rtld - do not allow both dynamic DTV index and static TLS offset
[dragonfly.git] / contrib / gdb-7 / gdb / symtab.c
blobc0e588455e165345118eb28b149d683806d48e5a
1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
45 #include "hashtab.h"
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
64 #include "psymtab.h"
65 #include "parser-defs.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static int find_line_common (struct linetable *, int, int *, int);
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
104 static void print_msymbol_info (struct minimal_symbol *);
106 void _initialize_symtab (void);
108 /* */
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
132 static const char *multiple_symbols_mode = multiple_symbols_all;
134 /* Read-only accessor to AUTO_SELECT_MODE. */
136 const char *
137 multiple_symbols_select_mode (void)
139 return multiple_symbols_mode;
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
146 const struct block *block_found;
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
154 compare_filenames_for_search (const char *filename, const char *search_name)
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
159 if (len < search_len)
160 return 0;
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
209 for (s = first; s != NULL && s != after_last; s = s->next)
211 if (compare_filenames_for_search (s->filename, name))
213 if (callback (s, data))
214 return 1;
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
223 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 if (callback (s, data))
226 return 1;
229 /* If the user gave us an absolute path, try to find the file in
230 this symtab and use its absolute path. */
232 if (real_path != NULL)
234 const char *fullname = symtab_to_fullname (s);
236 gdb_assert (IS_ABSOLUTE_PATH (real_path));
237 gdb_assert (IS_ABSOLUTE_PATH (name));
238 if (FILENAME_CMP (real_path, fullname) == 0)
240 if (callback (s, data))
241 return 1;
246 return 0;
249 /* Check for a symtab of a specific name; first in symtabs, then in
250 psymtabs. *If* there is no '/' in the name, a match after a '/'
251 in the symtab filename will also work.
253 Calls CALLBACK with each symtab that is found and with the supplied
254 DATA. If CALLBACK returns true, the search stops. */
256 void
257 iterate_over_symtabs (const char *name,
258 int (*callback) (struct symtab *symtab,
259 void *data),
260 void *data)
262 struct objfile *objfile;
263 char *real_path = NULL;
264 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
266 /* Here we are interested in canonicalizing an absolute path, not
267 absolutizing a relative path. */
268 if (IS_ABSOLUTE_PATH (name))
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 gdb_assert (IS_ABSOLUTE_PATH (real_path));
275 ALL_OBJFILES (objfile)
277 if (iterate_over_some_symtabs (name, real_path, callback, data,
278 objfile->symtabs, NULL))
280 do_cleanups (cleanups);
281 return;
285 /* Same search rules as above apply here, but now we look thru the
286 psymtabs. */
288 ALL_OBJFILES (objfile)
290 if (objfile->sf
291 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
292 name,
293 real_path,
294 callback,
295 data))
297 do_cleanups (cleanups);
298 return;
302 do_cleanups (cleanups);
305 /* The callback function used by lookup_symtab. */
307 static int
308 lookup_symtab_callback (struct symtab *symtab, void *data)
310 struct symtab **result_ptr = data;
312 *result_ptr = symtab;
313 return 1;
316 /* A wrapper for iterate_over_symtabs that returns the first matching
317 symtab, or NULL. */
319 struct symtab *
320 lookup_symtab (const char *name)
322 struct symtab *result = NULL;
324 iterate_over_symtabs (name, lookup_symtab_callback, &result);
325 return result;
329 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
330 full method name, which consist of the class name (from T), the unadorned
331 method name from METHOD_ID, and the signature for the specific overload,
332 specified by SIGNATURE_ID. Note that this function is g++ specific. */
334 char *
335 gdb_mangle_name (struct type *type, int method_id, int signature_id)
337 int mangled_name_len;
338 char *mangled_name;
339 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
340 struct fn_field *method = &f[signature_id];
341 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
342 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
343 const char *newname = type_name_no_tag (type);
345 /* Does the form of physname indicate that it is the full mangled name
346 of a constructor (not just the args)? */
347 int is_full_physname_constructor;
349 int is_constructor;
350 int is_destructor = is_destructor_name (physname);
351 /* Need a new type prefix. */
352 char *const_prefix = method->is_const ? "C" : "";
353 char *volatile_prefix = method->is_volatile ? "V" : "";
354 char buf[20];
355 int len = (newname == NULL ? 0 : strlen (newname));
357 /* Nothing to do if physname already contains a fully mangled v3 abi name
358 or an operator name. */
359 if ((physname[0] == '_' && physname[1] == 'Z')
360 || is_operator_name (field_name))
361 return xstrdup (physname);
363 is_full_physname_constructor = is_constructor_name (physname);
365 is_constructor = is_full_physname_constructor
366 || (newname && strcmp (field_name, newname) == 0);
368 if (!is_destructor)
369 is_destructor = (strncmp (physname, "__dt", 4) == 0);
371 if (is_destructor || is_full_physname_constructor)
373 mangled_name = (char *) xmalloc (strlen (physname) + 1);
374 strcpy (mangled_name, physname);
375 return mangled_name;
378 if (len == 0)
380 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
382 else if (physname[0] == 't' || physname[0] == 'Q')
384 /* The physname for template and qualified methods already includes
385 the class name. */
386 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
387 newname = NULL;
388 len = 0;
390 else
392 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
393 volatile_prefix, len);
395 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
396 + strlen (buf) + len + strlen (physname) + 1);
398 mangled_name = (char *) xmalloc (mangled_name_len);
399 if (is_constructor)
400 mangled_name[0] = '\0';
401 else
402 strcpy (mangled_name, field_name);
404 strcat (mangled_name, buf);
405 /* If the class doesn't have a name, i.e. newname NULL, then we just
406 mangle it using 0 for the length of the class. Thus it gets mangled
407 as something starting with `::' rather than `classname::'. */
408 if (newname != NULL)
409 strcat (mangled_name, newname);
411 strcat (mangled_name, physname);
412 return (mangled_name);
415 /* Initialize the cplus_specific structure. 'cplus_specific' should
416 only be allocated for use with cplus symbols. */
418 static void
419 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
420 struct objfile *objfile)
422 /* A language_specific structure should not have been previously
423 initialized. */
424 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
425 gdb_assert (objfile != NULL);
427 gsymbol->language_specific.cplus_specific =
428 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
431 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
432 correctly allocated. For C++ symbols a cplus_specific struct is
433 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
434 OBJFILE can be NULL. */
436 void
437 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
438 const char *name,
439 struct objfile *objfile)
441 if (gsymbol->language == language_cplus)
443 if (gsymbol->language_specific.cplus_specific == NULL)
444 symbol_init_cplus_specific (gsymbol, objfile);
446 gsymbol->language_specific.cplus_specific->demangled_name = name;
448 else
449 gsymbol->language_specific.mangled_lang.demangled_name = name;
452 /* Return the demangled name of GSYMBOL. */
454 const char *
455 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
457 if (gsymbol->language == language_cplus)
459 if (gsymbol->language_specific.cplus_specific != NULL)
460 return gsymbol->language_specific.cplus_specific->demangled_name;
461 else
462 return NULL;
464 else
465 return gsymbol->language_specific.mangled_lang.demangled_name;
469 /* Initialize the language dependent portion of a symbol
470 depending upon the language for the symbol. */
472 void
473 symbol_set_language (struct general_symbol_info *gsymbol,
474 enum language language)
476 gsymbol->language = language;
477 if (gsymbol->language == language_d
478 || gsymbol->language == language_go
479 || gsymbol->language == language_java
480 || gsymbol->language == language_objc
481 || gsymbol->language == language_fortran)
483 symbol_set_demangled_name (gsymbol, NULL, NULL);
485 else if (gsymbol->language == language_cplus)
486 gsymbol->language_specific.cplus_specific = NULL;
487 else
489 memset (&gsymbol->language_specific, 0,
490 sizeof (gsymbol->language_specific));
494 /* Functions to initialize a symbol's mangled name. */
496 /* Objects of this type are stored in the demangled name hash table. */
497 struct demangled_name_entry
499 const char *mangled;
500 char demangled[1];
503 /* Hash function for the demangled name hash. */
505 static hashval_t
506 hash_demangled_name_entry (const void *data)
508 const struct demangled_name_entry *e = data;
510 return htab_hash_string (e->mangled);
513 /* Equality function for the demangled name hash. */
515 static int
516 eq_demangled_name_entry (const void *a, const void *b)
518 const struct demangled_name_entry *da = a;
519 const struct demangled_name_entry *db = b;
521 return strcmp (da->mangled, db->mangled) == 0;
524 /* Create the hash table used for demangled names. Each hash entry is
525 a pair of strings; one for the mangled name and one for the demangled
526 name. The entry is hashed via just the mangled name. */
528 static void
529 create_demangled_names_hash (struct objfile *objfile)
