sbin/hammer2/cmd_debug.c: Clear errno
[dragonfly.git] / sys / platform / pc64 / x86_64 / swtch.s
blob9de25f9cd4b585a85de537addf90a0731bf29806
1 /*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project. All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
68 #include <sys/rtprio.h>
70 #include <machine/asmacros.h>
71 #include <machine/segments.h>
73 #include <machine/pmap.h>
74 #if 0 /* JG */
75 #include <machine_base/apic/apicreg.h>
76 #endif
77 #include <machine/lock.h>
79 #include "assym.s"
81 #define MPLOCKED lock ;
84 * PREEMPT_OPTIMIZE
86 * This feature allows the preempting (interrupt) kernel thread to borrow
87 * %cr3 from the user process it interrupts, allowing us to do-away with
88 * two %cr3 stores, two atomic ops (pm_active is not modified), and pmap
89 * lock tests (not needed since pm_active is not modified).
91 * Unfortunately, I couldn't really measure any result so for now the
92 * optimization is disabled.
94 #undef PREEMPT_OPTIMIZE
97 * LWP_SWITCH_OPTIMIZE
99 * This optimization attempted to avoid a %cr3 store and atomic op, and
100 * it might have been useful on older cpus but newer cpus (and more
101 * importantly multi-core cpus) generally do not switch between LWPs on
102 * the same cpu. Multiple user threads are more likely to be distributed
103 * across multiple cpus. In cpu-bound situations the scheduler will already
104 * be in batch-mode (meaning relatively few context-switches/sec), and
105 * otherwise the lwp(s) are likely to be blocked waiting for events.
107 * On the flip side, the conditionals this option uses measurably reduce
108 * performance (just slightly, honestly). So this option is disabled.
110 #undef LWP_SWITCH_OPTIMIZE
113 * Global Declarations
115 .data
117 .globl panic
118 .globl lwkt_switch_return
120 #if defined(SWTCH_OPTIM_STATS)
121 .globl swtch_optim_stats, tlb_flush_count
122 swtch_optim_stats: .long 0 /* number of _swtch_optims */
123 tlb_flush_count: .long 0
124 #endif
127 * Code
129 .text
132 * cpu_heavy_switch(struct thread *next_thread)
134 * Switch from the current thread to a new thread. This entry
135 * is normally called via the thread->td_switch function, and will
136 * only be called when the current thread is a heavy weight process.
138 * Some instructions have been reordered to reduce pipeline stalls.
140 * YYY disable interrupts once giant is removed.
142 ENTRY(cpu_heavy_switch)
144 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
146 movq PCPU(curthread),%rcx
147 /* On top of the stack is the return adress. */
148 movq (%rsp),%rax /* (reorder optimization) */
149 movq TD_PCB(%rcx),%rdx /* RDX = PCB */
150 movq %rax,PCB_RIP(%rdx) /* return PC may be modified */
151 movq %rbx,PCB_RBX(%rdx)
152 movq %rsp,PCB_RSP(%rdx)
153 movq %rbp,PCB_RBP(%rdx)
154 movq %r12,PCB_R12(%rdx)
155 movq %r13,PCB_R13(%rdx)
156 movq %r14,PCB_R14(%rdx)
157 movq %r15,PCB_R15(%rdx)
160 * Clear the cpu bit in the pmap active mask. The restore
161 * function will set the bit in the pmap active mask.
163 * If we are switching away due to a preempt, TD_PREEMPTED(%rdi)
164 * will be non-NULL. In this situation we do want to avoid extra
165 * atomic ops and %cr3 reloads (see top of file for reasoning).
167 * NOTE: Do not try to optimize avoiding the %cr3 reload or pm_active
168 * adjustment. This mattered on uni-processor systems but in
169 * multi-core systems we are highly unlikely to be switching
170 * to another thread belonging to the same process on this cpu.
172 * (more likely the target thread is still sleeping, or if cpu-
173 * bound the scheduler is in batch mode and the switch rate is
174 * already low).
