linprocfs - Introduce /proc/mounts
[dragonfly.git] / sys / dev / netif / rum / if_rum.c
blobabd8b22e6d573ca790660d3bd9140af488793a57
1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $DragonFly: src/sys/dev/netif/rum/if_rum.c,v 1.28 2008/05/14 11:59:21 sephe Exp $ */
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/serialize.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
53 #include "if_rumreg.h"
54 #include "if_rumvar.h"
55 #include "rum_ucode.h"
57 #ifdef USB_DEBUG
58 #define RUM_DEBUG
59 #endif
61 #ifdef RUM_DEBUG
62 #define DPRINTF(x) do { if (rum_debug) kprintf x; } while (0)
63 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) kprintf x; } while (0)
64 int rum_debug = 0;
65 #else
66 #define DPRINTF(x)
67 #define DPRINTFN(n, x)
68 #endif
70 /* various supported device vendors/products */
71 static const struct usb_devno rum_devs[] = {
72 { USB_DEVICE(0x0411, 0x00d8) }, /* Melco WLI-U2-SG54HP */
73 { USB_DEVICE(0x0411, 0x00d9) }, /* Melco WLI-U2-G54HP */
74 { USB_DEVICE(0x050d, 0x705a) }, /* Belkin F5D7050A */
75 { USB_DEVICE(0x050d, 0x905b) }, /* Belkin F5D9050 ver3 */
76 { USB_DEVICE(0x0586, 0x3415) }, /* ZyXEL RT2573 */
77 { USB_DEVICE(0x06f8, 0xe010) }, /* Guillemot HWGUSB2-54-LB */
78 { USB_DEVICE(0x06f8, 0xe020) }, /* Guillemot HWGUSB2-54V2-AP */
79 { USB_DEVICE(0x0769, 0x31f3) }, /* Surecom RT2573 */
80 { USB_DEVICE(0x07b8, 0xb21b) }, /* AboCom HWU54DM */
81 { USB_DEVICE(0x07b8, 0xb21c) }, /* AboCom RT2573 */
82 { USB_DEVICE(0x07b8, 0xb21d) }, /* AboCom RT2573 */
83 { USB_DEVICE(0x07b8, 0xb21e) }, /* AboCom RT2573 */
84 { USB_DEVICE(0x07b8, 0xb21f) }, /* AboCom WUG2700 */
85 { USB_DEVICE(0x07d1, 0x3c03) }, /* D-Link DWL-G122 rev c1 */
86 { USB_DEVICE(0x07d1, 0x3c04) }, /* D-Link WUA-1340 */
87 { USB_DEVICE(0x0b05, 0x1723) }, /* Asus WL-167g */
88 { USB_DEVICE(0x0b05, 0x1724) }, /* Asus WL-167g */
89 { USB_DEVICE(0x0db0, 0x6874) }, /* MSI RT2573 */
90 { USB_DEVICE(0x0db0, 0x6877) }, /* MSI RT2573 */
91 { USB_DEVICE(0x0db0, 0xa861) }, /* MSI RT2573 */
92 { USB_DEVICE(0x0db0, 0xa874) }, /* MSI RT2573 */
93 { USB_DEVICE(0x0df6, 0x90ac) }, /* Sitecom WL-172 */
94 { USB_DEVICE(0x0df6, 0x9712) }, /* Sitecom WL-113 rev 2 */
95 { USB_DEVICE(0x0eb0, 0x9021) }, /* Nova Technology RT2573 */
96 { USB_DEVICE(0x1044, 0x8008) }, /* GIGABYTE GN-WB01GS */
97 { USB_DEVICE(0x1044, 0x800a) }, /* GIGABYTE GN-WI05GS */
98 { USB_DEVICE(0x1371, 0x9022) }, /* (really) C-Net RT2573 */
99 { USB_DEVICE(0x1371, 0x9032) }, /* (really) C-Net CWD854F */
100 { USB_DEVICE(0x13b1, 0x0020) }, /* Cisco-Linksys WUSB54GC */
101 { USB_DEVICE(0x13b1, 0x0023) }, /* Cisco-Linksys WUSB54GR */
102 { USB_DEVICE(0x1472, 0x0009) }, /* Huawei RT2573 */
103 { USB_DEVICE(0x148f, 0x2573) }, /* Ralink RT2573 */
104 { USB_DEVICE(0x148f, 0x2671) }, /* Ralink RT2671 */
105 { USB_DEVICE(0x148f, 0x9021) }, /* Ralink RT2573 */
106 { USB_DEVICE(0x14b2, 0x3c22) }, /* Conceptronic C54RU */
107 { USB_DEVICE(0x15a9, 0x0004) }, /* SparkLan RT2573 */
108 { USB_DEVICE(0x1631, 0xc019) }, /* Good Way Technology RT2573 */
109 { USB_DEVICE(0x1690, 0x0722) }, /* Gigaset RT2573 */
110 { USB_DEVICE(0x1737, 0x0020) }, /* Linksys WUSB54GC */
111 { USB_DEVICE(0x1737, 0x0023) }, /* Linksys WUSB54GR */
112 { USB_DEVICE(0x18c5, 0x0002) }, /* AMIT CG-WLUSB2GO */
113 { USB_DEVICE(0x18e8, 0x6196) }, /* Qcom RT2573 */
114 { USB_DEVICE(0x18e8, 0x6229) }, /* Qcom RT2573 */
115 { USB_DEVICE(0x18e8, 0x6238) }, /* Qcom RT2573 */
116 { USB_DEVICE(0x2019, 0xab01) }, /* Planex GW-US54HP */
117 { USB_DEVICE(0x2019, 0xab50) }, /* Planex GW-US54Mini2 */
118 { USB_DEVICE(0x2019, 0xed02) }, /* Planex GW-USMM */
121 static int rum_alloc_tx_list(struct rum_softc *);
122 static void rum_free_tx_list(struct rum_softc *);
123 static int rum_alloc_rx_list(struct rum_softc *);
124 static void rum_free_rx_list(struct rum_softc *);
125 static int rum_media_change(struct ifnet *);
126 static void rum_next_scan(void *);
127 static void rum_task(void *);
128 static int rum_newstate(struct ieee80211com *,
129 enum ieee80211_state, int);
130 static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
131 usbd_status);
132 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
133 usbd_status);
134 static uint8_t rum_rxrate(struct rum_rx_desc *);
135 static uint8_t rum_plcp_signal(int);
136 static void rum_setup_tx_desc(struct rum_softc *,
137 struct rum_tx_desc *, uint32_t, uint16_t, int,
138 int);
139 static int rum_tx_data(struct rum_softc *, struct mbuf *,
140 struct ieee80211_node *);
141 static void rum_start(struct ifnet *);
142 static void rum_watchdog(struct ifnet *);
143 static int rum_ioctl(struct ifnet *, u_long, caddr_t,
144 struct ucred *);
145 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
146 int);
147 static uint32_t rum_read(struct rum_softc *, uint16_t);
148 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
149 int);
150 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
151 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
152 size_t);
153 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
154 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
155 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
156 static void rum_select_antenna(struct rum_softc *);
157 static void rum_enable_mrr(struct rum_softc *);
158 static void rum_set_txpreamble(struct rum_softc *);
159 static void rum_set_basicrates(struct rum_softc *);
160 static void rum_select_band(struct rum_softc *,
161 struct ieee80211_channel *);
162 static void rum_set_chan(struct rum_softc *,
163 struct ieee80211_channel *);
164 static void rum_enable_tsf_sync(struct rum_softc *);
165 static void rum_update_slot(struct rum_softc *);
166 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
167 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
168 static void rum_update_promisc(struct rum_softc *);
169 static const char *rum_get_rf(int);
170 static void rum_read_eeprom(struct rum_softc *);
171 static int rum_bbp_init(struct rum_softc *);
172 static void rum_init(void *);
173 static void rum_stop(struct rum_softc *);
174 static int rum_load_microcode(struct rum_softc *, const uint8_t *,
175 size_t);
176 static int rum_prepare_beacon(struct rum_softc *);
178 static void rum_stats_timeout(void *);
179 static void rum_stats_update(usbd_xfer_handle, usbd_private_handle,
180 usbd_status);
181 static void rum_stats(struct ieee80211com *,
182 struct ieee80211_node *,
183 struct ieee80211_ratectl_stats *);
184 static void *rum_ratectl_attach(struct ieee80211com *, u_int);
185 static int rum_get_rssi(struct rum_softc *, uint8_t);
188 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
190 static const struct ieee80211_rateset rum_rateset_11a =
191 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
193 static const struct ieee80211_rateset rum_rateset_11b =
194 { 4, { 2, 4, 11, 22 } };
196 static const struct ieee80211_rateset rum_rateset_11g =
197 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
199 static const struct {
200 uint32_t reg;
201 uint32_t val;
202 } rum_def_mac[] = {
203 RT2573_DEF_MAC
206 static const struct {
207 uint8_t reg;
208 uint8_t val;
209 } rum_def_bbp[] = {
210 RT2573_DEF_BBP
213 static const struct rfprog {
214 uint8_t chan;
215 uint32_t r1, r2, r3, r4;
216 } rum_rf5226[] = {
217 RT2573_RF5226
218 }, rum_rf5225[] = {
219 RT2573_RF5225
222 static device_probe_t rum_match;
223 static device_attach_t rum_attach;
224 static device_detach_t rum_detach;
226 static devclass_t rum_devclass;
228 static kobj_method_t rum_methods[] = {
229 DEVMETHOD(device_probe, rum_match),
230 DEVMETHOD(device_attach, rum_attach),
