1 /* Routines to implement minimum-cost maximal flow algorithm used to smooth
2 basic block and edge frequency counts.
3 Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 Contributed by Paul Yuan (yingbo.com@gmail.com) and
5 Vinodha Ramasamy (vinodha@google.com).
7 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
24 from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
25 and Robert Hundt; GCC Summit 2008.
26 [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
27 Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
30 Algorithm to smooth basic block and edge counts:
31 1. create_fixup_graph: Create fixup graph by translating function CFG into
32 a graph that satisfies MCF algorithm requirements.
33 2. find_max_flow: Find maximal flow.
34 3. compute_residual_flow: Form residual network.
36 cancel_negative_cycle: While G contains a negative cost cycle C, reverse
37 the flow on the found cycle by the minimum residual capacity in that
39 5. Form the minimal cost flow
41 6. adjust_cfg_counts: Update initial edge weights with corrected weights.
42 delta(u.v) = f(u,v) -f(v,u).
43 w*(u,v) = w(u,v) + delta(u,v). */
47 #include "coretypes.h"
54 #include "hard-reg-set.h"
57 #include "dominance.h"
59 #include "basic-block.h"
64 /* CAP_INFINITY: Constant to represent infinite capacity. */
65 #define CAP_INFINITY INTTYPE_MAXIMUM (int64_t)
68 #define K_POS(b) ((b))
69 #define K_NEG(b) (50 * (b))
70 #define COST(k, w) ((k) / mcf_ln ((w) + 2))
71 /* Limit the number of iterations for cancel_negative_cycles() to ensure
72 reasonable compile time. */
73 #define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e)))
77 VERTEX_SPLIT_EDGE
, /* Edge to represent vertex with w(e) = w(v). */
78 REDIRECT_EDGE
, /* Edge after vertex transformation. */
80 SOURCE_CONNECT_EDGE
, /* Single edge connecting to single source. */
81 SINK_CONNECT_EDGE
, /* Single edge connecting to single sink. */
82 BALANCE_EDGE
, /* Edge connecting with source/sink: cp(e) = 0. */
83 REDIRECT_NORMALIZED_EDGE
, /* Normalized edge for a redirect edge. */
84 REVERSE_NORMALIZED_EDGE
/* Normalized edge for a reverse edge. */
87 /* Structure to represent an edge in the fixup graph. */
88 typedef struct fixup_edge_d
92 /* Flag denoting type of edge and attributes for the flow field. */
95 /* Index to the normalization vertex added for this edge. */
96 int norm_vertex_index
;
97 /* Flow for this edge. */
99 /* Residual flow for this edge - used during negative cycle canceling. */
103 gcov_type max_capacity
;
106 typedef fixup_edge_type
*fixup_edge_p
;
109 /* Structure to represent a vertex in the fixup graph. */
110 typedef struct fixup_vertex_d
112 vec
<fixup_edge_p
> succ_edges
;
115 typedef fixup_vertex_type
*fixup_vertex_p
;
117 /* Fixup graph used in the MCF algorithm. */
118 typedef struct fixup_graph_d
120 /* Current number of vertices for the graph. */
122 /* Current number of edges for the graph. */
124 /* Index of new entry vertex. */
126 /* Index of new exit vertex. */
128 /* Fixup vertex list. Adjacency list for fixup graph. */
129 fixup_vertex_p vertex_list
;
130 /* Fixup edge list. */
131 fixup_edge_p edge_list
;
134 typedef struct queue_d
142 /* Structure used in the maximal flow routines to find augmenting path. */
143 typedef struct augmenting_path_d
145 /* Queue used to hold vertex indices. */
146 queue_type queue_list
;
147 /* Vector to hold chain of pred vertex indices in augmenting path. */
149 /* Vector that indicates if basic block i has been visited. */
151 } augmenting_path_type
;
154 /* Function definitions. */
156 /* Dump routines to aid debugging. */
158 /* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */
161 print_basic_block (FILE *file
, fixup_graph_type
*fixup_graph
, int n
)
163 if (n
== ENTRY_BLOCK
)
164 fputs ("ENTRY", file
);
165 else if (n
== ENTRY_BLOCK
+ 1)
166 fputs ("ENTRY''", file
);
167 else if (n
== 2 * EXIT_BLOCK
)
168 fputs ("EXIT", file
);
169 else if (n
== 2 * EXIT_BLOCK
+ 1)
170 fputs ("EXIT''", file
);
171 else if (n
== fixup_graph
->new_exit_index
)
172 fputs ("NEW_EXIT", file
);
173 else if (n
== fixup_graph
->new_entry_index
)
174 fputs ("NEW_ENTRY", file
);
177 fprintf (file
, "%d", n
/ 2);
186 /* Print edge S->D for given fixup_graph with n' and n'' format.
