
3521 if (HOST_BITS_PER_LONG
== 32)
3526 image3
|= u
.sig
[3] & 0xffff;
3531 image1
= image0
>> 31 >> 1;
3533 image3
|= (image2
>> 31 >> 1) & 0xffff;
3534 image0
&= 0xffffffff;
3535 image2
&= 0xffffffff;
3543 if (FLOAT_WORDS_BIG_ENDIAN
)
3560 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3563 unsigned long image3
, image2
, image1
, image0
;
3567 if (FLOAT_WORDS_BIG_ENDIAN
)
3581 image0
&= 0xffffffff;
3582 image1
&= 0xffffffff;
3583 image2
&= 0xffffffff;
3585 sign
= (image3
>> 31) & 1;
3586 exp
= (image3
>> 16) & 0x7fff;
3589 memset (r
, 0, sizeof (*r
));
3593 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3598 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3599 if (HOST_BITS_PER_LONG
== 32)
3608 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3609 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3614 else if (fmt
->has_signed_zero
)
3617 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3619 if (image3
| image2
| image1
| image0
)
3623 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3625 if (HOST_BITS_PER_LONG
== 32)
3634 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3635 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3637 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3649 SET_REAL_EXP (r
, exp
- 16383 + 1);
3651 if (HOST_BITS_PER_LONG
== 32)
3660 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3661 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3663 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3664 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3668 const struct real_format ieee_quad_format
=
3687 const struct real_format mips_quad_format
=
3706 /* Descriptions of VAX floating point formats can be found beginning at
3708 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3710 The thing to remember is that they're almost IEEE, except for word
3711 order, exponent bias, and the lack of infinities, nans, and denormals.
3713 We don't implement the H_floating format here, simply because neither
3714 the VAX or Alpha ports use it. */
3716 static void encode_vax_f (const struct real_format
*fmt
,
3717 long *, const REAL_VALUE_TYPE
*);
3718 static void decode_vax_f (const struct real_format
*,
3719 REAL_VALUE_TYPE
*, const long *);
3720 static void encode_vax_d (const struct real_format
*fmt
,
3721 long *, const REAL_VALUE_TYPE
*);
3722 static void decode_vax_d (const struct real_format
*,
3723 REAL_VALUE_TYPE
*, const long *);
3724 static void encode_vax_g (const struct real_format
*fmt
,
3725 long *, const REAL_VALUE_TYPE
*);
3726 static void decode_vax_g (const struct real_format
*,
3727 REAL_VALUE_TYPE
*, const long *);
3730 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3731 const REAL_VALUE_TYPE
*r
)
3733 unsigned long sign
, exp
, sig
, image
;
3735 sign
= r
->sign
<< 15;
3745 image
= 0xffff7fff | sign
;
3749 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3750 exp
= REAL_EXP (r
) + 128;
3752 image
= (sig
<< 16) & 0xffff0000;
3766 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3767 REAL_VALUE_TYPE
*r
, const long *buf
)
3769 unsigned long image
= buf
[0] & 0xffffffff;
3770 int exp
= (image
>> 7) & 0xff;
3772 memset (r
, 0, sizeof (*r
));
3777 r
->sign
= (image
>> 15) & 1;
3778 SET_REAL_EXP (r
, exp
- 128);
3780 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3781 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3786 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3787 const REAL_VALUE_TYPE
*r
)
3789 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3794 image0
= image1
= 0;
3799 image0
= 0xffff7fff | sign
;
3800 image1
= 0xffffffff;
3804 /* Extract the significand into straight hi:lo. */