231 DEVMETHOD(device_detach, rum_detach),
232 {0,0}
235 static driver_t rum_driver = {
236 "rum",
237 rum_methods,
238 sizeof(struct rum_softc)
241 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);
243 MODULE_DEPEND(rum, usb, 1, 1, 1);
244 MODULE_DEPEND(rum, wlan, 1, 1, 1);
245 MODULE_DEPEND(rum, wlan_ratectl_onoe, 1, 1, 1);
247 static int
248 rum_match(device_t self)
250 struct usb_attach_arg *uaa = device_get_ivars(self);
252 if (uaa->iface != NULL)
253 return UMATCH_NONE;
255 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
256 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
259 static int
260 rum_attach(device_t self)
262 struct rum_softc *sc = device_get_softc(self);
263 struct usb_attach_arg *uaa = device_get_ivars(self);
264 struct ieee80211com *ic = &sc->sc_ic;
265 struct ifnet *ifp = &ic->ic_if;
266 usb_interface_descriptor_t *id;
267 usb_endpoint_descriptor_t *ed;
268 usbd_status error;
269 int i, ntries;
270 uint32_t tmp;
272 sc->sc_udev = uaa->device;
273 sc->sc_dev = self;
275 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
276 kprintf("%s: could not set configuration no\n",
277 device_get_nameunit(sc->sc_dev));
278 return ENXIO;
281 /* get the first interface handle */
282 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
283 &sc->sc_iface);
284 if (error != 0) {
285 kprintf("%s: could not get interface handle\n",
286 device_get_nameunit(sc->sc_dev));
287 return ENXIO;
291 * Find endpoints.
293 id = usbd_get_interface_descriptor(sc->sc_iface);
295 sc->sc_rx_no = sc->sc_tx_no = -1;
296 for (i = 0; i < id->bNumEndpoints; i++) {
297 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
298 if (ed == NULL) {
299 kprintf("%s: no endpoint descriptor for iface %d\n",
300 device_get_nameunit(sc->sc_dev), i);
301 return ENXIO;
304 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
305 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
306 sc->sc_rx_no = ed->bEndpointAddress;
307 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
308 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
309 sc->sc_tx_no = ed->bEndpointAddress;
311 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
312 kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev));
313 return ENXIO;
316 usb_init_task(&sc->sc_task, rum_task, sc);
318 callout_init(&sc->scan_ch);
319 callout_init(&sc->stats_ch);
321 /* retrieve RT2573 rev. no */
322 for (ntries = 0; ntries < 1000; ntries++) {
323 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
324 break;
325 DELAY(1000);
327 if (ntries == 1000) {
328 kprintf("%s: timeout waiting for chip to settle\n",
329 device_get_nameunit(sc->sc_dev));
330 return ENXIO;
333 /* retrieve MAC address and various other things from EEPROM */
334 rum_read_eeprom(sc);
336 kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n",
337 device_get_nameunit(sc->sc_dev), sc->macbbp_rev, tmp,
338 rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":");
340 error = rum_load_microcode(sc, rt2573, sizeof(rt2573));
341 if (error != 0) {
342 device_printf(self, "can't load microcode\n");
343 return ENXIO;
346 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
347 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
348 ic->ic_state = IEEE80211_S_INIT;
350 /* set device capabilities */
351 ic->ic_caps =
352 IEEE80211_C_IBSS | /* IBSS mode supported */
353 IEEE80211_C_MONITOR | /* monitor mode supported */
354 IEEE80211_C_HOSTAP | /* HostAp mode supported */
355 IEEE80211_C_TXPMGT | /* tx power management */
356 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
357 IEEE80211_C_SHSLOT | /* short slot time supported */
358 IEEE80211_C_WPA; /* WPA 1+2 */
360 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
361 /* set supported .11a rates */
362 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
364 /* set supported .11a channels */
365 for (i = 34; i <= 46; i += 4) {
366 ic->ic_channels[i].ic_freq =
367 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
368 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
370 for (i = 36; i <= 64; i += 4) {
371 ic->ic_channels[i].ic_freq =
372 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
373 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
375 for (i = 100; i <= 140; i += 4) {
376 ic->ic_channels[i].ic_freq =
377 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
378 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
380 for (i = 149; i <= 165; i += 4) {
381 ic->ic_channels[i].ic_freq =
382 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
383 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
387 /* set supported .11b and .11g rates */
388 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
389 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
391 /* set supported .11b and .11g channels (1 through 14) */
392 for (i = 1; i <= 14; i++) {
393 ic->ic_channels[i].ic_freq =
394 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
395 ic->ic_channels[i].ic_flags =
396 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
397 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
400 sc->sc_sifs = IEEE80211_DUR_SIFS; /* Default SIFS */
402 if_initname(ifp, device_get_name(self), device_get_unit(self));
403 ifp->if_softc = sc;
404 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
405 ifp->if_init = rum_init;
406 ifp->if_ioctl = rum_ioctl;
407 ifp->if_start = rum_start;
408 ifp->if_watchdog = rum_watchdog;
409 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
410 ifq_set_ready(&ifp->if_snd);
412 IEEE80211_ONOE_PARAM_SETUP(&sc->sc_onoe_param);
413 sc->sc_onoe_param.onoe_raise = 15;
414 ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
415 ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
416 ic->ic_ratectl.rc_st_stats = rum_stats;
417 ic->ic_ratectl.rc_st_attach = rum_ratectl_attach;
419 ieee80211_ifattach(ic);
421 /* Enable software beacon missing handling. */
422 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
424 /* override state transition machine */
425 sc->sc_newstate = ic->ic_newstate;
426 ic->ic_newstate = rum_newstate;
427 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
429 bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
430 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 &sc->sc_drvbpf);
433 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
437 sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
441 if (bootverbose)
442 ieee80211_announce(ic);
444 return 0;
447 static int
448 rum_detach(device_t self)
450 struct rum_softc *sc = device_get_softc(self);
451 struct ifnet *ifp = &sc->sc_ic.ic_if;
452 #ifdef INVARIANTS
453 int i;
454 #endif
456 crit_enter();
458 callout_stop(&sc->scan_ch);
459 callout_stop(&sc->stats_ch);
461 lwkt_serialize_enter(ifp->if_serializer);
462 rum_stop(sc);
463 lwkt_serialize_exit(ifp->if_serializer);
465 usb_rem_task(sc->sc_udev, &sc->sc_task);
467 bpfdetach(ifp);
468 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
470 crit_exit();
472 KKASSERT(sc->stats_xfer == NULL);
473 KKASSERT(sc->sc_rx_pipeh == NULL);
474 KKASSERT(sc->sc_tx_pipeh == NULL);
476 #ifdef INVARIANTS
478 * Make sure TX/RX list is empty
480 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
481 struct rum_tx_data *data = &sc->tx_data[i];
483 KKASSERT(data->xfer == NULL);
484 KKASSERT(data->ni == NULL);
485 KKASSERT(data->m == NULL);
487 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
488 struct rum_rx_data *data = &sc->rx_data[i];
490 KKASSERT(data->xfer == NULL);
491 KKASSERT(data->m == NULL);
493 #endif
494 return 0;
497 static int
498 rum_alloc_tx_list(struct rum_softc *sc)