188 S is the index of the source vertex of the edge (input) and
189 D is the index of the destination vertex of the edge (input) for the given
190 fixup_graph (input). */
193 print_edge (FILE *file
, fixup_graph_type
*fixup_graph
, int s
, int d
)
195 print_basic_block (file
, fixup_graph
, s
);
197 print_basic_block (file
, fixup_graph
, d
);
201 /* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
204 dump_fixup_edge (FILE *file
, fixup_graph_type
*fixup_graph
, fixup_edge_p fedge
)
208 fputs ("NULL fixup graph edge.\n", file
);
212 print_edge (file
, fixup_graph
, fedge
->src
, fedge
->dest
);
217 fprintf (file
, "flow/capacity=%" PRId64
"/",
219 if (fedge
->max_capacity
== CAP_INFINITY
)
220 fputs ("+oo,", file
);
222 fprintf (file
, "%" PRId64
",", fedge
->max_capacity
);
225 if (fedge
->is_rflow_valid
)
227 if (fedge
->rflow
== CAP_INFINITY
)
228 fputs (" rflow=+oo.", file
);
230 fprintf (file
, " rflow=%" PRId64
",", fedge
->rflow
);
233 fprintf (file
, " cost=%" PRId64
".", fedge
->cost
);
235 fprintf (file
, "\t(%d->%d)", fedge
->src
, fedge
->dest
);
241 case VERTEX_SPLIT_EDGE
:
242 fputs (" @VERTEX_SPLIT_EDGE", file
);
246 fputs (" @REDIRECT_EDGE", file
);
249 case SOURCE_CONNECT_EDGE
:
250 fputs (" @SOURCE_CONNECT_EDGE", file
);
253 case SINK_CONNECT_EDGE
:
254 fputs (" @SINK_CONNECT_EDGE", file
);
258 fputs (" @REVERSE_EDGE", file
);
262 fputs (" @BALANCE_EDGE", file
);
265 case REDIRECT_NORMALIZED_EDGE
:
266 case REVERSE_NORMALIZED_EDGE
:
267 fputs (" @NORMALIZED_EDGE", file
);
271 fputs (" @INVALID_EDGE", file
);
279 /* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
280 file. The input string MSG is printed out as a heading. */
283 dump_fixup_graph (FILE *file
, fixup_graph_type
*fixup_graph
, const char *msg
)
286 int fnum_vertices
, fnum_edges
;
288 fixup_vertex_p fvertex_list
, pfvertex
;
291 gcc_assert (fixup_graph
);
292 fvertex_list
= fixup_graph
->vertex_list
;
293 fnum_vertices
= fixup_graph
->num_vertices
;
294 fnum_edges
= fixup_graph
->num_edges
;
296 fprintf (file
, "\nDump fixup graph for %s(): %s.\n",
297 current_function_name (), msg
);
299 "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
300 fnum_vertices
, fnum_edges
, fixup_graph
->new_exit_index
);
302 for (i
= 0; i
< fnum_vertices
; i
++)
304 pfvertex
= fvertex_list
+ i
;
305 fprintf (file
, "vertex_list[%d]: %d succ fixup edges.\n",
306 i
, pfvertex
->succ_edges
.length ());
308 for (j
= 0; pfvertex
->succ_edges
.iterate (j
, &pfedge
);
311 /* Distinguish forward edges and backward edges in the residual flow
314 fputs ("(f) ", file
);
315 else if (pfedge
->is_rflow_valid
)
316 fputs ("(b) ", file
);
317 dump_fixup_edge (file
, fixup_graph
, pfedge
);
325 /* Utility routines. */
326 /* ln() implementation: approximate calculation. Returns ln of X. */
347 /* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
348 implementation) by John Carmack. Returns sqrt of X. */
353 #define MAGIC_CONST1 0x1fbcf800
354 #define MAGIC_CONST2 0x5f3759df
358 } convertor
, convertor2
;
362 convertor
.floatPart
= x
;
363 convertor2
.floatPart
= x
;
364 convertor
.intPart
= MAGIC_CONST1
+ (convertor
.intPart
>> 1);
365 convertor2
.intPart
= MAGIC_CONST2
- (convertor2
.intPart
>> 1);
367 return 0.5f
* (convertor
.floatPart
+ (x
* convertor2
.floatPart
));
371 /* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
372 (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
373 added set to COST. */
376 add_edge (fixup_graph_type
*fixup_graph
, int src
, int dest
, gcov_type cost
)
378 fixup_vertex_p curr_vertex
= fixup_graph
->vertex_list
+ src
;
379 fixup_edge_p curr_edge
= fixup_graph
->edge_list
+ fixup_graph
->num_edges
;
380 curr_edge
->src
= src
;
381 curr_edge
->dest
= dest
;
382 curr_edge
->cost
= cost
;