3805 if (HOST_BITS_PER_LONG
== 64)
3807 image0
= r
->sig
[SIGSZ
-1];
3808 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3809 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3813 image0
= r
->sig
[SIGSZ
-1];
3814 image1
= r
->sig
[SIGSZ
-2];
3815 image1
= (image0
<< 24) | (image1
>> 8);
3816 image0
= (image0
>> 8) & 0xffffff;
3819 /* Rearrange the half-words of the significand to match the
3821 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3822 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3824 /* Add the sign and exponent. */
3826 image0
|= (REAL_EXP (r
) + 128) << 7;
3833 if (FLOAT_WORDS_BIG_ENDIAN
)
3834 buf
[0] = image1
, buf
[1] = image0
;
3836 buf
[0] = image0
, buf
[1] = image1
;
3840 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3841 REAL_VALUE_TYPE
*r
, const long *buf
)
3843 unsigned long image0
, image1
;
3846 if (FLOAT_WORDS_BIG_ENDIAN
)
3847 image1
= buf
[0], image0
= buf
[1];
3849 image0
= buf
[0], image1
= buf
[1];
3850 image0
&= 0xffffffff;
3851 image1
&= 0xffffffff;
3853 exp
= (image0
>> 7) & 0xff;
3855 memset (r
, 0, sizeof (*r
));
3860 r
->sign
= (image0
>> 15) & 1;
3861 SET_REAL_EXP (r
, exp
- 128);
3863 /* Rearrange the half-words of the external format into
3864 proper ascending order. */
3865 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
3866 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3868 if (HOST_BITS_PER_LONG
== 64)
3870 image0
= (image0
<< 31 << 1) | image1
;
3873 r
->sig
[SIGSZ
-1] = image0
;
3877 r
->sig
[SIGSZ
-1] = image0
;
3878 r
->sig
[SIGSZ
-2] = image1
;
3879 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
3880 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3886 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3887 const REAL_VALUE_TYPE
*r
)
3889 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3894 image0
= image1
= 0;
3899 image0
= 0xffff7fff | sign
;
3900 image1
= 0xffffffff;
3904 /* Extract the significand into straight hi:lo. */
3905 if (HOST_BITS_PER_LONG
== 64)
3907 image0
= r
->sig
[SIGSZ
-1];
3908 image1
= (image0
>> (64 - 53)) & 0xffffffff;
3909 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
3913 image0
= r
->sig
[SIGSZ
-1];
3914 image1
= r
->sig
[SIGSZ
-2];
3915 image1
= (image0
<< 21) | (image1
>> 11);
3916 image0
= (image0
>> 11) & 0xfffff;
3919 /* Rearrange the half-words of the significand to match the
3921 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
3922 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3924 /* Add the sign and exponent. */
3926 image0
|= (REAL_EXP (r
) + 1024) << 4;
3933 if (FLOAT_WORDS_BIG_ENDIAN
)
3934 buf
[0] = image1
, buf
[1] = image0
;
3936 buf
[0] = image0
, buf
[1] = image1
;
3940 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3941 REAL_VALUE_TYPE
*r
, const long *buf
)
3943 unsigned long image0
, image1
;
3946 if (FLOAT_WORDS_BIG_ENDIAN
)
3947 image1
= buf
[0], image0
= buf
[1];
3949 image0
= buf
[0], image1
= buf
[1];
3950 image0
&= 0xffffffff;
3951 image1
&= 0xffffffff;
3953 exp
= (image0
>> 4) & 0x7ff;
3955 memset (r
, 0, sizeof (*r
));
3960 r
->sign
= (image0
>> 15) & 1;
3961 SET_REAL_EXP (r
, exp
- 1024);
3963 /* Rearrange the half-words of the external format into
3964 proper ascending order. */
3965 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
3966 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3968 if (HOST_BITS_PER_LONG
== 64)
3970 image0
= (image0
<< 31 << 1) | image1
;
3973 r
->sig
[SIGSZ
-1] = image0
;
3977 r
->sig
[SIGSZ
-1] = image0
;
3978 r
->sig
[SIGSZ
-2] = image1
;
3979 lshift_significand (r
, r
, 64 - 53);
3980 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3985 const struct real_format vax_f_format
