linprocfs - Introduce /proc/mounts
[dragonfly.git] / sys / platform / pc32 / isa / npx.c
blob15163155b141a65941b061bb1ac31408a84d0e7b
1 /*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91
35 * $FreeBSD: src/sys/i386/isa/npx.c,v 1.80.2.3 2001/10/20 19:04:38 tegge Exp $
36 * $DragonFly: src/sys/platform/pc32/isa/npx.c,v 1.49 2008/08/02 01:14:43 dillon Exp $
39 #include "opt_cpu.h"
40 #include "opt_debug_npx.h"
41 #include "opt_math_emulate.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/module.h>
49 #include <sys/sysctl.h>
50 #include <sys/proc.h>
51 #include <sys/rman.h>
52 #ifdef NPX_DEBUG
53 #include <sys/syslog.h>
54 #endif
55 #include <sys/signalvar.h>
57 #include <sys/thread2.h>
58 #include <sys/mplock2.h>
60 #ifndef SMP
61 #include <machine/asmacros.h>
62 #endif
63 #include <machine/cputypes.h>
64 #include <machine/frame.h>
65 #include <machine/ipl.h>
66 #include <machine/md_var.h>
67 #include <machine/pcb.h>
68 #include <machine/psl.h>
69 #ifndef SMP
70 #include <machine/clock.h>
71 #endif
72 #include <machine/specialreg.h>
73 #include <machine/segments.h>
74 #include <machine/globaldata.h>
76 #ifndef SMP
77 #include <machine_base/icu/icu.h>
78 #include <machine_base/isa/intr_machdep.h>
79 #include <bus/isa/isa.h>
80 #endif
83 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
86 /* Configuration flags. */
87 #define NPX_DISABLE_I586_OPTIMIZED_BCOPY (1 << 0)
88 #define NPX_DISABLE_I586_OPTIMIZED_BZERO (1 << 1)
89 #define NPX_DISABLE_I586_OPTIMIZED_COPYIO (1 << 2)
90 #define NPX_PREFER_EMULATOR (1 << 3)
92 #ifdef __GNUC__
94 #define fldcw(addr) __asm("fldcw %0" : : "m" (*(addr)))
95 #define fnclex() __asm("fnclex")
96 #define fninit() __asm("fninit")
97 #define fnop() __asm("fnop")
98 #define fnsave(addr) __asm __volatile("fnsave %0" : "=m" (*(addr)))
99 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
100 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=m" (*(addr)))
101 #define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fnop")
102 #define frstor(addr) __asm("frstor %0" : : "m" (*(addr)))
103 #ifndef CPU_DISABLE_SSE
104 #define fxrstor(addr) __asm("fxrstor %0" : : "m" (*(addr)))
105 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
106 #endif
107 #define start_emulating() __asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
108 : : "n" (CR0_TS) : "ax")
109 #define stop_emulating() __asm("clts")
111 #else /* not __GNUC__ */
113 void fldcw (caddr_t addr);
114 void fnclex (void);
115 void fninit (void);
116 void fnop (void);
117 void fnsave (caddr_t addr);
118 void fnstcw (caddr_t addr);
119 void fnstsw (caddr_t addr);
120 void fp_divide_by_0 (void);
121 void frstor (caddr_t addr);
122 #ifndef CPU_DISABLE_SSE
123 void fxsave (caddr_t addr);
124 void fxrstor (caddr_t addr);
125 #endif
126 void start_emulating (void);
127 void stop_emulating (void);
129 #endif /* __GNUC__ */
131 #ifndef CPU_DISABLE_SSE
132 #define GET_FPU_EXSW_PTR(td) \
133 (cpu_fxsr ? \
134 &(td)->td_savefpu->sv_xmm.sv_ex_sw : \
135 &(td)->td_savefpu->sv_87.sv_ex_sw)
136 #else /* CPU_DISABLE_SSE */
137 #define GET_FPU_EXSW_PTR(td) \
138 (&(td)->td_savefpu->sv_87.sv_ex_sw)
139 #endif /* CPU_DISABLE_SSE */
141 typedef u_char bool_t;
142 #ifndef CPU_DISABLE_SSE
143 static void fpu_clean_state(void);
144 #endif
147 static int npx_attach (device_t dev);
148 void npx_intr (void *);
149 static int npx_probe (device_t dev);
150 static int npx_probe1 (device_t dev);
151 static void fpusave (union savefpu *);
152 static void fpurstor (union savefpu *);
154 int hw_float; /* XXX currently just alias for npx_exists */
156 SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
157 CTLFLAG_RD, &hw_float, 0,
158 "Floatingpoint instructions executed in hardware");
159 #if (defined(I586_CPU) || defined(I686_CPU)) && !defined(CPU_DISABLE_SSE)
160 int mmxopt = 1;
161 SYSCTL_INT(_kern, OID_AUTO, mmxopt, CTLFLAG_RD, &mmxopt, 0,
162 "MMX/XMM optimized bcopy/copyin/copyout support");
163 #endif
165 #ifndef SMP
166 static u_int npx0_imask;
167 static struct gate_descriptor npx_idt_probeintr;
168 static int npx_intrno;
169 static volatile u_int npx_intrs_while_probing;
170 static volatile u_int npx_traps_while_probing;
171 #endif
173 static bool_t npx_ex16;
174 static bool_t npx_exists;
175 static bool_t npx_irq13;
176 static int npx_irq; /* irq number */
178 #ifndef SMP
180 * Special interrupt handlers. Someday intr0-intr15 will be used to count
181 * interrupts. We'll still need a special exception 16 handler. The busy
182 * latch stuff in probeintr() can be moved to npxprobe().