383 fixup_graph
->num_edges
++;
385 dump_fixup_edge (dump_file
, fixup_graph
, curr_edge
);
386 curr_vertex
->succ_edges
.safe_push (curr_edge
);
391 /* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
392 MAX_CAPACITY to the edge_list in the fixup graph. */
395 add_fixup_edge (fixup_graph_type
*fixup_graph
, int src
, int dest
,
396 edge_type type
, gcov_type weight
, gcov_type cost
,
397 gcov_type max_capacity
)
399 fixup_edge_p curr_edge
= add_edge (fixup_graph
, src
, dest
, cost
);
400 curr_edge
->type
= type
;
401 curr_edge
->weight
= weight
;
402 curr_edge
->max_capacity
= max_capacity
;
406 /* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
407 to the fixup graph. */
410 add_rfixup_edge (fixup_graph_type
*fixup_graph
, int src
, int dest
,
411 gcov_type rflow
, gcov_type cost
)
413 fixup_edge_p curr_edge
= add_edge (fixup_graph
, src
, dest
, cost
);
414 curr_edge
->rflow
= rflow
;
415 curr_edge
->is_rflow_valid
= true;
416 /* This edge is not a valid edge - merely used to hold residual flow. */
417 curr_edge
->type
= INVALID_EDGE
;
421 /* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
422 exist in the FIXUP_GRAPH. */
425 find_fixup_edge (fixup_graph_type
*fixup_graph
, int src
, int dest
)
429 fixup_vertex_p pfvertex
;
431 gcc_assert (src
< fixup_graph
->num_vertices
);
433 pfvertex
= fixup_graph
->vertex_list
+ src
;
435 for (j
= 0; pfvertex
->succ_edges
.iterate (j
, &pfedge
);
437 if (pfedge
->dest
== dest
)
444 /* Cleanup routine to free structures in FIXUP_GRAPH. */
447 delete_fixup_graph (fixup_graph_type
*fixup_graph
)
450 int fnum_vertices
= fixup_graph
->num_vertices
;
451 fixup_vertex_p pfvertex
= fixup_graph
->vertex_list
;
453 for (i
= 0; i
< fnum_vertices
; i
++, pfvertex
++)
454 pfvertex
->succ_edges
.release ();
456 free (fixup_graph
->vertex_list
);
457 free (fixup_graph
->edge_list
);
461 /* Creates a fixup graph FIXUP_GRAPH from the function CFG. */
464 create_fixup_graph (fixup_graph_type
*fixup_graph
)
466 double sqrt_avg_vertex_weight
= 0;
467 double total_vertex_weight
= 0;
470 /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */
471 gcov_type
*diff_out_in
= NULL
;
472 gcov_type supply_value
= 1, demand_value
= 0;
474 int new_entry_index
= 0, new_exit_index
= 0;
480 fixup_edge_p pfedge
, r_pfedge
;
481 fixup_edge_p fedge_list
;
484 /* Each basic_block will be split into 2 during vertex transformation. */
485 int fnum_vertices_after_transform
= 2 * n_basic_blocks_for_fn (cfun
);
486 int fnum_edges_after_transform
=
487 n_edges_for_fn (cfun
) + n_basic_blocks_for_fn (cfun
);
489 /* Count the new SOURCE and EXIT vertices to be added. */
490 int fmax_num_vertices
=
491 (fnum_vertices_after_transform
+ n_edges_for_fn (cfun
)
492 + n_basic_blocks_for_fn (cfun
) + 2);
494 /* In create_fixup_graph: Each basic block and edge can be split into 3
495 edges. Number of balance edges = n_basic_blocks. So after
497 max_edges = 4 * n_basic_blocks + 3 * n_edges
498 Accounting for residual flow edges
499 max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
500 = 8 * n_basic_blocks + 6 * n_edges
501 < 8 * n_basic_blocks + 8 * n_edges. */
502 int fmax_num_edges
= 8 * (n_basic_blocks_for_fn (cfun
) +
503 n_edges_for_fn (cfun
));
505 /* Initial num of vertices in the fixup graph. */
506 fixup_graph
->num_vertices
= n_basic_blocks_for_fn (cfun
);
508 /* Fixup graph vertex list. */
509 fixup_graph
->vertex_list
=
510 (fixup_vertex_p
) xcalloc (fmax_num_vertices
, sizeof (fixup_vertex_type
));
512 /* Fixup graph edge list. */
513 fixup_graph
->edge_list
=
514 (fixup_edge_p
) xcalloc (fmax_num_edges
, sizeof (fixup_edge_type
));
517 (gcov_type
*) xcalloc (1 + fnum_vertices_after_transform
,
520 /* Compute constants b, k_pos, k_neg used in the cost function calculation.
