poll - Fix events == 0 handling for TAP and TUN, fix console spam
[dragonfly.git] / sys / platform / vkernel64 / x86_64 / swtch.s
blobdac9b6629b78f75be8118d743fa21e3508f5c397
1 /*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project. All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
68 #include <sys/rtprio.h>
70 #include <machine/asmacros.h>
71 #include <machine/segments.h>
73 #include <machine/pmap.h>
74 #include <machine/lock.h>
76 #define CHECKNZ(expr, scratch_reg) \
77 movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
79 #include "assym.s"
81 #define MPLOCKED lock ;
83 .data
85 .globl panic
86 .globl lwkt_switch_return
88 #if defined(SWTCH_OPTIM_STATS)
89 .globl swtch_optim_stats, tlb_flush_count
90 swtch_optim_stats: .long 0 /* number of _swtch_optims */
91 tlb_flush_count: .long 0
92 #endif
94 .text
98 * cpu_heavy_switch(struct thread *next_thread)
100 * Switch from the current thread to a new thread. This entry
101 * is normally called via the thread->td_switch function, and will
102 * only be called when the current thread is a heavy weight process.
104 * Some instructions have been reordered to reduce pipeline stalls.
106 * YYY disable interrupts once giant is removed.
108 ENTRY(cpu_heavy_switch)
110 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
112 movq PCPU(curthread),%rcx
113 /* On top of the stack is the return adress. */
114 movq (%rsp),%rax /* (reorder optimization) */
115 movq TD_PCB(%rcx),%rdx /* RDX = PCB */
116 movq %rax,PCB_RIP(%rdx) /* return PC may be modified */
117 movq %rbx,PCB_RBX(%rdx)
118 movq %rsp,PCB_RSP(%rdx)
119 movq %rbp,PCB_RBP(%rdx)
120 movq %r12,PCB_R12(%rdx)
121 movq %r13,PCB_R13(%rdx)
122 movq %r14,PCB_R14(%rdx)
123 movq %r15,PCB_R15(%rdx)
126 * Clear the cpu bit in the pmap active mask. The restore
127 * function will set the bit in the pmap active mask.
129 * Special case: when switching between threads sharing the
130 * same vmspace if we avoid clearing the bit we do not have
131 * to reload %cr3 (if we clear the bit we could race page
132 * table ops done by other threads and would have to reload
133 * %cr3, because those ops will not know to IPI us).
135 movq %rcx,%rbx /* RBX = oldthread */
136 movq TD_LWP(%rcx),%rcx /* RCX = oldlwp */
137 movq TD_LWP(%rdi),%r13 /* R13 = newlwp */
138 movq LWP_VMSPACE(%rcx), %rcx /* RCX = oldvmspace */
139 testq %r13,%r13 /* might not be a heavy */
140 jz 1f
141 cmpq LWP_VMSPACE(%r13),%rcx /* same vmspace? */
142 je 2f
144 movq PCPU(other_cpus)+0, %rax
145 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+0(%rcx)
146 movq PCPU(other_cpus)+8, %rax
147 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+8(%rcx)
148 movq PCPU(other_cpus)+16, %rax
149 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+16(%rcx)
150 movq PCPU(other_cpus)+24, %rax
151 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+24(%rcx)
155 * Push the LWKT switch restore function, which resumes a heavy
156 * weight process. Note that the LWKT switcher is based on
157 * TD_SP, while the heavy weight process switcher is based on
158 * PCB_RSP. TD_SP is usually two ints pushed relative to
159 * PCB_RSP. We push the flags for later restore by cpu_heavy_restore.
