doc - Document 'crypt' option in fstab(5)
[dragonfly.git] / sys / vm / vm_page.c
blobd570d14906fbe7f75452ebec65ae652f3f85aeee
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 #include <sys/cpu_topology.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/vm_kern.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
93 #include <machine/inttypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
97 #include <vm/vm_page2.h>
98 #include <sys/spinlock2.h>
101 * Action hash for user umtx support.
103 #define VMACTION_HSIZE 256
104 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
107 * SET - Minimum required set associative size, must be a power of 2. We
108 * want this to match or exceed the set-associativeness of the cpu.
110 * GRP - A larger set that allows bleed-over into the domains of other
111 * nearby cpus. Also must be a power of 2. Used by the page zeroing
112 * code to smooth things out a bit.
114 #define PQ_SET_ASSOC 16
115 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
117 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
118 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
120 static void vm_page_queue_init(void);
121 static void vm_page_free_wakeup(void);
122 static vm_page_t vm_page_select_cache(u_short pg_color);
123 static vm_page_t _vm_page_list_find2(int basequeue, int index);
124 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
127 * Array of tailq lists
129 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
131 LIST_HEAD(vm_page_action_list, vm_page_action);
132 struct vm_page_action_list action_list[VMACTION_HSIZE];
133 static volatile int vm_pages_waiting;
135 static struct alist vm_contig_alist;
136 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
137 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
139 static u_long vm_dma_reserved = 0;
140 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
141 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
142 "Memory reserved for DMA");
143 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
144 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
146 static int vm_contig_verbose = 0;
147 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
149 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
150 vm_pindex_t, pindex);
152 static void
153 vm_page_queue_init(void)
155 int i;
157 for (i = 0; i < PQ_L2_SIZE; i++)
158 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
159 for (i = 0; i < PQ_L2_SIZE; i++)
160 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
163 for (i = 0; i < PQ_L2_SIZE; i++)
164 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
165 for (i = 0; i < PQ_L2_SIZE; i++)
166 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
167 /* PQ_NONE has no queue */
169 for (i = 0; i < PQ_COUNT; i++) {
170 TAILQ_INIT(&vm_page_queues[i].pl);
171 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 for (i = 0; i < VMACTION_HSIZE; i++)
175 LIST_INIT(&action_list[i]);
179 * note: place in initialized data section? Is this necessary?
181 long first_page = 0;
182 int vm_page_array_size = 0;
183 vm_page_t vm_page_array = NULL;
184 vm_paddr_t vm_low_phys_reserved;
187 * (low level boot)
189 * Sets the page size, perhaps based upon the memory size.
190 * Must be called before any use of page-size dependent functions.
192 void
193 vm_set_page_size(void)
195 if (vmstats.v_page_size == 0)
196 vmstats.v_page_size = PAGE_SIZE;
197 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
198 panic("vm_set_page_size: page size not a power of two");
202 * (low level boot)
204 * Add a new page to the freelist for use by the system. New pages
205 * are added to both the head and tail of the associated free page
206 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
207 * requests pull 'recent' adds (higher physical addresses) first.
209 * Beware that the page zeroing daemon will also be running soon after
210 * boot, moving pages from the head to the tail of the PQ_FREE queues.
212 * Must be called in a critical section.
214 static void
215 vm_add_new_page(vm_paddr_t pa)
217 struct vpgqueues *vpq;
218 vm_page_t m;
220 m = PHYS_TO_VM_PAGE(pa);
221 m->phys_addr = pa;
222 m->flags = 0;
223 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
224 m->pat_mode = PAT_WRITE_BACK;
226 * Twist for cpu localization in addition to page coloring, so
227 * different cpus selecting by m->queue get different page colors.
229 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
230 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
232 * Reserve a certain number of contiguous low memory pages for
233 * contigmalloc() to use.
235 if (pa < vm_low_phys_reserved) {
236 atomic_add_int(&vmstats.v_page_count, 1);
237 atomic_add_int(&vmstats.v_dma_pages, 1);
238 m->queue = PQ_NONE;
239 m->wire_count = 1;
240 atomic_add_int(&vmstats.v_wire_count, 1);
241 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
242 return;
246 * General page
248 m->queue = m->pc + PQ_FREE;
249 KKASSERT(m->dirty == 0);
251 atomic_add_int(&vmstats.v_page_count, 1);
252 atomic_add_int(&vmstats.v_free_count, 1);
253 vpq = &vm_page_queues[m->queue];
254 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
255 ++vpq->lcnt;
259 * (low level boot)
261 * Initializes the resident memory module.
263 * Preallocates memory for critical VM structures and arrays prior to
264 * kernel_map becoming available.
266 * Memory is allocated from (virtual2_start, virtual2_end) if available,
267 * otherwise memory is allocated from (virtual_start, virtual_end).
269 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
270 * large enough to hold vm_page_array & other structures for machines with
271 * large amounts of ram, so we want to use virtual2* when available.
273 void
274 vm_page_startup(void)
276 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
277 vm_offset_t mapped;
278 vm_size_t npages;
279 vm_paddr_t page_range;
280 vm_paddr_t new_end;
281 int i;
282 vm_paddr_t pa;
283 int nblocks;
284 vm_paddr_t last_pa;
285 vm_paddr_t end;
286 vm_paddr_t biggestone, biggestsize;
287 vm_paddr_t total;
289 total = 0;
290 biggestsize = 0;
291 biggestone = 0;
292 nblocks = 0;
293 vaddr = round_page(vaddr);
295 for (i = 0; phys_avail[i + 1]; i += 2) {
296 phys_avail[i] = round_page64(phys_avail[i]);
297 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
300 for (i = 0; phys_avail[i + 1]; i += 2) {
301 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
303 if (size > biggestsize) {
304 biggestone = i;
305 biggestsize = size;
307 ++nblocks;
308 total += size;
311 end = phys_avail[biggestone+1];
312 end = trunc_page(end);
315 * Initialize the queue headers for the free queue, the active queue
316 * and the inactive queue.
318 vm_page_queue_init();
320 #if !defined(_KERNEL_VIRTUAL)
322 * VKERNELs don't support minidumps and as such don't need
323 * vm_page_dump
325 * Allocate a bitmap to indicate that a random physical page
326 * needs to be included in a minidump.
328 * The amd64 port needs this to indicate which direct map pages
329 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
331 * However, i386 still needs this workspace internally within the
332 * minidump code. In theory, they are not needed on i386, but are
333 * included should the sf_buf code decide to use them.
335 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
336 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
337 end -= vm_page_dump_size;
338 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
339 VM_PROT_READ | VM_PROT_WRITE);
340 bzero((void *)vm_page_dump, vm_page_dump_size);
341 #endif
343 * Compute the number of pages of memory that will be available for
344 * use (taking into account the overhead of a page structure per
345 * page).
347 first_page = phys_avail[0] / PAGE_SIZE;
348 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
349 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
351 #ifndef _KERNEL_VIRTUAL
353 * (only applies to real kernels)
355 * Reserve a large amount of low memory for potential 32-bit DMA
356 * space allocations. Once device initialization is complete we
357 * release most of it, but keep (vm_dma_reserved) memory reserved
358 * for later use. Typically for X / graphics. Through trial and
359 * error we find that GPUs usually requires ~60-100MB or so.
361 * By default, 128M is left in reserve on machines with 2G+ of ram.
363 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
364 if (vm_low_phys_reserved > total / 4)
365 vm_low_phys_reserved = total / 4;
366 if (vm_dma_reserved == 0) {
367 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
368 if (vm_dma_reserved > total / 16)
369 vm_dma_reserved = total / 16;
371 #endif
372 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
373 ALIST_RECORDS_65536);
376 * Initialize the mem entry structures now, and put them in the free
377 * queue.
379 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
380 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
381 vm_page_array = (vm_page_t)mapped;
383 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
385 * since pmap_map on amd64 returns stuff out of a direct-map region,
386 * we have to manually add these pages to the minidump tracking so
387 * that they can be dumped, including the vm_page_array.
389 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
390 dump_add_page(pa);
391 #endif
394 * Clear all of the page structures
396 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
397 vm_page_array_size = page_range;
400 * Construct the free queue(s) in ascending order (by physical
401 * address) so that the first 16MB of physical memory is allocated
402 * last rather than first. On large-memory machines, this avoids
403 * the exhaustion of low physical memory before isa_dmainit has run.
405 vmstats.v_page_count = 0;
406 vmstats.v_free_count = 0;
407 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
408 pa = phys_avail[i];
409 if (i == biggestone)
410 last_pa = new_end;
411 else
412 last_pa = phys_avail[i + 1];
413 while (pa < last_pa && npages-- > 0) {
414 vm_add_new_page(pa);
415 pa += PAGE_SIZE;
418 if (virtual2_start)
419 virtual2_start = vaddr;
420 else
421 virtual_start = vaddr;
425 * We tended to reserve a ton of memory for contigmalloc(). Now that most
426 * drivers have initialized we want to return most the remaining free
427 * reserve back to the VM page queues so they can be used for normal
428 * allocations.
430 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
432 static void
433 vm_page_startup_finish(void *dummy __unused)
435 alist_blk_t blk;
436 alist_blk_t rblk;
437 alist_blk_t count;
438 alist_blk_t xcount;
439 alist_blk_t bfree;
440 vm_page_t m;
442 spin_lock(&vm_contig_spin);
443 for (;;) {
444 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
445 if (bfree <= vm_dma_reserved / PAGE_SIZE)
446 break;
447 if (count == 0)
448 break;
451 * Figure out how much of the initial reserve we have to
452 * free in order to reach our target.
454 bfree -= vm_dma_reserved / PAGE_SIZE;
455 if (count > bfree) {
456 blk += count - bfree;
457 count = bfree;
461 * Calculate the nearest power of 2 <= count.
463 for (xcount = 1; xcount <= count; xcount <<= 1)
465 xcount >>= 1;
466 blk += count - xcount;
467 count = xcount;
470 * Allocate the pages from the alist, then free them to
471 * the normal VM page queues.
473 * Pages allocated from the alist are wired. We have to
474 * busy, unwire, and free them. We must also adjust
475 * vm_low_phys_reserved before freeing any pages to prevent
476 * confusion.