521 b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */
522 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
523 total_vertex_weight
+= bb
->count
;
525 sqrt_avg_vertex_weight
= mcf_sqrt (total_vertex_weight
/
526 n_basic_blocks_for_fn (cfun
));
528 k_pos
= K_POS (sqrt_avg_vertex_weight
);
529 k_neg
= K_NEG (sqrt_avg_vertex_weight
);
531 /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
532 connected by an edge e from v' to v''. w(e) = w(v). */
535 fprintf (dump_file
, "\nVertex transformation:\n");
537 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
539 /* v'->v'': index1->(index1+1). */
541 fcost
= (gcov_type
) COST (k_pos
, bb
->count
);
542 add_fixup_edge (fixup_graph
, i
, i
+ 1, VERTEX_SPLIT_EDGE
, bb
->count
,
543 fcost
, CAP_INFINITY
);
544 fixup_graph
->num_vertices
++;
546 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
548 /* Edges with ignore attribute set should be treated like they don't
550 if (EDGE_INFO (e
) && EDGE_INFO (e
)->ignore
)
552 j
= 2 * e
->dest
->index
;
553 fcost
= (gcov_type
) COST (k_pos
, e
->count
);
554 add_fixup_edge (fixup_graph
, i
+ 1, j
, REDIRECT_EDGE
, e
->count
, fcost
,
559 /* After vertex transformation. */
560 gcc_assert (fixup_graph
->num_vertices
== fnum_vertices_after_transform
);
561 /* Redirect edges are not added for edges with ignore attribute. */
562 gcc_assert (fixup_graph
->num_edges
<= fnum_edges_after_transform
);
564 fnum_edges_after_transform
= fixup_graph
->num_edges
;
566 /* 2. Initialize D(v). */
567 for (i
= 0; i
< fnum_edges_after_transform
; i
++)
569 pfedge
= fixup_graph
->edge_list
+ i
;
570 diff_out_in
[pfedge
->src
] += pfedge
->weight
;
571 diff_out_in
[pfedge
->dest
] -= pfedge
->weight
;
574 /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */
575 for (i
= 0; i
<= 3; i
++)
578 /* 3. Add reverse edges: needed to decrease counts during smoothing. */
580 fprintf (dump_file
, "\nReverse edges:\n");
581 for (i
= 0; i
< fnum_edges_after_transform
; i
++)
583 pfedge
= fixup_graph
->edge_list
+ i
;
584 if ((pfedge
->src
== 0) || (pfedge
->src
== 2))
586 r_pfedge
= find_fixup_edge (fixup_graph
, pfedge
->dest
, pfedge
->src
);
587 if (!r_pfedge
&& pfedge
->weight
)
589 /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
591 fcost
= (gcov_type
) COST (k_neg
, pfedge
->weight
);
592 add_fixup_edge (fixup_graph
, pfedge
->dest
, pfedge
->src
,
593 REVERSE_EDGE
, 0, fcost
, pfedge
->weight
);
597 /* 4. Create single source and sink. Connect new source vertex s' to function
598 entry block. Connect sink vertex t' to function exit. */
600 fprintf (dump_file
, "\ns'->S, T->t':\n");
602 new_entry_index
= fixup_graph
->new_entry_index
= fixup_graph
->num_vertices
;
603 fixup_graph
->num_vertices
++;
604 /* Set supply_value to 1 to avoid zero count function ENTRY. */
605 add_fixup_edge (fixup_graph
, new_entry_index
, ENTRY_BLOCK
, SOURCE_CONNECT_EDGE
,
606 1 /* supply_value */, 0, 1 /* supply_value */);
608 /* Create new exit with EXIT_BLOCK as single pred. */
609 new_exit_index
= fixup_graph
->new_exit_index
= fixup_graph
->num_vertices
;
610 fixup_graph
->num_vertices
++;
611 add_fixup_edge (fixup_graph
, 2 * EXIT_BLOCK
+ 1, new_exit_index
,
613 0 /* demand_value */, 0, 0 /* demand_value */);
615 /* Connect vertices with unbalanced D(v) to source/sink. */
617 fprintf (dump_file
, "\nD(v) balance:\n");
618 /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
619 diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */
620 for (i
= 4; i
< new_entry_index
; i
+= 2)
622 if (diff_out_in
[i
] > 0)
624 add_fixup_edge (fixup_graph
, i
, new_exit_index
, BALANCE_EDGE
, 0, 0,
626 demand_value
+= diff_out_in
[i
];
628 else if (diff_out_in
[i
] < 0)
630 add_fixup_edge (fixup_graph
, new_entry_index
, i
, BALANCE_EDGE
, 0, 0,
632 supply_value
-= diff_out_in
[i
];
636 /* Set supply = demand. */
639 fprintf (dump_file
, "\nAdjust supply and demand:\n");
640 fprintf (dump_file
, "supply_value=%" PRId64
"\n",
642 fprintf (dump_file
, "demand_value=%" PRId64
"\n",
646 if (demand_value
> supply_value
)
648 pfedge
= find_fixup_edge (fixup_graph
, new_entry_index
, ENTRY_BLOCK
);
649 pfedge
->max_capacity
+= (demand_value
- supply_value
);
653 pfedge
= find_fixup_edge (fixup_graph
, 2 * EXIT_BLOCK
+ 1, new_exit_index