531 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
532 The hash table code will round this up to the next prime number.
533 Choosing a much larger table size wastes memory, and saves only about
534 1% in symbol reading. */
536 objfile->demangled_names_hash = htab_create_alloc
537 (256, hash_demangled_name_entry, eq_demangled_name_entry,
538 NULL, xcalloc, xfree);
541 /* Try to determine the demangled name for a symbol, based on the
542 language of that symbol. If the language is set to language_auto,
543 it will attempt to find any demangling algorithm that works and
544 then set the language appropriately. The returned name is allocated
545 by the demangler and should be xfree'd. */
547 static char *
548 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
549 const char *mangled)
551 char *demangled = NULL;
553 if (gsymbol->language == language_unknown)
554 gsymbol->language = language_auto;
556 if (gsymbol->language == language_objc
557 || gsymbol->language == language_auto)
559 demangled =
560 objc_demangle (mangled, 0);
561 if (demangled != NULL)
563 gsymbol->language = language_objc;
564 return demangled;
567 if (gsymbol->language == language_cplus
568 || gsymbol->language == language_auto)
570 demangled =
571 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
572 if (demangled != NULL)
574 gsymbol->language = language_cplus;
575 return demangled;
578 if (gsymbol->language == language_java)
580 demangled =
581 cplus_demangle (mangled,
582 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
583 if (demangled != NULL)
585 gsymbol->language = language_java;
586 return demangled;
589 if (gsymbol->language == language_d
590 || gsymbol->language == language_auto)
592 demangled = d_demangle(mangled, 0);
593 if (demangled != NULL)
595 gsymbol->language = language_d;
596 return demangled;
599 /* FIXME(dje): Continually adding languages here is clumsy.
600 Better to just call la_demangle if !auto, and if auto then call
601 a utility routine that tries successive languages in turn and reports
602 which one it finds. I realize the la_demangle options may be different
603 for different languages but there's already a FIXME for that. */
604 if (gsymbol->language == language_go
605 || gsymbol->language == language_auto)
607 demangled = go_demangle (mangled, 0);
608 if (demangled != NULL)
610 gsymbol->language = language_go;
611 return demangled;
615 /* We could support `gsymbol->language == language_fortran' here to provide
616 module namespaces also for inferiors with only minimal symbol table (ELF
617 symbols). Just the mangling standard is not standardized across compilers
618 and there is no DW_AT_producer available for inferiors with only the ELF
619 symbols to check the mangling kind. */
620 return NULL;
623 /* Set both the mangled and demangled (if any) names for GSYMBOL based
624 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
625 objfile's obstack; but if COPY_NAME is 0 and if NAME is
626 NUL-terminated, then this function assumes that NAME is already
627 correctly saved (either permanently or with a lifetime tied to the
628 objfile), and it will not be copied.
630 The hash table corresponding to OBJFILE is used, and the memory
631 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
632 so the pointer can be discarded after calling this function. */
634 /* We have to be careful when dealing with Java names: when we run
635 into a Java minimal symbol, we don't know it's a Java symbol, so it
636 gets demangled as a C++ name. This is unfortunate, but there's not
637 much we can do about it: but when demangling partial symbols and
638 regular symbols, we'd better not reuse the wrong demangled name.
639 (See PR gdb/1039.) We solve this by putting a distinctive prefix
640 on Java names when storing them in the hash table. */
642 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
643 don't mind the Java prefix so much: different languages have
644 different demangling requirements, so it's only natural that we
645 need to keep language data around in our demangling cache. But
646 it's not good that the minimal symbol has the wrong demangled name.
647 Unfortunately, I can't think of any easy solution to that
648 problem. */
650 #define JAVA_PREFIX "##JAVA$$"
651 #define JAVA_PREFIX_LEN 8
653 void
654 symbol_set_names (struct general_symbol_info *gsymbol,
655 const char *linkage_name, int len, int copy_name,
656 struct objfile *objfile)
658 struct demangled_name_entry **slot;
659 /* A 0-terminated copy of the linkage name. */
660 const char *linkage_name_copy;
661 /* A copy of the linkage name that might have a special Java prefix
662 added to it, for use when looking names up in the hash table. */
663 const char *lookup_name;
664 /* The length of lookup_name. */
665 int lookup_len;
666 struct demangled_name_entry entry;
668 if (gsymbol->language == language_ada)
670 /* In Ada, we do the symbol lookups using the mangled name, so
671 we can save some space by not storing the demangled name.
673 As a side note, we have also observed some overlap between
674 the C++ mangling and Ada mangling, similarly to what has
675 been observed with Java. Because we don't store the demangled
676 name with the symbol, we don't need to use the same trick
677 as Java. */
678 if (!copy_name)
679 gsymbol->name = linkage_name;
680 else
682 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
684 memcpy (name, linkage_name, len);
685 name[len] = '\0';
686 gsymbol->name = name;
688 symbol_set_demangled_name (gsymbol, NULL, NULL);
690 return;
693 if (objfile->demangled_names_hash == NULL)
694 create_demangled_names_hash (objfile);
696 /* The stabs reader generally provides names that are not
697 NUL-terminated; most of the other readers don't do this, so we
698 can just use the given copy, unless we're in the Java case. */
699 if (gsymbol->language == language_java)
701 char *alloc_name;
703 lookup_len = len + JAVA_PREFIX_LEN;
704 alloc_name = alloca (lookup_len + 1);
705 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
706 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
707 alloc_name[lookup_len] = '\0';
709 lookup_name = alloc_name;
710 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
712 else if (linkage_name[len] != '\0')
714 char *alloc_name;
716 lookup_len = len;
717 alloc_name = alloca (lookup_len + 1);
718 memcpy (alloc_name, linkage_name, len);
719 alloc_name[lookup_len] = '\0';
721 lookup_name = alloc_name;
722 linkage_name_copy = alloc_name;
724 else
726 lookup_len = len;
727 lookup_name = linkage_name;
728 linkage_name_copy = linkage_name;
731 entry.mangled = lookup_name;
732 slot = ((struct demangled_name_entry **)
733 htab_find_slot (objfile->demangled_names_hash,
734 &entry, INSERT));
736 /* If this name is not in the hash table, add it. */
737 if (*slot == NULL
738 /* A C version of the symbol may have already snuck into the table.
739 This happens to, e.g., main.init (__go_init_main). Cope. */
740 || (gsymbol->language == language_go
741 && (*slot)->demangled[0] == '\0'))
743 char *demangled_name = symbol_find_demangled_name (gsymbol,
744 linkage_name_copy);
745 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
747 /* Suppose we have demangled_name==NULL, copy_name==0, and
748 lookup_name==linkage_name. In this case, we already have the
749 mangled name saved, and we don't have a demangled name. So,
750 you might think we could save a little space by not recording
751 this in the hash table at all.
753 It turns out that it is actually important to still save such
754 an entry in the hash table, because storing this name gives
755 us better bcache hit rates for partial symbols. */
756 if (!copy_name && lookup_name == linkage_name)
758 *slot = obstack_alloc (&objfile->objfile_obstack,
759 offsetof (struct demangled_name_entry,
760 demangled)
761 + demangled_len + 1);
762 (*slot)->mangled = lookup_name;
764 else
766 char *mangled_ptr;
768 /* If we must copy the mangled name, put it directly after
769 the demangled name so we can have a single
770 allocation. */
771 *slot = obstack_alloc (&objfile->objfile_obstack,
772 offsetof (struct demangled_name_entry,
773 demangled)
774 + lookup_len + demangled_len + 2);
775 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
776 strcpy (mangled_ptr, lookup_name);
777 (*slot)->mangled = mangled_ptr;
780 if (demangled_name != NULL)
782 strcpy ((*slot)->demangled, demangled_name);
783 xfree (demangled_name);
785 else
786 (*slot)->demangled[0] = '\0';
789 gsymbol->name = (*slot)->mangled + lookup_len - len;
790 if ((*slot)->demangled[0] != '\0')
791 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
792 else
793 symbol_set_demangled_name (gsymbol, NULL, objfile);
796 /* Return the source code name of a symbol. In languages where
797 demangling is necessary, this is the demangled name. */
799 const char *
800 symbol_natural_name (const struct general_symbol_info *gsymbol)
802 switch (gsymbol->language)
804 case language_cplus:
805 case language_d:
806 case language_go:
807 case language_java:
808 case language_objc:
809 case language_fortran:
810 if (symbol_get_demangled_name (gsymbol) != NULL)
811 return symbol_get_demangled_name (gsymbol);
812 break;
813 case language_ada:
814 if (symbol_get_demangled_name (gsymbol) != NULL)
815 return symbol_get_demangled_name (gsymbol);
816 else
817 return ada_decode_symbol (gsymbol);
818 break;
819 default:
820 break;
822 return gsymbol->name;
825 /* Return the demangled name for a symbol based on the language for
826 that symbol. If no demangled name exists, return NULL. */
828 const char *
829 symbol_demangled_name (const struct general_symbol_info *gsymbol)
831 const char *dem_name = NULL;
833 switch (gsymbol->language)
835 case language_cplus:
836 case language_d:
837 case language_go:
838 case language_java:
839 case language_objc:
840 case language_fortran:
841 dem_name = symbol_get_demangled_name (gsymbol);
842 break;
843 case language_ada:
844 dem_name = symbol_get_demangled_name (gsymbol);
845 if (dem_name == NULL)
846 dem_name = ada_decode_symbol (gsymbol);
847 break;
848 default:
849 break;
851 return dem_name;
854 /* Return the search name of a symbol---generally the demangled or
855 linkage name of the symbol, depending on how it will be searched for.