478 rblk = alist_alloc(&vm_contig_alist, blk, count);
479 if (rblk != blk) {
480 kprintf("vm_page_startup_finish: Unable to return "
481 "dma space @0x%08x/%d -> 0x%08x\n",
482 blk, count, rblk);
483 break;
485 atomic_add_int(&vmstats.v_dma_pages, -count);
486 spin_unlock(&vm_contig_spin);
488 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
489 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
490 while (count) {
491 vm_page_busy_wait(m, FALSE, "cpgfr");
492 vm_page_unwire(m, 0);
493 vm_page_free(m);
494 --count;
495 ++m;
497 spin_lock(&vm_contig_spin);
499 spin_unlock(&vm_contig_spin);
502 * Print out how much DMA space drivers have already allocated and
503 * how much is left over.
505 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
506 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
507 (PAGE_SIZE / 1024),
508 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
510 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
511 vm_page_startup_finish, NULL);
515 * Scan comparison function for Red-Black tree scans. An inclusive
516 * (start,end) is expected. Other fields are not used.
519 rb_vm_page_scancmp(struct vm_page *p, void *data)
521 struct rb_vm_page_scan_info *info = data;
523 if (p->pindex < info->start_pindex)
524 return(-1);
525 if (p->pindex > info->end_pindex)
526 return(1);
527 return(0);
531 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
533 if (p1->pindex < p2->pindex)
534 return(-1);
535 if (p1->pindex > p2->pindex)
536 return(1);
537 return(0);
540 void
541 vm_page_init(vm_page_t m)
543 /* do nothing for now. Called from pmap_page_init() */
547 * Each page queue has its own spin lock, which is fairly optimal for
548 * allocating and freeing pages at least.
550 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
551 * queue spinlock via this function. Also note that m->queue cannot change
552 * unless both the page and queue are locked.
554 static __inline
555 void
556 _vm_page_queue_spin_lock(vm_page_t m)
558 u_short queue;
560 queue = m->queue;
561 if (queue != PQ_NONE) {
562 spin_lock(&vm_page_queues[queue].spin);
563 KKASSERT(queue == m->queue);
567 static __inline
568 void
569 _vm_page_queue_spin_unlock(vm_page_t m)
571 u_short queue;
573 queue = m->queue;
574 cpu_ccfence();
575 if (queue != PQ_NONE)
576 spin_unlock(&vm_page_queues[queue].spin);
579 static __inline
580 void
581 _vm_page_queues_spin_lock(u_short queue)
583 cpu_ccfence();
584 if (queue != PQ_NONE)
585 spin_lock(&vm_page_queues[queue].spin);
589 static __inline
590 void
591 _vm_page_queues_spin_unlock(u_short queue)
593 cpu_ccfence();
594 if (queue != PQ_NONE)
595 spin_unlock(&vm_page_queues[queue].spin);
598 void
599 vm_page_queue_spin_lock(vm_page_t m)
601 _vm_page_queue_spin_lock(m);
604 void
605 vm_page_queues_spin_lock(u_short queue)
607 _vm_page_queues_spin_lock(queue);
610 void
611 vm_page_queue_spin_unlock(vm_page_t m)
613 _vm_page_queue_spin_unlock(m);
616 void
617 vm_page_queues_spin_unlock(u_short queue)
619 _vm_page_queues_spin_unlock(queue);
623 * This locks the specified vm_page and its queue in the proper order
624 * (page first, then queue). The queue may change so the caller must
625 * recheck on return.
627 static __inline
628 void
629 _vm_page_and_queue_spin_lock(vm_page_t m)
631 vm_page_spin_lock(m);
632 _vm_page_queue_spin_lock(m);
635 static __inline
636 void
637 _vm_page_and_queue_spin_unlock(vm_page_t m)
639 _vm_page_queues_spin_unlock(m->queue);
640 vm_page_spin_unlock(m);
643 void
644 vm_page_and_queue_spin_unlock(vm_page_t m)
646 _vm_page_and_queue_spin_unlock(m);
649 void
650 vm_page_and_queue_spin_lock(vm_page_t m)
652 _vm_page_and_queue_spin_lock(m);
656 * Helper function removes vm_page from its current queue.
657 * Returns the base queue the page used to be on.
659 * The vm_page and the queue must be spinlocked.
660 * This function will unlock the queue but leave the page spinlocked.
662 static __inline u_short
663 _vm_page_rem_queue_spinlocked(vm_page_t m)
665 struct vpgqueues *pq;
666 u_short queue;
667 u_short oqueue;
669 queue = m->queue;
670 if (queue != PQ_NONE) {
671 pq = &vm_page_queues[queue];
672 TAILQ_REMOVE(&pq->pl, m, pageq);
673 atomic_add_int(pq->cnt, -1);
674 pq->lcnt--;
675 m->queue = PQ_NONE;
676 oqueue = queue;
677 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
678 queue -= m->pc;
679 vm_page_queues_spin_unlock(oqueue); /* intended */
681 return queue;
685 * Helper function places the vm_page on the specified queue.
687 * The vm_page must be spinlocked.
688 * This function will return with both the page and the queue locked.
690 static __inline void
691 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
693 struct vpgqueues *pq;
695 KKASSERT(m->queue == PQ_NONE);
697 if (queue != PQ_NONE) {
698 vm_page_queues_spin_lock(queue);
699 pq = &vm_page_queues[queue];
700 ++pq->lcnt;
701 atomic_add_int(pq->cnt, 1);
702 m->queue = queue;
705 * PQ_FREE is always handled LIFO style to try to provide
706 * cache-hot pages to programs.
708 if (queue - m->pc == PQ_FREE) {
709 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
710 } else if (athead) {
711 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
712 } else {
713 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
715 /* leave the queue spinlocked */
720 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
721 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
722 * did not. Only one sleep call will be made before returning.
724 * This function does NOT busy the page and on return the page is not
725 * guaranteed to be available.
727 void
728 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
730 u_int32_t flags;
732 for (;;) {
733 flags = m->flags;
734 cpu_ccfence();
736 if ((flags & PG_BUSY) == 0 &&
737 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
738 break;
740 tsleep_interlock(m, 0);
741 if (atomic_cmpset_int(&m->flags, flags,
742 flags | PG_WANTED | PG_REFERENCED)) {
743 tsleep(m, PINTERLOCKED, msg, 0);
744 break;
750 * This calculates and returns a page color given an optional VM object and
751 * either a pindex or an iterator. We attempt to return a cpu-localized
752 * pg_color that is still roughly 16-way set-associative. The CPU topology
753 * is used if it was probed.
755 * The caller may use the returned value to index into e.g. PQ_FREE when
756 * allocating a page in order to nominally obtain pages that are hopefully
757 * already localized to the requesting cpu. This function is not able to
758 * provide any sort of guarantee of this, but does its best to improve
759 * hardware cache management performance.
761 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
763 u_short
764 vm_get_pg_color(globaldata_t gd, vm_object_t object, vm_pindex_t pindex)
766 u_short pg_color;
767 int phys_id;
768 int core_id;
769 int object_pg_color;
771 phys_id = get_cpu_phys_id(gd->gd_cpuid);
772 core_id = get_cpu_core_id(gd->gd_cpuid);
773 object_pg_color = object ? object->pg_color : 0;
775 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
776 int grpsize = PQ_L2_SIZE / cpu_topology_phys_ids;
778 if (grpsize / cpu_topology_core_ids >= PQ_SET_ASSOC) {
780 * Enough space for a full break-down.
782 pg_color = phys_id * grpsize;
783 pg_color += core_id * grpsize / cpu_topology_core_ids;
784 pg_color += (pindex + object_pg_color) %
785 (grpsize / cpu_topology_core_ids);
786 } else {
788 * Not enough space, split up by physical package,
789 * then split up by core id but only down to a
790 * 16-set. If all else fails, force a 16-set.
792 pg_color = phys_id * grpsize;
793 if (grpsize > 16) {
794 pg_color += 16 * (core_id % (grpsize / 16));
795 grpsize = 16;
796 } else {
797 grpsize = 16;
799 pg_color += (pindex + object_pg_color) %
800 grpsize;
802 } else {
804 * Unknown topology, distribute things evenly.
806 pg_color = gd->gd_cpuid * PQ_L2_SIZE / ncpus;
807 pg_color += pindex + object_pg_color;
809 return pg_color;
813 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
814 * also wait for m->busy to become 0 before setting PG_BUSY.
816 void
817 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
818 int also_m_busy, const char *msg
819 VM_PAGE_DEBUG_ARGS)
821 u_int32_t flags;
823 for (;;) {
824 flags = m->flags;
825 cpu_ccfence();
826 if (flags & PG_BUSY) {
827 tsleep_interlock(m, 0);
828 if (atomic_cmpset_int(&m->flags, flags,
829 flags | PG_WANTED | PG_REFERENCED)) {
830 tsleep(m, PINTERLOCKED, msg, 0);
832 } else if (also_m_busy && (flags & PG_SBUSY)) {
833 tsleep_interlock(m, 0);
834 if (atomic_cmpset_int(&m->flags, flags,
835 flags | PG_WANTED | PG_REFERENCED)) {
836 tsleep(m, PINTERLOCKED, msg, 0);
838 } else {
839 if (atomic_cmpset_int(&m->flags, flags,
840 flags | PG_BUSY)) {
841 #ifdef VM_PAGE_DEBUG
842 m->busy_func = func;
843 m->busy_line = lineno;
844 #endif
845 break;
852 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
853 * is also 0.
855 * Returns non-zero on failure.
858 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
859 VM_PAGE_DEBUG_ARGS)
861 u_int32_t flags;
863 for (;;) {
864 flags = m->flags;
865 cpu_ccfence();
866 if (flags & PG_BUSY)
867 return TRUE;
868 if (also_m_busy && (flags & PG_SBUSY))
869 return TRUE;
870 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
871 #ifdef VM_PAGE_DEBUG
872 m->busy_func = func;
873 m->busy_line = lineno;
874 #endif
875 return FALSE;
881 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
882 * that a wakeup() should be performed.
884 * The vm_page must be spinlocked and will remain spinlocked on return.