161 pushfq
162 movq $cpu_heavy_restore, %rax
163 pushq %rax
164 movq %rsp,TD_SP(%rbx)
167 * Save debug regs if necessary
169 movq PCB_FLAGS(%rdx),%rax
170 andq $PCB_DBREGS,%rax
171 jz 1f /* no, skip over */
172 movq %dr7,%rax /* yes, do the save */
173 movq %rax,PCB_DR7(%rdx)
174 /* JG correct value? */
175 andq $0x0000fc00, %rax /* disable all watchpoints */
176 movq %rax,%dr7
177 movq %dr6,%rax
178 movq %rax,PCB_DR6(%rdx)
179 movq %dr3,%rax
180 movq %rax,PCB_DR3(%rdx)
181 movq %dr2,%rax
182 movq %rax,PCB_DR2(%rdx)
183 movq %dr1,%rax
184 movq %rax,PCB_DR1(%rdx)
185 movq %dr0,%rax
186 movq %rax,PCB_DR0(%rdx)
189 #if 1
191 * Save the FP state if we have used the FP. Note that calling
192 * npxsave will NULL out PCPU(npxthread).
194 cmpq %rbx,PCPU(npxthread)
195 jne 1f
196 movq %rdi,%r12 /* save %rdi. %r12 is callee-saved */
197 movq TD_SAVEFPU(%rbx),%rdi
198 call npxsave /* do it in a big C function */
199 movq %r12,%rdi /* restore %rdi */
201 #endif
204 * Switch to the next thread, which was passed as an argument
205 * to cpu_heavy_switch(). The argument is in %rdi.
206 * Set the current thread, load the stack pointer,
207 * and 'ret' into the switch-restore function.
209 * The switch restore function expects the new thread to be in %rax
210 * and the old one to be in %rbx.
212 * There is a one-instruction window where curthread is the new
213 * thread but %rsp still points to the old thread's stack, but
214 * we are protected by a critical section so it is ok.
216 movq %rdi,%rax /* RAX = newtd, RBX = oldtd */
217 movq %rax,PCPU(curthread)
218 movq TD_SP(%rax),%rsp
219 CHECKNZ((%rsp), %r9)
221 END(cpu_heavy_switch)
224 * cpu_exit_switch(struct thread *next)
226 * The switch function is changed to this when a thread is going away
227 * for good. We have to ensure that the MMU state is not cached, and
228 * we don't bother saving the existing thread state before switching.
230 * At this point we are in a critical section and this cpu owns the
231 * thread's token, which serves as an interlock until the switchout is
232 * complete.
234 ENTRY(cpu_exit_switch)
236 * Get us out of the vmspace
238 #if 0
239 movq KPML4phys,%rcx
240 movq %cr3,%rax
241 cmpq %rcx,%rax
242 je 1f
243 /* JG no increment of statistics counters? see cpu_heavy_restore */
244 movq %rcx,%cr3
246 #endif
247 movq PCPU(curthread),%rbx
250 * If this is a process/lwp, deactivate the pmap after we've
251 * switched it out.
253 movq TD_LWP(%rbx),%rcx
254 testq %rcx,%rcx
255 jz 2f
256 movq LWP_VMSPACE(%rcx), %rcx /* RCX = vmspace */
257 movq PCPU(other_cpus)+0, %rax
258 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+0(%rcx)
259 movq PCPU(other_cpus)+8, %rax
260 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+8(%rcx)
261 movq PCPU(other_cpus)+16, %rax
262 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+16(%rcx)
263 movq PCPU(other_cpus)+24, %rax
264 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE+24(%rcx)
267 * Switch to the next thread. RET into the restore function, which
268 * expects the new thread in RAX and the old in RBX.
270 * There is a one-instruction window where curthread is the new
271 * thread but %rsp still points to the old thread's stack, but
272 * we are protected by a critical section so it is ok.
274 movq %rdi,%rax
275 movq %rax,PCPU(curthread)
276 movq TD_SP(%rax),%rsp
277 CHECKNZ((%rsp), %r9)
279 END(cpu_exit_switch)
282 * cpu_heavy_restore() (current thread in %rax on entry, %rbx is old thread)
284 * Restore the thread after an LWKT switch. This entry is normally
285 * called via the LWKT switch restore function, which was pulled
286 * off the thread stack and jumped to.