856 If there is no distinct demangled name, then returns the same value
857 (same pointer) as SYMBOL_LINKAGE_NAME. */
859 const char *
860 symbol_search_name (const struct general_symbol_info *gsymbol)
862 if (gsymbol->language == language_ada)
863 return gsymbol->name;
864 else
865 return symbol_natural_name (gsymbol);
868 /* Initialize the structure fields to zero values. */
870 void
871 init_sal (struct symtab_and_line *sal)
873 sal->pspace = NULL;
874 sal->symtab = 0;
875 sal->section = 0;
876 sal->line = 0;
877 sal->pc = 0;
878 sal->end = 0;
879 sal->explicit_pc = 0;
880 sal->explicit_line = 0;
881 sal->probe = NULL;
885 /* Return 1 if the two sections are the same, or if they could
886 plausibly be copies of each other, one in an original object
887 file and another in a separated debug file. */
890 matching_obj_sections (struct obj_section *obj_first,
891 struct obj_section *obj_second)
893 asection *first = obj_first? obj_first->the_bfd_section : NULL;
894 asection *second = obj_second? obj_second->the_bfd_section : NULL;
895 struct objfile *obj;
897 /* If they're the same section, then they match. */
898 if (first == second)
899 return 1;
901 /* If either is NULL, give up. */
902 if (first == NULL || second == NULL)
903 return 0;
905 /* This doesn't apply to absolute symbols. */
906 if (first->owner == NULL || second->owner == NULL)
907 return 0;
909 /* If they're in the same object file, they must be different sections. */
910 if (first->owner == second->owner)
911 return 0;
913 /* Check whether the two sections are potentially corresponding. They must
914 have the same size, address, and name. We can't compare section indexes,
915 which would be more reliable, because some sections may have been
916 stripped. */
917 if (bfd_get_section_size (first) != bfd_get_section_size (second))
918 return 0;
920 /* In-memory addresses may start at a different offset, relativize them. */
921 if (bfd_get_section_vma (first->owner, first)
922 - bfd_get_start_address (first->owner)
923 != bfd_get_section_vma (second->owner, second)
924 - bfd_get_start_address (second->owner))
925 return 0;
927 if (bfd_get_section_name (first->owner, first) == NULL
928 || bfd_get_section_name (second->owner, second) == NULL
929 || strcmp (bfd_get_section_name (first->owner, first),
930 bfd_get_section_name (second->owner, second)) != 0)
931 return 0;
933 /* Otherwise check that they are in corresponding objfiles. */
935 ALL_OBJFILES (obj)
936 if (obj->obfd == first->owner)
937 break;
938 gdb_assert (obj != NULL);
940 if (obj->separate_debug_objfile != NULL
941 && obj->separate_debug_objfile->obfd == second->owner)
942 return 1;
943 if (obj->separate_debug_objfile_backlink != NULL
944 && obj->separate_debug_objfile_backlink->obfd == second->owner)
945 return 1;
947 return 0;
950 struct symtab *
951 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
953 struct objfile *objfile;
954 struct minimal_symbol *msymbol;
956 /* If we know that this is not a text address, return failure. This is
957 necessary because we loop based on texthigh and textlow, which do
958 not include the data ranges. */
959 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
960 if (msymbol
961 && (MSYMBOL_TYPE (msymbol) == mst_data
962 || MSYMBOL_TYPE (msymbol) == mst_bss
963 || MSYMBOL_TYPE (msymbol) == mst_abs
964 || MSYMBOL_TYPE (msymbol) == mst_file_data
965 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
966 return NULL;
968 ALL_OBJFILES (objfile)
970 struct symtab *result = NULL;
972 if (objfile->sf)
973 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
974 pc, section, 0);
975 if (result)
976 return result;
979 return NULL;
982 /* Debug symbols usually don't have section information. We need to dig that
983 out of the minimal symbols and stash that in the debug symbol. */
985 void
986 fixup_section (struct general_symbol_info *ginfo,
987 CORE_ADDR addr, struct objfile *objfile)
989 struct minimal_symbol *msym;
991 /* First, check whether a minimal symbol with the same name exists
992 and points to the same address. The address check is required
993 e.g. on PowerPC64, where the minimal symbol for a function will
994 point to the function descriptor, while the debug symbol will
995 point to the actual function code. */
996 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
997 if (msym)
999 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1000 ginfo->section = SYMBOL_SECTION (msym);
1002 else
1004 /* Static, function-local variables do appear in the linker
1005 (minimal) symbols, but are frequently given names that won't
1006 be found via lookup_minimal_symbol(). E.g., it has been
1007 observed in frv-uclinux (ELF) executables that a static,
1008 function-local variable named "foo" might appear in the
1009 linker symbols as "foo.6" or "foo.3". Thus, there is no
1010 point in attempting to extend the lookup-by-name mechanism to
1011 handle this case due to the fact that there can be multiple
1012 names.
1014 So, instead, search the section table when lookup by name has
1015 failed. The ``addr'' and ``endaddr'' fields may have already
1016 been relocated. If so, the relocation offset (i.e. the
1017 ANOFFSET value) needs to be subtracted from these values when
1018 performing the comparison. We unconditionally subtract it,
1019 because, when no relocation has been performed, the ANOFFSET
1020 value will simply be zero.
1022 The address of the symbol whose section we're fixing up HAS
1023 NOT BEEN adjusted (relocated) yet. It can't have been since
1024 the section isn't yet known and knowing the section is
1025 necessary in order to add the correct relocation value. In
1026 other words, we wouldn't even be in this function (attempting
1027 to compute the section) if it were already known.
1029 Note that it is possible to search the minimal symbols
1030 (subtracting the relocation value if necessary) to find the
1031 matching minimal symbol, but this is overkill and much less
1032 efficient. It is not necessary to find the matching minimal
1033 symbol, only its section.
1035 Note that this technique (of doing a section table search)
1036 can fail when unrelocated section addresses overlap. For
1037 this reason, we still attempt a lookup by name prior to doing
1038 a search of the section table. */
1040 struct obj_section *s;
1042 ALL_OBJFILE_OSECTIONS (objfile, s)
1044 int idx = s->the_bfd_section->index;
1045 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1047 if (obj_section_addr (s) - offset <= addr
1048 && addr < obj_section_endaddr (s) - offset)
1050 ginfo->obj_section = s;
1051 ginfo->section = idx;
1052 return;
1058 struct symbol *
1059 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1061 CORE_ADDR addr;
1063 if (!sym)
1064 return NULL;
1066 if (SYMBOL_OBJ_SECTION (sym))
1067 return sym;
1069 /* We either have an OBJFILE, or we can get at it from the sym's
1070 symtab. Anything else is a bug. */
1071 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1073 if (objfile == NULL)
1074 objfile = SYMBOL_SYMTAB (sym)->objfile;
1076 /* We should have an objfile by now. */
1077 gdb_assert (objfile);
1079 switch (SYMBOL_CLASS (sym))
1081 case LOC_STATIC:
1082 case LOC_LABEL:
1083 addr = SYMBOL_VALUE_ADDRESS (sym);
1084 break;
1085 case LOC_BLOCK:
1086 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1087 break;
1089 default:
1090 /* Nothing else will be listed in the minsyms -- no use looking
1091 it up. */
1092 return sym;
1095 fixup_section (&sym->ginfo, addr, objfile);
1097 return sym;
1100 /* Compute the demangled form of NAME as used by the various symbol
1101 lookup functions. The result is stored in *RESULT_NAME. Returns a
1102 cleanup which can be used to clean up the result.
1104 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1105 Normally, Ada symbol lookups are performed using the encoded name
1106 rather than the demangled name, and so it might seem to make sense
1107 for this function to return an encoded version of NAME.
1108 Unfortunately, we cannot do this, because this function is used in
1109 circumstances where it is not appropriate to try to encode NAME.
1110 For instance, when displaying the frame info, we demangle the name
1111 of each parameter, and then perform a symbol lookup inside our
1112 function using that demangled name. In Ada, certain functions
1113 have internally-generated parameters whose name contain uppercase
1114 characters. Encoding those name would result in those uppercase
1115 characters to become lowercase, and thus cause the symbol lookup
1116 to fail. */
1118 struct cleanup *
1119 demangle_for_lookup (const char *name, enum language lang,
1120 const char **result_name)
1122 char *demangled_name = NULL;
1123 const char *modified_name = NULL;
1124 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1126 modified_name = name;
1128 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1129 lookup, so we can always binary search. */
1130 if (lang == language_cplus)
1132 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1133 if (demangled_name)
1135 modified_name = demangled_name;
1136 make_cleanup (xfree, demangled_name);
1138 else
1140 /* If we were given a non-mangled name, canonicalize it
1141 according to the language (so far only for C++). */
1142 demangled_name = cp_canonicalize_string (name);
1143 if (demangled_name)
1145 modified_name = demangled_name;
1146 make_cleanup (xfree, demangled_name);
1150 else if (lang == language_java)
1152 demangled_name = cplus_demangle (name,
1153 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1154 if (demangled_name)
1156 modified_name = demangled_name;
1157 make_cleanup (xfree, demangled_name);
1160 else if (lang == language_d)
1162 demangled_name = d_demangle (name, 0);
1163 if (demangled_name)
1165 modified_name = demangled_name;
1166 make_cleanup (xfree, demangled_name);
1169 else if (lang == language_go)
1171 demangled_name = go_demangle (name, 0);
1172 if (demangled_name)
1174 modified_name = demangled_name;
1175 make_cleanup (xfree, demangled_name);
1179 *result_name = modified_name;
1180 return cleanup;
1183 /* Find the definition for a specified symbol name NAME
1184 in domain DOMAIN, visible from lexical block BLOCK.