176 movq %rcx,%rbx /* RBX = oldthread */
177 #ifdef PREEMPT_OPTIMIZE
179 * If we are being preempted the target thread borrows our %cr3
180 * and we leave our pmap bits intact for the duration.
182 movq TD_PREEMPTED(%rdi),%r13
183 testq %r13,%r13
184 jne 2f
185 #endif
187 movq TD_LWP(%rcx),%rcx /* RCX = oldlwp */
188 movq LWP_VMSPACE(%rcx), %rcx /* RCX = oldvmspace */
189 #ifdef LWP_SWITCH_OPTIMIZE
190 movq TD_LWP(%rdi),%r13 /* R13 = newlwp */
191 testq %r13,%r13 /* might not be a heavy */
192 jz 1f
193 cmpq LWP_VMSPACE(%r13),%rcx /* same vmspace? */
194 je 2f
196 #endif
197 movq PCPU(cpumask_simple),%rsi
198 movq PCPU(cpumask_offset),%r12
199 xorq $-1,%rsi
200 MPLOCKED andq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
204 * Push the LWKT switch restore function, which resumes a heavy
205 * weight process. Note that the LWKT switcher is based on
206 * TD_SP, while the heavy weight process switcher is based on
207 * PCB_RSP. TD_SP is usually two ints pushed relative to
208 * PCB_RSP. We push the flags for later restore by cpu_heavy_restore.
210 pushfq
212 movq $cpu_heavy_restore, %rax
213 pushq %rax
214 movq %rsp,TD_SP(%rbx)
217 * Save debug regs if necessary
219 movq PCB_FLAGS(%rdx),%rax
220 andq $PCB_DBREGS,%rax
221 jz 1f /* no, skip over */
222 movq %dr7,%rax /* yes, do the save */
223 movq %rax,PCB_DR7(%rdx)
224 /* JG correct value? */
225 andq $0x0000fc00, %rax /* disable all watchpoints */
226 movq %rax,%dr7
227 movq %dr6,%rax
228 movq %rax,PCB_DR6(%rdx)
229 movq %dr3,%rax
230 movq %rax,PCB_DR3(%rdx)
231 movq %dr2,%rax
232 movq %rax,PCB_DR2(%rdx)
233 movq %dr1,%rax
234 movq %rax,PCB_DR1(%rdx)
235 movq %dr0,%rax
236 movq %rax,PCB_DR0(%rdx)
240 * Save the FP state if we have used the FP. Note that calling
241 * npxsave will NULL out PCPU(npxthread).
243 cmpq %rbx,PCPU(npxthread)
244 jne 1f
245 movq %rdi,%r12 /* save %rdi. %r12 is callee-saved */
246 movq TD_SAVEFPU(%rbx),%rdi
247 call npxsave /* do it in a big C function */
248 movq %r12,%rdi /* restore %rdi */
252 * Switch to the next thread, which was passed as an argument
253 * to cpu_heavy_switch(). The argument is in %rdi.
254 * Set the current thread, load the stack pointer,
255 * and 'ret' into the switch-restore function.
257 * The switch restore function expects the new thread to be in %rax
258 * and the old one to be in %rbx.
260 * There is a one-instruction window where curthread is the new
261 * thread but %rsp still points to the old thread's stack, but
262 * we are protected by a critical section so it is ok.
264 movq %rdi,%rax /* RAX = newtd, RBX = oldtd */
265 movq %rax,PCPU(curthread)
266 movq TD_SP(%rax),%rsp
268 END(cpu_heavy_switch)
271 * cpu_exit_switch(struct thread *next)
273 * The switch function is changed to this when a thread is going away
274 * for good. We have to ensure that the MMU state is not cached, and
275 * we don't bother saving the existing thread state before switching.
277 * At this point we are in a critical section and this cpu owns the
278 * thread's token, which serves as an interlock until the switchout is
279 * complete.
281 ENTRY(cpu_exit_switch)
283 #ifdef PREEMPT_OPTIMIZE
285 * If we were preempting we are switching back to the original thread.
286 * In this situation we already have the original thread's %cr3 and
287 * should not replace it!