500 int i;
502 sc->tx_queued = 0;
503 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
504 struct rum_tx_data *data = &sc->tx_data[i];
506 data->sc = sc;
508 data->xfer = usbd_alloc_xfer(sc->sc_udev);
509 if (data->xfer == NULL) {
510 kprintf("%s: could not allocate tx xfer\n",
511 device_get_nameunit(sc->sc_dev));
512 return ENOMEM;
515 data->buf = usbd_alloc_buffer(data->xfer,
516 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
517 if (data->buf == NULL) {
518 kprintf("%s: could not allocate tx buffer\n",
519 device_get_nameunit(sc->sc_dev));
520 return ENOMEM;
523 /* clean Tx descriptor */
524 bzero(data->buf, RT2573_TX_DESC_SIZE);
526 return 0;
529 static void
530 rum_free_tx_list(struct rum_softc *sc)
532 int i;
534 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
535 struct rum_tx_data *data = &sc->tx_data[i];
537 if (data->xfer != NULL) {
538 usbd_free_xfer(data->xfer);
539 data->xfer = NULL;
541 if (data->ni != NULL) {
542 ieee80211_free_node(data->ni);
543 data->ni = NULL;
545 if (data->m != NULL) {
546 m_freem(data->m);
547 data->m = NULL;
550 sc->tx_queued = 0;
553 static int
554 rum_alloc_rx_list(struct rum_softc *sc)
556 int i;
558 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
559 struct rum_rx_data *data = &sc->rx_data[i];
561 data->sc = sc;
563 data->xfer = usbd_alloc_xfer(sc->sc_udev);
564 if (data->xfer == NULL) {
565 kprintf("%s: could not allocate rx xfer\n",
566 device_get_nameunit(sc->sc_dev));
567 return ENOMEM;
570 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
571 kprintf("%s: could not allocate rx buffer\n",
572 device_get_nameunit(sc->sc_dev));
573 return ENOMEM;
576 data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
578 data->buf = mtod(data->m, uint8_t *);
579 bzero(data->buf, sizeof(struct rum_rx_desc));
581 return 0;
584 static void
585 rum_free_rx_list(struct rum_softc *sc)
587 int i;
589 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
590 struct rum_rx_data *data = &sc->rx_data[i];
592 if (data->xfer != NULL) {
593 usbd_free_xfer(data->xfer);
594 data->xfer = NULL;
596 if (data->m != NULL) {
597 m_freem(data->m);
598 data->m = NULL;
603 static int
604 rum_media_change(struct ifnet *ifp)
606 int error;
608 error = ieee80211_media_change(ifp);
609 if (error != ENETRESET)
610 return error;
612 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
613 rum_init(ifp->if_softc);
615 return 0;
619 * This function is called periodically (every 200ms) during scanning to
620 * switch from one channel to another.
622 static void
623 rum_next_scan(void *arg)
625 struct rum_softc *sc = arg;
626 struct ieee80211com *ic = &sc->sc_ic;
627 struct ifnet *ifp = &ic->ic_if;
629 if (sc->sc_stopped)
630 return;
632 crit_enter();
634 if (ic->ic_state == IEEE80211_S_SCAN) {
635 lwkt_serialize_enter(ifp->if_serializer);
636 ieee80211_next_scan(ic);
637 lwkt_serialize_exit(ifp->if_serializer);
640 crit_exit();
643 static void
644 rum_task(void *xarg)
646 struct rum_softc *sc = xarg;
647 struct ieee80211com *ic = &sc->sc_ic;
648 struct ifnet *ifp = &ic->ic_if;
649 enum ieee80211_state nstate;
650 struct ieee80211_node *ni;
651 int arg;
653 if (sc->sc_stopped)
654 return;
656 crit_enter();
658 nstate = sc->sc_state;
659 arg = sc->sc_arg;
661 KASSERT(nstate != IEEE80211_S_INIT,
662 ("->INIT state transition should not be defered\n"));
663 rum_set_chan(sc, ic->ic_curchan);
665 switch (nstate) {
666 case IEEE80211_S_RUN:
667 ni = ic->ic_bss;
669 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
670 rum_update_slot(sc);
671 rum_enable_mrr(sc);
672 rum_set_txpreamble(sc);
673 rum_set_basicrates(sc);
674 rum_set_bssid(sc, ni->ni_bssid);
677 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
678 ic->ic_opmode == IEEE80211_M_IBSS)
679 rum_prepare_beacon(sc);
681 if (ic->ic_opmode != IEEE80211_M_MONITOR)
682 rum_enable_tsf_sync(sc);
684 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
685 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
686 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
687 break;
689 case IEEE80211_S_SCAN:
690 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
691 break;
693 default:
694 break;
697 lwkt_serialize_enter(ifp->if_serializer);
698 ieee80211_ratectl_newstate(ic, nstate);
699 sc->sc_newstate(ic, nstate, arg);
700 lwkt_serialize_exit(ifp->if_serializer);
702 crit_exit();
705 static int
706 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
708 struct rum_softc *sc = ic->ic_if.if_softc;
709 struct ifnet *ifp = &ic->ic_if;
711 crit_enter();
713 ASSERT_SERIALIZED(ifp->if_serializer);
715 callout_stop(&sc->scan_ch);
716 callout_stop(&sc->stats_ch);
718 /* do it in a process context */
719 sc->sc_state = nstate;
720 sc->sc_arg = arg;
722 lwkt_serialize_exit(ifp->if_serializer);
723 usb_rem_task(sc->sc_udev, &sc->sc_task);
725 if (nstate == IEEE80211_S_INIT) {
726 lwkt_serialize_enter(ifp->if_serializer);
727 ieee80211_ratectl_newstate(ic, nstate);
728 sc->sc_newstate(ic, nstate, arg);
729 } else {
730 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
731 lwkt_serialize_enter(ifp->if_serializer);
734 crit_exit();
735 return 0;
738 /* quickly determine if a given rate is CCK or OFDM */
739 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
741 #define RUM_ACK_SIZE (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
743 static void
744 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
746 struct rum_tx_data *data = priv;
747 struct rum_softc *sc = data->sc;
748 struct ieee80211com *ic = &sc->sc_ic;
749 struct ifnet *ifp = &ic->ic_if;
750 struct ieee80211_node *ni;
752 if (sc->sc_stopped)
753 return;
755 crit_enter();
757 if (status != USBD_NORMAL_COMPLETION) {
758 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
759 crit_exit();
760 return;
763 kprintf("%s: could not transmit buffer: %s\n",
764 device_get_nameunit(sc->sc_dev), usbd_errstr(status));
766 if (status == USBD_STALLED)
767 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
769 ifp->if_oerrors++;
770 crit_exit();
771 return;
774 m_freem(data->m);
775 data->m = NULL;
776 ni = data->ni;
777 data->ni = NULL;
779 bzero(data->buf, sizeof(struct rum_tx_data));
780 sc->tx_queued--;
781 ifp->if_opackets++; /* XXX may fail too */
783 DPRINTFN(10, ("tx done\n"));
785 sc->sc_tx_timer = 0;
786 ifp->if_flags &= ~IFF_OACTIVE;
788 lwkt_serialize_enter(ifp->if_serializer);
789 ieee80211_free_node(ni);
790 ifp->if_start(ifp);
791 lwkt_serialize_exit(ifp->if_serializer);
793 crit_exit();
796 static void
797 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
799 struct rum_rx_data *data = priv;
800 struct rum_softc *sc = data->sc;
801 struct ieee80211com *ic = &sc->sc_ic;
802 struct ifnet *ifp = &ic->ic_if;
803 struct rum_rx_desc *desc;
804 struct ieee80211_frame_min *wh;
805 struct ieee80211_node *ni;
806 struct mbuf *mnew, *m;
807 int len, rssi;
809 if (sc->sc_stopped)
810 return;
812 crit_enter();
814 if (status != USBD_NORMAL_COMPLETION) {
815 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
816 crit_exit();
817 return;
820 if (status == USBD_STALLED)
821 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
822 goto skip;
825 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
827 if (len < RT2573_RX_DESC_SIZE + sizeof(struct ieee80211_frame_min)) {
828 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
829 len));
830 ifp->if_ierrors++;
831 goto skip;
834 desc = (struct rum_rx_desc *)data->buf;
836 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
838 * This should not happen since we did not request to receive
839 * those frames when we filled RT2573_TXRX_CSR0.