184 inthand_t probeintr;
185 __asm(" \n\
186 .text \n\
187 .p2align 2,0x90 \n\
188 .type " __XSTRING(CNAME(probeintr)) ",@function \n\
189 " __XSTRING(CNAME(probeintr)) ": \n\
190 ss \n\
191 incl " __XSTRING(CNAME(npx_intrs_while_probing)) " \n\
192 pushl %eax \n\
193 movb $0x20,%al # EOI (asm in strings loses cpp features) \n\
194 outb %al,$0xa0 # IO_ICU2 \n\
195 outb %al,$0x20 # IO_ICU1 \n\
196 movb $0,%al \n\
197 outb %al,$0xf0 # clear BUSY# latch \n\
198 popl %eax \n\
199 iret \n\
202 inthand_t probetrap;
203 __asm(" \n\
204 .text \n\
205 .p2align 2,0x90 \n\
206 .type " __XSTRING(CNAME(probetrap)) ",@function \n\
207 " __XSTRING(CNAME(probetrap)) ": \n\
208 ss \n\
209 incl " __XSTRING(CNAME(npx_traps_while_probing)) " \n\
210 fnclex \n\
211 iret \n\
213 #endif /* SMP */
215 static struct krate badfprate = { 1 };
218 * Probe routine. Initialize cr0 to give correct behaviour for [f]wait
219 * whether the device exists or not (XXX should be elsewhere). Set flags
220 * to tell npxattach() what to do. Modify device struct if npx doesn't
221 * need to use interrupts. Return 1 if device exists.
223 static int
224 npx_probe(device_t dev)
226 #ifdef SMP
228 if (resource_int_value("npx", 0, "irq", &npx_irq) != 0)
229 npx_irq = 13;
230 return npx_probe1(dev);
232 #else /* SMP */
234 int result;
235 u_long save_eflags;
236 u_char save_icu1_mask;
237 u_char save_icu2_mask;
238 struct gate_descriptor save_idt_npxintr;
239 struct gate_descriptor save_idt_npxtrap;
241 * This routine is now just a wrapper for npxprobe1(), to install
242 * special npx interrupt and trap handlers, to enable npx interrupts
243 * and to disable other interrupts. Someday isa_configure() will
244 * install suitable handlers and run with interrupts enabled so we
245 * won't need to do so much here.
247 if (resource_int_value("npx", 0, "irq", &npx_irq) != 0)
248 npx_irq = 13;
249 npx_intrno = IDT_OFFSET + npx_irq;
250 save_eflags = read_eflags();
251 cpu_disable_intr();
252 save_icu1_mask = inb(IO_ICU1 + 1);
253 save_icu2_mask = inb(IO_ICU2 + 1);
254 save_idt_npxintr = idt[npx_intrno];
255 save_idt_npxtrap = idt[16];
256 outb(IO_ICU1 + 1, ~(1 << ICU_IRQ_SLAVE));
257 outb(IO_ICU2 + 1, ~(1 << (npx_irq - 8)));
258 setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
259 setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
260 npx_idt_probeintr = idt[npx_intrno];
261 cpu_enable_intr();
262 result = npx_probe1(dev);
263 cpu_disable_intr();
264 outb(IO_ICU1 + 1, save_icu1_mask);
265 outb(IO_ICU2 + 1, save_icu2_mask);
266 idt[npx_intrno] = save_idt_npxintr;
267 idt[16] = save_idt_npxtrap;
268 write_eflags(save_eflags);
269 return (result);
271 #endif /* SMP */
274 static int
275 npx_probe1(device_t dev)
277 #ifndef SMP
278 u_short control;
279 u_short status;
280 #endif
283 * Partially reset the coprocessor, if any. Some BIOS's don't reset
284 * it after a warm boot.
286 outb(0xf1, 0); /* full reset on some systems, NOP on others */
287 outb(0xf0, 0); /* clear BUSY# latch */
289 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
290 * instructions. We must set the CR0_MP bit and use the CR0_TS
291 * bit to control the trap, because setting the CR0_EM bit does
292 * not cause WAIT instructions to trap. It's important to trap
293 * WAIT instructions - otherwise the "wait" variants of no-wait
294 * control instructions would degenerate to the "no-wait" variants
295 * after FP context switches but work correctly otherwise. It's
296 * particularly important to trap WAITs when there is no NPX -
297 * otherwise the "wait" variants would always degenerate.
299 * Try setting CR0_NE to get correct error reporting on 486DX's.
300 * Setting it should fail or do nothing on lesser processors.
302 load_cr0(rcr0() | CR0_MP | CR0_NE);
304 * But don't trap while we're probing.