289 testl $TDF_PREEMPT_DONE, TD_FLAGS(%rdi)
290 jne 1f
291 #endif
294 * Get us out of the vmspace
296 movq KPML4phys,%rcx
297 movq %cr3,%rax
298 cmpq %rcx,%rax
299 je 1f
301 movq %rcx,%cr3
303 movq PCPU(curthread),%rbx
306 * If this is a process/lwp, deactivate the pmap after we've
307 * switched it out.
309 movq TD_LWP(%rbx),%rcx
310 testq %rcx,%rcx
311 jz 2f
312 movq LWP_VMSPACE(%rcx), %rcx /* RCX = vmspace */
314 movq PCPU(cpumask_simple),%rax
315 movq PCPU(cpumask_offset),%r12
316 xorq $-1,%rax
317 MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
320 * Switch to the next thread. RET into the restore function, which
321 * expects the new thread in RAX and the old in RBX.
323 * There is a one-instruction window where curthread is the new
324 * thread but %rsp still points to the old thread's stack, but
325 * we are protected by a critical section so it is ok.
328 movq %rdi,%rax
329 movq %rax,PCPU(curthread)
330 movq TD_SP(%rax),%rsp
332 END(cpu_exit_switch)
335 * cpu_heavy_restore() (current thread in %rax on entry, old thread in %rbx)
337 * We immediately move %rax to %r12. %rbx is retained throughout, and
338 * we nominally use %r14 for TD_PCB(%r12) until near the end where we
339 * switch to %rdx for that.
341 * Restore the thread after an LWKT switch. This entry is normally
342 * called via the LWKT switch restore function, which was pulled
343 * off the thread stack and jumped to.
345 * This entry is only called if the thread was previously saved
346 * using cpu_heavy_switch() (the heavy weight process thread switcher),
347 * or when a new process is initially scheduled.
349 * NOTE: The lwp may be in any state, not necessarily LSRUN, because
350 * a preemption switch may interrupt the process and then return via
351 * cpu_heavy_restore.
353 * YYY theoretically we do not have to restore everything here, a lot
354 * of this junk can wait until we return to usermode. But for now
355 * we restore everything.
357 * YYY the PCB crap is really crap, it makes startup a bitch because
358 * we can't switch away.
360 * YYY note: spl check is done in mi_switch when it splx()'s.
363 ENTRY(cpu_heavy_restore)
364 movq %rax,%r12 /* R12 = newtd */
365 movq TD_PCB(%rax),%r14 /* R14 = PCB */
366 movq %r14, PCPU(trampoline)+TR_PCB_RSP
367 movq PCB_FLAGS(%r14), %rcx
368 movq %rcx, PCPU(trampoline)+TR_PCB_FLAGS
369 movq PCB_CR3_ISO(%r14), %rcx
370 movq %rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
371 movq PCB_CR3(%r14), %rcx
372 movq %rcx, PCPU(trampoline)+TR_PCB_CR3
373 popfq
375 #if defined(SWTCH_OPTIM_STATS)
376 incl _swtch_optim_stats
377 #endif
378 #ifdef PREEMPT_OPTIMIZE
380 * If restoring our thread after a preemption has returned to
381 * us, our %cr3 and pmap were borrowed and are being returned to
382 * us and no further action on those items need be taken.
384 testl $TDF_PREEMPT_DONE, TD_FLAGS(%r12)
385 jne 4f
386 #endif
389 * Tell the pmap that our cpu is using the VMSPACE now. We cannot
390 * safely test/reload %cr3 until after we have set the bit in the
391 * pmap.
393 * We must do an interlocked test of the CPULOCK_EXCL at the same
394 * time. If found to be set we will have to wait for it to clear
395 * and then do a forced reload of %cr3 (even if the value matches).
397 * XXX When switching between two LWPs sharing the same vmspace
398 * the cpu_heavy_switch() code currently avoids clearing the
399 * cpu bit in PM_ACTIVE. So if the bit is already set we can
400 * avoid checking for the interlock via CPULOCK_EXCL. We currently
401 * do not perform this optimization.