841 DPRINTFN(5, ("CRC error\n"));
842 ifp->if_ierrors++;
843 goto skip;
846 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
847 if (mnew == NULL) {
848 kprintf("%s: could not allocate rx mbuf\n",
849 device_get_nameunit(sc->sc_dev));
850 ifp->if_ierrors++;
851 goto skip;
854 m = data->m;
855 data->m = NULL;
856 data->buf = NULL;
858 lwkt_serialize_enter(ifp->if_serializer);
860 /* finalize mbuf */
861 m->m_pkthdr.rcvif = ifp;
862 m->m_data = (caddr_t)(desc + 1);
863 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
865 rssi = rum_get_rssi(sc, desc->rssi);
867 wh = mtod(m, struct ieee80211_frame_min *);
868 ni = ieee80211_find_rxnode(ic, wh);
870 /* Error happened during RSSI conversion. */
871 if (rssi < 0)
872 rssi = ni->ni_rssi;
874 if (sc->sc_drvbpf != NULL) {
875 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
877 tap->wr_flags = 0;
878 tap->wr_rate = rum_rxrate(desc);
879 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
880 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
881 tap->wr_antenna = sc->rx_ant;
882 tap->wr_antsignal = rssi;
884 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
887 /* send the frame to the 802.11 layer */
888 ieee80211_input(ic, m, ni, rssi, 0);
890 /* node is no longer needed */
891 ieee80211_free_node(ni);
893 if ((ifp->if_flags & IFF_OACTIVE) == 0)
894 ifp->if_start(ifp);
896 lwkt_serialize_exit(ifp->if_serializer);
898 data->m = mnew;
899 data->buf = mtod(data->m, uint8_t *);
901 DPRINTFN(15, ("rx done\n"));
903 skip: /* setup a new transfer */
904 bzero(data->buf, sizeof(struct rum_rx_desc));
905 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
906 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
907 usbd_transfer(xfer);
909 crit_exit();
913 * This function is only used by the Rx radiotap code. It returns the rate at
914 * which a given frame was received.
916 static uint8_t
917 rum_rxrate(struct rum_rx_desc *desc)
919 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
920 /* reverse function of rum_plcp_signal */
921 switch (desc->rate) {
922 case 0xb: return 12;
923 case 0xf: return 18;
924 case 0xa: return 24;
925 case 0xe: return 36;
926 case 0x9: return 48;
927 case 0xd: return 72;
928 case 0x8: return 96;
929 case 0xc: return 108;
931 } else {
932 if (desc->rate == 10)
933 return 2;
934 if (desc->rate == 20)
935 return 4;
936 if (desc->rate == 55)
937 return 11;
938 if (desc->rate == 110)
939 return 22;
941 return 2; /* should not get there */
944 static uint8_t
945 rum_plcp_signal(int rate)
947 switch (rate) {
948 /* CCK rates (returned values are device-dependent) */
949 case 2: return 0x0;
950 case 4: return 0x1;
951 case 11: return 0x2;
952 case 22: return 0x3;
954 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
955 case 12: return 0xb;
956 case 18: return 0xf;
957 case 24: return 0xa;
958 case 36: return 0xe;
959 case 48: return 0x9;
960 case 72: return 0xd;
961 case 96: return 0x8;
962 case 108: return 0xc;
964 /* unsupported rates (should not get there) */
965 default: return 0xff;
969 static void
970 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
971 uint32_t flags, uint16_t xflags, int len, int rate)
973 struct ieee80211com *ic = &sc->sc_ic;
974 uint16_t plcp_length;
975 int remainder;
977 desc->flags = htole32(flags);
978 desc->flags |= htole32(len << 16);
980 desc->xflags = htole16(xflags);
982 desc->wme = htole16(
983 RT2573_QID(0) |
984 RT2573_AIFSN(2) |
985 RT2573_LOGCWMIN(4) |
986 RT2573_LOGCWMAX(10));
988 /* setup PLCP fields */
989 desc->plcp_signal = rum_plcp_signal(rate);
990 desc->plcp_service = 4;
992 len += IEEE80211_CRC_LEN;
993 if (RUM_RATE_IS_OFDM(rate)) {
994 desc->flags |= htole32(RT2573_TX_OFDM);
996 plcp_length = len & 0xfff;
997 desc->plcp_length_hi = plcp_length >> 6;
998 desc->plcp_length_lo = plcp_length & 0x3f;
999 } else {
1000 plcp_length = (16 * len + rate - 1) / rate;
1001 if (rate == 22) {
1002 remainder = (16 * len) % 22;
1003 if (remainder != 0 && remainder < 7)
1004 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1006 desc->plcp_length_hi = plcp_length >> 8;
1007 desc->plcp_length_lo = plcp_length & 0xff;
1009 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1010 desc->plcp_signal |= 0x08;
1012 desc->flags |= htole32(RT2573_TX_VALID);
1015 #define RUM_TX_TIMEOUT 5000
1017 static int
1018 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1020 struct ieee80211com *ic = &sc->sc_ic;
1021 struct ifnet *ifp = &ic->ic_if;
1022 struct rum_tx_desc *desc;
1023 struct rum_tx_data *data;
1024 struct ieee80211_frame *wh;
1025 uint32_t flags = 0;
1026 uint16_t dur;
1027 usbd_status error;
1028 int xferlen, rate, rateidx;
1030 wh = mtod(m0, struct ieee80211_frame *);
1032 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1033 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1034 m_freem(m0);
1035 return ENOBUFS;
1038 /* packet header may have moved, reset our local pointer */
1039 wh = mtod(m0, struct ieee80211_frame *);
1042 /* pickup a rate */
1043 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1044 IEEE80211_FC0_TYPE_MGT) {
1045 /* mgmt frames are sent at the lowest available bit-rate */
1046 rateidx = 0;
1047 } else {
1048 ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1050 rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1052 data = &sc->tx_data[0];
1053 desc = (struct rum_tx_desc *)data->buf;
1055 data->m = m0;
1056 data->ni = ni;
1058 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1059 flags |= RT2573_TX_ACK;
1061 dur = ieee80211_txtime(ni, RUM_ACK_SIZE,
1062 ieee80211_ack_rate(ni, rate), ic->ic_flags) +
1063 sc->sc_sifs;
1064 *(uint16_t *)wh->i_dur = htole16(dur);
1066 /* tell hardware to set timestamp in probe responses */
1067 if ((wh->i_fc[0] &
1068 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1069 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1070 flags |= RT2573_TX_TIMESTAMP;
1073 if (sc->sc_drvbpf != NULL) {
1074 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1076 tap->wt_flags = 0;
1077 tap->wt_rate = rate;
1078 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1079 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1080 tap->wt_antenna = sc->tx_ant;
1082 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1085 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1086 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1088 /* Align end on a 4-bytes boundary */
1089 xferlen = roundup(RT2573_TX_DESC_SIZE + m0->m_pkthdr.len, 4);
1092 * No space left in the last URB to store the extra 4 bytes, force
1093 * sending of another URB.