1185 Returns the struct symbol pointer, or zero if no symbol is found.
1186 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1187 NAME is a field of the current implied argument `this'. If so set
1188 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1189 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1190 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1192 /* This function (or rather its subordinates) have a bunch of loops and
1193 it would seem to be attractive to put in some QUIT's (though I'm not really
1194 sure whether it can run long enough to be really important). But there
1195 are a few calls for which it would appear to be bad news to quit
1196 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1197 that there is C++ code below which can error(), but that probably
1198 doesn't affect these calls since they are looking for a known
1199 variable and thus can probably assume it will never hit the C++
1200 code). */
1202 struct symbol *
1203 lookup_symbol_in_language (const char *name, const struct block *block,
1204 const domain_enum domain, enum language lang,
1205 struct field_of_this_result *is_a_field_of_this)
1207 const char *modified_name;
1208 struct symbol *returnval;
1209 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1211 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1212 is_a_field_of_this);
1213 do_cleanups (cleanup);
1215 return returnval;
1218 /* Behave like lookup_symbol_in_language, but performed with the
1219 current language. */
1221 struct symbol *
1222 lookup_symbol (const char *name, const struct block *block,
1223 domain_enum domain,
1224 struct field_of_this_result *is_a_field_of_this)
1226 return lookup_symbol_in_language (name, block, domain,
1227 current_language->la_language,
1228 is_a_field_of_this);
1231 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1232 found, or NULL if not found. */
1234 struct symbol *
1235 lookup_language_this (const struct language_defn *lang,
1236 const struct block *block)
1238 if (lang->la_name_of_this == NULL || block == NULL)
1239 return NULL;
1241 while (block)
1243 struct symbol *sym;
1245 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1246 if (sym != NULL)
1248 block_found = block;
1249 return sym;
1251 if (BLOCK_FUNCTION (block))
1252 break;
1253 block = BLOCK_SUPERBLOCK (block);
1256 return NULL;
1259 /* Given TYPE, a structure/union,
1260 return 1 if the component named NAME from the ultimate target
1261 structure/union is defined, otherwise, return 0. */
1263 static int
1264 check_field (struct type *type, const char *name,
1265 struct field_of_this_result *is_a_field_of_this)
1267 int i;
1269 /* The type may be a stub. */
1270 CHECK_TYPEDEF (type);
1272 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1274 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1276 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1278 is_a_field_of_this->type = type;
1279 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1280 return 1;
1284 /* C++: If it was not found as a data field, then try to return it
1285 as a pointer to a method. */
1287 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1289 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1291 is_a_field_of_this->type = type;
1292 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1293 return 1;
1297 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1298 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1299 return 1;
1301 return 0;
1304 /* Behave like lookup_symbol except that NAME is the natural name
1305 (e.g., demangled name) of the symbol that we're looking for. */
1307 static struct symbol *
1308 lookup_symbol_aux (const char *name, const struct block *block,
1309 const domain_enum domain, enum language language,
1310 struct field_of_this_result *is_a_field_of_this)
1312 struct symbol *sym;
1313 const struct language_defn *langdef;
1315 /* Make sure we do something sensible with is_a_field_of_this, since
1316 the callers that set this parameter to some non-null value will
1317 certainly use it later. If we don't set it, the contents of
1318 is_a_field_of_this are undefined. */
1319 if (is_a_field_of_this != NULL)
1320 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1322 /* Search specified block and its superiors. Don't search
1323 STATIC_BLOCK or GLOBAL_BLOCK. */
1325 sym = lookup_symbol_aux_local (name, block, domain, language);
1326 if (sym != NULL)
1327 return sym;
1329 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1330 check to see if NAME is a field of `this'. */
1332 langdef = language_def (language);
1334 /* Don't do this check if we are searching for a struct. It will
1335 not be found by check_field, but will be found by other
1336 means. */
1337 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1339 struct symbol *sym = lookup_language_this (langdef, block);
1341 if (sym)
1343 struct type *t = sym->type;
1345 /* I'm not really sure that type of this can ever
1346 be typedefed; just be safe. */
1347 CHECK_TYPEDEF (t);
1348 if (TYPE_CODE (t) == TYPE_CODE_PTR
1349 || TYPE_CODE (t) == TYPE_CODE_REF)
1350 t = TYPE_TARGET_TYPE (t);
1352 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1353 && TYPE_CODE (t) != TYPE_CODE_UNION)
1354 error (_("Internal error: `%s' is not an aggregate"),
1355 langdef->la_name_of_this);
1357 if (check_field (t, name, is_a_field_of_this))
1358 return NULL;
1362 /* Now do whatever is appropriate for LANGUAGE to look
1363 up static and global variables. */
1365 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1366 if (sym != NULL)
1367 return sym;
1369 /* Now search all static file-level symbols. Not strictly correct,
1370 but more useful than an error. */
1372 return lookup_static_symbol_aux (name, domain);
1375 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1376 first, then check the psymtabs. If a psymtab indicates the existence of the
1377 desired name as a file-level static, then do psymtab-to-symtab conversion on
1378 the fly and return the found symbol. */
1380 struct symbol *
1381 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1383 struct objfile *objfile;
1384 struct symbol *sym;
1386 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1387 if (sym != NULL)
1388 return sym;
1390 ALL_OBJFILES (objfile)
1392 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1393 if (sym != NULL)
1394 return sym;
1397 return NULL;
1400 /* Check to see if the symbol is defined in BLOCK or its superiors.
1401 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1403 static struct symbol *
1404 lookup_symbol_aux_local (const char *name, const struct block *block,
1405 const domain_enum domain,
1406 enum language language)
1408 struct symbol *sym;
1409 const struct block *static_block = block_static_block (block);
1410 const char *scope = block_scope (block);
1412 /* Check if either no block is specified or it's a global block. */
1414 if (static_block == NULL)
1415 return NULL;
1417 while (block != static_block)
1419 sym = lookup_symbol_aux_block (name, block, domain);
1420 if (sym != NULL)
1421 return sym;
1423 if (language == language_cplus || language == language_fortran)
1425 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1426 domain);
1427 if (sym != NULL)
1428 return sym;
1431 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1432 break;
1433 block = BLOCK_SUPERBLOCK (block);
1436 /* We've reached the edge of the function without finding a result. */
1438 return NULL;
1441 /* Look up OBJFILE to BLOCK. */
1443 struct objfile *
1444 lookup_objfile_from_block (const struct block *block)
1446 struct objfile *obj;
1447 struct symtab *s;
1449 if (block == NULL)
1450 return NULL;
1452 block = block_global_block (block);
1453 /* Go through SYMTABS. */
1454 ALL_SYMTABS (obj, s)
1455 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1457 if (obj->separate_debug_objfile_backlink)
1458 obj = obj->separate_debug_objfile_backlink;
1460 return obj;
1463 return NULL;
1466 /* Look up a symbol in a block; if found, fixup the symbol, and set
1467 block_found appropriately. */
1469 struct symbol *
1470 lookup_symbol_aux_block (const char *name, const struct block *block,
1471 const domain_enum domain)
1473 struct symbol *sym;
1475 sym = lookup_block_symbol (block, name, domain);
1476 if (sym)
1478 block_found = block;
1479 return fixup_symbol_section (sym, NULL);
1482 return NULL;
1485 /* Check all global symbols in OBJFILE in symtabs and
1486 psymtabs. */
1488 struct symbol *
1489 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1490 const char *name,
1491 const domain_enum domain)
1493 const struct objfile *objfile;
1494 struct symbol *sym;
1495 struct blockvector *bv;
1496 const struct block *block;
1497 struct symtab *s;
1499 for (objfile = main_objfile;
1500 objfile;
1501 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1503 /* Go through symtabs. */
1504 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1506 bv = BLOCKVECTOR (s);
1507 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1508 sym = lookup_block_symbol (block, name, domain);
1509 if (sym)
1511 block_found = block;
1512 return fixup_symbol_section (sym, (struct objfile *)objfile);
1516 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1517 name, domain);
1518 if (sym)
1519 return sym;
1522 return NULL;
1525 /* Check to see if the symbol is defined in one of the OBJFILE's
1526 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1527 depending on whether or not we want to search global symbols or
1528 static symbols. */
1530 static struct symbol *
1531 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1532 const char *name, const domain_enum domain)
1534 struct symbol *sym = NULL;
1535 struct blockvector *bv;
1536 const struct block *block;
1537 struct symtab *s;
1539 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1541 bv = BLOCKVECTOR (s);
