Nuke USB_DO_ATTACH and remove device_t dv, since it is no longer needed.
[dragonfly.git] / contrib / gcc-3.4 / gcc / et-forest.c
blob62cdd2107d3d109d616ab2f8ae6d05db6c701595
1 /* ET-trees data structure implementation.
2 Contributed by Pavel Nejedly
3 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
21 The ET-forest structure is described in:
22 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23 J. G'omput. System Sci., 26(3):362 381, 1983.
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "et-forest.h"
31 #include "alloc-pool.h"
33 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
34 #undef DEBUG_ET
36 #ifdef DEBUG_ET
37 #include "basic-block.h"
38 #endif
40 /* The occurence of a node in the et tree. */
41 struct et_occ
43 struct et_node *of; /* The node. */
45 struct et_occ *parent; /* Parent in the splay-tree. */
46 struct et_occ *prev; /* Left son in the splay-tree. */
47 struct et_occ *next; /* Right son in the splay-tree. */
49 int depth; /* The depth of the node is the sum of depth
50 fields on the path to the root. */
51 int min; /* The minimum value of the depth in the subtree
52 is obtained by adding sum of depth fields
53 on the path to the root. */
54 struct et_occ *min_occ; /* The occurence in the subtree with the minimal
55 depth. */
58 static alloc_pool et_nodes;
59 static alloc_pool et_occurences;
61 /* Changes depth of OCC to D. */
63 static inline void
64 set_depth (struct et_occ *occ, int d)
66 if (!occ)
67 return;
69 occ->min += d - occ->depth;
70 occ->depth = d;
73 /* Adds D to the depth of OCC. */
75 static inline void
76 set_depth_add (struct et_occ *occ, int d)
78 if (!occ)
79 return;
81 occ->min += d;
82 occ->depth += d;
85 /* Sets prev field of OCC to P. */
87 static inline void
88 set_prev (struct et_occ *occ, struct et_occ *t)
90 #ifdef DEBUG_ET
91 if (occ == t)
92 abort ();
93 #endif
95 occ->prev = t;
96 if (t)
97 t->parent = occ;
100 /* Sets next field of OCC to P. */
102 static inline void
103 set_next (struct et_occ *occ, struct et_occ *t)
105 #ifdef DEBUG_ET
106 if (occ == t)
107 abort ();
108 #endif
110 occ->next = t;
111 if (t)
112 t->parent = occ;
115 /* Recompute minimum for occurence OCC. */
117 static inline void
118 et_recomp_min (struct et_occ *occ)
120 struct et_occ *mson = occ->prev;
122 if (!mson
123 || (occ->next
124 && mson->min > occ->next->min))
125 mson = occ->next;
127 if (mson && mson->min < 0)
129 occ->min = mson->min + occ->depth;
130 occ->min_occ = mson->min_occ;
132 else
134 occ->min = occ->depth;
135 occ->min_occ = occ;
139 #ifdef DEBUG_ET
140 /* Checks whether neighbourhood of OCC seems sane. */
142 static void
143 et_check_occ_sanity (struct et_occ *occ)
145 if (!occ)
146 return;
148 if (occ->parent == occ)
149 abort ();
151 if (occ->prev == occ)
152 abort ();
154 if (occ->next == occ)
155 abort ();
157 if (occ->next && occ->next == occ->prev)
158 abort ();
160 if (occ->next)
162 if (occ->next == occ->parent)
163 abort ();
165 if (occ->next->parent != occ)
166 abort ();
169 if (occ->prev)
171 if (occ->prev == occ->parent)
172 abort ();
174 if (occ->prev->parent != occ)
175 abort ();
178 if (occ->parent
179 && occ->parent->prev != occ
180 && occ->parent->next != occ)
181 abort ();
184 /* Checks whether tree rooted at OCC is sane. */
186 static void