1095 if ((xferlen % 64) == 0)
1096 xferlen += 4;
1098 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1099 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1101 lwkt_serialize_exit(ifp->if_serializer);
1103 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1104 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1106 error = usbd_transfer(data->xfer);
1107 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1108 m_freem(m0);
1109 data->m = NULL;
1110 data->ni = NULL;
1111 } else {
1112 sc->tx_queued++;
1113 error = 0;
1116 lwkt_serialize_enter(ifp->if_serializer);
1117 return error;
1120 static void
1121 rum_start(struct ifnet *ifp)
1123 struct rum_softc *sc = ifp->if_softc;
1124 struct ieee80211com *ic = &sc->sc_ic;
1126 ASSERT_SERIALIZED(ifp->if_serializer);
1128 if (sc->sc_stopped) {
1129 ifq_purge(&ifp->if_snd);
1130 return;
1133 crit_enter();
1135 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1136 crit_exit();
1137 return;
1140 for (;;) {
1141 struct ieee80211_node *ni;
1142 struct mbuf *m0;
1144 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1145 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1146 ifp->if_flags |= IFF_OACTIVE;
1147 break;
1149 IF_DEQUEUE(&ic->ic_mgtq, m0);
1151 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1152 m0->m_pkthdr.rcvif = NULL;
1154 BPF_MTAP(ifp, m0);
1156 if (rum_tx_data(sc, m0, ni) != 0) {
1157 ieee80211_free_node(ni);
1158 break;
1160 } else {
1161 struct ether_header *eh;
1163 if (ic->ic_state != IEEE80211_S_RUN) {
1164 ifq_purge(&ifp->if_snd);
1165 break;
1168 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1169 ifp->if_flags |= IFF_OACTIVE;
1170 break;
1173 m0 = ifq_dequeue(&ifp->if_snd, NULL);
1174 if (m0 == NULL)
1175 break;
1177 if (m0->m_len < sizeof(struct ether_header)) {
1178 m0 = m_pullup(m0, sizeof(struct ether_header));
1179 if (m0 == NULL) {
1180 ifp->if_oerrors++;
1181 continue;
1184 eh = mtod(m0, struct ether_header *);
1186 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1187 if (ni == NULL) {
1188 m_freem(m0);
1189 continue;
1192 BPF_MTAP(ifp, m0);
1194 m0 = ieee80211_encap(ic, m0, ni);
1195 if (m0 == NULL) {
1196 ieee80211_free_node(ni);
1197 continue;
1200 if (ic->ic_rawbpf != NULL)
1201 bpf_mtap(ic->ic_rawbpf, m0);
1203 if (rum_tx_data(sc, m0, ni) != 0) {
1204 ieee80211_free_node(ni);
1205 ifp->if_oerrors++;
1206 break;
1210 sc->sc_tx_timer = 5;
1211 ifp->if_timer = 1;
1214 crit_exit();
1217 static void
1218 rum_watchdog(struct ifnet *ifp)
1220 struct rum_softc *sc = ifp->if_softc;
1222 ASSERT_SERIALIZED(ifp->if_serializer);
1224 crit_enter();
1226 ifp->if_timer = 0;
1228 if (sc->sc_tx_timer > 0) {
1229 if (--sc->sc_tx_timer == 0) {
1230 kprintf("%s: device timeout\n", device_get_nameunit(sc->sc_dev));
1231 /*rum_init(sc); XXX needs a process context! */
1232 ifp->if_oerrors++;
1234 crit_exit();
1235 return;
1237 ifp->if_timer = 1;
1240 ieee80211_watchdog(&sc->sc_ic);
1242 crit_exit();
1245 static int
1246 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1248 struct rum_softc *sc = ifp->if_softc;
1249 struct ieee80211com *ic = &sc->sc_ic;
1250 int error = 0;
1252 ASSERT_SERIALIZED(ifp->if_serializer);
1254 crit_enter();
1256 switch (cmd) {
1257 case SIOCSIFFLAGS:
1258 if (ifp->if_flags & IFF_UP) {
1259 if (ifp->if_flags & IFF_RUNNING) {
1260 lwkt_serialize_exit(ifp->if_serializer);
1261 rum_update_promisc(sc);
1262 lwkt_serialize_enter(ifp->if_serializer);
1263 } else {
1264 rum_init(sc);
1266 } else {
1267 if (ifp->if_flags & IFF_RUNNING)
1268 rum_stop(sc);
1270 break;
1271 default:
1272 error = ieee80211_ioctl(ic, cmd, data, cr);
1273 break;
1276 if (error == ENETRESET) {
1277 struct ieee80211req *ireq = (struct ieee80211req *)data;
1279 if (cmd == SIOCS80211 &&
1280 ireq->i_type == IEEE80211_IOC_CHANNEL &&
1281 ic->ic_opmode == IEEE80211_M_MONITOR) {
1283 * This allows for fast channel switching in monitor
1284 * mode (used by kismet). In IBSS mode, we must
1285 * explicitly reset the interface to generate a new
1286 * beacon frame.