1542 block = BLOCKVECTOR_BLOCK (bv, block_index);
1543 sym = lookup_block_symbol (block, name, domain);
1544 if (sym)
1546 block_found = block;
1547 return fixup_symbol_section (sym, objfile);
1551 return NULL;
1554 /* Same as lookup_symbol_aux_objfile, except that it searches all
1555 objfiles. Return the first match found. */
1557 static struct symbol *
1558 lookup_symbol_aux_symtabs (int block_index, const char *name,
1559 const domain_enum domain)
1561 struct symbol *sym;
1562 struct objfile *objfile;
1564 ALL_OBJFILES (objfile)
1566 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1567 if (sym)
1568 return sym;
1571 return NULL;
1574 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1575 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1576 and all related objfiles. */
1578 static struct symbol *
1579 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1580 const char *linkage_name,
1581 domain_enum domain)
1583 enum language lang = current_language->la_language;
1584 const char *modified_name;
1585 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1586 &modified_name);
1587 struct objfile *main_objfile, *cur_objfile;
1589 if (objfile->separate_debug_objfile_backlink)
1590 main_objfile = objfile->separate_debug_objfile_backlink;
1591 else
1592 main_objfile = objfile;
1594 for (cur_objfile = main_objfile;
1595 cur_objfile;
1596 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1598 struct symbol *sym;
1600 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1601 modified_name, domain);
1602 if (sym == NULL)
1603 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1604 modified_name, domain);
1605 if (sym != NULL)
1607 do_cleanups (cleanup);
1608 return sym;
1612 do_cleanups (cleanup);
1613 return NULL;
1616 /* A helper function for lookup_symbol_aux that interfaces with the
1617 "quick" symbol table functions. */
1619 static struct symbol *
1620 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1621 const char *name, const domain_enum domain)
1623 struct symtab *symtab;
1624 struct blockvector *bv;
1625 const struct block *block;
1626 struct symbol *sym;
1628 if (!objfile->sf)
1629 return NULL;
1630 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1631 if (!symtab)
1632 return NULL;
1634 bv = BLOCKVECTOR (symtab);
1635 block = BLOCKVECTOR_BLOCK (bv, kind);
1636 sym = lookup_block_symbol (block, name, domain);
1637 if (!sym)
1639 /* This shouldn't be necessary, but as a last resort try
1640 looking in the statics even though the psymtab claimed
1641 the symbol was global, or vice-versa. It's possible
1642 that the psymtab gets it wrong in some cases. */
1644 /* FIXME: carlton/2002-09-30: Should we really do that?
1645 If that happens, isn't it likely to be a GDB error, in
1646 which case we should fix the GDB error rather than
1647 silently dealing with it here? So I'd vote for
1648 removing the check for the symbol in the other
1649 block. */
1650 block = BLOCKVECTOR_BLOCK (bv,
1651 kind == GLOBAL_BLOCK ?
1652 STATIC_BLOCK : GLOBAL_BLOCK);
1653 sym = lookup_block_symbol (block, name, domain);
1654 if (!sym)
1655 error (_("\
1656 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1657 %s may be an inlined function, or may be a template function\n\
1658 (if a template, try specifying an instantiation: %s<type>)."),
1659 kind == GLOBAL_BLOCK ? "global" : "static",
1660 name, symtab_to_filename_for_display (symtab), name, name);
1662 return fixup_symbol_section (sym, objfile);
1665 /* A default version of lookup_symbol_nonlocal for use by languages
1666 that can't think of anything better to do. This implements the C
1667 lookup rules. */
1669 struct symbol *
1670 basic_lookup_symbol_nonlocal (const char *name,
1671 const struct block *block,
1672 const domain_enum domain)
1674 struct symbol *sym;
1676 /* NOTE: carlton/2003-05-19: The comments below were written when
1677 this (or what turned into this) was part of lookup_symbol_aux;
1678 I'm much less worried about these questions now, since these
1679 decisions have turned out well, but I leave these comments here
1680 for posterity. */
1682 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1683 not it would be appropriate to search the current global block
1684 here as well. (That's what this code used to do before the
1685 is_a_field_of_this check was moved up.) On the one hand, it's
1686 redundant with the lookup_symbol_aux_symtabs search that happens
1687 next. On the other hand, if decode_line_1 is passed an argument
1688 like filename:var, then the user presumably wants 'var' to be
1689 searched for in filename. On the third hand, there shouldn't be
1690 multiple global variables all of which are named 'var', and it's
1691 not like decode_line_1 has ever restricted its search to only
1692 global variables in a single filename. All in all, only
1693 searching the static block here seems best: it's correct and it's
1694 cleanest. */
1696 /* NOTE: carlton/2002-12-05: There's also a possible performance
1697 issue here: if you usually search for global symbols in the
1698 current file, then it would be slightly better to search the
1699 current global block before searching all the symtabs. But there
1700 are other factors that have a much greater effect on performance
1701 than that one, so I don't think we should worry about that for
1702 now. */
1704 sym = lookup_symbol_static (name, block, domain);
1705 if (sym != NULL)
1706 return sym;
1708 return lookup_symbol_global (name, block, domain);
1711 /* Lookup a symbol in the static block associated to BLOCK, if there
1712 is one; do nothing if BLOCK is NULL or a global block. */
1714 struct symbol *
1715 lookup_symbol_static (const char *name,
1716 const struct block *block,
1717 const domain_enum domain)
1719 const struct block *static_block = block_static_block (block);
1721 if (static_block != NULL)
1722 return lookup_symbol_aux_block (name, static_block, domain);
1723 else
1724 return NULL;
1727 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1729 struct global_sym_lookup_data
1731 /* The name of the symbol we are searching for. */
1732 const char *name;
1734 /* The domain to use for our search. */
1735 domain_enum domain;
1737 /* The field where the callback should store the symbol if found.
1738 It should be initialized to NULL before the search is started. */
1739 struct symbol *result;
1742 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1743 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1744 OBJFILE. The arguments for the search are passed via CB_DATA,
1745 which in reality is a pointer to struct global_sym_lookup_data. */
1747 static int
1748 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1749 void *cb_data)
1751 struct global_sym_lookup_data *data =
1752 (struct global_sym_lookup_data *) cb_data;
1754 gdb_assert (data->result == NULL);
1756 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1757 data->name, data->domain);
1758 if (data->result == NULL)
1759 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1760 data->name, data->domain);
1762 /* If we found a match, tell the iterator to stop. Otherwise,
1763 keep going. */
1764 return (data->result != NULL);
1767 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1768 necessary). */
1770 struct symbol *
1771 lookup_symbol_global (const char *name,
1772 const struct block *block,
1773 const domain_enum domain)
1775 struct symbol *sym = NULL;
1776 struct objfile *objfile = NULL;
1777 struct global_sym_lookup_data lookup_data;
1779 /* Call library-specific lookup procedure. */
1780 objfile = lookup_objfile_from_block (block);
1781 if (objfile != NULL)
1782 sym = solib_global_lookup (objfile, name, domain);
1783 if (sym != NULL)
1784 return sym;
1786 memset (&lookup_data, 0, sizeof (lookup_data));
1787 lookup_data.name = name;
1788 lookup_data.domain = domain;
1789 gdbarch_iterate_over_objfiles_in_search_order
1790 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1791 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1793 return lookup_data.result;
1797 symbol_matches_domain (enum language symbol_language,
1798 domain_enum symbol_domain,
1799 domain_enum domain)
1801 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1802 A Java class declaration also defines a typedef for the class.
1803 Similarly, any Ada type declaration implicitly defines a typedef. */
1804 if (symbol_language == language_cplus
1805 || symbol_language == language_d
1806 || symbol_language == language_java
1807 || symbol_language == language_ada)
1809 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1810 && symbol_domain == STRUCT_DOMAIN)
1811 return 1;
1813 /* For all other languages, strict match is required. */
1814 return (symbol_domain == domain);
1817 /* Look up a type named NAME in the struct_domain. The type returned
1818 must not be opaque -- i.e., must have at least one field
1819 defined. */
1821 struct type *
1822 lookup_transparent_type (const char *name)
1824 return current_language->la_lookup_transparent_type (name);
1827 /* A helper for basic_lookup_transparent_type that interfaces with the
1828 "quick" symbol table functions. */
1830 static struct type *
1831 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1832 const char *name)
1834 struct symtab *symtab;
1835 struct blockvector *bv;
1836 struct block *block;
1837 struct symbol *sym;
1839 if (!objfile->sf)
1840 return NULL;
1841 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1842 if (!symtab)
1843 return NULL;
1845 bv = BLOCKVECTOR (symtab);
1846 block = BLOCKVECTOR_BLOCK (bv, kind);
1847 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1848 if (!sym)
1850 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1852 /* This shouldn't be necessary, but as a last resort
1853 * try looking in the 'other kind' even though the psymtab
1854 * claimed the symbol was one thing. It's possible that
1855 * the psymtab gets it wrong in some cases.