=
4004 const struct real_format vax_d_format
=
4023 const struct real_format vax_g_format
=
4042 /* A good reference for these can be found in chapter 9 of
4043 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4044 An on-line version can be found here:
4046 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4049 static void encode_i370_single (const struct real_format
*fmt
,
4050 long *, const REAL_VALUE_TYPE
*);
4051 static void decode_i370_single (const struct real_format
*,
4052 REAL_VALUE_TYPE
*, const long *);
4053 static void encode_i370_double (const struct real_format
*fmt
,
4054 long *, const REAL_VALUE_TYPE
*);
4055 static void decode_i370_double (const struct real_format
*,
4056 REAL_VALUE_TYPE
*, const long *);
4059 encode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4060 long *buf
, const REAL_VALUE_TYPE
*r
)
4062 unsigned long sign
, exp
, sig
, image
;
4064 sign
= r
->sign
<< 31;
4074 image
= 0x7fffffff | sign
;
4078 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0xffffff;
4079 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4080 image
= sign
| exp
| sig
;
4091 decode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4092 REAL_VALUE_TYPE
*r
, const long *buf
)
4094 unsigned long sign
, sig
, image
= buf
[0];
4097 sign
= (image
>> 31) & 1;
4098 exp
= (image
>> 24) & 0x7f;
4099 sig
= image
& 0xffffff;
4101 memset (r
, 0, sizeof (*r
));
4107 SET_REAL_EXP (r
, (exp
- 64) * 4);
4108 r
->sig
[SIGSZ
-1] = sig
<< (HOST_BITS_PER_LONG
- 24);
4114 encode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4115 long *buf
, const REAL_VALUE_TYPE
*r
)
4117 unsigned long sign
, exp
, image_hi
, image_lo
;
4119 sign
= r
->sign
<< 31;
4124 image_hi
= image_lo
= 0;
4129 image_hi
= 0x7fffffff | sign
;
4130 image_lo
= 0xffffffff;
4134 if (HOST_BITS_PER_LONG
== 64)
4136 image_hi
= r
->sig
[SIGSZ
-1];
4137 image_lo
= (image_hi
>> (64 - 56)) & 0xffffffff;
4138 image_hi
= (image_hi
>> (64 - 56 + 1) >> 31) & 0xffffff;
4142 image_hi
= r
->sig
[SIGSZ
-1];
4143 image_lo
= r
->sig
[SIGSZ
-2];
4144 image_lo
= (image_lo
>> 8) | (image_hi
<< 24);
4148 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4149 image_hi
|= sign
| exp
;
4156 if (FLOAT_WORDS_BIG_ENDIAN
)
4157 buf
[0] = image_hi
, buf
[1] = image_lo
;
4159 buf
[0] = image_lo
, buf
[1] = image_hi
;
4163 decode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4164 REAL_VALUE_TYPE
*r
, const long *buf
)
4166 unsigned long sign
, image_hi
, image_lo
;
4169 if (FLOAT_WORDS_BIG_ENDIAN
)
4170 image_hi
= buf
[0], image_lo
= buf
[1];
4172 image_lo
= buf
[0], image_hi
= buf
[1];
4174 sign
= (image_hi
>> 31) & 1;
4175 exp
= (image_hi
>> 24) & 0x7f;
4176 image_hi
&= 0xffffff;
4177 image_lo
&= 0xffffffff;
4179 memset (r
, 0, sizeof (*r
));
4181 if (exp
|| image_hi
|| image_lo
)
4185 SET_REAL_EXP (r
, (exp
- 64) * 4 + (SIGNIFICAND_BITS
- 56));
4187 if (HOST_BITS_PER_LONG
== 32)
4189 r
->sig
[0] = image_lo
;
4190 r
->sig
[1] = image_hi
;
4193 r
->sig
[0] = image_lo
| (image_hi
<< 31 << 1);
4199 const struct real_format i370_single_format
=
4213 false, /* ??? The encoding does allow for "unnormals". */
4214 false, /* ??? The encoding does allow for "unnormals". */
4218 const struct real_format i370_double_format
=
4232 false, /* ??? The encoding does allow for "unnormals". */
4233 false, /* ??? The encoding does allow for "unnormals". */
4237 /* The "twos-complement" c4x format is officially defined as
4241 This is rather misleading. One must remember that F is signed.
4242 A better description would be
4244 x = -1**s * ((s + 1 + .f) * 2**e
4246 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4247 that's -1 * (1+1+(-.5)) == -1.5. I think.