306 stop_emulating();
308 * Finish resetting the coprocessor, if any. If there is an error
309 * pending, then we may get a bogus IRQ13, but probeintr() will handle
310 * it OK. Bogus halts have never been observed, but we enabled
311 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
313 fninit();
315 device_set_desc(dev, "math processor");
317 * Modern CPUs all have an FPU that uses the INT16 interface
318 * and provide a simple way to verify that, so handle the
319 * common case right away.
321 if (cpu_feature & CPUID_FPU) {
322 npx_irq13 = 0;
323 npx_ex16 = hw_float = npx_exists = 1;
324 return (0);
327 #ifndef SMP
329 * Don't use fwait here because it might hang.
330 * Don't use fnop here because it usually hangs if there is no FPU.
332 DELAY(1000); /* wait for any IRQ13 */
333 #ifdef DIAGNOSTIC
334 if (npx_intrs_while_probing != 0)
335 kprintf("fninit caused %u bogus npx interrupt(s)\n",
336 npx_intrs_while_probing);
337 if (npx_traps_while_probing != 0)
338 kprintf("fninit caused %u bogus npx trap(s)\n",
339 npx_traps_while_probing);
340 #endif
342 * Check for a status of mostly zero.
344 status = 0x5a5a;
345 fnstsw(&status);
346 if ((status & 0xb8ff) == 0) {
348 * Good, now check for a proper control word.
350 control = 0x5a5a;
351 fnstcw(&control);
352 if ((control & 0x1f3f) == 0x033f) {
353 hw_float = npx_exists = 1;
355 * We have an npx, now divide by 0 to see if exception
356 * 16 works.
358 control &= ~(1 << 2); /* enable divide by 0 trap */
359 fldcw(&control);
360 npx_traps_while_probing = npx_intrs_while_probing = 0;
361 fp_divide_by_0();
362 if (npx_traps_while_probing != 0) {
364 * Good, exception 16 works.
366 npx_ex16 = 1;
367 return (0);
369 if (npx_intrs_while_probing != 0) {
370 int rid;
371 struct resource *r;
372 void *intr;
374 * Bad, we are stuck with IRQ13.
376 npx_irq13 = 1;
378 * npxattach would be too late to set npx0_imask
380 npx0_imask |= (1 << npx_irq);
383 * We allocate these resources permanently,
384 * so there is no need to keep track of them.
386 rid = 0;
387 r = bus_alloc_resource(dev, SYS_RES_IOPORT,
388 &rid, IO_NPX, IO_NPX,
389 IO_NPXSIZE, RF_ACTIVE);
390 if (r == 0)
391 panic("npx: can't get ports");
392 rid = 0;
393 r = bus_alloc_resource(dev, SYS_RES_IRQ,
394 &rid, npx_irq, npx_irq,
395 1, RF_ACTIVE);
396 if (r == 0)
397 panic("npx: can't get IRQ");
398 BUS_SETUP_INTR(device_get_parent(dev),
399 dev, r, 0,
400 npx_intr, 0, &intr, NULL);
401 if (intr == 0)
402 panic("npx: can't create intr");
404 return (0);
407 * Worse, even IRQ13 is broken. Use emulator.
411 #endif /* SMP */
413 * Probe failed, but we want to get to npxattach to initialize the
414 * emulator and say that it has been installed. XXX handle devices
415 * that aren't really devices better.
417 return (0);
421 * Attach routine - announce which it is, and wire into system
424 npx_attach(device_t dev)
426 int flags;
428 if (resource_int_value("npx", 0, "flags", &flags) != 0)
429 flags = 0;
431 if (flags)
432 device_printf(dev, "flags 0x%x ", flags);
433 if (npx_irq13) {
434 device_printf(dev, "using IRQ 13 interface\n");
435 } else {
436 #if defined(MATH_EMULATE)
437 if (npx_ex16) {
438 if (!(flags & NPX_PREFER_EMULATOR))
439 device_printf(dev, "INT 16 interface\n");
440 else {
441 device_printf(dev, "FPU exists, but flags request "
442 "emulator\n");
443 hw_float = npx_exists = 0;
445 } else if (npx_exists) {
446 device_printf(dev, "error reporting broken; using 387 emulator\n");
447 hw_float = npx_exists = 0;
448 } else
449 device_printf(dev, "387 emulator\n");
450 #else
451 if (npx_ex16) {
452 device_printf(dev, "INT 16 interface\n");
453 if (flags & NPX_PREFER_EMULATOR) {
454 device_printf(dev, "emulator requested, but none compiled "
455 "into kernel, using FPU\n");
457 } else
458 device_printf(dev, "no 387 emulator in kernel and no FPU!\n");
459 #endif
461 npxinit(__INITIAL_NPXCW__);
463 #if (defined(I586_CPU) || defined(I686_CPU)) && !defined(CPU_DISABLE_SSE)
465 * The asm_mmx_*() routines actually use XMM as well, so only
466 * enable them if we have SSE2 and are using FXSR (fxsave/fxrstore).