1857 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1858 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1859 if (!sym)
1860 /* FIXME; error is wrong in one case. */
1861 error (_("\
1862 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1863 %s may be an inlined function, or may be a template function\n\
1864 (if a template, try specifying an instantiation: %s<type>)."),
1865 name, symtab_to_filename_for_display (symtab), name, name);
1867 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1868 return SYMBOL_TYPE (sym);
1870 return NULL;
1873 /* The standard implementation of lookup_transparent_type. This code
1874 was modeled on lookup_symbol -- the parts not relevant to looking
1875 up types were just left out. In particular it's assumed here that
1876 types are available in struct_domain and only at file-static or
1877 global blocks. */
1879 struct type *
1880 basic_lookup_transparent_type (const char *name)
1882 struct symbol *sym;
1883 struct symtab *s = NULL;
1884 struct blockvector *bv;
1885 struct objfile *objfile;
1886 struct block *block;
1887 struct type *t;
1889 /* Now search all the global symbols. Do the symtab's first, then
1890 check the psymtab's. If a psymtab indicates the existence
1891 of the desired name as a global, then do psymtab-to-symtab
1892 conversion on the fly and return the found symbol. */
1894 ALL_OBJFILES (objfile)
1896 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1898 bv = BLOCKVECTOR (s);
1899 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1900 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1901 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1903 return SYMBOL_TYPE (sym);
1908 ALL_OBJFILES (objfile)
1910 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1911 if (t)
1912 return t;
1915 /* Now search the static file-level symbols.
1916 Not strictly correct, but more useful than an error.
1917 Do the symtab's first, then
1918 check the psymtab's. If a psymtab indicates the existence
1919 of the desired name as a file-level static, then do psymtab-to-symtab
1920 conversion on the fly and return the found symbol. */
1922 ALL_OBJFILES (objfile)
1924 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1926 bv = BLOCKVECTOR (s);
1927 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1928 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1929 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1931 return SYMBOL_TYPE (sym);
1936 ALL_OBJFILES (objfile)
1938 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1939 if (t)
1940 return t;
1943 return (struct type *) 0;
1946 /* Find the name of the file containing main(). */
1947 /* FIXME: What about languages without main() or specially linked
1948 executables that have no main() ? */
1950 const char *
1951 find_main_filename (void)
1953 struct objfile *objfile;
1954 char *name = main_name ();
1956 ALL_OBJFILES (objfile)
1958 const char *result;
1960 if (!objfile->sf)
1961 continue;
1962 result = objfile->sf->qf->find_symbol_file (objfile, name);
1963 if (result)
1964 return result;
1966 return (NULL);
1969 /* Search BLOCK for symbol NAME in DOMAIN.
1971 Note that if NAME is the demangled form of a C++ symbol, we will fail
1972 to find a match during the binary search of the non-encoded names, but
1973 for now we don't worry about the slight inefficiency of looking for
1974 a match we'll never find, since it will go pretty quick. Once the
1975 binary search terminates, we drop through and do a straight linear
1976 search on the symbols. Each symbol which is marked as being a ObjC/C++
1977 symbol (language_cplus or language_objc set) has both the encoded and
1978 non-encoded names tested for a match. */
1980 struct symbol *
1981 lookup_block_symbol (const struct block *block, const char *name,
1982 const domain_enum domain)
1984 struct block_iterator iter;
1985 struct symbol *sym;
1987 if (!BLOCK_FUNCTION (block))
1989 for (sym = block_iter_name_first (block, name, &iter);
1990 sym != NULL;
1991 sym = block_iter_name_next (name, &iter))
1993 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1994 SYMBOL_DOMAIN (sym), domain))
1995 return sym;
1997 return NULL;
1999 else
2001 /* Note that parameter symbols do not always show up last in the
2002 list; this loop makes sure to take anything else other than
2003 parameter symbols first; it only uses parameter symbols as a
2004 last resort. Note that this only takes up extra computation
2005 time on a match. */
2007 struct symbol *sym_found = NULL;
2009 for (sym = block_iter_name_first (block, name, &iter);
2010 sym != NULL;
2011 sym = block_iter_name_next (name, &iter))
2013 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2014 SYMBOL_DOMAIN (sym), domain))
2016 sym_found = sym;
2017 if (!SYMBOL_IS_ARGUMENT (sym))
2019 break;
2023 return (sym_found); /* Will be NULL if not found. */
2027 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2029 For each symbol that matches, CALLBACK is called. The symbol and
2030 DATA are passed to the callback.
2032 If CALLBACK returns zero, the iteration ends. Otherwise, the
2033 search continues. */
2035 void
2036 iterate_over_symbols (const struct block *block, const char *name,
2037 const domain_enum domain,
2038 symbol_found_callback_ftype *callback,
2039 void *data)
2041 struct block_iterator iter;
2042 struct symbol *sym;
2044 for (sym = block_iter_name_first (block, name, &iter);
2045 sym != NULL;
2046 sym = block_iter_name_next (name, &iter))
2048 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2049 SYMBOL_DOMAIN (sym), domain))
2051 if (!callback (sym, data))
2052 return;
2057 /* Find the symtab associated with PC and SECTION. Look through the
2058 psymtabs and read in another symtab if necessary. */
2060 struct symtab *
2061 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2063 struct block *b;
2064 struct blockvector *bv;
2065 struct symtab *s = NULL;
2066 struct symtab *best_s = NULL;
2067 struct objfile *objfile;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2071 /* If we know that this is not a text address, return failure. This is
2072 necessary because we loop based on the block's high and low code
2073 addresses, which do not include the data ranges, and because
2074 we call find_pc_sect_psymtab which has a similar restriction based
2075 on the partial_symtab's texthigh and textlow. */
2076 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2077 if (msymbol
2078 && (MSYMBOL_TYPE (msymbol) == mst_data
2079 || MSYMBOL_TYPE (msymbol) == mst_bss
2080 || MSYMBOL_TYPE (msymbol) == mst_abs
2081 || MSYMBOL_TYPE (msymbol) == mst_file_data
2082 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2083 return NULL;
2085 /* Search all symtabs for the one whose file contains our address, and which
2086 is the smallest of all the ones containing the address. This is designed
2087 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2088 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2089 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2091 This happens for native ecoff format, where code from included files
2092 gets its own symtab. The symtab for the included file should have
2093 been read in already via the dependency mechanism.
2094 It might be swifter to create several symtabs with the same name
2095 like xcoff does (I'm not sure).
2097 It also happens for objfiles that have their functions reordered.
2098 For these, the symtab we are looking for is not necessarily read in. */
2100 ALL_PRIMARY_SYMTABS (objfile, s)
2102 bv = BLOCKVECTOR (s);
2103 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2105 if (BLOCK_START (b) <= pc
2106 && BLOCK_END (b) > pc
2107 && (distance == 0
2108 || BLOCK_END (b) - BLOCK_START (b) < distance))
2110 /* For an objfile that has its functions reordered,
2111 find_pc_psymtab will find the proper partial symbol table
2112 and we simply return its corresponding symtab. */
2113 /* In order to better support objfiles that contain both
2114 stabs and coff debugging info, we continue on if a psymtab
2115 can't be found. */
2116 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2118 struct symtab *result;
2120 result
2121 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2122 msymbol,
2123 pc, section,
2125 if (result)
2126 return result;
2128 if (section != 0)
2130 struct block_iterator iter;
2131 struct symbol *sym = NULL;
2133 ALL_BLOCK_SYMBOLS (b, iter, sym)
2135 fixup_symbol_section (sym, objfile);
2136 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2137 break;
2139 if (sym == NULL)
2140 continue; /* No symbol in this symtab matches
2141 section. */
2143 distance = BLOCK_END (b) - BLOCK_START (b);
2144 best_s = s;
2148 if (best_s != NULL)
2149 return (best_s);
2151 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2153 ALL_OBJFILES (objfile)
2155 struct symtab *result;
2157 if (!objfile->sf)
2158 continue;
2159 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2160 msymbol,
2161 pc, section,
2163 if (result)
2164 return result;
2167 return NULL;
2170 /* Find the symtab associated with PC. Look through the psymtabs and read
2171 in another symtab if necessary. Backward compatibility, no section. */
2173 struct symtab *
2174 find_pc_symtab (CORE_ADDR pc)
2176 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2180 /* Find the source file and line number for a given PC value and SECTION.
2181 Return a structure containing a symtab pointer, a line number,
2182 and a pc range for the entire source line.