885 * The related queue must NOT be spinlocked (which could deadlock us).
887 * (inline version)
889 static __inline
891 _vm_page_wakeup(vm_page_t m)
893 u_int32_t flags;
895 for (;;) {
896 flags = m->flags;
897 cpu_ccfence();
898 if (atomic_cmpset_int(&m->flags, flags,
899 flags & ~(PG_BUSY | PG_WANTED))) {
900 break;
903 return(flags & PG_WANTED);
907 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
908 * is typically the last call you make on a page before moving onto
909 * other things.
911 void
912 vm_page_wakeup(vm_page_t m)
914 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
915 vm_page_spin_lock(m);
916 if (_vm_page_wakeup(m)) {
917 vm_page_spin_unlock(m);
918 wakeup(m);
919 } else {
920 vm_page_spin_unlock(m);
925 * Holding a page keeps it from being reused. Other parts of the system
926 * can still disassociate the page from its current object and free it, or
927 * perform read or write I/O on it and/or otherwise manipulate the page,
928 * but if the page is held the VM system will leave the page and its data
929 * intact and not reuse the page for other purposes until the last hold
930 * reference is released. (see vm_page_wire() if you want to prevent the
931 * page from being disassociated from its object too).
933 * The caller must still validate the contents of the page and, if necessary,
934 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
935 * before manipulating the page.
937 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
939 void
940 vm_page_hold(vm_page_t m)
942 vm_page_spin_lock(m);
943 atomic_add_int(&m->hold_count, 1);
944 if (m->queue - m->pc == PQ_FREE) {
945 _vm_page_queue_spin_lock(m);
946 _vm_page_rem_queue_spinlocked(m);
947 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
948 _vm_page_queue_spin_unlock(m);
950 vm_page_spin_unlock(m);
954 * The opposite of vm_page_hold(). If the page is on the HOLD queue
955 * it was freed while held and must be moved back to the FREE queue.
957 void
958 vm_page_unhold(vm_page_t m)
960 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
961 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
962 m, m->hold_count, m->queue - m->pc));
963 vm_page_spin_lock(m);
964 atomic_add_int(&m->hold_count, -1);
965 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
966 _vm_page_queue_spin_lock(m);
967 _vm_page_rem_queue_spinlocked(m);
968 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
969 _vm_page_queue_spin_unlock(m);
971 vm_page_spin_unlock(m);
975 * vm_page_getfake:
977 * Create a fictitious page with the specified physical address and
978 * memory attribute. The memory attribute is the only the machine-
979 * dependent aspect of a fictitious page that must be initialized.
982 void
983 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
986 if ((m->flags & PG_FICTITIOUS) != 0) {
988 * The page's memattr might have changed since the
989 * previous initialization. Update the pmap to the
990 * new memattr.
992 goto memattr;
994 m->phys_addr = paddr;
995 m->queue = PQ_NONE;
996 /* Fictitious pages don't use "segind". */
997 /* Fictitious pages don't use "order" or "pool". */
998 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
999 m->wire_count = 1;
1000 pmap_page_init(m);
1001 memattr:
1002 pmap_page_set_memattr(m, memattr);
1006 * Inserts the given vm_page into the object and object list.
1008 * The pagetables are not updated but will presumably fault the page
1009 * in if necessary, or if a kernel page the caller will at some point
1010 * enter the page into the kernel's pmap. We are not allowed to block
1011 * here so we *can't* do this anyway.
1013 * This routine may not block.
1014 * This routine must be called with the vm_object held.
1015 * This routine must be called with a critical section held.
1017 * This routine returns TRUE if the page was inserted into the object
1018 * successfully, and FALSE if the page already exists in the object.
1021 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1023 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1024 if (m->object != NULL)
1025 panic("vm_page_insert: already inserted");
1027 object->generation++;
1030 * Record the object/offset pair in this page and add the
1031 * pv_list_count of the page to the object.
1033 * The vm_page spin lock is required for interactions with the pmap.
1035 vm_page_spin_lock(m);
1036 m->object = object;
1037 m->pindex = pindex;
1038 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1039 m->object = NULL;
1040 m->pindex = 0;
1041 vm_page_spin_unlock(m);
1042 return FALSE;
1044 ++object->resident_page_count;
1045 ++mycpu->gd_vmtotal.t_rm;
1046 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
1047 vm_page_spin_unlock(m);
1050 * Since we are inserting a new and possibly dirty page,
1051 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1053 if ((m->valid & m->dirty) ||
1054 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1055 vm_object_set_writeable_dirty(object);
1058 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1060 swap_pager_page_inserted(m);
1061 return TRUE;
1065 * Removes the given vm_page_t from the (object,index) table
1067 * The underlying pmap entry (if any) is NOT removed here.
1068 * This routine may not block.
1070 * The page must be BUSY and will remain BUSY on return.
1071 * No other requirements.
1073 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1074 * it busy.
1076 void
1077 vm_page_remove(vm_page_t m)
1079 vm_object_t object;
1081 if (m->object == NULL) {
1082 return;
1085 if ((m->flags & PG_BUSY) == 0)
1086 panic("vm_page_remove: page not busy");
1088 object = m->object;
1090 vm_object_hold(object);
1093 * Remove the page from the object and update the object.
1095 * The vm_page spin lock is required for interactions with the pmap.
1097 vm_page_spin_lock(m);
1098 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1099 --object->resident_page_count;
1100 --mycpu->gd_vmtotal.t_rm;
1101 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1102 m->object = NULL;
1103 vm_page_spin_unlock(m);
1105 object->generation++;
1107 vm_object_drop(object);
1111 * Locate and return the page at (object, pindex), or NULL if the
1112 * page could not be found.
1114 * The caller must hold the vm_object token.
1116 vm_page_t
1117 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1119 vm_page_t m;
1122 * Search the hash table for this object/offset pair
1124 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1125 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1126 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1127 return(m);
1130 vm_page_t
1131 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1132 vm_pindex_t pindex,
1133 int also_m_busy, const char *msg
1134 VM_PAGE_DEBUG_ARGS)
1136 u_int32_t flags;
1137 vm_page_t m;
1139 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1140 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1141 while (m) {
1142 KKASSERT(m->object == object && m->pindex == pindex);
1143 flags = m->flags;
1144 cpu_ccfence();
1145 if (flags & PG_BUSY) {
1146 tsleep_interlock(m, 0);
1147 if (atomic_cmpset_int(&m->flags, flags,
1148 flags | PG_WANTED | PG_REFERENCED)) {
1149 tsleep(m, PINTERLOCKED, msg, 0);
1150 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1151 pindex);
1153 } else if (also_m_busy && (flags & PG_SBUSY)) {
1154 tsleep_interlock(m, 0);
1155 if (atomic_cmpset_int(&m->flags, flags,
1156 flags | PG_WANTED | PG_REFERENCED)) {
1157 tsleep(m, PINTERLOCKED, msg, 0);
1158 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1159 pindex);
1161 } else if (atomic_cmpset_int(&m->flags, flags,
1162 flags | PG_BUSY)) {
1163 #ifdef VM_PAGE_DEBUG
1164 m->busy_func = func;
1165 m->busy_line = lineno;
1166 #endif
1167 break;
1170 return m;
1174 * Attempt to lookup and busy a page.
1176 * Returns NULL if the page could not be found
1178 * Returns a vm_page and error == TRUE if the page exists but could not
1179 * be busied.
1181 * Returns a vm_page and error == FALSE on success.
1183 vm_page_t
1184 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1185 vm_pindex_t pindex,
1186 int also_m_busy, int *errorp
1187 VM_PAGE_DEBUG_ARGS)
1189 u_int32_t flags;
1190 vm_page_t m;
1192 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1193 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1194 *errorp = FALSE;
1195 while (m) {
1196 KKASSERT(m->object == object && m->pindex == pindex);
1197 flags = m->flags;
1198 cpu_ccfence();
1199 if (flags & PG_BUSY) {
1200 *errorp = TRUE;
1201 break;
1203 if (also_m_busy && (flags & PG_SBUSY)) {
1204 *errorp = TRUE;
1205 break;
1207 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1208 #ifdef VM_PAGE_DEBUG
1209 m->busy_func = func;
1210 m->busy_line = lineno;
1211 #endif
1212 break;
1215 return m;
1219 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1220 * be repurposed it will be released, *must_reenter will be set to 1, and
1221 * this function will fall-through to vm_page_lookup_busy_try().
1223 * The passed-in page must be wired and not busy. The returned page will
1224 * be busied and not wired.
1226 * A different page may be returned. The returned page will be busied and
1227 * not wired.
1229 * NULL can be returned. If so, the required page could not be busied.
1230 * The passed-in page will be unwired.
1232 vm_page_t
1233 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1234 int also_m_busy, int *errorp, vm_page_t m,
1235 int *must_reenter, int *iswired)
1237 if (m) {
1238 vm_page_busy_wait(m, TRUE, "biodep");
1239 if ((m->flags & (PG_UNMANAGED | PG_MAPPED | PG_FICTITIOUS)) ||
1240 m->busy || m->wire_count != 1 || m->hold_count) {
1241 vm_page_unwire(m, 0);
1242 vm_page_wakeup(m);
1243 /* fall through to normal lookup */
1244 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1245 vm_page_unwire(m, 0);
1246 vm_page_deactivate(m);
1247 vm_page_wakeup(m);
1248 /* fall through to normal lookup */
1249 } else {
1251 * We can safely repurpose the page. It should
1252 * already be unqueued.
1254 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1255 vm_page_remove(m);
1256 m->valid = 0;
1257 m->act_count = 0;
1258 if (vm_page_insert(m, object, pindex)) {
1259 *errorp = 0;
1260 *iswired = 1;
1262 return m;
1264 vm_page_unwire(m, 0);
1265 vm_page_free(m);
1266 /* fall through to normal lookup */
1269 *must_reenter = 1;
1270 *iswired = 0;
1271 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1273 return m;
1277 * Caller must hold the related vm_object
1279 vm_page_t
1280 vm_page_next(vm_page_t m)
1282 vm_page_t next;
1284 next = vm_page_rb_tree_RB_NEXT(m);
1285 if (next && next->pindex != m->pindex + 1)
1286 next = NULL;
1287 return (next);
1291 * vm_page_rename()
1293 * Move the given vm_page from its current object to the specified
1294 * target object/offset. The page must be busy and will remain so
1295 * on return.