468 TUNABLE_INT_FETCH("kern.mmxopt", &mmxopt);
469 if ((cpu_feature & CPUID_MMX) && (cpu_feature & CPUID_SSE) &&
470 (cpu_feature & CPUID_SSE2) &&
471 npx_ex16 && npx_exists && mmxopt && cpu_fxsr
473 if ((flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY) == 0) {
474 bcopy_vector = (void **)asm_xmm_bcopy;
475 ovbcopy_vector = (void **)asm_xmm_bcopy;
476 memcpy_vector = (void **)asm_xmm_memcpy;
477 kprintf("Using XMM optimized bcopy/copyin/copyout\n");
479 if ((flags & NPX_DISABLE_I586_OPTIMIZED_BZERO) == 0) {
480 /* XXX */
482 } else if ((cpu_feature & CPUID_MMX) && (cpu_feature & CPUID_SSE) &&
483 npx_ex16 && npx_exists && mmxopt && cpu_fxsr
485 if ((flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY) == 0) {
486 bcopy_vector = (void **)asm_mmx_bcopy;
487 ovbcopy_vector = (void **)asm_mmx_bcopy;
488 memcpy_vector = (void **)asm_mmx_memcpy;
489 kprintf("Using MMX optimized bcopy/copyin/copyout\n");
491 if ((flags & NPX_DISABLE_I586_OPTIMIZED_BZERO) == 0) {
492 /* XXX */
495 #endif
496 #if 0
497 if (cpu_class == CPUCLASS_586 && npx_ex16 && npx_exists &&
498 timezero("i586_bzero()", i586_bzero) <
499 timezero("bzero()", bzero) * 4 / 5) {
500 if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY)) {
501 bcopy_vector = i586_bcopy;
502 ovbcopy_vector = i586_bcopy;
504 if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
505 bzero_vector = i586_bzero;
506 if (!(flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
507 copyin_vector = i586_copyin;
508 copyout_vector = i586_copyout;
511 #endif
512 return (0); /* XXX unused */
516 * Initialize the floating point unit.
518 void
519 npxinit(u_short control)
521 static union savefpu dummy __aligned(16);
523 if (!npx_exists)
524 return;
526 * fninit has the same h/w bugs as fnsave. Use the detoxified
527 * fnsave to throw away any junk in the fpu. npxsave() initializes
528 * the fpu and sets npxthread = NULL as important side effects.
530 npxsave(&dummy);
531 crit_enter();
532 stop_emulating();
533 fldcw(&control);
534 fpusave(curthread->td_savefpu);
535 mdcpu->gd_npxthread = NULL;
536 start_emulating();
537 crit_exit();
541 * Free coprocessor (if we have it).
543 void
544 npxexit(void)
546 if (curthread == mdcpu->gd_npxthread)
547 npxsave(curthread->td_savefpu);
548 #ifdef NPX_DEBUG
549 if (npx_exists) {
550 u_int masked_exceptions;
552 masked_exceptions =
553 curthread->td_savefpu->sv_87.sv_env.en_cw
554 & curthread->td_savefpu->sv_87.sv_env.en_sw & 0x7f;
556 * Log exceptions that would have trapped with the old
557 * control word (overflow, divide by 0, and invalid operand).
559 if (masked_exceptions & 0x0d)
560 log(LOG_ERR,
561 "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
562 curproc->p_pid, curproc->p_comm, masked_exceptions);
564 #endif
568 * The following mechanism is used to ensure that the FPE_... value
569 * that is passed as a trapcode to the signal handler of the user
570 * process does not have more than one bit set.
572 * Multiple bits may be set if the user process modifies the control
573 * word while a status word bit is already set. While this is a sign
574 * of bad coding, we have no choise than to narrow them down to one
575 * bit, since we must not send a trapcode that is not exactly one of
576 * the FPE_ macros.
578 * The mechanism has a static table with 127 entries. Each combination
579 * of the 7 FPU status word exception bits directly translates to a
580 * position in this table, where a single FPE_... value is stored.
581 * This FPE_... value stored there is considered the "most important"
582 * of the exception bits and will be sent as the signal code. The
583 * precedence of the bits is based upon Intel Document "Numerical
584 * Applications", Chapter "Special Computational Situations".
586 * The macro to choose one of these values does these steps: 1) Throw
587 * away status word bits that cannot be masked. 2) Throw away the bits
588 * currently masked in the control word, assuming the user isn't
589 * interested in them anymore. 3) Reinsert status word bit 7 (stack
590 * fault) if it is set, which cannot be masked but must be presered.
591 * 4) Use the remaining bits to point into the trapcode table.
593 * The 6 maskable bits in order of their preference, as stated in the
594 * above referenced Intel manual:
595 * 1 Invalid operation (FP_X_INV)
596 * 1a Stack underflow
597 * 1b Stack overflow
598 * 1c Operand of unsupported format
599 * 1d SNaN operand.