2183 The value's .pc field is NOT the specified pc.
2184 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2185 use the line that ends there. Otherwise, in that case, the line
2186 that begins there is used. */
2188 /* The big complication here is that a line may start in one file, and end just
2189 before the start of another file. This usually occurs when you #include
2190 code in the middle of a subroutine. To properly find the end of a line's PC
2191 range, we must search all symtabs associated with this compilation unit, and
2192 find the one whose first PC is closer than that of the next line in this
2193 symtab. */
2195 /* If it's worth the effort, we could be using a binary search. */
2197 struct symtab_and_line
2198 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2200 struct symtab *s;
2201 struct linetable *l;
2202 int len;
2203 int i;
2204 struct linetable_entry *item;
2205 struct symtab_and_line val;
2206 struct blockvector *bv;
2207 struct minimal_symbol *msymbol;
2208 struct minimal_symbol *mfunsym;
2209 struct objfile *objfile;
2211 /* Info on best line seen so far, and where it starts, and its file. */
2213 struct linetable_entry *best = NULL;
2214 CORE_ADDR best_end = 0;
2215 struct symtab *best_symtab = 0;
2217 /* Store here the first line number
2218 of a file which contains the line at the smallest pc after PC.
2219 If we don't find a line whose range contains PC,
2220 we will use a line one less than this,
2221 with a range from the start of that file to the first line's pc. */
2222 struct linetable_entry *alt = NULL;
2224 /* Info on best line seen in this file. */
2226 struct linetable_entry *prev;
2228 /* If this pc is not from the current frame,
2229 it is the address of the end of a call instruction.
2230 Quite likely that is the start of the following statement.
2231 But what we want is the statement containing the instruction.
2232 Fudge the pc to make sure we get that. */
2234 init_sal (&val); /* initialize to zeroes */
2236 val.pspace = current_program_space;
2238 /* It's tempting to assume that, if we can't find debugging info for
2239 any function enclosing PC, that we shouldn't search for line
2240 number info, either. However, GAS can emit line number info for
2241 assembly files --- very helpful when debugging hand-written
2242 assembly code. In such a case, we'd have no debug info for the
2243 function, but we would have line info. */
2245 if (notcurrent)
2246 pc -= 1;
2248 /* elz: added this because this function returned the wrong
2249 information if the pc belongs to a stub (import/export)
2250 to call a shlib function. This stub would be anywhere between
2251 two functions in the target, and the line info was erroneously
2252 taken to be the one of the line before the pc. */
2254 /* RT: Further explanation:
2256 * We have stubs (trampolines) inserted between procedures.
2258 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2259 * exists in the main image.
2261 * In the minimal symbol table, we have a bunch of symbols
2262 * sorted by start address. The stubs are marked as "trampoline",
2263 * the others appear as text. E.g.:
2265 * Minimal symbol table for main image
2266 * main: code for main (text symbol)
2267 * shr1: stub (trampoline symbol)
2268 * foo: code for foo (text symbol)
2269 * ...
2270 * Minimal symbol table for "shr1" image:
2271 * ...
2272 * shr1: code for shr1 (text symbol)
2273 * ...
2275 * So the code below is trying to detect if we are in the stub
2276 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2277 * and if found, do the symbolization from the real-code address
2278 * rather than the stub address.
2280 * Assumptions being made about the minimal symbol table:
2281 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2282 * if we're really in the trampoline.s If we're beyond it (say
2283 * we're in "foo" in the above example), it'll have a closer
2284 * symbol (the "foo" text symbol for example) and will not
2285 * return the trampoline.
2286 * 2. lookup_minimal_symbol_text() will find a real text symbol
2287 * corresponding to the trampoline, and whose address will
2288 * be different than the trampoline address. I put in a sanity
2289 * check for the address being the same, to avoid an
2290 * infinite recursion.
2292 msymbol = lookup_minimal_symbol_by_pc (pc);
2293 if (msymbol != NULL)
2294 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2296 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2297 NULL);
2298 if (mfunsym == NULL)
2299 /* I eliminated this warning since it is coming out
2300 * in the following situation:
2301 * gdb shmain // test program with shared libraries
2302 * (gdb) break shr1 // function in shared lib
2303 * Warning: In stub for ...
2304 * In the above situation, the shared lib is not loaded yet,
2305 * so of course we can't find the real func/line info,
2306 * but the "break" still works, and the warning is annoying.
2307 * So I commented out the warning. RT */
2308 /* warning ("In stub for %s; unable to find real function/line info",
2309 SYMBOL_LINKAGE_NAME (msymbol)); */
2311 /* fall through */
2312 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2313 == SYMBOL_VALUE_ADDRESS (msymbol))
2314 /* Avoid infinite recursion */
2315 /* See above comment about why warning is commented out. */
2316 /* warning ("In stub for %s; unable to find real function/line info",
2317 SYMBOL_LINKAGE_NAME (msymbol)); */
2319 /* fall through */
2320 else
2321 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2325 s = find_pc_sect_symtab (pc, section);
2326 if (!s)
2328 /* If no symbol information, return previous pc. */
2329 if (notcurrent)
2330 pc++;
2331 val.pc = pc;
2332 return val;
2335 bv = BLOCKVECTOR (s);
2336 objfile = s->objfile;
2338 /* Look at all the symtabs that share this blockvector.
2339 They all have the same apriori range, that we found was right;
2340 but they have different line tables. */
2342 ALL_OBJFILE_SYMTABS (objfile, s)
2344 if (BLOCKVECTOR (s) != bv)
2345 continue;
2347 /* Find the best line in this symtab. */
2348 l = LINETABLE (s);
2349 if (!l)
2350 continue;
2351 len = l->nitems;
2352 if (len <= 0)
2354 /* I think len can be zero if the symtab lacks line numbers
2355 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2356 I'm not sure which, and maybe it depends on the symbol
2357 reader). */
2358 continue;
2361 prev = NULL;
2362 item = l->item; /* Get first line info. */
2364 /* Is this file's first line closer than the first lines of other files?
2365 If so, record this file, and its first line, as best alternate. */
2366 if (item->pc > pc && (!alt || item->pc < alt->pc))
2367 alt = item;
2369 for (i = 0; i < len; i++, item++)
2371 /* Leave prev pointing to the linetable entry for the last line
2372 that started at or before PC. */
2373 if (item->pc > pc)
2374 break;
2376 prev = item;
2379 /* At this point, prev points at the line whose start addr is <= pc, and
2380 item points at the next line. If we ran off the end of the linetable
2381 (pc >= start of the last line), then prev == item. If pc < start of
2382 the first line, prev will not be set. */
2384 /* Is this file's best line closer than the best in the other files?
2385 If so, record this file, and its best line, as best so far. Don't
2386 save prev if it represents the end of a function (i.e. line number
2387 0) instead of a real line. */
2389 if (prev && prev->line && (!best || prev->pc > best->pc))
2391 best = prev;
2392 best_symtab = s;
2394 /* Discard BEST_END if it's before the PC of the current BEST. */
2395 if (best_end <= best->pc)
2396 best_end = 0;
2399 /* If another line (denoted by ITEM) is in the linetable and its
2400 PC is after BEST's PC, but before the current BEST_END, then
2401 use ITEM's PC as the new best_end. */
2402 if (best && i < len && item->pc > best->pc
2403 && (best_end == 0 || best_end > item->pc))
2404 best_end = item->pc;
2407 if (!best_symtab)
2409 /* If we didn't find any line number info, just return zeros.
2410 We used to return alt->line - 1 here, but that could be
2411 anywhere; if we don't have line number info for this PC,
2412 don't make some up. */
2413 val.pc = pc;
2415 else if (best->line == 0)
2417 /* If our best fit is in a range of PC's for which no line
2418 number info is available (line number is zero) then we didn't
2419 find any valid line information. */
2420 val.pc = pc;
2422 else
2424 val.symtab = best_symtab;
2425 val.line = best->line;
2426 val.pc = best->pc;
2427 if (best_end && (!alt || best_end < alt->pc))
2428 val.end = best_end;
2429 else if (alt)
2430 val.end = alt->pc;
2431 else
2432 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2434 val.section = section;
2435 return val;
2438 /* Backward compatibility (no section). */
2440 struct symtab_and_line
2441 find_pc_line (CORE_ADDR pc, int notcurrent)
2443 struct obj_section *section;
2445 section = find_pc_overlay (pc);
2446 if (pc_in_unmapped_range (pc, section))
2447 pc = overlay_mapped_address (pc, section);
2448 return find_pc_sect_line (pc, section, notcurrent);
2451 /* Find line number LINE in any symtab whose name is the same as
2452 SYMTAB.
2454 If found, return the symtab that contains the linetable in which it was
2455 found, set *INDEX to the index in the linetable of the best entry
2456 found, and set *EXACT_MATCH nonzero if the value returned is an
2457 exact match.
2459 If not found, return NULL. */
2461 struct symtab *
2462 find_line_symtab (struct symtab *symtab, int line,
2463 int *index, int *exact_match)
2465 int exact = 0; /* Initialized here to avoid a compiler warning. */
2467 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2468 so far seen. */
2470 int best_index;
2471 struct linetable *best_linetable;
2472 struct symtab *best_symtab;
2474 /* First try looking it up in the given symtab. */
2475 best_linetable = LINETABLE (symtab);
2476 best_symtab = symtab;
2477 best_index = find_line_common (best_linetable, line, &exact, 0);
2478 if (best_index < 0 || !exact)
2480 /* Didn't find an exact match. So we better keep looking for
2481 another symtab with the same name. In the case of xcoff,
2482 multiple csects for one source file (produced by IBM's FORTRAN
2483 compiler) produce multiple symtabs (this is unavoidable
2484 assuming csects can be at arbitrary places in memory and that
2485 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2487 /* BEST is the smallest linenumber > LINE so far seen,
2488 or 0 if none has been seen so far.