1297 * new_object must be held.
1298 * This routine might block. XXX ?
1300 * NOTE: Swap associated with the page must be invalidated by the move. We
1301 * have to do this for several reasons: (1) we aren't freeing the
1302 * page, (2) we are dirtying the page, (3) the VM system is probably
1303 * moving the page from object A to B, and will then later move
1304 * the backing store from A to B and we can't have a conflict.
1306 * NOTE: We *always* dirty the page. It is necessary both for the
1307 * fact that we moved it, and because we may be invalidating
1308 * swap. If the page is on the cache, we have to deactivate it
1309 * or vm_page_dirty() will panic. Dirty pages are not allowed
1310 * on the cache.
1312 void
1313 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1315 KKASSERT(m->flags & PG_BUSY);
1316 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1317 if (m->object) {
1318 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1319 vm_page_remove(m);
1321 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1322 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1323 new_object, new_pindex);
1325 if (m->queue - m->pc == PQ_CACHE)
1326 vm_page_deactivate(m);
1327 vm_page_dirty(m);
1331 * vm_page_unqueue() without any wakeup. This routine is used when a page
1332 * is to remain BUSYied by the caller.
1334 * This routine may not block.
1336 void
1337 vm_page_unqueue_nowakeup(vm_page_t m)
1339 vm_page_and_queue_spin_lock(m);
1340 (void)_vm_page_rem_queue_spinlocked(m);
1341 vm_page_spin_unlock(m);
1345 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1346 * if necessary.
1348 * This routine may not block.
1350 void
1351 vm_page_unqueue(vm_page_t m)
1353 u_short queue;
1355 vm_page_and_queue_spin_lock(m);
1356 queue = _vm_page_rem_queue_spinlocked(m);
1357 if (queue == PQ_FREE || queue == PQ_CACHE) {
1358 vm_page_spin_unlock(m);
1359 pagedaemon_wakeup();
1360 } else {
1361 vm_page_spin_unlock(m);
1366 * vm_page_list_find()
1368 * Find a page on the specified queue with color optimization.
1370 * The page coloring optimization attempts to locate a page that does
1371 * not overload other nearby pages in the object in the cpu's L1 or L2
1372 * caches. We need this optimization because cpu caches tend to be
1373 * physical caches, while object spaces tend to be virtual.
1375 * The page coloring optimization also, very importantly, tries to localize
1376 * memory to cpus and physical sockets.
1378 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1379 * and the algorithm is adjusted to localize allocations on a per-core basis.
1380 * This is done by 'twisting' the colors.
1382 * The page is returned spinlocked and removed from its queue (it will
1383 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1384 * is responsible for dealing with the busy-page case (usually by
1385 * deactivating the page and looping).
1387 * NOTE: This routine is carefully inlined. A non-inlined version
1388 * is available for outside callers but the only critical path is
1389 * from within this source file.
1391 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1392 * represent stable storage, allowing us to order our locks vm_page
1393 * first, then queue.
1395 static __inline
1396 vm_page_t
1397 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1399 vm_page_t m;
1401 for (;;) {
1402 if (prefer_zero) {
1403 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl,
1404 pglist);
1405 } else {
1406 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1408 if (m == NULL) {
1409 m = _vm_page_list_find2(basequeue, index);
1410 return(m);
1412 vm_page_and_queue_spin_lock(m);
1413 if (m->queue == basequeue + index) {
1414 _vm_page_rem_queue_spinlocked(m);
1415 /* vm_page_t spin held, no queue spin */
1416 break;
1418 vm_page_and_queue_spin_unlock(m);
1420 return(m);
1424 * If we could not find the page in the desired queue try to find it in
1425 * a nearby queue.
1427 static vm_page_t
1428 _vm_page_list_find2(int basequeue, int index)
1430 struct vpgqueues *pq;
1431 vm_page_t m = NULL;
1432 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1433 int pqi;
1434 int i;
1436 index &= PQ_L2_MASK;
1437 pq = &vm_page_queues[basequeue];
1440 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1441 * else fails (PQ_L2_MASK which is 255).
1443 do {
1444 pqmask = (pqmask << 1) | 1;
1445 for (i = 0; i <= pqmask; ++i) {
1446 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1447 m = TAILQ_FIRST(&pq[pqi].pl);
1448 if (m) {
1449 _vm_page_and_queue_spin_lock(m);
1450 if (m->queue == basequeue + pqi) {
1451 _vm_page_rem_queue_spinlocked(m);
1452 return(m);
1454 _vm_page_and_queue_spin_unlock(m);
1455 --i;
1456 continue;
1459 } while (pqmask != PQ_L2_MASK);
1461 return(m);
1465 * Returns a vm_page candidate for allocation. The page is not busied so
1466 * it can move around. The caller must busy the page (and typically
1467 * deactivate it if it cannot be busied!)
1469 * Returns a spinlocked vm_page that has been removed from its queue.
1471 vm_page_t
1472 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1474 return(_vm_page_list_find(basequeue, index, prefer_zero));
1478 * Find a page on the cache queue with color optimization, remove it
1479 * from the queue, and busy it. The returned page will not be spinlocked.
1481 * A candidate failure will be deactivated. Candidates can fail due to
1482 * being busied by someone else, in which case they will be deactivated.
1484 * This routine may not block.
1487 static vm_page_t
1488 vm_page_select_cache(u_short pg_color)
1490 vm_page_t m;
1492 for (;;) {
1493 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1494 if (m == NULL)
1495 break;
1497 * (m) has been removed from its queue and spinlocked
1499 if (vm_page_busy_try(m, TRUE)) {
1500 _vm_page_deactivate_locked(m, 0);
1501 vm_page_spin_unlock(m);
1502 } else {
1504 * We successfully busied the page
1506 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1507 m->hold_count == 0 &&
1508 m->wire_count == 0 &&
1509 (m->dirty & m->valid) == 0) {
1510 vm_page_spin_unlock(m);
1511 pagedaemon_wakeup();
1512 return(m);
1516 * The page cannot be recycled, deactivate it.
1518 _vm_page_deactivate_locked(m, 0);
1519 if (_vm_page_wakeup(m)) {
1520 vm_page_spin_unlock(m);
1521 wakeup(m);
1522 } else {
1523 vm_page_spin_unlock(m);
1527 return (m);
1531 * Find a free or zero page, with specified preference. We attempt to
1532 * inline the nominal case and fall back to _vm_page_select_free()
1533 * otherwise. A busied page is removed from the queue and returned.
1535 * This routine may not block.
1537 static __inline vm_page_t
1538 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1540 vm_page_t m;
1542 for (;;) {
1543 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1544 prefer_zero);
1545 if (m == NULL)
1546 break;
1547 if (vm_page_busy_try(m, TRUE)) {
1549 * Various mechanisms such as a pmap_collect can
1550 * result in a busy page on the free queue. We
1551 * have to move the page out of the way so we can
1552 * retry the allocation. If the other thread is not
1553 * allocating the page then m->valid will remain 0 and
1554 * the pageout daemon will free the page later on.
1556 * Since we could not busy the page, however, we
1557 * cannot make assumptions as to whether the page
1558 * will be allocated by the other thread or not,
1559 * so all we can do is deactivate it to move it out
1560 * of the way. In particular, if the other thread
1561 * wires the page it may wind up on the inactive
1562 * queue and the pageout daemon will have to deal
1563 * with that case too.
1565 _vm_page_deactivate_locked(m, 0);
1566 vm_page_spin_unlock(m);
1567 } else {
1569 * Theoretically if we are able to busy the page
1570 * atomic with the queue removal (using the vm_page
1571 * lock) nobody else should be able to mess with the
1572 * page before us.
1574 KKASSERT((m->flags & (PG_UNMANAGED |
1575 PG_NEED_COMMIT)) == 0);
1576 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1577 "pg %p q=%d flags=%08x hold=%d wire=%d",
1578 m, m->queue, m->flags, m->hold_count, m->wire_count));
1579 KKASSERT(m->wire_count == 0);
1580 vm_page_spin_unlock(m);
1581 pagedaemon_wakeup();
1583 /* return busied and removed page */
1584 return(m);
1587 return(m);
1591 * vm_page_alloc()
1593 * Allocate and return a memory cell associated with this VM object/offset
1594 * pair. If object is NULL an unassociated page will be allocated.
1596 * The returned page will be busied and removed from its queues. This
1597 * routine can block and may return NULL if a race occurs and the page
1598 * is found to already exist at the specified (object, pindex).
1600 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1601 * VM_ALLOC_QUICK like normal but cannot use cache
1602 * VM_ALLOC_SYSTEM greater free drain
1603 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1604 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1605 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1606 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1607 * (see vm_page_grab())
1608 * VM_ALLOC_USE_GD ok to use per-gd cache
1610 * The object must be held if not NULL
1611 * This routine may not block
1613 * Additional special handling is required when called from an interrupt
1614 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1615 * in this case.
1617 vm_page_t
1618 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1620 globaldata_t gd = mycpu;
1621 vm_object_t obj;
1622 vm_page_t m;
1623 u_short pg_color;
1625 #if 0
1627 * Special per-cpu free VM page cache. The pages are pre-busied
1628 * and pre-zerod for us.
1630 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1631 crit_enter_gd(gd);
1632 if (gd->gd_vmpg_count) {
1633 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1634 crit_exit_gd(gd);
1635 goto done;
1637 crit_exit_gd(gd);
1639 #endif
1640 m = NULL;
1643 * CPU LOCALIZATION
1645 * CPU localization algorithm. Break the page queues up by physical
1646 * id and core id (note that two cpu threads will have the same core
1647 * id, and core_id != gd_cpuid).
1649 * This is nowhere near perfect, for example the last pindex in a
1650 * subgroup will overflow into the next cpu or package. But this
1651 * should get us good page reuse locality in heavy mixed loads.
1653 pg_color = vm_get_pg_color(gd, object, pindex);
1655 KKASSERT(page_req &
1656 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1657 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1660 * Certain system threads (pageout daemon, buf_daemon's) are
1661 * allowed to eat deeper into the free page list.