600 * 2 QNaN operand (not an exception, irrelavant here)
601 * 3 Any other invalid-operation not mentioned above or zero divide
602 * (FP_X_INV, FP_X_DZ)
603 * 4 Denormal operand (FP_X_DNML)
604 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
605 * 6 Inexact result (FP_X_IMP)
607 static char fpetable[128] = {
609 FPE_FLTINV, /* 1 - INV */
610 FPE_FLTUND, /* 2 - DNML */
611 FPE_FLTINV, /* 3 - INV | DNML */
612 FPE_FLTDIV, /* 4 - DZ */
613 FPE_FLTINV, /* 5 - INV | DZ */
614 FPE_FLTDIV, /* 6 - DNML | DZ */
615 FPE_FLTINV, /* 7 - INV | DNML | DZ */
616 FPE_FLTOVF, /* 8 - OFL */
617 FPE_FLTINV, /* 9 - INV | OFL */
618 FPE_FLTUND, /* A - DNML | OFL */
619 FPE_FLTINV, /* B - INV | DNML | OFL */
620 FPE_FLTDIV, /* C - DZ | OFL */
621 FPE_FLTINV, /* D - INV | DZ | OFL */
622 FPE_FLTDIV, /* E - DNML | DZ | OFL */
623 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
624 FPE_FLTUND, /* 10 - UFL */
625 FPE_FLTINV, /* 11 - INV | UFL */
626 FPE_FLTUND, /* 12 - DNML | UFL */
627 FPE_FLTINV, /* 13 - INV | DNML | UFL */
628 FPE_FLTDIV, /* 14 - DZ | UFL */
629 FPE_FLTINV, /* 15 - INV | DZ | UFL */
630 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
631 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
632 FPE_FLTOVF, /* 18 - OFL | UFL */
633 FPE_FLTINV, /* 19 - INV | OFL | UFL */
634 FPE_FLTUND, /* 1A - DNML | OFL | UFL */
635 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
636 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
637 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
638 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
639 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
640 FPE_FLTRES, /* 20 - IMP */
641 FPE_FLTINV, /* 21 - INV | IMP */
642 FPE_FLTUND, /* 22 - DNML | IMP */
643 FPE_FLTINV, /* 23 - INV | DNML | IMP */
644 FPE_FLTDIV, /* 24 - DZ | IMP */
645 FPE_FLTINV, /* 25 - INV | DZ | IMP */
646 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
647 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
648 FPE_FLTOVF, /* 28 - OFL | IMP */
649 FPE_FLTINV, /* 29 - INV | OFL | IMP */
650 FPE_FLTUND, /* 2A - DNML | OFL | IMP */
651 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
652 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
653 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
654 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
655 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
656 FPE_FLTUND, /* 30 - UFL | IMP */
657 FPE_FLTINV, /* 31 - INV | UFL | IMP */
658 FPE_FLTUND, /* 32 - DNML | UFL | IMP */
659 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
660 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
661 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
662 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
663 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
664 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
665 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
666 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
667 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
668 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
669 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
670 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
671 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
672 FPE_FLTSUB, /* 40 - STK */
673 FPE_FLTSUB, /* 41 - INV | STK */
674 FPE_FLTUND, /* 42 - DNML | STK */
675 FPE_FLTSUB, /* 43 - INV | DNML | STK */
676 FPE_FLTDIV, /* 44 - DZ | STK */
677 FPE_FLTSUB, /* 45 - INV | DZ | STK */
678 FPE_FLTDIV, /* 46 - DNML | DZ | STK */
679 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
680 FPE_FLTOVF, /* 48 - OFL | STK */
681 FPE_FLTSUB, /* 49 - INV | OFL | STK */
682 FPE_FLTUND, /* 4A - DNML | OFL | STK */
683 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
684 FPE_FLTDIV, /* 4C - DZ | OFL | STK */
685 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
686 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
687 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
688 FPE_FLTUND, /* 50 - UFL | STK */
689 FPE_FLTSUB, /* 51 - INV | UFL | STK */
690 FPE_FLTUND, /* 52 - DNML | UFL | STK */
691 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
692 FPE_FLTDIV, /* 54 - DZ | UFL | STK */
693 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
694 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
695 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
696 FPE_FLTOVF, /* 58 - OFL | UFL | STK */
697 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
698 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
699 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
700 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
701 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
702 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
703 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
704 FPE_FLTRES, /* 60 - IMP | STK */
705 FPE_FLTSUB, /* 61 - INV | IMP | STK */
706 FPE_FLTUND, /* 62 - DNML | IMP | STK */
707 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
708 FPE_FLTDIV, /* 64 - DZ | IMP | STK */
709 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
710 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
711 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
712 FPE_FLTOVF, /* 68 - OFL | IMP | STK */
713 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
714 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
715 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
716 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
717 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
718 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
719 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
720 FPE_FLTUND, /* 70 - UFL | IMP | STK */
721 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
722 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
723 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
724 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
725 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
726 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
727 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
728 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
729 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
730 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
731 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
732 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
733 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
734 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
735 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
739 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
741 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs. We now
742 * depend on longjmp() restoring a usable state. Restoring the state
743 * or examining it might fail if we didn't clear exceptions.
745 * The error code chosen will be one of the FPE_... macros. It will be
746 * sent as the second argument to old BSD-style signal handlers and as
747 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
749 * XXX the FP state is not preserved across signal handlers. So signal
750 * handlers cannot afford to do FP unless they preserve the state or
751 * longjmp() out. Both preserving the state and longjmp()ing may be
752 * destroyed by IRQ13 bugs. Clearing FP exceptions is not an acceptable
753 * solution for signals other than SIGFPE.