);
654 pfedge
->max_capacity
+= (supply_value
- demand_value
);
657 /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
658 created by the vertex transformation step from self-edges in the original
659 CFG and by the reverse edges added earlier. */
661 fprintf (dump_file
, "\nNormalize edges:\n");
663 fnum_edges
= fixup_graph
->num_edges
;
664 fedge_list
= fixup_graph
->edge_list
;
666 for (i
= 0; i
< fnum_edges
; i
++)
668 pfedge
= fedge_list
+ i
;
669 r_pfedge
= find_fixup_edge (fixup_graph
, pfedge
->dest
, pfedge
->src
);
670 if (((pfedge
->type
== VERTEX_SPLIT_EDGE
)
671 || (pfedge
->type
== REDIRECT_EDGE
)) && r_pfedge
)
673 new_index
= fixup_graph
->num_vertices
;
674 fixup_graph
->num_vertices
++;
678 fprintf (dump_file
, "\nAnti-parallel edge:\n");
679 dump_fixup_edge (dump_file
, fixup_graph
, pfedge
);
680 dump_fixup_edge (dump_file
, fixup_graph
, r_pfedge
);
681 fprintf (dump_file
, "New vertex is %d.\n", new_index
);
682 fprintf (dump_file
, "------------------\n");
686 pfedge
->norm_vertex_index
= new_index
;
689 fprintf (dump_file
, "After normalization:\n");
690 dump_fixup_edge (dump_file
, fixup_graph
, pfedge
);
693 /* Add a new fixup edge: new_index->src. */
694 add_fixup_edge (fixup_graph
, new_index
, pfedge
->src
,
695 REVERSE_NORMALIZED_EDGE
, 0, r_pfedge
->cost
,
696 r_pfedge
->max_capacity
);
697 gcc_assert (fixup_graph
->num_vertices
<= fmax_num_vertices
);
699 /* Edge: r_pfedge->src -> r_pfedge->dest
700 ==> r_pfedge->src -> new_index. */
701 r_pfedge
->dest
= new_index
;
702 r_pfedge
->type
= REVERSE_NORMALIZED_EDGE
;
703 r_pfedge
->cost
= pfedge
->cost
;
704 r_pfedge
->max_capacity
= pfedge
->max_capacity
;
706 dump_fixup_edge (dump_file
, fixup_graph
, r_pfedge
);
711 dump_fixup_graph (dump_file
, fixup_graph
, "After create_fixup_graph()");
718 /* Allocates space for the structures in AUGMENTING_PATH. The space needed is
719 proportional to the number of nodes in the graph, which is given by
723 init_augmenting_path (augmenting_path_type
*augmenting_path
, int graph_size
)
725 augmenting_path
->queue_list
.queue
= (int *)
726 xcalloc (graph_size
+ 2, sizeof (int));
727 augmenting_path
->queue_list
.size
= graph_size
+ 2;
728 augmenting_path
->bb_pred
= (int *) xcalloc (graph_size
, sizeof (int));
729 augmenting_path
->is_visited
= (int *) xcalloc (graph_size
, sizeof (int));
732 /* Free the structures in AUGMENTING_PATH. */
734 free_augmenting_path (augmenting_path_type
*augmenting_path
)
736 free (augmenting_path
->queue_list
.queue
);
737 free (augmenting_path
->bb_pred
);
738 free (augmenting_path
->is_visited
);
742 /* Queue routines. Assumes queue will never overflow. */
745 init_queue (queue_type
*queue_list
)
747 gcc_assert (queue_list
);
748 queue_list
->head
= 0;
749 queue_list
->tail
= 0;
752 /* Return true if QUEUE_LIST is empty. */
754 is_empty (queue_type
*queue_list
)
756 return (queue_list
->head
== queue_list
->tail
);
759 /* Insert element X into QUEUE_LIST. */
761 enqueue (queue_type
*queue_list
, int x
)
763 gcc_assert (queue_list
->tail
< queue_list
->size
);
764 queue_list
->queue
[queue_list
->tail
] = x
;
765 (queue_list
->tail
)++;
768 /* Return the first element in QUEUE_LIST. */
770 dequeue (queue_type
*queue_list
)
773 gcc_assert (queue_list
->head
>= 0);
774 x
= queue_list
->queue
[queue_list
->head
];
775 (queue_list
->head
)++;
780 /* Finds a negative cycle in the residual network using
781 the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
782 minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
786 FIXUP_GRAPH - Residual graph (input/output)
787 The following are allocated/freed by the caller:
788 PI - Vector to hold predecessors in path (pi = pred index)
789 D - D[I] holds minimum cost of path from i to sink
790 CYCLE - Vector to hold the minimum cost cycle
793 true if a negative cycle was found, false otherwise. */
796 cancel_negative_cycle (fixup_graph_type
*fixup_graph
,
797 int *pi
, gcov_type
*d
, int *cycle
)
800 int fnum_vertices
, fnum_edges
;
801 fixup_edge_p fedge_list
, pfedge
, r_pfedge
;
802 bool found_cycle
= false;
803 int cycle_start
= 0, cycle_end
= 0;
804 gcov_type sum_cost
= 0, cycle_flow
= 0;
806 bool propagated
= false;
808 gcc_assert (fixup_graph
);
809 fnum_vertices
= fixup_graph