403 movq TD_LWP(%r12),%rcx
404 movq LWP_VMSPACE(%rcx),%rcx /* RCX = vmspace */
406 movq PCPU(cpumask_simple),%rsi
407 movq PCPU(cpumask_offset),%r13
408 MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r13, 1)
410 movl VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
411 testl $CPULOCK_EXCL,%esi
412 jz 1f
414 movq %rcx,%rdi /* (found to be set) */
415 call pmap_interlock_wait /* pmap_interlock_wait(%rdi:vm) */
418 * Need unconditional load cr3
420 movq PCB_CR3(%r14),%rcx /* RCX = desired CR3 */
421 jmp 2f /* unconditional reload */
424 * Restore the MMU address space. If it is the same as the last
425 * thread we don't have to invalidate the tlb (i.e. reload cr3).
427 * XXX Temporary cludge, do NOT do this optimization! The problem
428 * is that the pm_active bit for the cpu had dropped for a small
429 * period of time, just a few cycles, but even one cycle is long
430 * enough for some other cpu doing a pmap invalidation to not see
431 * our cpu.
433 * When that happens, and we don't invltlb (by loading %cr3), we
434 * wind up with a stale TLB.
436 movq %cr3,%rsi /* RSI = current CR3 */
437 movq PCB_CR3(%r14),%rcx /* RCX = desired CR3 */
438 cmpq %rsi,%rcx
439 /*je 4f*/
441 #if defined(SWTCH_OPTIM_STATS)
442 decl _swtch_optim_stats
443 incl _tlb_flush_count
444 #endif
445 movq %rcx,%cr3
449 * NOTE: %rbx is the previous thread and %r12 is the new thread.
450 * %rbx is retained throughout so we can return it.
452 * lwkt_switch[_return] is responsible for handling TDF_RUNNING.
456 * Deal with the PCB extension, restore the private tss
458 movq PCB_EXT(%r14),%rdi /* check for a PCB extension */
459 movq $1,%rcx /* maybe mark use of a private tss */
460 testq %rdi,%rdi
461 #if 0 /* JG */
462 jnz 2f
463 #endif
465 #if 0
467 * Going back to the common_tss. (this was already executed at
468 * the top).
470 * Set the top of the supervisor stack for the new thread
471 * in gd_thread_pcb so the trampoline code can load it into %rsp.
473 movq %r14, PCPU(trampoline)+TR_PCB_RSP
474 movq PCB_FLAGS(%r14), %rcx
475 movq %rcx, PCPU(trampoline)+TR_PCB_FLAGS
476 movq PCB_CR3_ISO(%r14), %rcx
477 movq %rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
478 movq PCB_CR3(%r14), %rcx
479 movq %rcx, PCPU(trampoline)+TR_PCB_CR3
480 #endif
482 #if 0 /* JG */
483 cmpl $0,PCPU(private_tss) /* don't have to reload if */
484 je 3f /* already using the common TSS */
486 /* JG? */
487 subq %rcx,%rcx /* unmark use of private tss */
490 * Get the address of the common TSS descriptor for the ltr.
491 * There is no way to get the address of a segment-accessed variable
492 * so we store a self-referential pointer at the base of the per-cpu
493 * data area and add the appropriate offset.
495 /* JG movl? */
496 movq $gd_common_tssd, %rdi
497 /* JG name for "%gs:0"? */
498 addq %gs:0, %rdi
501 * Move the correct TSS descriptor into the GDT slot, then reload
502 * ltr.