187 et_check_sanity (struct et_occ *occ)
189 et_check_occ_sanity (occ);
190 if (occ->prev)
191 et_check_sanity (occ->prev);
192 if (occ->next)
193 et_check_sanity (occ->next);
196 /* Checks whether tree containing OCC is sane. */
198 static void
199 et_check_tree_sanity (struct et_occ *occ)
201 while (occ->parent)
202 occ = occ->parent;
204 et_check_sanity (occ);
207 /* For recording the paths. */
209 static int len;
210 static void *datas[100000];
211 static int depths[100000];
213 /* Records the path represented by OCC, with depth incremented by DEPTH. */
215 static int
216 record_path_before_1 (struct et_occ *occ, int depth)
218 int mn, m;
220 depth += occ->depth;
221 mn = depth;
223 if (occ->prev)
225 m = record_path_before_1 (occ->prev, depth);
226 if (m < mn)
227 mn = m;
230 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
231 depths[len] = depth;
232 datas[len] = occ->of;
233 len++;
235 if (occ->next)
237 m = record_path_before_1 (occ->next, depth);
238 if (m < mn)
239 mn = m;
242 if (mn != occ->min + depth - occ->depth)
243 abort ();
245 return mn;
248 /* Records the path represented by a tree containing OCC. */
250 static void
251 record_path_before (struct et_occ *occ)
253 while (occ->parent)
254 occ = occ->parent;
256 len = 0;
257 record_path_before_1 (occ, 0);
258 fprintf (stderr, "\n");
261 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
262 was not changed since the last recording. */
264 static int
265 check_path_after_1 (struct et_occ *occ, int depth)
267 int mn, m;
269 depth += occ->depth;
270 mn = depth;
272 if (occ->next)
274 m = check_path_after_1 (occ->next, depth);
275 if (m < mn)
276 mn = m;
279 len--;
280 if (depths[len] != depth
281 || datas[len] != occ->of)
282 abort ();
284 if (occ->prev)
286 m = check_path_after_1 (occ->prev, depth);
287 if (m < mn)
288 mn = m;
291 if (mn != occ->min + depth - occ->depth)
292 abort ();
294 return mn;
297 /* Checks whether the path represented by a tree containing OCC was
298 not changed since the last recording. */
300 static void
301 check_path_after (struct et_occ *occ)
303 while (occ->parent)
304 occ = occ->parent;
306 check_path_after_1 (occ, 0);
307 if (len != 0)
308 abort ();
311 #endif
313 /* Splay the occurence OCC to the root of the tree. */
315 static void
316 et_splay (struct et_occ *occ)
318 struct et_occ *f, *gf, *ggf;
319 int occ_depth, f_depth, gf_depth;
321 #ifdef DEBUG_ET
322 record_path_before (occ);
323 et_check_tree_sanity (occ);
324 #endif
326 while (occ->parent)
328 occ_depth = occ->depth;
330 f = occ->parent;
331 f_depth = f->depth;
333 gf = f->parent;
335 if (!gf)
337 set_depth_add (occ, f_depth);
338 occ->min_occ = f->min_occ;
339 occ->min = f->min;
341 if (f->prev == occ)
343 /* zig */
344 set_prev (f, occ->next);
345 set_next (occ, f);
346 set_depth_add (f->prev, occ_depth);
348 else
350 /* zag */
351 set_next (f, occ->prev);
352 set_prev (occ, f);
353 set_depth_add (f->next, occ_depth);
355 set_depth (f, -occ_depth);
356 occ->parent = NULL;
358 et_recomp_min (f);
359 #ifdef DEBUG_ET
360 et_check_tree_sanity (occ);
361 check_path_after (occ);
362 #endif
363 return;
366 gf_depth = gf->depth;
368 set_depth_add (occ, f_depth + gf_depth);
369 occ->min_occ = gf->min_occ;
370 occ->min = gf->min;
372 ggf = gf->parent;
374 if (gf->prev == f)