1663 if (curthread->td_flags & TDF_SYSTHREAD)
1664 page_req |= VM_ALLOC_SYSTEM;
1667 * Impose various limitations. Note that the v_free_reserved test
1668 * must match the opposite of vm_page_count_target() to avoid
1669 * livelocks, be careful.
1671 loop:
1672 if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1673 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1674 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1675 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1678 * The free queue has sufficient free pages to take one out.
1680 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1681 m = vm_page_select_free(pg_color, TRUE);
1682 else
1683 m = vm_page_select_free(pg_color, FALSE);
1684 } else if (page_req & VM_ALLOC_NORMAL) {
1686 * Allocatable from the cache (non-interrupt only). On
1687 * success, we must free the page and try again, thus
1688 * ensuring that vmstats.v_*_free_min counters are replenished.
1690 #ifdef INVARIANTS
1691 if (curthread->td_preempted) {
1692 kprintf("vm_page_alloc(): warning, attempt to allocate"
1693 " cache page from preempting interrupt\n");
1694 m = NULL;
1695 } else {
1696 m = vm_page_select_cache(pg_color);
1698 #else
1699 m = vm_page_select_cache(pg_color);
1700 #endif
1702 * On success move the page into the free queue and loop.
1704 * Only do this if we can safely acquire the vm_object lock,
1705 * because this is effectively a random page and the caller
1706 * might be holding the lock shared, we don't want to
1707 * deadlock.
1709 if (m != NULL) {
1710 KASSERT(m->dirty == 0,
1711 ("Found dirty cache page %p", m));
1712 if ((obj = m->object) != NULL) {
1713 if (vm_object_hold_try(obj)) {
1714 vm_page_protect(m, VM_PROT_NONE);
1715 vm_page_free(m);
1716 /* m->object NULL here */
1717 vm_object_drop(obj);
1718 } else {
1719 vm_page_deactivate(m);
1720 vm_page_wakeup(m);
1722 } else {
1723 vm_page_protect(m, VM_PROT_NONE);
1724 vm_page_free(m);
1726 goto loop;
1730 * On failure return NULL
1732 #if defined(DIAGNOSTIC)
1733 if (vmstats.v_cache_count > 0)
1734 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1735 #endif
1736 vm_pageout_deficit++;
1737 pagedaemon_wakeup();
1738 return (NULL);
1739 } else {
1741 * No pages available, wakeup the pageout daemon and give up.
1743 vm_pageout_deficit++;
1744 pagedaemon_wakeup();
1745 return (NULL);
1749 * v_free_count can race so loop if we don't find the expected
1750 * page.
1752 if (m == NULL)
1753 goto loop;
1756 * Good page found. The page has already been busied for us and
1757 * removed from its queues.
1759 KASSERT(m->dirty == 0,
1760 ("vm_page_alloc: free/cache page %p was dirty", m));
1761 KKASSERT(m->queue == PQ_NONE);
1763 #if 0
1764 done:
1765 #endif
1767 * Initialize the structure, inheriting some flags but clearing
1768 * all the rest. The page has already been busied for us.
1770 vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY));
1771 KKASSERT(m->wire_count == 0);
1772 KKASSERT(m->busy == 0);
1773 m->act_count = 0;
1774 m->valid = 0;
1777 * Caller must be holding the object lock (asserted by
1778 * vm_page_insert()).
1780 * NOTE: Inserting a page here does not insert it into any pmaps
1781 * (which could cause us to block allocating memory).
1783 * NOTE: If no object an unassociated page is allocated, m->pindex
1784 * can be used by the caller for any purpose.
1786 if (object) {
1787 if (vm_page_insert(m, object, pindex) == FALSE) {
1788 vm_page_free(m);
1789 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1790 panic("PAGE RACE %p[%ld]/%p",
1791 object, (long)pindex, m);
1792 m = NULL;
1794 } else {
1795 m->pindex = pindex;
1799 * Don't wakeup too often - wakeup the pageout daemon when
1800 * we would be nearly out of memory.
1802 pagedaemon_wakeup();
1805 * A PG_BUSY page is returned.
1807 return (m);
1811 * Returns number of pages available in our DMA memory reserve
1812 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1814 vm_size_t
1815 vm_contig_avail_pages(void)
1817 alist_blk_t blk;
1818 alist_blk_t count;
1819 alist_blk_t bfree;
1820 spin_lock(&vm_contig_spin);
1821 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1822 spin_unlock(&vm_contig_spin);
1824 return bfree;
1828 * Attempt to allocate contiguous physical memory with the specified
1829 * requirements.
1831 vm_page_t
1832 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1833 unsigned long alignment, unsigned long boundary,
1834 unsigned long size, vm_memattr_t memattr)
1836 alist_blk_t blk;
1837 vm_page_t m;
1838 int i;
1840 alignment >>= PAGE_SHIFT;
1841 if (alignment == 0)
1842 alignment = 1;
1843 boundary >>= PAGE_SHIFT;
1844 if (boundary == 0)
1845 boundary = 1;
1846 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1848 spin_lock(&vm_contig_spin);
1849 blk = alist_alloc(&vm_contig_alist, 0, size);
1850 if (blk == ALIST_BLOCK_NONE) {
1851 spin_unlock(&vm_contig_spin);
1852 if (bootverbose) {
1853 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1854 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1856 return(NULL);
1858 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1859 alist_free(&vm_contig_alist, blk, size);
1860 spin_unlock(&vm_contig_spin);
1861 if (bootverbose) {
1862 kprintf("vm_page_alloc_contig: %ldk high "
1863 "%016jx failed\n",
1864 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1865 (intmax_t)high);
1867 return(NULL);
1869 spin_unlock(&vm_contig_spin);
1870 if (vm_contig_verbose) {
1871 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1872 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1873 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1876 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1877 if (memattr != VM_MEMATTR_DEFAULT)
1878 for (i = 0;i < size;i++)
1879 pmap_page_set_memattr(&m[i], memattr);
1880 return m;
1884 * Free contiguously allocated pages. The pages will be wired but not busy.
1885 * When freeing to the alist we leave them wired and not busy.
1887 void
1888 vm_page_free_contig(vm_page_t m, unsigned long size)
1890 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1891 vm_pindex_t start = pa >> PAGE_SHIFT;
1892 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1894 if (vm_contig_verbose) {
1895 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1896 (intmax_t)pa, size / 1024);
1898 if (pa < vm_low_phys_reserved) {
1899 KKASSERT(pa + size <= vm_low_phys_reserved);
1900 spin_lock(&vm_contig_spin);
1901 alist_free(&vm_contig_alist, start, pages);
1902 spin_unlock(&vm_contig_spin);
1903 } else {
1904 while (pages) {
1905 vm_page_busy_wait(m, FALSE, "cpgfr");
1906 vm_page_unwire(m, 0);
1907 vm_page_free(m);
1908 --pages;
1909 ++m;
1917 * Wait for sufficient free memory for nominal heavy memory use kernel
1918 * operations.
1920 * WARNING! Be sure never to call this in any vm_pageout code path, which
1921 * will trivially deadlock the system.
1923 void
1924 vm_wait_nominal(void)
1926 while (vm_page_count_min(0))
1927 vm_wait(0);
1931 * Test if vm_wait_nominal() would block.
1934 vm_test_nominal(void)
1936 if (vm_page_count_min(0))
1937 return(1);
1938 return(0);
1942 * Block until free pages are available for allocation, called in various
1943 * places before memory allocations.
1945 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1946 * more generous then that.
1948 void
1949 vm_wait(int timo)
1952 * never wait forever
1954 if (timo == 0)
1955 timo = hz;
1956 lwkt_gettoken(&vm_token);
1958 if (curthread == pagethread) {
1960 * The pageout daemon itself needs pages, this is bad.
1962 if (vm_page_count_min(0)) {
1963 vm_pageout_pages_needed = 1;
1964 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1966 } else {
1968 * Wakeup the pageout daemon if necessary and wait.
1970 * Do not wait indefinitely for the target to be reached,
1971 * as load might prevent it from being reached any time soon.
1972 * But wait a little to try to slow down page allocations
1973 * and to give more important threads (the pagedaemon)
1974 * allocation priority.
1976 if (vm_page_count_target()) {
1977 if (vm_pages_needed == 0) {
1978 vm_pages_needed = 1;
1979 wakeup(&vm_pages_needed);
1981 ++vm_pages_waiting; /* SMP race ok */
1982 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1985 lwkt_reltoken(&vm_token);
1989 * Block until free pages are available for allocation
1991 * Called only from vm_fault so that processes page faulting can be
1992 * easily tracked.
1994 void
1995 vm_wait_pfault(void)
1998 * Wakeup the pageout daemon if necessary and wait.
2000 * Do not wait indefinitely for the target to be reached,
2001 * as load might prevent it from being reached any time soon.
2002 * But wait a little to try to slow down page allocations
2003 * and to give more important threads (the pagedaemon)
2004 * allocation priority.
2006 if (vm_page_count_min(0)) {
2007 lwkt_gettoken(&vm_token);
2008 while (vm_page_count_severe()) {
2009 if (vm_page_count_target()) {
2010 thread_t td;
2012 if (vm_pages_needed == 0) {
2013 vm_pages_needed = 1;
2014 wakeup(&vm_pages_needed);
2016 ++vm_pages_waiting; /* SMP race ok */
2017 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2020 * Do not stay stuck in the loop if the system is trying
2021 * to kill the process.
2023 td = curthread;
2024 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2025 break;
2028 lwkt_reltoken(&vm_token);
2033 * Put the specified page on the active list (if appropriate). Ensure
2034 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2036 * The caller should be holding the page busied ? XXX
2037 * This routine may not block.