505 /* JG */
506 movl %rcx,PCPU(private_tss) /* mark/unmark private tss */
507 movq PCPU(tss_gdt), %rbx /* entry in GDT */
508 movq 0(%rdi), %rax
509 movq %rax, 0(%rbx)
510 movl $GPROC0_SEL*8, %esi /* GSEL(entry, SEL_KPL) */
511 ltr %si
512 #endif
516 * Restore the user %gs and %fs
518 movq PCB_FSBASE(%r14),%r9
519 cmpq PCPU(user_fs),%r9
520 je 4f
521 movq %r9,PCPU(user_fs)
522 movl $MSR_FSBASE,%ecx
523 movl PCB_FSBASE(%r14),%eax
524 movl PCB_FSBASE+4(%r14),%edx
525 wrmsr
527 movq PCB_GSBASE(%r14),%r9
528 cmpq PCPU(user_gs),%r9
529 je 5f
530 movq %r9,PCPU(user_gs)
531 movl $MSR_KGSBASE,%ecx /* later swapgs moves it to GSBASE */
532 movl PCB_GSBASE(%r14),%eax
533 movl PCB_GSBASE+4(%r14),%edx
534 wrmsr
537 * Actively restore FP state
539 movq PCPU(npxthread),%r13
540 testq %r13,%r13
541 jnz 6f
542 movl TD_FLAGS(%r12),%r13d
543 andq $TDF_USINGFP,%r13
544 jz 6f
545 movq %r12,%rdi /* npxdna_quick(newtd) */
546 call npxdna_quick
550 * Restore general registers. %rbx is restored later.
552 * Switch our PCB register from %r14 to %rdx so we can restore
553 * %r14.
555 movq %r14,%rdx
556 movq PCB_RSP(%rdx), %rsp
557 movq PCB_RBP(%rdx), %rbp
558 movq PCB_R12(%rdx), %r12
559 movq PCB_R13(%rdx), %r13
560 movq PCB_R14(%rdx), %r14
561 movq PCB_R15(%rdx), %r15
562 movq PCB_RIP(%rdx), %rax
563 movq %rax, (%rsp)
564 movw $KDSEL,%ax
565 movw %ax,%es
567 #if 0 /* JG */
569 * Restore the user LDT if we have one
571 cmpl $0, PCB_USERLDT(%edx)
572 jnz 1f
573 movl _default_ldt,%eax
574 cmpl PCPU(currentldt),%eax
575 je 2f
576 lldt _default_ldt
577 movl %eax,PCPU(currentldt)
578 jmp 2f
579 1: pushl %edx
580 call set_user_ldt
581 popl %edx
583 #endif
584 #if 0 /* JG */
586 * Restore the user TLS if we have one
588 pushl %edx
589 call set_user_TLS
590 popl %edx
591 #endif
594 * Restore the DEBUG register state if necessary.
596 movq PCB_FLAGS(%rdx),%rax
597 andq $PCB_DBREGS,%rax
598 jz 1f /* no, skip over */
599 movq PCB_DR6(%rdx),%rax /* yes, do the restore */
600 movq %rax,%dr6
601 movq PCB_DR3(%rdx),%rax
602 movq %rax,%dr3
603 movq PCB_DR2(%rdx),%rax
604 movq %rax,%dr2
605 movq PCB_DR1(%rdx),%rax
606 movq %rax,%dr1
607 movq PCB_DR0(%rdx),%rax
608 movq %rax,%dr0
609 movq %dr7,%rax /* load dr7 so as not to disturb */
610 /* JG correct value? */
611 andq $0x0000fc00,%rax /* reserved bits */
612 /* JG we've got more registers on x86_64 */
613 movq PCB_DR7(%rdx),%rcx
614 /* JG correct value? */
615 andq $~0x0000fc00,%rcx
616 orq %rcx,%rax
617 movq %rax,%dr7
620 * Clear the QUICKRET flag when restoring a user process context
621 * so we don't try to do a quick syscall return.
624 andl $~RQF_QUICKRET,PCPU(reqflags)
625 movq %rbx,%rax
626 movq PCB_RBX(%rdx),%rbx
628 END(cpu_heavy_restore)
631 * savectx(struct pcb *pcb)
633 * Update pcb, saving current processor state.