376 if (f->prev == occ)
378 /* zig zig */
379 set_prev (gf, f->next);
380 set_prev (f, occ->next);
381 set_next (occ, f);
382 set_next (f, gf);
384 set_depth (f, -occ_depth);
385 set_depth_add (f->prev, occ_depth);
386 set_depth (gf, -f_depth);
387 set_depth_add (gf->prev, f_depth);
389 else
391 /* zag zig */
392 set_prev (gf, occ->next);
393 set_next (f, occ->prev);
394 set_prev (occ, f);
395 set_next (occ, gf);
397 set_depth (f, -occ_depth);
398 set_depth_add (f->next, occ_depth);
399 set_depth (gf, -occ_depth - f_depth);
400 set_depth_add (gf->prev, occ_depth + f_depth);
403 else
405 if (f->prev == occ)
407 /* zig zag */
408 set_next (gf, occ->prev);
409 set_prev (f, occ->next);
410 set_prev (occ, gf);
411 set_next (occ, f);
413 set_depth (f, -occ_depth);
414 set_depth_add (f->prev, occ_depth);
415 set_depth (gf, -occ_depth - f_depth);
416 set_depth_add (gf->next, occ_depth + f_depth);
418 else
420 /* zag zag */
421 set_next (gf, f->prev);
422 set_next (f, occ->prev);
423 set_prev (occ, f);
424 set_prev (f, gf);
426 set_depth (f, -occ_depth);
427 set_depth_add (f->next, occ_depth);
428 set_depth (gf, -f_depth);
429 set_depth_add (gf->next, f_depth);
433 occ->parent = ggf;
434 if (ggf)
436 if (ggf->prev == gf)
437 ggf->prev = occ;
438 else
439 ggf->next = occ;
442 et_recomp_min (gf);
443 et_recomp_min (f);
444 #ifdef DEBUG_ET
445 et_check_tree_sanity (occ);
446 #endif
449 #ifdef DEBUG_ET
450 et_check_sanity (occ);
451 check_path_after (occ);
452 #endif
455 /* Create a new et tree occurence of NODE. */
457 static struct et_occ *
458 et_new_occ (struct et_node *node)
460 struct et_occ *nw;
462 if (!et_occurences)
463 et_occurences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
464 nw = pool_alloc (et_occurences);
466 nw->of = node;
467 nw->parent = NULL;
468 nw->prev = NULL;
469 nw->next = NULL;
471 nw->depth = 0;
472 nw->min_occ = nw;
473 nw->min = 0;
475 return nw;
478 /* Create a new et tree containing DATA. */
480 struct et_node *
481 et_new_tree (void *data)
483 struct et_node *nw;
485 if (!et_nodes)
486 et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
487 nw = pool_alloc (et_nodes);
489 nw->data = data;
490 nw->father = NULL;
491 nw->left = NULL;
492 nw->right = NULL;
493 nw->son = NULL;
495 nw->rightmost_occ = et_new_occ (nw);
496 nw->parent_occ = NULL;
498 return nw;
501 /* Releases et tree T. */
503 void
504 et_free_tree (struct et_node *t)
506 while (t->son)
507 et_split (t->son);
509 if (t->father)
510 et_split (t);
512 pool_free (et_occurences, t->rightmost_occ);
513 pool_free (et_nodes, t);
516 /* Sets father of et tree T to FATHER. */
518 void
519 et_set_father (struct et_node *t, struct et_node *father)
521 struct et_node *left, *right;
522 struct et_occ *rmost, *left_part, *new_f_occ, *p;
524 /* Update the path represented in the splay tree. */
525 new_f_occ = et_new_occ (father);
527 rmost = father->rightmost_occ;
528 et_splay (rmost);
530 left_part = rmost->prev;
532 p = t->rightmost_occ;
533 et_splay (p);
535 set_prev (new_f_occ, left_part);
536 set_next (new_f_occ, p);
538 p->depth++;
539 p->min++;
540 et_recomp_min (new_f_occ);
542 set_prev (rmost, new_f_occ);
544 if (new_f_occ->min + rmost->depth < rmost->min)
546 rmost->min = new_f_occ->min + rmost->depth;
547 rmost->min_occ = new_f_occ->min_occ;