1288 lwkt_serialize_exit(ifp->if_serializer);
1289 rum_set_chan(sc, ic->ic_ibss_chan);
1290 lwkt_serialize_enter(ifp->if_serializer);
1291 } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1292 (IFF_UP | IFF_RUNNING)) {
1293 rum_init(sc);
1295 error = 0;
1298 crit_exit();
1299 return error;
1302 static void
1303 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1305 usb_device_request_t req;
1306 usbd_status error;
1308 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1309 req.bRequest = RT2573_READ_EEPROM;
1310 USETW(req.wValue, 0);
1311 USETW(req.wIndex, addr);
1312 USETW(req.wLength, len);
1314 error = usbd_do_request(sc->sc_udev, &req, buf);
1315 if (error != 0) {
1316 kprintf("%s: could not read EEPROM: %s\n",
1317 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1321 static uint32_t
1322 rum_read(struct rum_softc *sc, uint16_t reg)
1324 uint32_t val;
1326 rum_read_multi(sc, reg, &val, sizeof val);
1328 return le32toh(val);
1331 static void
1332 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1334 usb_device_request_t req;
1335 usbd_status error;
1337 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1338 req.bRequest = RT2573_READ_MULTI_MAC;
1339 USETW(req.wValue, 0);
1340 USETW(req.wIndex, reg);
1341 USETW(req.wLength, len);
1343 error = usbd_do_request(sc->sc_udev, &req, buf);
1344 if (error != 0) {
1345 kprintf("%s: could not multi read MAC register: %s\n",
1346 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1350 static void
1351 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1353 uint32_t tmp = htole32(val);
1355 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1358 static void
1359 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1361 usb_device_request_t req;
1362 usbd_status error;
1364 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1365 req.bRequest = RT2573_WRITE_MULTI_MAC;
1366 USETW(req.wValue, 0);
1367 USETW(req.wIndex, reg);
1368 USETW(req.wLength, len);
1370 error = usbd_do_request(sc->sc_udev, &req, buf);
1371 if (error != 0) {
1372 kprintf("%s: could not multi write MAC register: %s\n",
1373 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1377 static void
1378 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1380 uint32_t tmp;
1381 int ntries;
1383 for (ntries = 0; ntries < 5; ntries++) {
1384 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1385 break;
1387 if (ntries == 5) {
1388 kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1389 return;
1392 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1393 rum_write(sc, RT2573_PHY_CSR3, tmp);
1396 static uint8_t
1397 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1399 uint32_t val;
1400 int ntries;
1402 for (ntries = 0; ntries < 5; ntries++) {
1403 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1404 break;
1406 if (ntries == 5) {
1407 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1408 return 0;
1411 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1412 rum_write(sc, RT2573_PHY_CSR3, val);
1414 for (ntries = 0; ntries < 100; ntries++) {
1415 val = rum_read(sc, RT2573_PHY_CSR3);
1416 if (!(val & RT2573_BBP_BUSY))
1417 return val & 0xff;
1418 DELAY(1);
1421 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1422 return 0;
1425 static void
1426 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1428 uint32_t tmp;
1429 int ntries;
1431 for (ntries = 0; ntries < 5; ntries++) {
1432 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1433 break;
1435 if (ntries == 5) {
1436 kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1437 return;
1440 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1441 (reg & 3);
1442 rum_write(sc, RT2573_PHY_CSR4, tmp);
1444 /* remember last written value in sc */
1445 sc->rf_regs[reg] = val;
1447 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1450 static void
1451 rum_select_antenna(struct rum_softc *sc)
1453 uint8_t bbp4, bbp77;
1454 uint32_t tmp;
1456 bbp4 = rum_bbp_read(sc, 4);
1457 bbp77 = rum_bbp_read(sc, 77);
1459 /* TBD */
1461 /* make sure Rx is disabled before switching antenna */
1462 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1463 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1465 rum_bbp_write(sc, 4, bbp4);
1466 rum_bbp_write(sc, 77, bbp77);
1468 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1472 * Enable multi-rate retries for frames sent at OFDM rates.
1473 * In 802.11b/g mode, allow fallback to CCK rates.
1475 static void
1476 rum_enable_mrr(struct rum_softc *sc)
1478 struct ieee80211com *ic = &sc->sc_ic;
1479 uint32_t tmp;
1481 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1483 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1484 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1485 tmp |= RT2573_MRR_CCK_FALLBACK;
1486 tmp |= RT2573_MRR_ENABLED;
1488 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1491 static void
1492 rum_set_txpreamble(struct rum_softc *sc)
1494 uint32_t tmp;
1496 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1498 tmp &= ~RT2573_SHORT_PREAMBLE;
1499 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1500 tmp |= RT2573_SHORT_PREAMBLE;
1502 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1505 static void
1506 rum_set_basicrates(struct rum_softc *sc)
1508 struct ieee80211com *ic = &sc->sc_ic;
1510 /* update basic rate set */
1511 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1512 /* 11b basic rates: 1, 2Mbps */
1513 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1514 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1515 /* 11a basic rates: 6, 12, 24Mbps */
1516 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1517 } else {
1518 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1519 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1524 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1525 * driver.
1527 static void
1528 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1530 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1531 uint32_t tmp;
1533 /* update all BBP registers that depend on the band */
1534 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1535 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1536 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1537 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1538 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1540 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1541 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1542 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1545 sc->bbp17 = bbp17;
1546 rum_bbp_write(sc, 17, bbp17);
1547 rum_bbp_write(sc, 96, bbp96);
1548 rum_bbp_write(sc, 104, bbp104);
1550 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1551 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1552 rum_bbp_write(sc, 75, 0x80);
1553 rum_bbp_write(sc, 86, 0x80);
1554 rum_bbp_write(sc, 88, 0x80);
1557 rum_bbp_write(sc, 35, bbp35);
1558 rum_bbp_write(sc, 97, bbp97);
1559 rum_bbp_write(sc, 98, bbp98);
1561 tmp = rum_read(sc, RT2573_PHY_CSR0);
1562 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1563 if (IEEE80211_IS_CHAN_2GHZ(c))
1564 tmp |= RT2573_PA_PE_2GHZ;
1565 else
1566 tmp |= RT2573_PA_PE_5GHZ;
1567 rum_write(sc, RT2573_PHY_CSR0, tmp);
1570 static void
1571 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1573 struct ieee80211com *ic = &sc->sc_ic;
1574 const struct rfprog *rfprog;
1575 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1576 int8_t power;
1577 u_int i, chan;
1579 chan = ieee80211_chan2ieee(ic, c);
1580 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1581 return;
1583 /* select the appropriate RF settings based on what EEPROM says */
1584 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1585 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1587 /* find the settings for this channel (we know it exists) */
1588 for (i = 0; rfprog[i].chan != chan; i++)
1589 ; /* EMPTY */
1591 power = sc->txpow[i];
1592 if (power < 0) {
1593 bbp94 += power;
1594 power = 0;
1595 } else if (power > 31) {
1596 bbp94 += power - 31;
1597 power = 31;
1601 * If we are switching from the 2GHz band to the 5GHz band or
1602 * vice-versa, BBP registers need to be reprogrammed.
1604 if (c->ic_flags != sc->sc_curchan->ic_flags) {
1605 rum_select_band(sc, c);
1606 rum_select_antenna(sc);
1608 sc->sc_curchan = c;
1610 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1611 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1612 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1613 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1615 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1616 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1617 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1618 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1620 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1621 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1622 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1623 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1625 DELAY(10);
1627 /* enable smart mode for MIMO-capable RFs */
1628 bbp3 = rum_bbp_read(sc, 3);
1630 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1631 bbp3 &= ~RT2573_SMART_MODE;
1632 else
1633 bbp3 |= RT2573_SMART_MODE;
1635 rum_bbp_write(sc, 3, bbp3);
1637 if (bbp94 != RT2573_BBPR94_DEFAULT)
1638 rum_bbp_write(sc, 94, bbp94);
1640 sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
1641 : IEEE80211_DUR_SIFS;
1645 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1646 * and HostAP operating modes.
1648 static void
1649 rum_enable_tsf_sync(struct rum_softc *sc)
1651 struct ieee80211com *ic = &sc->sc_ic;
1652 uint32_t tmp;
1654 if (ic->ic_opmode != IEEE80211_M_STA) {
1656 * Change default 16ms TBTT adjustment to 8ms.
1657 * Must be done before enabling beacon generation.