->num_vertices
;
810 fnum_edges
= fixup_graph
->num_edges
;
811 fedge_list
= fixup_graph
->edge_list
;
812 new_entry_index
= fixup_graph
->new_entry_index
;
816 for (i
= 1; i
< fnum_vertices
; i
++)
825 for (k
= 1; k
< fnum_vertices
; k
++)
828 for (i
= 0; i
< fnum_edges
; i
++)
830 pfedge
= fedge_list
+ i
;
831 if (pfedge
->src
== new_entry_index
)
833 if (pfedge
->is_rflow_valid
&& pfedge
->rflow
834 && d
[pfedge
->src
] != CAP_INFINITY
835 && (d
[pfedge
->dest
] > d
[pfedge
->src
] + pfedge
->cost
))
837 d
[pfedge
->dest
] = d
[pfedge
->src
] + pfedge
->cost
;
838 pi
[pfedge
->dest
] = pfedge
->src
;
847 /* No negative cycles exist. */
851 for (i
= 0; i
< fnum_edges
; i
++)
853 pfedge
= fedge_list
+ i
;
854 if (pfedge
->src
== new_entry_index
)
856 if (pfedge
->is_rflow_valid
&& pfedge
->rflow
857 && d
[pfedge
->src
] != CAP_INFINITY
858 && (d
[pfedge
->dest
] > d
[pfedge
->src
] + pfedge
->cost
))
868 /* Augment the cycle with the cycle's minimum residual capacity. */
870 cycle
[0] = pfedge
->dest
;
873 for (i
= 1; i
< fnum_vertices
; i
++)
877 for (k
= 0; k
< i
; k
++)
881 /* cycle[k] -> ... -> cycle[i]. */
892 gcc_assert (cycle
[cycle_start
] == cycle
[cycle_end
]);
894 fprintf (dump_file
, "\nNegative cycle length is %d:\n",
895 cycle_end
- cycle_start
);
898 cycle_flow
= CAP_INFINITY
;
899 for (k
= cycle_start
; k
< cycle_end
; k
++)
901 pfedge
= find_fixup_edge (fixup_graph
, cycle
[k
+ 1], cycle
[k
]);
902 cycle_flow
= MIN (cycle_flow
, pfedge
->rflow
);
903 sum_cost
+= pfedge
->cost
;
905 fprintf (dump_file
, "%d ", cycle
[k
]);
910 fprintf (dump_file
, "%d", cycle
[k
]);
912 ": (%" PRId64
", %" PRId64
913 ")\n", sum_cost
, cycle_flow
);
915 "Augment cycle with %" PRId64
"\n",
919 for (k
= cycle_start
; k
< cycle_end
; k
++)
921 pfedge
= find_fixup_edge (fixup_graph
, cycle
[k
+ 1], cycle
[k
]);
922 r_pfedge
= find_fixup_edge (fixup_graph
, cycle
[k
], cycle
[k
+ 1]);
923 pfedge
->rflow
-= cycle_flow
;
925 pfedge
->flow
+= cycle_flow
;
926 r_pfedge
->rflow
+= cycle_flow
;
928 r_pfedge
->flow
-= cycle_flow
;
935 /* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
936 the edges. ENTRY and EXIT vertices should not be considered. */
939 compute_residual_flow (fixup_graph_type
*fixup_graph
)
943 fixup_edge_p fedge_list
, pfedge
;
945 gcc_assert (fixup_graph
);
948 fputs ("\ncompute_residual_flow():\n", dump_file
);
950 fnum_edges
= fixup_graph
->num_edges
;
951 fedge_list
= fixup_graph
->edge_list
;
953 for (i
= 0; i
< fnum_edges
; i
++)
955 pfedge
= fedge_list
+ i
;
956 pfedge
->rflow
= pfedge
->max_capacity
- pfedge
->flow
;
957 pfedge
->is_rflow_valid
= true;
958 add_rfixup_edge (fixup_graph
, pfedge
->dest
, pfedge
->src
, pfedge
->flow
,
964 /* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
965 SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
966 this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
967 to reflect the path found.
968 Returns: 0 if no augmenting path is found, 1 otherwise. */
971 find_augmenting_path (fixup_graph_type
*fixup_graph
,
972 augmenting_path_type
*augmenting_path
, int source
,
977 fixup_vertex_p fvertex_list
, pfvertex
;
979 int *bb_pred
, *is_visited
;
980 queue_type
*queue_list
;
982 gcc_assert (augmenting_path
);
983 bb_pred
= augmenting_path
->bb_pred
;
984 gcc_assert (bb_pred
);
985 is_visited
= augmenting_path
->is_visited
;
986 gcc_assert (is_visited
);
987 queue_list
= &(augmenting_path
->queue_list
);
989 gcc_assert (fixup_graph
);
991 fvertex_list
= fixup_graph
->vertex_list
;
993 for (u
= 0; u
< fixup_graph
->num_vertices
; u
++)
996 init_queue (queue_list
);
997 enqueue (queue_list
, source
);
998 bb_pred
[source
] = -1;
1000 while (!is_empty (queue_list
))
1002 u
= dequeue (queue_list
);
1004 pfvertex
= fvertex_list
+ u
;
1005 for (i
= 0; pfvertex
->succ_edges
.iterate (i
, &pfedge
);
1008 int dest
= pfedge
->dest
;
1009 if ((pfedge
->rflow
> 0) && (is_visited
[dest
] == 0))
1011 enqueue (queue_list
, dest
);
1013 is_visited
[dest
] = 1;
1024 /* Routine to find the maximal flow:
1026 1. Initialize flow to 0
1027 2. Find an augmenting path form source to sink.
1028 3. Send flow equal to the path's residual capacity along the edges of this path.
1029 4. Repeat steps 2 and 3 until no new augmenting path is found.