288 * This entry is only called if the thread was previously saved
289 * using cpu_heavy_switch() (the heavy weight process thread switcher),
290 * or when a new process is initially scheduled.
292 * NOTE: The lwp may be in any state, not necessarily LSRUN, because
293 * a preemption switch may interrupt the process and then return via
294 * cpu_heavy_restore.
296 * YYY theoretically we do not have to restore everything here, a lot
297 * of this junk can wait until we return to usermode. But for now
298 * we restore everything.
300 * YYY the PCB crap is really crap, it makes startup a bitch because
301 * we can't switch away.
303 * YYY note: spl check is done in mi_switch when it splx()'s.
306 ENTRY(cpu_heavy_restore)
307 popfq
308 movq TD_PCB(%rax),%rdx /* RDX = PCB */
310 #if defined(SWTCH_OPTIM_STATS)
311 incl _swtch_optim_stats
312 #endif
314 * Tell the pmap that our cpu is using the VMSPACE now. We cannot
315 * safely test/reload %cr3 until after we have set the bit in the
316 * pmap (remember, we do not hold the MP lock in the switch code).
318 movq TD_LWP(%rax),%rcx
319 movq LWP_VMSPACE(%rcx), %rcx /* RCX = vmspace */
321 movq PCPU(cpumask)+0, %rsi
322 MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+0(%rcx)
323 movq PCPU(cpumask)+8, %rsi
324 MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+8(%rcx)
325 movq PCPU(cpumask)+16, %rsi
326 MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+16(%rcx)
327 movq PCPU(cpumask)+24, %rsi
328 MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+24(%rcx)
330 movl VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
331 testl $CPULOCK_EXCL,%esi
332 jz 1f
334 movq %rax,%r12 /* save newthread ptr */
335 movq %rcx,%rdi /* (found to be set) */
336 call pmap_interlock_wait /* pmap_interlock_wait(%rdi:vm) */
337 movq %r12,%rax
338 movq TD_PCB(%rax),%rdx /* RDX = PCB */
341 * Restore the MMU address space. If it is the same as the last
342 * thread we don't have to invalidate the tlb (i.e. reload cr3).
343 * YYY which naturally also means that the PM_ACTIVE bit had better
344 * already have been set before we set it above, check? YYY
346 #if 0
347 movq %cr3,%rsi
348 movq PCB_CR3(%rdx),%rcx
349 cmpq %rsi,%rcx
350 je 4f
351 #if defined(SWTCH_OPTIM_STATS)
352 decl _swtch_optim_stats
353 incl _tlb_flush_count
354 #endif
355 movq %rcx,%cr3
357 #endif
359 * NOTE: %rbx is the previous thread and %rax is the new thread.
360 * %rbx is retained throughout so we can return it.
362 * lwkt_switch[_return] is responsible for handling TDF_RUNNING.
365 #if 0
367 * Deal with the PCB extension, restore the private tss
369 movq PCB_EXT(%rdx),%rdi /* check for a PCB extension */
370 movq $1,%rcx /* maybe mark use of a private tss */
371 testq %rdi,%rdi
372 #if 0 /* JG */
373 jnz 2f
374 #endif
376 /* JG
377 * Going back to the common_tss. We may need to update TSS_ESP0
378 * which sets the top of the supervisor stack when entering from
379 * usermode. The PCB is at the top of the stack but we need another
380 * 16 bytes to take vm86 into account.
382 leaq -16(%rdx),%rcx
383 movq %rcx, PCPU(common_tss) + TSS_RSP0
384 movq %rcx, PCPU(rsp0)
386 #if 0 /* JG */
387 cmpl $0,PCPU(private_tss) /* don't have to reload if */
388 je 3f /* already using the common TSS */
390 /* JG? */
391 subq %rcx,%rcx /* unmark use of private tss */
394 * Get the address of the common TSS descriptor for the ltr.