1659 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1662 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1664 /* set beacon interval (in 1/16ms unit) */
1665 tmp |= ic->ic_bss->ni_intval * 16;
1667 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1668 if (ic->ic_opmode == IEEE80211_M_STA)
1669 tmp |= RT2573_TSF_MODE(1);
1670 else
1671 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1673 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1676 static void
1677 rum_update_slot(struct rum_softc *sc)
1679 struct ieee80211com *ic = &sc->sc_ic;
1680 uint8_t slottime;
1681 uint32_t tmp;
1683 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1685 tmp = rum_read(sc, RT2573_MAC_CSR9);
1686 tmp = (tmp & ~0xff) | slottime;
1687 rum_write(sc, RT2573_MAC_CSR9, tmp);
1689 DPRINTF(("setting slot time to %uus\n", slottime));
1692 static void
1693 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1695 uint32_t tmp;
1697 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1698 rum_write(sc, RT2573_MAC_CSR4, tmp);
1700 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1701 rum_write(sc, RT2573_MAC_CSR5, tmp);
1704 static void
1705 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1707 uint32_t tmp;
1709 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1710 rum_write(sc, RT2573_MAC_CSR2, tmp);
1712 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1713 rum_write(sc, RT2573_MAC_CSR3, tmp);
1716 static void
1717 rum_update_promisc(struct rum_softc *sc)
1719 struct ifnet *ifp = &sc->sc_ic.ic_if;
1720 uint32_t tmp;
1722 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1724 tmp &= ~RT2573_DROP_NOT_TO_ME;
1725 if (!(ifp->if_flags & IFF_PROMISC))
1726 tmp |= RT2573_DROP_NOT_TO_ME;
1728 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1730 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1731 "entering" : "leaving"));
1734 static const char *
1735 rum_get_rf(int rev)
1737 switch (rev) {
1738 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1739 case RT2573_RF_2528: return "RT2528";
1740 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1741 case RT2573_RF_5226: return "RT5226";
1742 default: return "unknown";
1746 static void
1747 rum_read_eeprom(struct rum_softc *sc)
1749 struct ieee80211com *ic = &sc->sc_ic;
1750 uint16_t val;
1751 #ifdef RUM_DEBUG
1752 int i;
1753 #endif
1755 /* read MAC/BBP type */
1756 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1757 sc->macbbp_rev = le16toh(val);
1759 /* read MAC address */
1760 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1762 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1763 val = le16toh(val);
1764 sc->rf_rev = (val >> 11) & 0x1f;
1765 sc->hw_radio = (val >> 10) & 0x1;
1766 sc->rx_ant = (val >> 4) & 0x3;
1767 sc->tx_ant = (val >> 2) & 0x3;
1768 sc->nb_ant = val & 0x3;
1770 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1772 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1773 val = le16toh(val);
1774 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1775 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1777 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1778 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1780 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1781 val = le16toh(val);
1782 if ((val & 0xff) != 0xff)
1783 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1785 /* Only [-10, 10] is valid */
1786 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1787 sc->rssi_2ghz_corr = 0;
1789 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1790 val = le16toh(val);
1791 if ((val & 0xff) != 0xff)
1792 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1794 /* Only [-10, 10] is valid */
1795 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1796 sc->rssi_5ghz_corr = 0;
1798 if (sc->ext_2ghz_lna)
1799 sc->rssi_2ghz_corr -= 14;
1800 if (sc->ext_5ghz_lna)
1801 sc->rssi_5ghz_corr -= 14;
1803 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1804 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1806 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1807 val = le16toh(val);
1808 if ((val & 0xff) != 0xff)
1809 sc->rffreq = val & 0xff;
1811 DPRINTF(("RF freq=%d\n", sc->rffreq));
1813 /* read Tx power for all a/b/g channels */
1814 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1815 /* XXX default Tx power for 802.11a channels */
1816 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1817 #ifdef RUM_DEBUG
1818 for (i = 0; i < 14; i++)
1819 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1820 #endif
1822 /* read default values for BBP registers */
1823 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1824 #ifdef RUM_DEBUG
1825 for (i = 0; i < 14; i++) {
1826 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1827 continue;
1828 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1829 sc->bbp_prom[i].val));
1831 #endif
1834 static int
1835 rum_bbp_init(struct rum_softc *sc)
1837 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1838 int i, ntries;
1839 uint8_t val;
1841 /* wait for BBP to be ready */
1842 for (ntries = 0; ntries < 100; ntries++) {
1843 val = rum_bbp_read(sc, 0);
1844 if (val != 0 && val != 0xff)
1845 break;
1846 DELAY(1000);
1848 if (ntries == 100) {
1849 kprintf("%s: timeout waiting for BBP\n",
1850 device_get_nameunit(sc->sc_dev));
1851 return EIO;
1854 /* initialize BBP registers to default values */
1855 for (i = 0; i < N(rum_def_bbp); i++)
1856 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1858 /* write vendor-specific BBP values (from EEPROM) */
1859 for (i = 0; i < 16; i++) {
1860 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1861 continue;
1862 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1865 return 0;
1866 #undef N
1869 static void
1870 rum_init(void *xsc)
1872 #define N(a) (sizeof(a) / sizeof((a)[0]))
1873 struct rum_softc *sc = xsc;
1874 struct ieee80211com *ic = &sc->sc_ic;
1875 struct ifnet *ifp = &ic->ic_if;
1876 struct rum_rx_data *data;
1877 uint32_t tmp;
1878 usbd_status usb_err;
1879 int i, ntries, error;
1881 ASSERT_SERIALIZED(ifp->if_serializer);
1883 crit_enter();
1885 rum_stop(sc);
1886 sc->sc_stopped = 0;
1888 lwkt_serialize_exit(ifp->if_serializer);
1890 /* initialize MAC registers to default values */
1891 for (i = 0; i < N(rum_def_mac); i++)
1892 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1894 /* set host ready */
1895 rum_write(sc, RT2573_MAC_CSR1, 3);
1896 rum_write(sc, RT2573_MAC_CSR1, 0);
1898 /* wait for BBP/RF to wakeup */
1899 for (ntries = 0; ntries < 1000; ntries++) {
1900 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1901 break;
1902 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1903 DELAY(1000);
1905 if (ntries == 1000) {
1906 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
1907 device_get_nameunit(sc->sc_dev));
1908 error = ETIMEDOUT;
1909 goto fail;
1912 error = rum_bbp_init(sc);
1913 if (error)
1914 goto fail;
1916 /* select default channel */
1917 sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan;
1919 rum_select_band(sc, sc->sc_curchan);
1920 rum_select_antenna(sc);
1921 rum_set_chan(sc, sc->sc_curchan);
1923 /* clear STA registers */
1924 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1926 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1927 rum_set_macaddr(sc, ic->ic_myaddr);
1929 /* initialize ASIC */
1930 rum_write(sc, RT2573_MAC_CSR1, 4);
1933 * Allocate xfer for AMRR statistics requests.
1935 sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
1936 if (sc->stats_xfer == NULL) {
1937 kprintf("%s: could not allocate AMRR xfer\n",
1938 device_get_nameunit(sc->sc_dev));
1939 error = ENOMEM;
1940 goto fail;
1944 * Open Tx and Rx USB bulk pipes.
1946 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1947 &sc->sc_tx_pipeh);
1948 if (usb_err != USBD_NORMAL_COMPLETION) {
1949 kprintf("%s: could not open Tx pipe: %s\n",
1950 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1951 error = EIO;
1952 goto fail;
1955 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1956 &sc->sc_rx_pipeh);
1957 if (usb_err != USBD_NORMAL_COMPLETION) {
1958 kprintf("%s: could not open Rx pipe: %s\n",
1959 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1960 error = EIO;
1961 goto fail;
1965 * Allocate Tx and Rx xfer queues.
1967 error = rum_alloc_tx_list(sc);
1968 if (error) {
1969 kprintf("%s: could not allocate Tx list\n",
1970 device_get_nameunit(sc->sc_dev));
1971 goto fail;
1974 error = rum_alloc_rx_list(sc);
1975 if (error) {
1976 kprintf("%s: could not allocate Rx list\n",
1977 device_get_nameunit(sc->sc_dev));
1978 goto fail;
1982 * Start up the receive pipe.