1032 SOURCE: index of source vertex (input)
1033 SINK: index of sink vertex (input)
1034 FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
1035 set to have a valid maximal flow by this routine. (input)
1036 Return: Maximum flow possible. */
1039 find_max_flow (fixup_graph_type
*fixup_graph
, int source
, int sink
)
1042 augmenting_path_type augmenting_path
;
1044 gcov_type max_flow
= 0;
1046 fixup_edge_p fedge_list
, pfedge
, r_pfedge
;
1048 gcc_assert (fixup_graph
);
1050 fnum_edges
= fixup_graph
->num_edges
;
1051 fedge_list
= fixup_graph
->edge_list
;
1053 /* Initialize flow to 0. */
1054 for (i
= 0; i
< fnum_edges
; i
++)
1056 pfedge
= fedge_list
+ i
;
1060 compute_residual_flow (fixup_graph
);
1062 init_augmenting_path (&augmenting_path
, fixup_graph
->num_vertices
);
1064 bb_pred
= augmenting_path
.bb_pred
;
1065 while (find_augmenting_path (fixup_graph
, &augmenting_path
, source
, sink
))
1067 /* Determine the amount by which we can increment the flow. */
1068 gcov_type increment
= CAP_INFINITY
;
1069 for (u
= sink
; u
!= source
; u
= bb_pred
[u
])
1071 pfedge
= find_fixup_edge (fixup_graph
, bb_pred
[u
], u
);
1072 increment
= MIN (increment
, pfedge
->rflow
);
1074 max_flow
+= increment
;
1076 /* Now increment the flow. EXIT vertex index is 1. */
1077 for (u
= sink
; u
!= source
; u
= bb_pred
[u
])
1079 pfedge
= find_fixup_edge (fixup_graph
, bb_pred
[u
], u
);
1080 r_pfedge
= find_fixup_edge (fixup_graph
, u
, bb_pred
[u
]);
1084 pfedge
->flow
+= increment
;
1085 pfedge
->rflow
-= increment
;
1086 r_pfedge
->rflow
+= increment
;
1090 /* backward edge. */
1091 gcc_assert (r_pfedge
->type
);
1092 r_pfedge
->rflow
+= increment
;
1093 r_pfedge
->flow
-= increment
;
1094 pfedge
->rflow
-= increment
;
1100 fprintf (dump_file
, "\nDump augmenting path:\n");
1101 for (u
= sink
; u
!= source
; u
= bb_pred
[u
])
1103 print_basic_block (dump_file
, fixup_graph
, u
);
1104 fprintf (dump_file
, "<-");
1107 "ENTRY (path_capacity=%" PRId64
")\n",
1110 "Network flow is %" PRId64
".\n",
1115 free_augmenting_path (&augmenting_path
);
1117 dump_fixup_graph (dump_file
, fixup_graph
, "After find_max_flow()");
1122 /* Computes the corrected edge and basic block weights using FIXUP_GRAPH
1123 after applying the find_minimum_cost_flow() routine. */
1126 adjust_cfg_counts (fixup_graph_type
*fixup_graph
)
1132 fixup_edge_p pfedge
, pfedge_n
;
1134 gcc_assert (fixup_graph
);
1137 fprintf (dump_file
, "\nadjust_cfg_counts():\n");
1139 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1140 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
1147 "BB%d: %" PRId64
"", bb
->index
, bb
->count
);
1149 pfedge
= find_fixup_edge (fixup_graph
, i
, i
+ 1);
1152 bb
->count
+= pfedge
->flow
;
1155 fprintf (dump_file
, " + %" PRId64
"(",
1157 print_edge (dump_file
, fixup_graph
, i
, i
+ 1);
1158 fprintf (dump_file
, ")");
1163 find_fixup_edge (fixup_graph
, i
+ 1, pfedge
->norm_vertex_index
);
1164 /* Deduct flow from normalized reverse edge. */
1165 if (pfedge
->norm_vertex_index
&& pfedge_n
->flow
)
1167 bb
->count
-= pfedge_n
->flow
;
1170 fprintf (dump_file
, " - %" PRId64
"(",
1172 print_edge (dump_file
, fixup_graph
, i
+ 1,
1173 pfedge
->norm_vertex_index
);
1174 fprintf (dump_file
, ")");
1178 fprintf (dump_file
, " = %" PRId64
"\n", bb
->count
);
1181 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1183 /* Treat edges with ignore attribute set as if they don't exist. */
1184 if (EDGE_INFO (e
) && EDGE_INFO (e
)->ignore
)
1187 j
= 2 * e
->dest
->index
;
1189 fprintf (dump_file
, "%d->%d: %" PRId64
"",
1190 bb
->index
, e
->dest
->index
, e
->count
);
1192 pfedge
= find_fixup_edge (fixup_graph
, i
+ 1, j
);
1194 if (bb
->index
!= e
->dest
->index
)
1196 /* Non-self edge. */
1199 e
->count
+= pfedge
->flow
;
1202 fprintf (dump_file
, " + %" PRId64
"(",
1204 print_edge (dump_file
, fixup_graph
, i
+ 1, j
);
1205 fprintf (dump_file
, ")");
1210 find_fixup_edge (fixup_graph
, j
, pfedge
->norm_vertex_index
);
1211 /* Deduct flow from normalized reverse edge. */
1212 if (pfedge
->norm_vertex_index
&& pfedge_n
->flow
)
1214 e
->count
-= pfedge_n
->flow
;
1217 fprintf (dump_file
, " - %" PRId64
"(",
1219 print_edge (dump_file
, fixup_graph
, j
,
1220 pfedge
->norm_vertex_index
);
1221 fprintf (dump_file
, ")");
1227 /* Handle self edges. Self edge is split with a normalization
1228 vertex. Here i=j. */
1229 pfedge
= find_fixup_edge (fixup_graph
, j
, i
+ 1);
1231 find_fixup_edge (fixup_graph