2039 void
2040 vm_page_activate(vm_page_t m)
2042 u_short oqueue;
2044 vm_page_spin_lock(m);
2045 if (m->queue - m->pc != PQ_ACTIVE) {
2046 _vm_page_queue_spin_lock(m);
2047 oqueue = _vm_page_rem_queue_spinlocked(m);
2048 /* page is left spinlocked, queue is unlocked */
2050 if (oqueue == PQ_CACHE)
2051 mycpu->gd_cnt.v_reactivated++;
2052 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2053 if (m->act_count < ACT_INIT)
2054 m->act_count = ACT_INIT;
2055 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2057 _vm_page_and_queue_spin_unlock(m);
2058 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2059 pagedaemon_wakeup();
2060 } else {
2061 if (m->act_count < ACT_INIT)
2062 m->act_count = ACT_INIT;
2063 vm_page_spin_unlock(m);
2068 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2069 * routine is called when a page has been added to the cache or free
2070 * queues.
2072 * This routine may not block.
2074 static __inline void
2075 vm_page_free_wakeup(void)
2078 * If the pageout daemon itself needs pages, then tell it that
2079 * there are some free.
2081 if (vm_pageout_pages_needed &&
2082 vmstats.v_cache_count + vmstats.v_free_count >=
2083 vmstats.v_pageout_free_min
2085 vm_pageout_pages_needed = 0;
2086 wakeup(&vm_pageout_pages_needed);
2090 * Wakeup processes that are waiting on memory.
2092 * Generally speaking we want to wakeup stuck processes as soon as
2093 * possible. !vm_page_count_min(0) is the absolute minimum point
2094 * where we can do this. Wait a bit longer to reduce degenerate
2095 * re-blocking (vm_page_free_hysteresis). The target check is just
2096 * to make sure the min-check w/hysteresis does not exceed the
2097 * normal target.
2099 if (vm_pages_waiting) {
2100 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2101 !vm_page_count_target()) {
2102 vm_pages_waiting = 0;
2103 wakeup(&vmstats.v_free_count);
2104 ++mycpu->gd_cnt.v_ppwakeups;
2106 #if 0
2107 if (!vm_page_count_target()) {
2109 * Plenty of pages are free, wakeup everyone.
2111 vm_pages_waiting = 0;
2112 wakeup(&vmstats.v_free_count);
2113 ++mycpu->gd_cnt.v_ppwakeups;
2114 } else if (!vm_page_count_min(0)) {
2116 * Some pages are free, wakeup someone.
2118 int wcount = vm_pages_waiting;
2119 if (wcount > 0)
2120 --wcount;
2121 vm_pages_waiting = wcount;
2122 wakeup_one(&vmstats.v_free_count);
2123 ++mycpu->gd_cnt.v_ppwakeups;
2125 #endif
2130 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2131 * it from its VM object.
2133 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2134 * return (the page will have been freed).
2136 void
2137 vm_page_free_toq(vm_page_t m)
2139 mycpu->gd_cnt.v_tfree++;
2140 KKASSERT((m->flags & PG_MAPPED) == 0);
2141 KKASSERT(m->flags & PG_BUSY);
2143 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2144 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2145 "PG_BUSY(%d), hold(%d)\n",
2146 (u_long)m->pindex, m->busy,
2147 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2148 if ((m->queue - m->pc) == PQ_FREE)
2149 panic("vm_page_free: freeing free page");
2150 else
2151 panic("vm_page_free: freeing busy page");
2155 * Remove from object, spinlock the page and its queues and
2156 * remove from any queue. No queue spinlock will be held
2157 * after this section (because the page was removed from any
2158 * queue).
2160 vm_page_remove(m);
2161 vm_page_and_queue_spin_lock(m);
2162 _vm_page_rem_queue_spinlocked(m);
2165 * No further management of fictitious pages occurs beyond object
2166 * and queue removal.
2168 if ((m->flags & PG_FICTITIOUS) != 0) {
2169 vm_page_spin_unlock(m);
2170 vm_page_wakeup(m);
2171 return;
2174 m->valid = 0;
2175 vm_page_undirty(m);
2177 if (m->wire_count != 0) {
2178 if (m->wire_count > 1) {
2179 panic(
2180 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2181 m->wire_count, (long)m->pindex);
2183 panic("vm_page_free: freeing wired page");
2187 * Clear the UNMANAGED flag when freeing an unmanaged page.
2188 * Clear the NEED_COMMIT flag
2190 if (m->flags & PG_UNMANAGED)
2191 vm_page_flag_clear(m, PG_UNMANAGED);
2192 if (m->flags & PG_NEED_COMMIT)
2193 vm_page_flag_clear(m, PG_NEED_COMMIT);
2195 if (m->hold_count != 0) {
2196 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2197 } else {
2198 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2202 * This sequence allows us to clear PG_BUSY while still holding
2203 * its spin lock, which reduces contention vs allocators. We
2204 * must not leave the queue locked or _vm_page_wakeup() may
2205 * deadlock.
2207 _vm_page_queue_spin_unlock(m);
2208 if (_vm_page_wakeup(m)) {
2209 vm_page_spin_unlock(m);
2210 wakeup(m);
2211 } else {
2212 vm_page_spin_unlock(m);
2214 vm_page_free_wakeup();
2218 * vm_page_unmanage()
2220 * Prevent PV management from being done on the page. The page is
2221 * removed from the paging queues as if it were wired, and as a
2222 * consequence of no longer being managed the pageout daemon will not
2223 * touch it (since there is no way to locate the pte mappings for the
2224 * page). madvise() calls that mess with the pmap will also no longer
2225 * operate on the page.
2227 * Beyond that the page is still reasonably 'normal'. Freeing the page
2228 * will clear the flag.
2230 * This routine is used by OBJT_PHYS objects - objects using unswappable
2231 * physical memory as backing store rather then swap-backed memory and
2232 * will eventually be extended to support 4MB unmanaged physical
2233 * mappings.
2235 * Caller must be holding the page busy.
2237 void
2238 vm_page_unmanage(vm_page_t m)
2240 KKASSERT(m->flags & PG_BUSY);
2241 if ((m->flags & PG_UNMANAGED) == 0) {
2242 if (m->wire_count == 0)
2243 vm_page_unqueue(m);
2245 vm_page_flag_set(m, PG_UNMANAGED);
2249 * Mark this page as wired down by yet another map, removing it from
2250 * paging queues as necessary.
2252 * Caller must be holding the page busy.
2254 void
2255 vm_page_wire(vm_page_t m)
2258 * Only bump the wire statistics if the page is not already wired,
2259 * and only unqueue the page if it is on some queue (if it is unmanaged
2260 * it is already off the queues). Don't do anything with fictitious
2261 * pages because they are always wired.
2263 KKASSERT(m->flags & PG_BUSY);
2264 if ((m->flags & PG_FICTITIOUS) == 0) {
2265 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2266 if ((m->flags & PG_UNMANAGED) == 0)
2267 vm_page_unqueue(m);
2268 atomic_add_int(&vmstats.v_wire_count, 1);
2270 KASSERT(m->wire_count != 0,
2271 ("vm_page_wire: wire_count overflow m=%p", m));
2276 * Release one wiring of this page, potentially enabling it to be paged again.
2278 * Many pages placed on the inactive queue should actually go
2279 * into the cache, but it is difficult to figure out which. What
2280 * we do instead, if the inactive target is well met, is to put
2281 * clean pages at the head of the inactive queue instead of the tail.
2282 * This will cause them to be moved to the cache more quickly and
2283 * if not actively re-referenced, freed more quickly. If we just
2284 * stick these pages at the end of the inactive queue, heavy filesystem
2285 * meta-data accesses can cause an unnecessary paging load on memory bound
2286 * processes. This optimization causes one-time-use metadata to be
2287 * reused more quickly.
2289 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2290 * the inactive queue. This helps the pageout daemon determine memory
2291 * pressure and act on out-of-memory situations more quickly.
2293 * BUT, if we are in a low-memory situation we have no choice but to
2294 * put clean pages on the cache queue.
2296 * A number of routines use vm_page_unwire() to guarantee that the page
2297 * will go into either the inactive or active queues, and will NEVER
2298 * be placed in the cache - for example, just after dirtying a page.
2299 * dirty pages in the cache are not allowed.
2301 * This routine may not block.
2303 void
2304 vm_page_unwire(vm_page_t m, int activate)
2306 KKASSERT(m->flags & PG_BUSY);
2307 if (m->flags & PG_FICTITIOUS) {
2308 /* do nothing */
2309 } else if (m->wire_count <= 0) {
2310 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2311 } else {
2312 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2313 atomic_add_int(&vmstats.v_wire_count, -1);
2314 if (m->flags & PG_UNMANAGED) {
2316 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2317 vm_page_spin_lock(m);
2318 _vm_page_add_queue_spinlocked(m,
2319 PQ_ACTIVE + m->pc, 0);
2320 _vm_page_and_queue_spin_unlock(m);
2321 } else {
2322 vm_page_spin_lock(m);
2323 vm_page_flag_clear(m, PG_WINATCFLS);
2324 _vm_page_add_queue_spinlocked(m,
2325 PQ_INACTIVE + m->pc, 0);
2326 ++vm_swapcache_inactive_heuristic;
2327 _vm_page_and_queue_spin_unlock(m);
2334 * Move the specified page to the inactive queue. If the page has
2335 * any associated swap, the swap is deallocated.
2337 * Normally athead is 0 resulting in LRU operation. athead is set
2338 * to 1 if we want this page to be 'as if it were placed in the cache',
2339 * except without unmapping it from the process address space.
2341 * vm_page's spinlock must be held on entry and will remain held on return.
2342 * This routine may not block.
2344 static void
2345 _vm_page_deactivate_locked(vm_page_t m, int athead)
2347 u_short oqueue;
2350 * Ignore if already inactive.
2352 if (m->queue - m->pc == PQ_INACTIVE)
2353 return;
2354 _vm_page_queue_spin_lock(m);
2355 oqueue = _vm_page_rem_queue_spinlocked(m);
2357 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2358 if (oqueue == PQ_CACHE)
2359 mycpu->gd_cnt.v_reactivated++;
2360 vm_page_flag_clear(m, PG_WINATCFLS);
2361 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2362 if (athead == 0)
2363 ++vm_swapcache_inactive_heuristic;
2365 /* NOTE: PQ_NONE if condition not taken */
2366 _vm_page_queue_spin_unlock(m);
2367 /* leaves vm_page spinlocked */
2371 * Attempt to deactivate a page.
2373 * No requirements.