550 t->parent_occ = new_f_occ;
552 /* Update the tree. */
553 t->father = father;
554 right = father->son;
555 if (right)
556 left = right->left;
557 else
558 left = right = t;
560 left->right = t;
561 right->left = t;
562 t->left = left;
563 t->right = right;
565 father->son = t;
567 #ifdef DEBUG_ET
568 et_check_tree_sanity (rmost);
569 record_path_before (rmost);
570 #endif
573 /* Splits the edge from T to its father. */
575 void
576 et_split (struct et_node *t)
578 struct et_node *father = t->father;
579 struct et_occ *r, *l, *rmost, *p_occ;
581 /* Update the path represented by the splay tree. */
582 rmost = t->rightmost_occ;
583 et_splay (rmost);
585 for (r = rmost->next; r->prev; r = r->prev)
586 continue;
587 et_splay (r);
589 r->prev->parent = NULL;
590 p_occ = t->parent_occ;
591 et_splay (p_occ);
592 t->parent_occ = NULL;
594 l = p_occ->prev;
595 p_occ->next->parent = NULL;
597 set_prev (r, l);
599 et_recomp_min (r);
601 et_splay (rmost);
602 rmost->depth = 0;
603 rmost->min = 0;
605 pool_free (et_occurences, p_occ);
607 /* Update the tree. */
608 if (father->son == t)
609 father->son = t->right;
610 if (father->son == t)
611 father->son = NULL;
612 else
614 t->left->right = t->right;
615 t->right->left = t->left;
617 t->left = t->right = NULL;
618 t->father = NULL;
620 #ifdef DEBUG_ET
621 et_check_tree_sanity (rmost);
622 record_path_before (rmost);
624 et_check_tree_sanity (r);
625 record_path_before (r);
626 #endif
629 /* Finds the nearest common ancestor of the nodes N1 and N2. */
631 struct et_node *
632 et_nca (struct et_node *n1, struct et_node *n2)
634 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
635 struct et_occ *l, *r, *ret;
636 int mn;
638 if (n1 == n2)
639 return n1;
641 et_splay (o1);
642 l = o1->prev;
643 r = o1->next;
644 if (l)
645 l->parent = NULL;
646 if (r)
647 r->parent = NULL;
648 et_splay (o2);
650 if (l == o2 || (l && l->parent != NULL))
652 ret = o2->next;
654 set_prev (o1, o2);
655 if (r)
656 r->parent = o1;
658 else
660 ret = o2->prev;
662 set_next (o1, o2);
663 if (l)
664 l->parent = o1;
667 if (0 < o2->depth)
669 om = o1;
670 mn = o1->depth;
672 else
674 om = o2;
675 mn = o2->depth + o1->depth;
678 #ifdef DEBUG_ET
679 et_check_tree_sanity (o2);
680 #endif
682 if (ret && ret->min + o1->depth + o2->depth < mn)
683 return ret->min_occ->of;
684 else
685 return om->of;
688 /* Checks whether the node UP is an ancestor of the node DOWN. */
690 bool
691 et_below (struct et_node *down, struct et_node *up)
693 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
694 struct et_occ *l, *r;
696 if (up == down)
697 return true;
699 et_splay (u);
700 l = u->prev;
701 r = u->next;
703 if (!l)
704 return false;
706 l->parent = NULL;
708 if (r)
709 r->parent = NULL;
711 et_splay (d);
713 if (l == d || l->parent != NULL)
715 if (r)
716 r->parent = u;
717 set_prev (u, d);
718 #ifdef DEBUG_ET
719 et_check_tree_sanity (u);
720 #endif
722 else
724 l->parent = u;
726 /* In case O1 and O2 are in two different trees, we must just restore the
727 original state. */
728 if (r && r->parent != NULL)
729 set_next (u, d);
730 else
731 set_next (u, r);
733 #ifdef DEBUG_ET
734 et_check_tree_sanity (u);
735 #endif
736 return false;
739 if (0 >= d->depth)
740 return false;
742 return !d->next || d->next->min + d->depth >= 0;