755 * The MP lock is not held on entry (see i386/i386/exception.s) and
756 * should not be held on exit. Interrupts are enabled. We must enter
757 * a critical section to stabilize the FP system and prevent an interrupt
758 * or preemption from changing the FP state out from under us.
760 void
761 npx_intr(void *dummy)
763 int code;
764 u_short control;
765 struct intrframe *frame;
766 u_long *exstat;
768 crit_enter();
771 * This exception can only occur with CR0_TS clear, otherwise we
772 * would get a DNA exception. However, since interrupts were
773 * enabled a preemption could have sneaked in and used the FP system
774 * before we entered our critical section. If that occured, the
775 * TS bit will be set and npxthread will be NULL.
777 if (npx_exists && (rcr0() & CR0_TS)) {
778 KASSERT(mdcpu->gd_npxthread == NULL, ("gd_npxthread was %p with TS set!", mdcpu->gd_npxthread));
779 npxdna();
780 crit_exit();
781 return;
783 if (mdcpu->gd_npxthread == NULL || !npx_exists) {
784 get_mplock();
785 kprintf("npxintr: npxthread = %p, curthread = %p, npx_exists = %d\n",
786 mdcpu->gd_npxthread, curthread, npx_exists);
787 panic("npxintr from nowhere");
789 if (mdcpu->gd_npxthread != curthread) {
790 get_mplock();
791 kprintf("npxintr: npxthread = %p, curthread = %p, npx_exists = %d\n",
792 mdcpu->gd_npxthread, curthread, npx_exists);
793 panic("npxintr from non-current process");
796 exstat = GET_FPU_EXSW_PTR(curthread);
797 outb(0xf0, 0);
798 fnstsw(exstat);
799 fnstcw(&control);
800 fnclex();
802 get_mplock();
805 * Pass exception to process.
807 frame = (struct intrframe *)&dummy; /* XXX */
808 if ((ISPL(frame->if_cs) == SEL_UPL) || (frame->if_eflags & PSL_VM)) {
810 * Interrupt is essentially a trap, so we can afford to call
811 * the SIGFPE handler (if any) as soon as the interrupt
812 * returns.
814 * XXX little or nothing is gained from this, and plenty is
815 * lost - the interrupt frame has to contain the trap frame
816 * (this is otherwise only necessary for the rescheduling trap
817 * in doreti, and the frame for that could easily be set up
818 * just before it is used).
820 curthread->td_lwp->lwp_md.md_regs = INTR_TO_TRAPFRAME(frame);
822 * Encode the appropriate code for detailed information on
823 * this exception.
825 code =
826 fpetable[(*exstat & ~control & 0x3f) | (*exstat & 0x40)];
827 trapsignal(curthread->td_lwp, SIGFPE, code);
828 } else {
830 * Nested interrupt. These losers occur when:
831 * o an IRQ13 is bogusly generated at a bogus time, e.g.:
832 * o immediately after an fnsave or frstor of an
833 * error state.
834 * o a couple of 386 instructions after
835 * "fstpl _memvar" causes a stack overflow.
836 * These are especially nasty when combined with a
837 * trace trap.
838 * o an IRQ13 occurs at the same time as another higher-
839 * priority interrupt.
841 * Treat them like a true async interrupt.
843 lwpsignal(curproc, curthread->td_lwp, SIGFPE);
845 rel_mplock();
846 crit_exit();
850 * Implement the device not available (DNA) exception. gd_npxthread had
851 * better be NULL. Restore the current thread's FP state and set gd_npxthread
852 * to curthread.
854 * Interrupts are enabled and preemption can occur. Enter a critical
855 * section to stabilize the FP state.
858 npxdna(void)
860 thread_t td = curthread;
861 u_long *exstat;
862 int didinit = 0;
864 if (!npx_exists)
865 return (0);
866 if (mdcpu->gd_npxthread != NULL) {
867 kprintf("npxdna: npxthread = %p, curthread = %p\n",
868 mdcpu->gd_npxthread, td);
869 panic("npxdna");
873 * Setup the initial saved state if the thread has never before
874 * used the FP unit. This also occurs when a thread pushes a
875 * signal handler and uses FP in the handler.
877 if ((td->td_flags & (TDF_USINGFP | TDF_KERNELFP)) == 0) {
878 td->td_flags |= TDF_USINGFP;
879 npxinit(__INITIAL_NPXCW__);
880 didinit = 1;
884 * The setting of gd_npxthread and the call to fpurstor() must not
885 * be preempted by an interrupt thread or we will take an npxdna
886 * trap and potentially save our current fpstate (which is garbage)
887 * and then restore the garbage rather then the originally saved
888 * fpstate.
890 crit_enter();
891 stop_emulating();
893 * Record new context early in case frstor causes an IRQ13.