1984 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1985 data = &sc->rx_data[i];
1987 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
1988 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1989 usbd_transfer(data->xfer);
1992 /* update Rx filter */
1993 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1995 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1996 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1997 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1998 RT2573_DROP_ACKCTS;
1999 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2000 tmp |= RT2573_DROP_TODS;
2001 if (!(ifp->if_flags & IFF_PROMISC))
2002 tmp |= RT2573_DROP_NOT_TO_ME;
2004 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2005 fail:
2006 lwkt_serialize_enter(ifp->if_serializer);
2008 if (error) {
2009 rum_stop(sc);
2010 } else {
2011 ifp->if_flags &= ~IFF_OACTIVE;
2012 ifp->if_flags |= IFF_RUNNING;
2014 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2015 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2016 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2017 } else {
2018 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2022 crit_exit();
2023 #undef N
2026 static void
2027 rum_stop(struct rum_softc *sc)
2029 struct ieee80211com *ic = &sc->sc_ic;
2030 struct ifnet *ifp = &ic->ic_if;
2031 uint32_t tmp;
2033 ASSERT_SERIALIZED(ifp->if_serializer);
2035 crit_enter();
2037 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2038 sc->sc_stopped = 1;
2040 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2042 sc->sc_tx_timer = 0;
2043 ifp->if_timer = 0;
2045 lwkt_serialize_exit(ifp->if_serializer);
2047 /* disable Rx */
2048 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2049 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2051 /* reset ASIC */
2052 rum_write(sc, RT2573_MAC_CSR1, 3);
2053 rum_write(sc, RT2573_MAC_CSR1, 0);
2055 if (sc->stats_xfer != NULL) {
2056 usbd_free_xfer(sc->stats_xfer);
2057 sc->stats_xfer = NULL;
2060 if (sc->sc_rx_pipeh != NULL) {
2061 usbd_abort_pipe(sc->sc_rx_pipeh);
2062 usbd_close_pipe(sc->sc_rx_pipeh);
2063 sc->sc_rx_pipeh = NULL;
2066 if (sc->sc_tx_pipeh != NULL) {
2067 usbd_abort_pipe(sc->sc_tx_pipeh);
2068 usbd_close_pipe(sc->sc_tx_pipeh);
2069 sc->sc_tx_pipeh = NULL;
2072 lwkt_serialize_enter(ifp->if_serializer);
2074 rum_free_rx_list(sc);
2075 rum_free_tx_list(sc);
2077 crit_exit();
2080 static int
2081 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2083 usb_device_request_t req;
2084 uint16_t reg = RT2573_MCU_CODE_BASE;
2085 usbd_status error;
2087 /* copy firmware image into NIC */
2088 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2089 rum_write(sc, reg, UGETDW(ucode));
2091 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2092 req.bRequest = RT2573_MCU_CNTL;
2093 USETW(req.wValue, RT2573_MCU_RUN);
2094 USETW(req.wIndex, 0);
2095 USETW(req.wLength, 0);
2097 error = usbd_do_request(sc->sc_udev, &req, NULL);
2098 if (error != 0) {
2099 kprintf("%s: could not run firmware: %s\n",
2100 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2102 return error;
2105 static int
2106 rum_prepare_beacon(struct rum_softc *sc)
2108 struct ieee80211com *ic = &sc->sc_ic;
2109 struct ifnet *ifp = &ic->ic_if;
2110 struct ieee80211_beacon_offsets bo;
2111 struct rum_tx_desc desc;
2112 struct mbuf *m0;
2113 int rate;
2115 lwkt_serialize_enter(ifp->if_serializer);
2116 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2117 lwkt_serialize_exit(ifp->if_serializer);
2119 if (m0 == NULL) {
2120 if_printf(&ic->ic_if, "could not allocate beacon frame\n");
2121 return ENOBUFS;
2124 /* send beacons at the lowest available rate */
2125 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2127 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2128 m0->m_pkthdr.len, rate);
2130 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2131 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2133 /* copy beacon header and payload into NIC memory */
2134 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2135 m0->m_pkthdr.len);
2137 m_freem(m0);
2139 return 0;
2142 static void
2143 rum_stats_timeout(void *arg)
2145 struct rum_softc *sc = arg;
2146 usb_device_request_t req;
2148 if (sc->sc_stopped)
2149 return;
2151 crit_enter();
2154 * Asynchronously read statistic registers (cleared by read).
2156 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2157 req.bRequest = RT2573_READ_MULTI_MAC;
2158 USETW(req.wValue, 0);
2159 USETW(req.wIndex, RT2573_STA_CSR0);
2160 USETW(req.wLength, sizeof(sc->sta));
2162 usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2163 USBD_DEFAULT_TIMEOUT, &req,
2164 sc->sta, sizeof(sc->sta), 0,
2165 rum_stats_update);
2166 usbd_transfer(sc->stats_xfer);
2168 crit_exit();
2171 static void
2172 rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2173 usbd_status status)
2175 struct rum_softc *sc = (struct rum_softc *)priv;
2176 struct ifnet *ifp = &sc->sc_ic.ic_if;
2177 struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2179 if (status != USBD_NORMAL_COMPLETION) {
2180 kprintf("%s: could not retrieve Tx statistics - cancelling "
2181 "automatic rate control\n", device_get_nameunit(sc->sc_dev));
2182 return;
2185 crit_enter();
2187 /* count TX retry-fail as Tx errors */
2188 ifp->if_oerrors += RUM_TX_PKT_FAIL(sc);
2190 stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc);
2191 stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) +
2192 RUM_TX_PKT_ONE_RETRY(sc) +
2193 RUM_TX_PKT_MULTI_RETRY(sc);
2194 stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc);
2196 stats->stats_retries += RUM_TX_PKT_ONE_RETRY(sc);
2197 #if 1
2199 * XXX Estimated average:
2200 * Actual number of retries for each packet should belong to
2201 * [2, RUM_TX_SHORT_RETRY_MAX]
2203 stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc) *
2204 ((2 + RUM_TX_SHORT_RETRY_MAX) / 2);
2205 #else
2206 stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc);
2207 #endif
2208 stats->stats_retries += RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX;
2210 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
2212 crit_exit();
2215 static void
2216 rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2217 struct ieee80211_ratectl_stats *stats)
2219 struct ifnet *ifp = &ic->ic_if;
2220 struct rum_softc *sc = ifp->if_softc;
2222 ASSERT_SERIALIZED(ifp->if_serializer);
2224 bcopy(&sc->sc_stats, stats, sizeof(*stats));
2225 bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2228 static void *
2229 rum_ratectl_attach(struct ieee80211com *ic, u_int rc)
2231 struct rum_softc *sc = ic->ic_if.if_softc;
2233 switch (rc) {
2234 case IEEE80211_RATECTL_ONOE:
2235 return &sc->sc_onoe_param;
2236 case IEEE80211_RATECTL_NONE:
2237 /* This could only happen during detaching */
2238 return NULL;
2239 default:
2240 panic("unknown rate control algo %u\n", rc);
2241 return NULL;
2245 static int
2246 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2248 int lna, agc, rssi;
2250 lna = (raw >> 5) & 0x3;
2251 agc = raw & 0x1f;
2253 if (lna == 0) {
2255 * No RSSI mapping
2257 * NB: Since RSSI is relative to noise floor, -1 is
2258 * adequate for caller to know error happened.
2260 return -1;
2263 rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2265 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2266 rssi += sc->rssi_2ghz_corr;
2268 if (lna == 1)
2269 rssi -= 64;
2270 else if (lna == 2)
2271 rssi -= 74;
2272 else if (lna == 3)
2273 rssi -= 90;
2274 } else {
2275 rssi += sc->rssi_5ghz_corr;
2277 if (!sc->ext_5ghz_lna && lna != 1)
2278 rssi += 4;
2280 if (lna == 1)
2281 rssi -= 64;
2282 else if (lna == 2)
2283 rssi -= 86;
2284 else if (lna == 3)
2285 rssi -= 100;
2287 return rssi;