635 ENTRY(savectx)
636 /* fetch PCB */
637 /* JG use %rdi instead of %rcx everywhere? */
638 movq %rdi,%rcx
640 /* caller's return address - child won't execute this routine */
641 movq (%rsp),%rax
642 movq %rax,PCB_RIP(%rcx)
644 movq %cr3,%rax
645 movq %rax,PCB_CR3(%rcx)
647 movq %rbx,PCB_RBX(%rcx)
648 movq %rsp,PCB_RSP(%rcx)
649 movq %rbp,PCB_RBP(%rcx)
650 movq %r12,PCB_R12(%rcx)
651 movq %r13,PCB_R13(%rcx)
652 movq %r14,PCB_R14(%rcx)
653 movq %r15,PCB_R15(%rcx)
655 #if 1
657 * If npxthread == NULL, then the npx h/w state is irrelevant and the
658 * state had better already be in the pcb. This is true for forks
659 * but not for dumps (the old book-keeping with FP flags in the pcb
660 * always lost for dumps because the dump pcb has 0 flags).
662 * If npxthread != NULL, then we have to save the npx h/w state to
663 * npxthread's pcb and copy it to the requested pcb, or save to the
664 * requested pcb and reload. Copying is easier because we would
665 * have to handle h/w bugs for reloading. We used to lose the
666 * parent's npx state for forks by forgetting to reload.
668 movq PCPU(npxthread),%rax
669 testq %rax,%rax
670 jz 1f
672 pushq %rcx /* target pcb */
673 movq TD_SAVEFPU(%rax),%rax /* originating savefpu area */
674 pushq %rax
676 movq %rax,%rdi
677 call npxsave
679 popq %rax
680 popq %rcx
682 movq $PCB_SAVEFPU_SIZE,%rdx
683 leaq PCB_SAVEFPU(%rcx),%rcx
684 movq %rcx,%rsi
685 movq %rax,%rdi
686 call bcopy
687 #endif
691 END(savectx)
694 * cpu_idle_restore() (current thread in %rax on entry, old thread in %rbx)
695 * (one-time entry)
697 * Don't bother setting up any regs other than %rbp so backtraces
698 * don't die. This restore function is used to bootstrap into the
699 * cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
700 * switching.
702 * Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
703 * This only occurs during system boot so no special handling is
704 * required for migration.
706 * If we are an AP we have to call ap_init() before jumping to
707 * cpu_idle(). ap_init() will synchronize with the BP and finish
708 * setting up various ncpu-dependant globaldata fields. This may
709 * happen on UP as well as SMP if we happen to be simulating multiple
710 * cpus.
712 ENTRY(cpu_idle_restore)
713 /* cli */
714 movq KPML4phys,%rcx
715 xorq %rbp,%rbp /* dummy frame pointer */
716 pushq $0 /* dummy return pc */
718 /* NOTE: idle thread can never preempt */
719 movq %rcx,%cr3
720 cmpl $0,PCPU(cpuid)
721 je 1f
722 andl $~TDF_RUNNING,TD_FLAGS(%rbx)
723 orl $TDF_RUNNING,TD_FLAGS(%rax) /* manual, no switch_return */
724 call ap_init
726 * ap_init can decide to enable interrupts early, but otherwise, or if
727 * we are UP, do it here.
730 jmp cpu_idle
733 * cpu 0's idle thread entry for the first time must use normal
734 * lwkt_switch_return() semantics or a pending cpu migration on
735 * thread0 will deadlock.
739 pushq %rax
740 movq %rbx,%rdi
741 call lwkt_switch_return
742 popq %rax
743 jmp cpu_idle
744 END(cpu_idle_restore)
747 * cpu_kthread_restore() (current thread is %rax on entry, previous is %rbx)
748 * (one-time execution)
750 * Don't bother setting up any regs other then %rbp so backtraces
751 * don't die. This restore function is used to bootstrap into an
752 * LWKT based kernel thread only. cpu_lwkt_switch() will be used
753 * after this.
755 * Because this switch target does not 'return' to lwkt_switch()
756 * we have to call lwkt_switch_return(otd) to clean up otd.
757 * otd is in %ebx.
759 * Since all of our context is on the stack we are reentrant and
760 * we can release our critical section and enable interrupts early.
762 ENTRY(cpu_kthread_restore)
764 movq KPML4phys,%rcx
765 movq TD_PCB(%rax),%r13
766 xorq %rbp,%rbp
768 #ifdef PREEMPT_OPTIMIZE
770 * If we are preempting someone we borrow their %cr3, do not overwrite
771 * it!