895 mdcpu->gd_npxthread = td;
896 exstat = GET_FPU_EXSW_PTR(td);
897 *exstat = 0;
899 * The following frstor may cause an IRQ13 when the state being
900 * restored has a pending error. The error will appear to have been
901 * triggered by the current (npx) user instruction even when that
902 * instruction is a no-wait instruction that should not trigger an
903 * error (e.g., fnclex). On at least one 486 system all of the
904 * no-wait instructions are broken the same as frstor, so our
905 * treatment does not amplify the breakage. On at least one
906 * 386/Cyrix 387 system, fnclex works correctly while frstor and
907 * fnsave are broken, so our treatment breaks fnclex if it is the
908 * first FPU instruction after a context switch.
910 if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF)
911 #ifndef CPU_DISABLE_SSE
912 && cpu_fxsr
913 #endif
915 krateprintf(&badfprate,
916 "FXRSTR: illegal FP MXCSR %08x didinit = %d\n",
917 td->td_savefpu->sv_xmm.sv_env.en_mxcsr, didinit);
918 td->td_savefpu->sv_xmm.sv_env.en_mxcsr &= 0xFFBF;
919 lwpsignal(curproc, curthread->td_lwp, SIGFPE);
921 fpurstor(td->td_savefpu);
922 crit_exit();
924 return (1);
928 * Wrapper for the fnsave instruction to handle h/w bugs. If there is an error
929 * pending, then fnsave generates a bogus IRQ13 on some systems. Force
930 * any IRQ13 to be handled immediately, and then ignore it. This routine is
931 * often called at splhigh so it must not use many system services. In
932 * particular, it's much easier to install a special handler than to
933 * guarantee that it's safe to use npxintr() and its supporting code.
935 * WARNING! This call is made during a switch and the MP lock will be
936 * setup for the new target thread rather then the current thread, so we
937 * cannot do anything here that depends on the *_mplock() functions as
938 * we may trip over their assertions.
940 * WARNING! When using fxsave we MUST fninit after saving the FP state. The
941 * kernel will always assume that the FP state is 'safe' (will not cause
942 * exceptions) for mmx/xmm use if npxthread is NULL. The kernel must still
943 * setup a custom save area before actually using the FP unit, but it will
944 * not bother calling fninit. This greatly improves kernel performance when
945 * it wishes to use the FP unit.
947 void
948 npxsave(union savefpu *addr)
950 #if defined(SMP) || !defined(CPU_DISABLE_SSE)
952 crit_enter();
953 stop_emulating();
954 fpusave(addr);
955 mdcpu->gd_npxthread = NULL;
956 fninit();
957 start_emulating();
958 crit_exit();
960 #else /* !SMP and CPU_DISABLE_SSE */
962 u_char icu1_mask;
963 u_char icu2_mask;
964 u_char old_icu1_mask;
965 u_char old_icu2_mask;
966 struct gate_descriptor save_idt_npxintr;
967 u_long save_eflags;
969 save_eflags = read_eflags();
970 cpu_disable_intr();
971 old_icu1_mask = inb(IO_ICU1 + 1);
972 old_icu2_mask = inb(IO_ICU2 + 1);
973 save_idt_npxintr = idt[npx_intrno];
974 outb(IO_ICU1 + 1, old_icu1_mask & ~((1 << ICU_IRQ_SLAVE) | npx0_imask));
975 outb(IO_ICU2 + 1, old_icu2_mask & ~(npx0_imask >> 8));
976 idt[npx_intrno] = npx_idt_probeintr;
977 cpu_enable_intr();
978 stop_emulating();
979 fnsave(addr);
980 fnop();
981 cpu_disable_intr();
982 mdcpu->gd_npxthread = NULL;
983 start_emulating();
984 icu1_mask = inb(IO_ICU1 + 1); /* masks may have changed */
985 icu2_mask = inb(IO_ICU2 + 1);
986 outb(IO_ICU1 + 1,
987 (icu1_mask & ~npx0_imask) | (old_icu1_mask & npx0_imask));
988 outb(IO_ICU2 + 1,
989 (icu2_mask & ~(npx0_imask >> 8))
990 | (old_icu2_mask & (npx0_imask >> 8)));
991 idt[npx_intrno] = save_idt_npxintr;
992 write_eflags(save_eflags); /* back to usual state */
994 #endif /* SMP */
997 static void
998 fpusave(union savefpu *addr)
1000 #ifndef CPU_DISABLE_SSE
1001 if (cpu_fxsr)
1002 fxsave(addr);
1003 else
1004 #endif
1005 fnsave(addr);
1009 * Save the FP state to the mcontext structure.
1011 * WARNING: If you want to try to npxsave() directly to mctx->mc_fpregs,
1012 * then it MUST be 16-byte aligned. Currently this is not guarenteed.
1014 void
1015 npxpush(mcontext_t *mctx)
1017 thread_t td = curthread;
1019 KKASSERT((td->td_flags & TDF_KERNELFP) == 0);
1021 if (td->td_flags & TDF_USINGFP) {
1022 if (mdcpu->gd_npxthread == td) {
1024 * XXX Note: This is a bit inefficient if the signal
1025 * handler uses floating point, extra faults will
1026 * occur.