395 * There is no way to get the address of a segment-accessed variable
396 * so we store a self-referential pointer at the base of the per-cpu
397 * data area and add the appropriate offset.
399 /* JG movl? */
400 movq $gd_common_tssd, %rdi
401 /* JG name for "%gs:0"? */
402 addq %gs:0, %rdi
405 * Move the correct TSS descriptor into the GDT slot, then reload
406 * ltr.
409 /* JG */
410 movl %rcx,PCPU(private_tss) /* mark/unmark private tss */
411 movq PCPU(tss_gdt), %rcx /* entry in GDT */
412 movq 0(%rdi), %rax
413 movq %rax, 0(%rcx)
414 movl $GPROC0_SEL*8, %esi /* GSEL(entry, SEL_KPL) */
415 ltr %si
416 #endif
419 #endif
420 #if 0
422 * Restore the user %gs and %fs
424 movq PCB_FSBASE(%rdx),%r9
425 cmpq PCPU(user_fs),%r9
426 je 4f
427 movq %rdx,%r10
428 movq %r9,PCPU(user_fs)
429 movl $MSR_FSBASE,%ecx
430 movl PCB_FSBASE(%r10),%eax
431 movl PCB_FSBASE+4(%r10),%edx
432 wrmsr
433 movq %r10,%rdx
435 movq PCB_GSBASE(%rdx),%r9
436 cmpq PCPU(user_gs),%r9
437 je 5f
438 movq %rdx,%r10
439 movq %r9,PCPU(user_gs)
440 movl $MSR_KGSBASE,%ecx /* later swapgs moves it to GSBASE */
441 movl PCB_GSBASE(%r10),%eax
442 movl PCB_GSBASE+4(%r10),%edx
443 wrmsr
444 movq %r10,%rdx
446 #endif
449 * Restore general registers. %rbx is restored later.
451 movq PCB_RSP(%rdx), %rsp
452 movq PCB_RBP(%rdx), %rbp
453 movq PCB_R12(%rdx), %r12
454 movq PCB_R13(%rdx), %r13
455 movq PCB_R14(%rdx), %r14
456 movq PCB_R15(%rdx), %r15
457 movq PCB_RIP(%rdx), %rax
458 movq %rax, (%rsp)
460 #if 0
462 * Restore the user LDT if we have one
464 cmpl $0, PCB_USERLDT(%edx)
465 jnz 1f
466 movl _default_ldt,%eax
467 cmpl PCPU(currentldt),%eax
468 je 2f
469 lldt _default_ldt
470 movl %eax,PCPU(currentldt)
471 jmp 2f
472 1: pushl %edx
473 call set_user_ldt
474 popl %edx
476 #endif
477 #if 0
479 * Restore the user TLS if we have one
481 pushl %edx
482 call set_user_TLS
483 popl %edx
484 #endif
487 * Restore the DEBUG register state if necessary.
489 movq PCB_FLAGS(%rdx),%rax
490 andq $PCB_DBREGS,%rax
491 jz 1f /* no, skip over */
492 movq PCB_DR6(%rdx),%rax /* yes, do the restore */
493 movq %rax,%dr6
494 movq PCB_DR3(%rdx),%rax
495 movq %rax,%dr3
496 movq PCB_DR2(%rdx),%rax
497 movq %rax,%dr2
498 movq PCB_DR1(%rdx),%rax
499 movq %rax,%dr1
500 movq PCB_DR0(%rdx),%rax
501 movq %rax,%dr0
502 movq %dr7,%rax /* load dr7 so as not to disturb */
503 /* JG correct value? */
504 andq $0x0000fc00,%rax /* reserved bits */
505 /* JG we've got more registers on x86_64 */
506 movq PCB_DR7(%rdx),%rcx
507 /* JG correct value? */
508 andq $~0x0000fc00,%rcx
509 orq %rcx,%rax
510 movq %rax,%dr7
512 movq %rbx,%rax
513 movq PCB_RBX(%rdx),%rbx
515 CHECKNZ((%rsp), %r9)
517 END(cpu_heavy_restore)
520 * savectx(struct pcb *pcb)
522 * Update pcb, saving current processor state.