4249 The constructions here are taken from Tables 5-1 and 5-2 of the
4250 TMS320C4x User's Guide wherein step-by-step instructions for
4251 conversion from IEEE are presented. That's close enough to our
4252 internal representation so as to make things easy.
4254 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4256 static void encode_c4x_single (const struct real_format
*fmt
,
4257 long *, const REAL_VALUE_TYPE
*);
4258 static void decode_c4x_single (const struct real_format
*,
4259 REAL_VALUE_TYPE
*, const long *);
4260 static void encode_c4x_extended (const struct real_format
*fmt
,
4261 long *, const REAL_VALUE_TYPE
*);
4262 static void decode_c4x_extended (const struct real_format
*,
4263 REAL_VALUE_TYPE
*, const long *);
4266 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4267 long *buf
, const REAL_VALUE_TYPE
*r
)
4269 unsigned long image
, exp
, sig
;
4281 sig
= 0x800000 - r
->sign
;
4285 exp
= REAL_EXP (r
) - 1;
4286 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4301 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4306 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4307 REAL_VALUE_TYPE
*r
, const long *buf
)
4309 unsigned long image
= buf
[0];
4313 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4314 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4316 memset (r
, 0, sizeof (*r
));
4322 sig
= sf
& 0x7fffff;
4331 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4333 SET_REAL_EXP (r
, exp
+ 1);
4334 r
->sig
[SIGSZ
-1] = sig
;
4339 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4340 long *buf
, const REAL_VALUE_TYPE
*r
)
4342 unsigned long exp
, sig
;
4354 sig
= 0x80000000 - r
->sign
;
4358 exp
= REAL_EXP (r
) - 1;
4360 sig
= r
->sig
[SIGSZ
-1];
4361 if (HOST_BITS_PER_LONG
== 64)
4362 sig
= sig
>> 1 >> 31;
4379 exp
= (exp
& 0xff) << 24;
4382 if (FLOAT_WORDS_BIG_ENDIAN
)
4383 buf
[0] = exp
, buf
[1] = sig
;
4385 buf
[0] = sig
, buf
[0] = exp
;
4389 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4390 REAL_VALUE_TYPE
*r
, const long *buf
)
4395 if (FLOAT_WORDS_BIG_ENDIAN
)
4396 exp
= buf
[0], sf
= buf
[1];
4398 sf
= buf
[0], exp
= buf
[1];
4400 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4401 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4403 memset (r
, 0, sizeof (*r
));
4409 sig
= sf
& 0x7fffffff;
4418 if (HOST_BITS_PER_LONG
== 64)
4419 sig
= sig
<< 1 << 31;
4422 SET_REAL_EXP (r
, exp
+ 1);
4423 r
->sig
[SIGSZ
-1] = sig
;
4427 const struct real_format c4x_single_format
=
4446 const struct real_format c4x_extended_format
=
4448 encode_c4x_extended
,
4449 decode_c4x_extended
,
4466 /* A synthetic "format" for internal arithmetic. It's the size of the
4467 internal significand minus the two bits needed for proper rounding.
4468 The encode and decode routines exist only to satisfy our paranoia
4471 static void encode_internal (const struct real_format
*fmt
,
4472 long *, const REAL_VALUE_TYPE
*);
4473 static void decode_internal (const struct real_format
*,
4474 REAL_VALUE_TYPE
*, const long *);
4477 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4478 const REAL_VALUE_TYPE
*r
)
4480 memcpy (buf
, r
, sizeof (*r
));
4484 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4485 REAL_VALUE_TYPE
*r
, const long *buf
)
4487 memcpy (r
, buf
, sizeof (*r
));
4490 const struct real_format real_internal_format
=
4496 SIGNIFICAND_BITS
- 2,
4497 SIGNIFICAND_BITS
- 2,
4509 /* Calculate the square root of X in mode MODE, and store the result
4510 in R. Return TRUE if the operation does not raise an exception.