2375 void
2376 vm_page_deactivate(vm_page_t m)
2378 vm_page_spin_lock(m);
2379 _vm_page_deactivate_locked(m, 0);
2380 vm_page_spin_unlock(m);
2383 void
2384 vm_page_deactivate_locked(vm_page_t m)
2386 _vm_page_deactivate_locked(m, 0);
2390 * Attempt to move a page to PQ_CACHE.
2392 * Returns 0 on failure, 1 on success
2394 * The page should NOT be busied by the caller. This function will validate
2395 * whether the page can be safely moved to the cache.
2398 vm_page_try_to_cache(vm_page_t m)
2400 vm_page_spin_lock(m);
2401 if (vm_page_busy_try(m, TRUE)) {
2402 vm_page_spin_unlock(m);
2403 return(0);
2405 if (m->dirty || m->hold_count || m->wire_count ||
2406 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2407 if (_vm_page_wakeup(m)) {
2408 vm_page_spin_unlock(m);
2409 wakeup(m);
2410 } else {
2411 vm_page_spin_unlock(m);
2413 return(0);
2415 vm_page_spin_unlock(m);
2418 * Page busied by us and no longer spinlocked. Dirty pages cannot
2419 * be moved to the cache.
2421 vm_page_test_dirty(m);
2422 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2423 vm_page_wakeup(m);
2424 return(0);
2426 vm_page_cache(m);
2427 return(1);
2431 * Attempt to free the page. If we cannot free it, we do nothing.
2432 * 1 is returned on success, 0 on failure.
2434 * No requirements.
2437 vm_page_try_to_free(vm_page_t m)
2439 vm_page_spin_lock(m);
2440 if (vm_page_busy_try(m, TRUE)) {
2441 vm_page_spin_unlock(m);
2442 return(0);
2446 * The page can be in any state, including already being on the free
2447 * queue. Check to see if it really can be freed.
2449 if (m->dirty || /* can't free if it is dirty */
2450 m->hold_count || /* or held (XXX may be wrong) */
2451 m->wire_count || /* or wired */
2452 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2453 PG_NEED_COMMIT)) || /* or needs a commit */
2454 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2455 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2456 if (_vm_page_wakeup(m)) {
2457 vm_page_spin_unlock(m);
2458 wakeup(m);
2459 } else {
2460 vm_page_spin_unlock(m);
2462 return(0);
2464 vm_page_spin_unlock(m);
2467 * We can probably free the page.
2469 * Page busied by us and no longer spinlocked. Dirty pages will
2470 * not be freed by this function. We have to re-test the
2471 * dirty bit after cleaning out the pmaps.
2473 vm_page_test_dirty(m);
2474 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2475 vm_page_wakeup(m);
2476 return(0);
2478 vm_page_protect(m, VM_PROT_NONE);
2479 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2480 vm_page_wakeup(m);
2481 return(0);
2483 vm_page_free(m);
2484 return(1);
2488 * vm_page_cache
2490 * Put the specified page onto the page cache queue (if appropriate).
2492 * The page must be busy, and this routine will release the busy and
2493 * possibly even free the page.
2495 void
2496 vm_page_cache(vm_page_t m)
2498 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2499 m->busy || m->wire_count || m->hold_count) {
2500 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2501 vm_page_wakeup(m);
2502 return;
2506 * Already in the cache (and thus not mapped)
2508 if ((m->queue - m->pc) == PQ_CACHE) {
2509 KKASSERT((m->flags & PG_MAPPED) == 0);
2510 vm_page_wakeup(m);
2511 return;
2515 * Caller is required to test m->dirty, but note that the act of
2516 * removing the page from its maps can cause it to become dirty
2517 * on an SMP system due to another cpu running in usermode.
2519 if (m->dirty) {
2520 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2521 (long)m->pindex);
2525 * Remove all pmaps and indicate that the page is not
2526 * writeable or mapped. Our vm_page_protect() call may
2527 * have blocked (especially w/ VM_PROT_NONE), so recheck
2528 * everything.
2530 vm_page_protect(m, VM_PROT_NONE);
2531 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2532 m->busy || m->wire_count || m->hold_count) {
2533 vm_page_wakeup(m);
2534 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2535 vm_page_deactivate(m);
2536 vm_page_wakeup(m);
2537 } else {
2538 _vm_page_and_queue_spin_lock(m);
2539 _vm_page_rem_queue_spinlocked(m);
2540 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2541 _vm_page_queue_spin_unlock(m);
2542 if (_vm_page_wakeup(m)) {
2543 vm_page_spin_unlock(m);
2544 wakeup(m);
2545 } else {
2546 vm_page_spin_unlock(m);
2548 vm_page_free_wakeup();
2553 * vm_page_dontneed()
2555 * Cache, deactivate, or do nothing as appropriate. This routine
2556 * is typically used by madvise() MADV_DONTNEED.
2558 * Generally speaking we want to move the page into the cache so
2559 * it gets reused quickly. However, this can result in a silly syndrome
2560 * due to the page recycling too quickly. Small objects will not be
2561 * fully cached. On the otherhand, if we move the page to the inactive
2562 * queue we wind up with a problem whereby very large objects
2563 * unnecessarily blow away our inactive and cache queues.
2565 * The solution is to move the pages based on a fixed weighting. We
2566 * either leave them alone, deactivate them, or move them to the cache,
2567 * where moving them to the cache has the highest weighting.
2568 * By forcing some pages into other queues we eventually force the
2569 * system to balance the queues, potentially recovering other unrelated
2570 * space from active. The idea is to not force this to happen too
2571 * often.
2573 * The page must be busied.
2575 void
2576 vm_page_dontneed(vm_page_t m)
2578 static int dnweight;
2579 int dnw;
2580 int head;
2582 dnw = ++dnweight;
2585 * occassionally leave the page alone
2587 if ((dnw & 0x01F0) == 0 ||
2588 m->queue - m->pc == PQ_INACTIVE ||
2589 m->queue - m->pc == PQ_CACHE
2591 if (m->act_count >= ACT_INIT)
2592 --m->act_count;
2593 return;
2597 * If vm_page_dontneed() is inactivating a page, it must clear
2598 * the referenced flag; otherwise the pagedaemon will see references
2599 * on the page in the inactive queue and reactivate it. Until the
2600 * page can move to the cache queue, madvise's job is not done.
2602 vm_page_flag_clear(m, PG_REFERENCED);
2603 pmap_clear_reference(m);
2605 if (m->dirty == 0)
2606 vm_page_test_dirty(m);
2608 if (m->dirty || (dnw & 0x0070) == 0) {
2610 * Deactivate the page 3 times out of 32.
2612 head = 0;
2613 } else {
2615 * Cache the page 28 times out of every 32. Note that
2616 * the page is deactivated instead of cached, but placed
2617 * at the head of the queue instead of the tail.
2619 head = 1;
2621 vm_page_spin_lock(m);
2622 _vm_page_deactivate_locked(m, head);
2623 vm_page_spin_unlock(m);
2627 * These routines manipulate the 'soft busy' count for a page. A soft busy
2628 * is almost like PG_BUSY except that it allows certain compatible operations
2629 * to occur on the page while it is busy. For example, a page undergoing a
2630 * write can still be mapped read-only.
2632 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2633 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2634 * busy bit is cleared.
2636 void
2637 vm_page_io_start(vm_page_t m)
2639 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2640 atomic_add_char(&m->busy, 1);
2641 vm_page_flag_set(m, PG_SBUSY);
2644 void
2645 vm_page_io_finish(vm_page_t m)
2647 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2648 atomic_subtract_char(&m->busy, 1);
2649 if (m->busy == 0)
2650 vm_page_flag_clear(m, PG_SBUSY);
2654 * Indicate that a clean VM page requires a filesystem commit and cannot
2655 * be reused. Used by tmpfs.
2657 void
2658 vm_page_need_commit(vm_page_t m)
2660 vm_page_flag_set(m, PG_NEED_COMMIT);
2661 vm_object_set_writeable_dirty(m->object);
2664 void
2665 vm_page_clear_commit(vm_page_t m)
2667 vm_page_flag_clear(m, PG_NEED_COMMIT);
2671 * Grab a page, blocking if it is busy and allocating a page if necessary.
2672 * A busy page is returned or NULL. The page may or may not be valid and
2673 * might not be on a queue (the caller is responsible for the disposition of
2674 * the page).
2676 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2677 * page will be zero'd and marked valid.
2679 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2680 * valid even if it already exists.
2682 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2683 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2684 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2686 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2687 * always returned if we had blocked.
2689 * This routine may not be called from an interrupt.
2691 * No other requirements.
2693 vm_page_t
2694 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2696 vm_page_t m;
2697 int error;
2698 int shared = 1;
2700 KKASSERT(allocflags &
2701 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2702 vm_object_hold_shared(object);
2703 for (;;) {
2704 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2705 if (error) {
2706 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2707 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2708 m = NULL;
2709 break;
2711 /* retry */
2712 } else if (m == NULL) {
2713 if (shared) {
2714 vm_object_upgrade(object);
2715 shared = 0;
2717 if (allocflags & VM_ALLOC_RETRY)
2718 allocflags |= VM_ALLOC_NULL_OK;
2719 m = vm_page_alloc(object, pindex,
2720 allocflags & ~VM_ALLOC_RETRY);
2721 if (m)
2722 break;
2723 vm_wait(0);
2724 if ((allocflags & VM_ALLOC_RETRY) == 0)
2725 goto failed;
2726 } else {
2727 /* m found */
2728 break;
2733 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2735 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2736 * valid even if already valid.
2738 * NOTE! We have removed all of the PG_ZERO optimizations and also
2739 * removed the idle zeroing code. These optimizations actually
2740 * slow things down on modern cpus because the zerod area is
2741 * likely uncached, placing a memory-access burden on the
2742 * accesors taking the fault.
2744 * By always zeroing the page in-line with the fault, no
2745 * dynamic ram reads are needed and the caches are hot, ready
2746 * for userland to access the memory.
2748 if (m->valid == 0) {
2749 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2750 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2751 m->valid = VM_PAGE_BITS_ALL;
2753 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2754 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2755 m->valid = VM_PAGE_BITS_ALL;
2757 failed:
2758 vm_object_drop(object);
2759 return(m);
2763 * Mapping function for valid bits or for dirty bits in
2764 * a page. May not block.