524 ENTRY(savectx)
525 /* fetch PCB */
526 /* JG use %rdi instead of %rcx everywhere? */
527 movq %rdi,%rcx
529 /* caller's return address - child won't execute this routine */
530 movq (%rsp),%rax
531 movq %rax,PCB_RIP(%rcx)
532 movq %rbx,PCB_RBX(%rcx)
533 movq %rsp,PCB_RSP(%rcx)
534 movq %rbp,PCB_RBP(%rcx)
535 movq %r12,PCB_R12(%rcx)
536 movq %r13,PCB_R13(%rcx)
537 movq %r14,PCB_R14(%rcx)
538 movq %r15,PCB_R15(%rcx)
540 #if 1
542 * If npxthread == NULL, then the npx h/w state is irrelevant and the
543 * state had better already be in the pcb. This is true for forks
544 * but not for dumps (the old book-keeping with FP flags in the pcb
545 * always lost for dumps because the dump pcb has 0 flags).
547 * If npxthread != NULL, then we have to save the npx h/w state to
548 * npxthread's pcb and copy it to the requested pcb, or save to the
549 * requested pcb and reload. Copying is easier because we would
550 * have to handle h/w bugs for reloading. We used to lose the
551 * parent's npx state for forks by forgetting to reload.
553 movq PCPU(npxthread),%rax
554 testq %rax,%rax
555 jz 1f
557 pushq %rcx /* target pcb */
558 movq TD_SAVEFPU(%rax),%rax /* originating savefpu area */
559 pushq %rax
561 movq %rax,%rdi
562 call npxsave
564 popq %rax
565 popq %rcx
567 movq $PCB_SAVEFPU_SIZE,%rdx
568 leaq PCB_SAVEFPU(%rcx),%rcx
569 movq %rcx,%rsi
570 movq %rax,%rdi
571 call bcopy
572 #endif
575 CHECKNZ((%rsp), %r9)
577 END(savectx)
580 * cpu_idle_restore() (current thread in %rax on entry) (one-time execution)
581 * (old thread is %rbx on entry)
583 * Don't bother setting up any regs other than %rbp so backtraces
584 * don't die. This restore function is used to bootstrap into the
585 * cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
586 * switching.
588 * Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
589 * This only occurs during system boot so no special handling is
590 * required for migration.
592 * If we are an AP we have to call ap_init() before jumping to
593 * cpu_idle(). ap_init() will synchronize with the BP and finish
594 * setting up various ncpu-dependant globaldata fields. This may
595 * happen on UP as well as SMP if we happen to be simulating multiple
596 * cpus.
598 ENTRY(cpu_idle_restore)
599 /* cli */
600 /* JG xor? */
601 movl $0,%ebp
602 /* JG push RBP? */
603 pushq $0
604 cmpl $0,PCPU(cpuid)
605 je 1f
606 andl $~TDF_RUNNING,TD_FLAGS(%rbx)
607 orl $TDF_RUNNING,TD_FLAGS(%rax) /* manual, no switch_return */
608 call ap_init
609 /* sti */
610 jmp cpu_idle
613 * cpu 0's idle thread entry for the first time must use normal
614 * lwkt_switch_return() semantics or a pending cpu migration on
615 * thread0 will deadlock.
618 pushq %rax
619 movq %rbx,%rdi
620 call lwkt_switch_return
621 popq %rax
622 jmp cpu_idle
623 END(cpu_idle_restore)
626 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
627 * (old thread is %rbx on entry)
629 * Don't bother setting up any regs other then %rbp so backtraces
630 * don't die. This restore function is used to bootstrap into an
631 * LWKT based kernel thread only. cpu_lwkt_switch() will be used
632 * after this.