773 movq TD_PREEMPTED(%rax),%r14
774 testq %r14,%r14
775 jne 1f
776 #endif
777 movq %rcx,%cr3
781 * rax and rbx come from the switchout code. Call
782 * lwkt_switch_return(otd).
784 * NOTE: unlike i386, the %rsi and %rdi are not call-saved regs.
786 pushq %rax
787 movq %rbx,%rdi
788 call lwkt_switch_return
789 popq %rax
790 decl TD_CRITCOUNT(%rax)
791 movq PCB_R12(%r13),%rdi /* argument to RBX function */
792 movq PCB_RBX(%r13),%rax /* thread function */
793 /* note: top of stack return address inherited by function */
794 jmp *%rax
795 END(cpu_kthread_restore)
798 * cpu_lwkt_switch(struct thread *)
800 * Standard LWKT switching function. Only non-scratch registers are
801 * saved and we don't bother with the MMU state or anything else.
803 * This function is always called while in a critical section.
805 * There is a one-instruction window where curthread is the new
806 * thread but %rsp still points to the old thread's stack, but
807 * we are protected by a critical section so it is ok.
809 ENTRY(cpu_lwkt_switch)
810 pushq %rbp /* JG note: GDB hacked to locate ebp rel to td_sp */
811 pushq %rbx
812 movq PCPU(curthread),%rbx /* becomes old thread in restore */
813 pushq %r12
814 pushq %r13
815 pushq %r14
816 pushq %r15
817 pushfq
820 #if 1
822 * Save the FP state if we have used the FP. Note that calling
823 * npxsave will NULL out PCPU(npxthread).
825 * We have to deal with the FP state for LWKT threads in case they
826 * happen to get preempted or block while doing an optimized
827 * bzero/bcopy/memcpy.
829 cmpq %rbx,PCPU(npxthread)
830 jne 1f
831 movq %rdi,%r12 /* save %rdi. %r12 is callee-saved */
832 movq TD_SAVEFPU(%rbx),%rdi
833 call npxsave /* do it in a big C function */
834 movq %r12,%rdi /* restore %rdi */
836 #endif
838 movq %rdi,%rax /* switch to this thread */
839 pushq $cpu_lwkt_restore
840 movq %rsp,TD_SP(%rbx)
842 * %rax contains new thread, %rbx contains old thread.
844 movq %rax,PCPU(curthread)
845 movq TD_SP(%rax),%rsp
847 END(cpu_lwkt_switch)
850 * cpu_lwkt_restore() (current thread in %rax on entry)
852 * Standard LWKT restore function. This function is always called
853 * while in a critical section.
855 * WARNING! Due to preemption the restore function can be used to 'return'
856 * to the original thread. Interrupt disablement must be
857 * protected through the switch so we cannot run splz here.
859 ENTRY(cpu_lwkt_restore)
860 #ifdef PREEMPT_OPTIMIZE
862 * If we are preempting someone we borrow their %cr3 and pmap
864 movq TD_PREEMPTED(%rax),%r14 /* kernel thread preempting? */
865 testq %r14,%r14
866 jne 1f /* yes, borrow %cr3 from old thread */
867 #endif
869 * Don't reload %cr3 if it hasn't changed. Since this is a LWKT
870 * thread (a kernel thread), and the kernel_pmap always permanently
871 * sets all pm_active bits, we don't have the same problem with it
872 * that we do with process pmaps.
874 movq KPML4phys,%rcx
875 movq %cr3,%rdx
876 cmpq %rcx,%rdx
877 je 1f
878 movq %rcx,%cr3
881 * NOTE: %rbx is the previous thread and %rax is the new thread.
882 * %rbx is retained throughout so we can return it.
884 * lwkt_switch[_return] is responsible for handling TDF_RUNNING.
886 movq %rbx,%rax
887 popfq
888 popq %r15
889 popq %r14
890 popq %r13
891 popq %r12
892 popq %rbx
893 popq %rbp
895 END(cpu_lwkt_restore)