4511 For details see "High Precision Division and Square Root",
4512 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4513 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4516 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4517 const REAL_VALUE_TYPE
*x
)
4519 static REAL_VALUE_TYPE halfthree
;
4520 static bool init
= false;
4521 REAL_VALUE_TYPE h
, t
, i
;
4524 /* sqrt(-0.0) is -0.0. */
4525 if (real_isnegzero (x
))
4531 /* Negative arguments return NaN. */
4534 get_canonical_qnan (r
, 0);
4538 /* Infinity and NaN return themselves. */
4539 if (real_isinf (x
) || real_isnan (x
))
4547 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4551 /* Initial guess for reciprocal sqrt, i. */
4552 exp
= real_exponent (x
);
4553 real_ldexp (&i
, &dconst1
, -exp
/2);
4555 /* Newton's iteration for reciprocal sqrt, i. */
4556 for (iter
= 0; iter
< 16; iter
++)
4558 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4559 do_multiply (&t
, x
, &i
);
4560 do_multiply (&h
, &t
, &i
);
4561 do_multiply (&t
, &h
, &dconsthalf
);
4562 do_add (&h
, &halfthree
, &t
, 1);
4563 do_multiply (&t
, &i
, &h
);
4565 /* Check for early convergence. */
4566 if (iter
>= 6 && real_identical (&i
, &t
))
4569 /* ??? Unroll loop to avoid copying. */
4573 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4574 do_multiply (&t
, x
, &i
);
4575 do_multiply (&h
, &t
, &i
);
4576 do_add (&i
, &dconst1
, &h
, 1);
4577 do_multiply (&h
, &t
, &i
);
4578 do_multiply (&i
, &dconsthalf
, &h
);
4579 do_add (&h
, &t
, &i
, 0);
4581 /* ??? We need a Tuckerman test to get the last bit. */
4583 real_convert (r
, mode
, &h
);
4587 /* Calculate X raised to the integer exponent N in mode MODE and store
4588 the result in R. Return true if the result may be inexact due to
4589 loss of precision. The algorithm is the classic "left-to-right binary
4590 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4591 Algorithms", "The Art of Computer Programming", Volume 2. */
4594 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4595 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4597 unsigned HOST_WIDE_INT bit
;
4599 bool inexact
= false;
4611 /* Don't worry about overflow, from now on n is unsigned. */
4619 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4620 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4624 inexact
|= do_multiply (&t
, &t
, &t
);
4626 inexact
|= do_multiply (&t
, &t
, x
);
4634 inexact
|= do_divide (&t
, &dconst1
, &t
);
4636 real_convert (r
, mode
, &t
);
4640 /* Round X to the nearest integer not larger in absolute value, i.e.
4641 towards zero, placing the result in R in mode MODE. */
4644 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4645 const REAL_VALUE_TYPE
*x
)
4647 do_fix_trunc (r
, x
);
4648 if (mode
!= VOIDmode
)
4649 real_convert (r
, mode
, r
);
4652 /* Round X to the largest integer not greater in value, i.e. round
4653 down, placing the result in R in mode MODE. */
4656 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4657 const REAL_VALUE_TYPE
*x
)
4661 do_fix_trunc (&t
, x
);
4662 if (! real_identical (&t
, x
) && x
->sign
)
4663 do_add (&t
, &t
, &dconstm1
, 0);
4664 if (mode
!= VOIDmode
)
4665 real_convert (r
, mode
, &t
);
4670 /* Round X to the smallest integer not less then argument, i.e. round
4671 up, placing the result in R in mode MODE. */
4674 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4675 const REAL_VALUE_TYPE
*x
)
4679 do_fix_trunc (&t
, x
);
4680 if (! real_identical (&t
, x
) && ! x
->sign
)
4681 do_add (&t
, &t
, &dconst1
, 0);
4682 if (mode
!= VOIDmode
)
4683 real_convert (r
, mode
, &t
);
4688 /* Round X to the nearest integer, but round halfway cases away from
4692 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4693 const REAL_VALUE_TYPE
*x
)
4695 do_add (r
, x
, &dconsthalf
, x
->sign
);
4696 do_fix_trunc (r
, r
);
4697 if (mode
!= VOIDmode
)
4698 real_convert (r
, mode
, r
);
4701 /* Set the sign of R to the sign of X. */
4704 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)