634 * Because this switch target does not 'return' to lwkt_switch()
635 * we have to call lwkt_switch_return(otd) to clean up otd.
636 * otd is in %ebx.
638 * Since all of our context is on the stack we are reentrant and
639 * we can release our critical section and enable interrupts early.
641 ENTRY(cpu_kthread_restore)
642 /*sti*/
643 movq TD_PCB(%rax),%r13
644 movq $0,%rbp
647 * rax and rbx come from the switchout code. Call
648 * lwkt_switch_return(otd).
650 * NOTE: unlike i386, the %rsi and %rdi are not call-saved regs.
652 pushq %rax
653 movq %rbx,%rdi
654 call lwkt_switch_return
655 popq %rax
656 decl TD_CRITCOUNT(%rax)
657 movq PCB_R12(%r13),%rdi /* argument to RBX function */
658 movq PCB_RBX(%r13),%rax /* thread function */
659 /* note: top of stack return address inherited by function */
660 CHECKNZ(%rax, %r9)
661 jmp *%rax
662 END(cpu_kthread_restore)
665 * cpu_lwkt_switch(struct thread *)
667 * Standard LWKT switching function. Only non-scratch registers are
668 * saved and we don't bother with the MMU state or anything else.
670 * This function is always called while in a critical section.
672 * There is a one-instruction window where curthread is the new
673 * thread but %rsp still points to the old thread's stack, but
674 * we are protected by a critical section so it is ok.
676 * YYY BGL, SPL
678 ENTRY(cpu_lwkt_switch)
679 pushq %rbp /* JG note: GDB hacked to locate ebp relative to td_sp */
680 /* JG we've got more registers on x86_64 */
681 pushq %rbx
682 movq PCPU(curthread),%rbx
683 pushq %r12
684 pushq %r13
685 pushq %r14
686 pushq %r15
687 pushfq
689 #if 1
691 * Save the FP state if we have used the FP. Note that calling
692 * npxsave will NULL out PCPU(npxthread).
694 * We have to deal with the FP state for LWKT threads in case they
695 * happen to get preempted or block while doing an optimized
696 * bzero/bcopy/memcpy.
698 cmpq %rbx,PCPU(npxthread)
699 jne 1f
700 movq %rdi,%r12 /* save %rdi. %r12 is callee-saved */
701 movq TD_SAVEFPU(%rbx),%rdi
702 call npxsave /* do it in a big C function */
703 movq %r12,%rdi /* restore %rdi */
705 #endif
707 movq %rdi,%rax /* switch to this thread */
708 pushq $cpu_lwkt_restore
709 movq %rsp,TD_SP(%rbx)
710 movq %rax,PCPU(curthread)
711 movq TD_SP(%rax),%rsp
714 * %rax contains new thread, %rbx contains old thread.
716 CHECKNZ((%rsp), %r9)
718 END(cpu_lwkt_switch)
721 * cpu_lwkt_restore() (current thread in %rax on entry)
723 * Standard LWKT restore function. This function is always called
724 * while in a critical section.
726 * Warning: due to preemption the restore function can be used to
727 * 'return' to the original thread. Interrupt disablement must be
728 * protected through the switch so we cannot run splz here.
730 ENTRY(cpu_lwkt_restore)
732 * NOTE: %rbx is the previous thread and %eax is the new thread.
733 * %rbx is retained throughout so we can return it.
735 * lwkt_switch[_return] is responsible for handling TDF_RUNNING.
737 movq %rbx,%rax
738 popfq
739 popq %r15
740 popq %r14
741 popq %r13
742 popq %r12
743 popq %rbx
744 popq %rbp
746 END(cpu_lwkt_restore)
749 * bootstrap_idle()
751 * Make AP become the idle loop.
753 ENTRY(bootstrap_idle)
754 movq PCPU(curthread),%rax
755 movq %rax,%rbx
756 movq TD_SP(%rax),%rsp
758 END(bootstrap_idle)