2766 * Inputs are required to range within a page.
2768 * No requirements.
2769 * Non blocking.
2772 vm_page_bits(int base, int size)
2774 int first_bit;
2775 int last_bit;
2777 KASSERT(
2778 base + size <= PAGE_SIZE,
2779 ("vm_page_bits: illegal base/size %d/%d", base, size)
2782 if (size == 0) /* handle degenerate case */
2783 return(0);
2785 first_bit = base >> DEV_BSHIFT;
2786 last_bit = (base + size - 1) >> DEV_BSHIFT;
2788 return ((2 << last_bit) - (1 << first_bit));
2792 * Sets portions of a page valid and clean. The arguments are expected
2793 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2794 * of any partial chunks touched by the range. The invalid portion of
2795 * such chunks will be zero'd.
2797 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2798 * align base to DEV_BSIZE so as not to mark clean a partially
2799 * truncated device block. Otherwise the dirty page status might be
2800 * lost.
2802 * This routine may not block.
2804 * (base + size) must be less then or equal to PAGE_SIZE.
2806 static void
2807 _vm_page_zero_valid(vm_page_t m, int base, int size)
2809 int frag;
2810 int endoff;
2812 if (size == 0) /* handle degenerate case */
2813 return;
2816 * If the base is not DEV_BSIZE aligned and the valid
2817 * bit is clear, we have to zero out a portion of the
2818 * first block.
2821 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2822 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2824 pmap_zero_page_area(
2825 VM_PAGE_TO_PHYS(m),
2826 frag,
2827 base - frag
2832 * If the ending offset is not DEV_BSIZE aligned and the
2833 * valid bit is clear, we have to zero out a portion of
2834 * the last block.
2837 endoff = base + size;
2839 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2840 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2842 pmap_zero_page_area(
2843 VM_PAGE_TO_PHYS(m),
2844 endoff,
2845 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2851 * Set valid, clear dirty bits. If validating the entire
2852 * page we can safely clear the pmap modify bit. We also
2853 * use this opportunity to clear the PG_NOSYNC flag. If a process
2854 * takes a write fault on a MAP_NOSYNC memory area the flag will
2855 * be set again.
2857 * We set valid bits inclusive of any overlap, but we can only
2858 * clear dirty bits for DEV_BSIZE chunks that are fully within
2859 * the range.
2861 * Page must be busied?
2862 * No other requirements.
2864 void
2865 vm_page_set_valid(vm_page_t m, int base, int size)
2867 _vm_page_zero_valid(m, base, size);
2868 m->valid |= vm_page_bits(base, size);
2873 * Set valid bits and clear dirty bits.
2875 * NOTE: This function does not clear the pmap modified bit.
2876 * Also note that e.g. NFS may use a byte-granular base
2877 * and size.
2879 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2880 * this without necessarily busying the page (via bdwrite()).
2881 * So for now vm_token must also be held.
2883 * No other requirements.
2885 void
2886 vm_page_set_validclean(vm_page_t m, int base, int size)
2888 int pagebits;
2890 _vm_page_zero_valid(m, base, size);
2891 pagebits = vm_page_bits(base, size);
2892 m->valid |= pagebits;
2893 m->dirty &= ~pagebits;
2894 if (base == 0 && size == PAGE_SIZE) {
2895 /*pmap_clear_modify(m);*/
2896 vm_page_flag_clear(m, PG_NOSYNC);
2901 * Set valid & dirty. Used by buwrite()
2903 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2904 * call this function in buwrite() so for now vm_token must
2905 * be held.
2907 * No other requirements.
2909 void
2910 vm_page_set_validdirty(vm_page_t m, int base, int size)
2912 int pagebits;
2914 pagebits = vm_page_bits(base, size);
2915 m->valid |= pagebits;
2916 m->dirty |= pagebits;
2917 if (m->object)
2918 vm_object_set_writeable_dirty(m->object);
2922 * Clear dirty bits.
2924 * NOTE: This function does not clear the pmap modified bit.
2925 * Also note that e.g. NFS may use a byte-granular base
2926 * and size.
2928 * Page must be busied?
2929 * No other requirements.
2931 void
2932 vm_page_clear_dirty(vm_page_t m, int base, int size)
2934 m->dirty &= ~vm_page_bits(base, size);
2935 if (base == 0 && size == PAGE_SIZE) {
2936 /*pmap_clear_modify(m);*/
2937 vm_page_flag_clear(m, PG_NOSYNC);
2942 * Make the page all-dirty.
2944 * Also make sure the related object and vnode reflect the fact that the
2945 * object may now contain a dirty page.
2947 * Page must be busied?
2948 * No other requirements.
2950 void
2951 vm_page_dirty(vm_page_t m)
2953 #ifdef INVARIANTS
2954 int pqtype = m->queue - m->pc;
2955 #endif
2956 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2957 ("vm_page_dirty: page in free/cache queue!"));
2958 if (m->dirty != VM_PAGE_BITS_ALL) {
2959 m->dirty = VM_PAGE_BITS_ALL;
2960 if (m->object)
2961 vm_object_set_writeable_dirty(m->object);
2966 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2967 * valid and dirty bits for the effected areas are cleared.
2969 * Page must be busied?
2970 * Does not block.
2971 * No other requirements.
2973 void
2974 vm_page_set_invalid(vm_page_t m, int base, int size)
2976 int bits;
2978 bits = vm_page_bits(base, size);
2979 m->valid &= ~bits;
2980 m->dirty &= ~bits;
2981 m->object->generation++;
2985 * The kernel assumes that the invalid portions of a page contain
2986 * garbage, but such pages can be mapped into memory by user code.
2987 * When this occurs, we must zero out the non-valid portions of the
2988 * page so user code sees what it expects.
2990 * Pages are most often semi-valid when the end of a file is mapped
2991 * into memory and the file's size is not page aligned.
2993 * Page must be busied?
2994 * No other requirements.
2996 void
2997 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2999 int b;
3000 int i;
3003 * Scan the valid bits looking for invalid sections that
3004 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3005 * valid bit may be set ) have already been zerod by
3006 * vm_page_set_validclean().
3008 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3009 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3010 (m->valid & (1 << i))
3012 if (i > b) {
3013 pmap_zero_page_area(
3014 VM_PAGE_TO_PHYS(m),
3015 b << DEV_BSHIFT,
3016 (i - b) << DEV_BSHIFT
3019 b = i + 1;
3024 * setvalid is TRUE when we can safely set the zero'd areas
3025 * as being valid. We can do this if there are no cache consistency
3026 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3028 if (setvalid)
3029 m->valid = VM_PAGE_BITS_ALL;
3033 * Is a (partial) page valid? Note that the case where size == 0
3034 * will return FALSE in the degenerate case where the page is entirely
3035 * invalid, and TRUE otherwise.
3037 * Does not block.
3038 * No other requirements.
3041 vm_page_is_valid(vm_page_t m, int base, int size)
3043 int bits = vm_page_bits(base, size);
3045 if (m->valid && ((m->valid & bits) == bits))
3046 return 1;
3047 else
3048 return 0;
3052 * update dirty bits from pmap/mmu. May not block.
3054 * Caller must hold the page busy
3056 void
3057 vm_page_test_dirty(vm_page_t m)
3059 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3060 vm_page_dirty(m);
3065 * Register an action, associating it with its vm_page
3067 void
3068 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3070 struct vm_page_action_list *list;
3071 int hv;
3073 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3074 list = &action_list[hv];
3076 lwkt_gettoken(&vm_token);
3077 vm_page_flag_set(action->m, PG_ACTIONLIST);
3078 action->event = event;
3079 LIST_INSERT_HEAD(list, action, entry);
3080 lwkt_reltoken(&vm_token);
3084 * Unregister an action, disassociating it from its related vm_page
3086 void
3087 vm_page_unregister_action(vm_page_action_t action)
3089 struct vm_page_action_list *list;
3090 int hv;
3092 lwkt_gettoken(&vm_token);
3093 if (action->event != VMEVENT_NONE) {
3094 action->event = VMEVENT_NONE;
3095 LIST_REMOVE(action, entry);
3097 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3098 list = &action_list[hv];
3099 if (LIST_EMPTY(list))
3100 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3102 lwkt_reltoken(&vm_token);
3106 * Issue an event on a VM page. Corresponding action structures are
3107 * removed from the page's list and called.
3109 * If the vm_page has no more pending action events we clear its
3110 * PG_ACTIONLIST flag.
3112 void
3113 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3115 struct vm_page_action_list *list;
3116 struct vm_page_action *scan;
3117 struct vm_page_action *next;
3118 int hv;
3119 int all;
3121 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3122 list = &action_list[hv];
3123 all = 1;
3125 lwkt_gettoken(&vm_token);
3126 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3127 if (scan->m == m) {
3128 if (scan->event == event) {
3129 scan->event = VMEVENT_NONE;
3130 LIST_REMOVE(scan, entry);
3131 scan->func(m, scan);
3132 /* XXX */
3133 } else {
3134 all = 0;
3138 if (all)
3139 vm_page_flag_clear(m, PG_ACTIONLIST);
3140 lwkt_reltoken(&vm_token);
3143 #include "opt_ddb.h"
3144 #ifdef DDB
3145 #include <sys/kernel.h>
3147 #include <ddb/ddb.h>
3149 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3151 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3152 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3153 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3154 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3155 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3156 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3157 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3158 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3159 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3160 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3163 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3165 int i;
3166 db_printf("PQ_FREE:");
3167 for(i=0;i<PQ_L2_SIZE;i++) {
3168 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3170 db_printf("\n");
3172 db_printf("PQ_CACHE:");
3173 for(i=0;i<PQ_L2_SIZE;i++) {
3174 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3176 db_printf("\n");
3178 db_printf("PQ_ACTIVE:");
3179 for(i=0;i<PQ_L2_SIZE;i++) {
3180 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3182 db_printf("\n");
3184 db_printf("PQ_INACTIVE:");
3185 for(i=0;i<PQ_L2_SIZE;i++) {
3186 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3188 db_printf("\n");
3190 #endif /* DDB */