1028 mctx->mc_ownedfp = _MC_FPOWNED_FPU;
1029 npxsave(td->td_savefpu);
1030 } else {
1031 mctx->mc_ownedfp = _MC_FPOWNED_PCB;
1033 bcopy(td->td_savefpu, mctx->mc_fpregs, sizeof(mctx->mc_fpregs));
1034 td->td_flags &= ~TDF_USINGFP;
1035 mctx->mc_fpformat =
1036 #ifndef CPU_DISABLE_SSE
1037 (cpu_fxsr) ? _MC_FPFMT_XMM :
1038 #endif
1039 _MC_FPFMT_387;
1040 } else {
1041 mctx->mc_ownedfp = _MC_FPOWNED_NONE;
1042 mctx->mc_fpformat = _MC_FPFMT_NODEV;
1047 * Restore the FP state from the mcontext structure.
1049 void
1050 npxpop(mcontext_t *mctx)
1052 thread_t td = curthread;
1054 KKASSERT((td->td_flags & TDF_KERNELFP) == 0);
1056 switch(mctx->mc_ownedfp) {
1057 case _MC_FPOWNED_NONE:
1059 * If the signal handler used the FP unit but the interrupted
1060 * code did not, release the FP unit. Clear TDF_USINGFP will
1061 * force the FP unit to reinit so the interrupted code sees
1062 * a clean slate.
1064 if (td->td_flags & TDF_USINGFP) {
1065 if (td == mdcpu->gd_npxthread)
1066 npxsave(td->td_savefpu);
1067 td->td_flags &= ~TDF_USINGFP;
1069 break;
1070 case _MC_FPOWNED_FPU:
1071 case _MC_FPOWNED_PCB:
1073 * Clear ownership of the FP unit and restore our saved state.
1075 * NOTE: The signal handler may have set-up some FP state and
1076 * enabled the FP unit, so we have to restore no matter what.
1078 * XXX: This is bit inefficient, if the code being returned
1079 * to is actively using the FP this results in multiple
1080 * kernel faults.
1082 * WARNING: The saved state was exposed to userland and may
1083 * have to be sanitized to avoid a GP fault in the kernel.
1085 if (td == mdcpu->gd_npxthread)
1086 npxsave(td->td_savefpu);
1087 bcopy(mctx->mc_fpregs, td->td_savefpu, sizeof(*td->td_savefpu));
1088 if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF)
1089 #ifndef CPU_DISABLE_SSE
1090 && cpu_fxsr
1091 #endif
1093 krateprintf(&badfprate,
1094 "pid %d (%s) signal return from user: "
1095 "illegal FP MXCSR %08x\n",
1096 td->td_proc->p_pid,
1097 td->td_proc->p_comm,
1098 td->td_savefpu->sv_xmm.sv_env.en_mxcsr);
1099 td->td_savefpu->sv_xmm.sv_env.en_mxcsr &= 0xFFBF;
1101 td->td_flags |= TDF_USINGFP;
1102 break;
1106 #ifndef CPU_DISABLE_SSE
1108 * On AuthenticAMD processors, the fxrstor instruction does not restore
1109 * the x87's stored last instruction pointer, last data pointer, and last
1110 * opcode values, except in the rare case in which the exception summary
1111 * (ES) bit in the x87 status word is set to 1.
1113 * In order to avoid leaking this information across processes, we clean
1114 * these values by performing a dummy load before executing fxrstor().
1116 static double dummy_variable = 0.0;
1117 static void
1118 fpu_clean_state(void)
1120 u_short status;
1123 * Clear the ES bit in the x87 status word if it is currently
1124 * set, in order to avoid causing a fault in the upcoming load.
1126 fnstsw(&status);
1127 if (status & 0x80)
1128 fnclex();
1131 * Load the dummy variable into the x87 stack. This mangles
1132 * the x87 stack, but we don't care since we're about to call
1133 * fxrstor() anyway.
1135 __asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
1137 #endif /* CPU_DISABLE_SSE */
1139 static void
1140 fpurstor(union savefpu *addr)
1142 #ifndef CPU_DISABLE_SSE
1143 if (cpu_fxsr) {
1144 fpu_clean_state();
1145 fxrstor(addr);
1146 } else {
1147 frstor(addr);
1149 #else
1150 frstor(addr);
1151 #endif
1155 * Because npx is a static device that always exists under nexus,
1156 * and is not scanned by the nexus device, we need an identify
1157 * function to install the device.
1159 static device_method_t npx_methods[] = {
1160 /* Device interface */
1161 DEVMETHOD(device_identify, bus_generic_identify),
1162 DEVMETHOD(device_probe, npx_probe),
1163 DEVMETHOD(device_attach, npx_attach),
1164 DEVMETHOD(device_detach, bus_generic_detach),
1165 DEVMETHOD(device_shutdown, bus_generic_shutdown),
1166 DEVMETHOD(device_suspend, bus_generic_suspend),
1167 DEVMETHOD(device_resume, bus_generic_resume),
1169 { 0, 0 }
1172 static driver_t npx_driver = {
1173 "npx",
1174 npx_methods,
1175 1, /* no softc */
1178 static devclass_t npx_devclass;
1181 * We prefer to attach to the root nexus so that the usual case (exception 16)
1182 * doesn't describe the processor as being `on isa'.
1184 DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);