, i
+ 1, pfedge
->norm_vertex_index
);
1232 e
->count
+= pfedge_n
->flow
;
1233 bb
->count
+= pfedge_n
->flow
;
1236 fprintf (dump_file
, "(self edge)");
1237 fprintf (dump_file
, " + %" PRId64
"(",
1239 print_edge (dump_file
, fixup_graph
, i
+ 1,
1240 pfedge
->norm_vertex_index
);
1241 fprintf (dump_file
, ")");
1246 e
->probability
= REG_BR_PROB_BASE
* e
->count
/ bb
->count
;
1248 fprintf (dump_file
, " = %" PRId64
"\t(%.1f%%)\n",
1249 e
->count
, e
->probability
* 100.0 / REG_BR_PROB_BASE
);
1253 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
=
1254 sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
1255 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
=
1256 sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
1258 /* Compute edge probabilities. */
1259 FOR_ALL_BB_FN (bb
, cfun
)
1263 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1264 e
->probability
= REG_BR_PROB_BASE
* e
->count
/ bb
->count
;
1269 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1270 if (!(e
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)))
1274 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1276 if (!(e
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)))
1277 e
->probability
= REG_BR_PROB_BASE
/ total
;
1284 total
+= EDGE_COUNT (bb
->succs
);
1285 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1286 e
->probability
= REG_BR_PROB_BASE
/ total
;
1293 fprintf (dump_file
, "\nCheck %s() CFG flow conservation:\n",
1294 current_function_name ());
1295 FOR_EACH_BB_FN (bb
, cfun
)
1297 if ((bb
->count
!= sum_edge_counts (bb
->preds
))
1298 || (bb
->count
!= sum_edge_counts (bb
->succs
)))
1301 "BB%d(%" PRId64
") **INVALID**: ",
1302 bb
->index
, bb
->count
);
1304 "******** BB%d(%" PRId64
1305 ") **INVALID**: \n", bb
->index
, bb
->count
);
1306 fprintf (dump_file
, "in_edges=%" PRId64
" ",
1307 sum_edge_counts (bb
->preds
));
1308 fprintf (dump_file
, "out_edges=%" PRId64
"\n",
1309 sum_edge_counts (bb
->succs
));
1316 /* Implements the negative cycle canceling algorithm to compute a minimum cost
1319 1. Find maximal flow.
1320 2. Form residual network
1322 While G contains a negative cost cycle C, reverse the flow on the found cycle
1323 by the minimum residual capacity in that cycle.
1324 4. Form the minimal cost flow
1327 FIXUP_GRAPH - Initial fixup graph.
1328 The flow field is modified to represent the minimum cost flow. */
1331 find_minimum_cost_flow (fixup_graph_type
*fixup_graph
)
1333 /* Holds the index of predecessor in path. */
1335 /* Used to hold the minimum cost cycle. */
1337 /* Used to record the number of iterations of cancel_negative_cycle. */
1339 /* Vector d[i] holds the minimum cost of path from i to sink. */
1343 int new_entry_index
;
1345 gcc_assert (fixup_graph
);
1346 fnum_vertices
= fixup_graph
->num_vertices
;
1347 new_exit_index
= fixup_graph
->new_exit_index
;
1348 new_entry_index
= fixup_graph
->new_entry_index
;
1350 find_max_flow (fixup_graph
, new_entry_index
, new_exit_index
);
1352 /* Initialize the structures for find_negative_cycle(). */
1353 pred
= (int *) xcalloc (fnum_vertices
, sizeof (int));
1354 d
= (gcov_type
*) xcalloc (fnum_vertices
, sizeof (gcov_type
));
1355 cycle
= (int *) xcalloc (fnum_vertices
, sizeof (int));
1357 /* Repeatedly find and cancel negative cost cycles, until
1358 no more negative cycles exist. This also updates the flow field
1359 to represent the minimum cost flow so far. */
1361 while (cancel_negative_cycle (fixup_graph
, pred
, d
, cycle
))
1364 if (iteration
> MAX_ITER (fixup_graph
->num_vertices
,
1365 fixup_graph
->num_edges
))
1370 dump_fixup_graph (dump_file
, fixup_graph
,
1371 "After find_minimum_cost_flow()");
1373 /* Cleanup structures. */
1380 /* Compute the sum of the edge counts in TO_EDGES. */
1383 sum_edge_counts (vec
<edge
, va_gc
> *to_edges
)
1389 FOR_EACH_EDGE (e
, ei
, to_edges
)
1391 if (EDGE_INFO (e
) && EDGE_INFO (e
)->ignore
)
1399 /* Main routine. Smoothes the initial assigned basic block and edge counts using
1400 a minimum cost flow algorithm, to ensure that the flow consistency rule is
1401 obeyed: sum of outgoing edges = sum of incoming edges for each basic
1405 mcf_smooth_cfg (void)
1407 fixup_graph_type fixup_graph
;
1408 memset (&fixup_graph
, 0, sizeof (fixup_graph
));
1409 create_fixup_graph (&fixup_graph
);
1410 find_minimum_cost_flow (&fixup_graph
);
1411 adjust_cfg_counts (&fixup_graph
);
1412 delete_fixup_graph (&fixup_graph
);