2489 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2490 int best;
2492 struct objfile *objfile;
2493 struct symtab *s;
2495 if (best_index >= 0)
2496 best = best_linetable->item[best_index].line;
2497 else
2498 best = 0;
2500 ALL_OBJFILES (objfile)
2502 if (objfile->sf)
2503 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2504 symtab_to_fullname (symtab));
2507 ALL_SYMTABS (objfile, s)
2509 struct linetable *l;
2510 int ind;
2512 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2513 continue;
2514 if (FILENAME_CMP (symtab_to_fullname (symtab),
2515 symtab_to_fullname (s)) != 0)
2516 continue;
2517 l = LINETABLE (s);
2518 ind = find_line_common (l, line, &exact, 0);
2519 if (ind >= 0)
2521 if (exact)
2523 best_index = ind;
2524 best_linetable = l;
2525 best_symtab = s;
2526 goto done;
2528 if (best == 0 || l->item[ind].line < best)
2530 best = l->item[ind].line;
2531 best_index = ind;
2532 best_linetable = l;
2533 best_symtab = s;
2538 done:
2539 if (best_index < 0)
2540 return NULL;
2542 if (index)
2543 *index = best_index;
2544 if (exact_match)
2545 *exact_match = exact;
2547 return best_symtab;
2550 /* Given SYMTAB, returns all the PCs function in the symtab that
2551 exactly match LINE. Returns NULL if there are no exact matches,
2552 but updates BEST_ITEM in this case. */
2554 VEC (CORE_ADDR) *
2555 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2556 struct linetable_entry **best_item)
2558 int start = 0;
2559 VEC (CORE_ADDR) *result = NULL;
2561 /* First, collect all the PCs that are at this line. */
2562 while (1)
2564 int was_exact;
2565 int idx;
2567 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2568 if (idx < 0)
2569 break;
2571 if (!was_exact)
2573 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2575 if (*best_item == NULL || item->line < (*best_item)->line)
2576 *best_item = item;
2578 break;
2581 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2582 start = idx + 1;
2585 return result;
2589 /* Set the PC value for a given source file and line number and return true.
2590 Returns zero for invalid line number (and sets the PC to 0).
2591 The source file is specified with a struct symtab. */
2594 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2596 struct linetable *l;
2597 int ind;
2599 *pc = 0;
2600 if (symtab == 0)
2601 return 0;
2603 symtab = find_line_symtab (symtab, line, &ind, NULL);
2604 if (symtab != NULL)
2606 l = LINETABLE (symtab);
2607 *pc = l->item[ind].pc;
2608 return 1;
2610 else
2611 return 0;
2614 /* Find the range of pc values in a line.
2615 Store the starting pc of the line into *STARTPTR
2616 and the ending pc (start of next line) into *ENDPTR.
2617 Returns 1 to indicate success.
2618 Returns 0 if could not find the specified line. */
2621 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2622 CORE_ADDR *endptr)
2624 CORE_ADDR startaddr;
2625 struct symtab_and_line found_sal;
2627 startaddr = sal.pc;
2628 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2629 return 0;
2631 /* This whole function is based on address. For example, if line 10 has
2632 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2633 "info line *0x123" should say the line goes from 0x100 to 0x200
2634 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2635 This also insures that we never give a range like "starts at 0x134
2636 and ends at 0x12c". */
2638 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2639 if (found_sal.line != sal.line)
2641 /* The specified line (sal) has zero bytes. */
2642 *startptr = found_sal.pc;
2643 *endptr = found_sal.pc;
2645 else
2647 *startptr = found_sal.pc;
2648 *endptr = found_sal.end;
2650 return 1;
2653 /* Given a line table and a line number, return the index into the line
2654 table for the pc of the nearest line whose number is >= the specified one.
2655 Return -1 if none is found. The value is >= 0 if it is an index.
2656 START is the index at which to start searching the line table.
2658 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2660 static int
2661 find_line_common (struct linetable *l, int lineno,
2662 int *exact_match, int start)
2664 int i;
2665 int len;
2667 /* BEST is the smallest linenumber > LINENO so far seen,
2668 or 0 if none has been seen so far.
2669 BEST_INDEX identifies the item for it. */
2671 int best_index = -1;
2672 int best = 0;
2674 *exact_match = 0;
2676 if (lineno <= 0)
2677 return -1;
2678 if (l == 0)
2679 return -1;
2681 len = l->nitems;
2682 for (i = start; i < len; i++)
2684 struct linetable_entry *item = &(l->item[i]);
2686 if (item->line == lineno)
2688 /* Return the first (lowest address) entry which matches. */
2689 *exact_match = 1;
2690 return i;
2693 if (item->line > lineno && (best == 0 || item->line < best))
2695 best = item->line;
2696 best_index = i;
2700 /* If we got here, we didn't get an exact match. */
2701 return best_index;
2705 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2707 struct symtab_and_line sal;
2709 sal = find_pc_line (pc, 0);
2710 *startptr = sal.pc;
2711 *endptr = sal.end;
2712 return sal.symtab != 0;
2715 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2716 address for that function that has an entry in SYMTAB's line info
2717 table. If such an entry cannot be found, return FUNC_ADDR
2718 unaltered. */
2720 static CORE_ADDR
2721 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2723 CORE_ADDR func_start, func_end;
2724 struct linetable *l;
2725 int i;
2727 /* Give up if this symbol has no lineinfo table. */
2728 l = LINETABLE (symtab);
2729 if (l == NULL)
2730 return func_addr;
2732 /* Get the range for the function's PC values, or give up if we
2733 cannot, for some reason. */
2734 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2735 return func_addr;
2737 /* Linetable entries are ordered by PC values, see the commentary in
2738 symtab.h where `struct linetable' is defined. Thus, the first
2739 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2740 address we are looking for. */
2741 for (i = 0; i < l->nitems; i++)
2743 struct linetable_entry *item = &(l->item[i]);
2745 /* Don't use line numbers of zero, they mark special entries in
2746 the table. See the commentary on symtab.h before the
2747 definition of struct linetable. */
2748 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2749 return item->pc;
2752 return func_addr;
2755 /* Given a function symbol SYM, find the symtab and line for the start
2756 of the function.
2757 If the argument FUNFIRSTLINE is nonzero, we want the first line
2758 of real code inside the function. */
2760 struct symtab_and_line
2761 find_function_start_sal (struct symbol *sym, int funfirstline)
2763 struct symtab_and_line sal;
2765 fixup_symbol_section (sym, NULL);
2766 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2767 SYMBOL_OBJ_SECTION (sym), 0);
2769 /* We always should have a line for the function start address.
2770 If we don't, something is odd. Create a plain SAL refering
2771 just the PC and hope that skip_prologue_sal (if requested)
2772 can find a line number for after the prologue. */
2773 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2775 init_sal (&sal);
2776 sal.pspace = current_program_space;
2777 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2778 sal.section = SYMBOL_OBJ_SECTION (sym);
2781 if (funfirstline)
2782 skip_prologue_sal (&sal);
2784 return sal;
2787 /* Adjust SAL to the first instruction past the function prologue.
2788 If the PC was explicitly specified, the SAL is not changed.
2789 If the line number was explicitly specified, at most the SAL's PC
2790 is updated. If SAL is already past the prologue, then do nothing. */
2792 void
2793 skip_prologue_sal (struct symtab_and_line *sal)
2795 struct symbol *sym;
2796 struct symtab_and_line start_sal;
2797 struct cleanup *old_chain;
2798 CORE_ADDR pc, saved_pc;
2799 struct obj_section *section;
2800 const char *name;
2801 struct objfile *objfile;
2802 struct gdbarch *gdbarch;
2803 struct block *b, *function_block;
2804 int force_skip, skip;
2806 /* Do not change the SAL if PC was specified explicitly. */
2807 if (sal->explicit_pc)
2808 return;
2810 old_chain = save_current_space_and_thread ();
2811 switch_to_program_space_and_thread (sal->pspace);
2813 sym = find_pc_sect_function (sal->pc, sal->section);
2814 if (sym != NULL)
2816 fixup_symbol_section (sym, NULL);
2818 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2819 section = SYMBOL_OBJ_SECTION (sym);
2820 name = SYMBOL_LINKAGE_NAME (sym);
2821 objfile = SYMBOL_SYMTAB (sym)->objfile;
2823 else
2825 struct minimal_symbol *msymbol
2826 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2828 if (msymbol == NULL)
2830 do_cleanups (old_chain);
2831 return;
2834 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2835 section = SYMBOL_OBJ_SECTION (msymbol);
2836 name = SYMBOL_LINKAGE_NAME (msymbol);
2837 objfile = msymbol_objfile (msymbol);
2840 gdbarch = get_objfile_arch (objfile);
2842 /* Process the prologue in two passes. In the first pass try to skip the
2843 prologue (SKIP is true) and verify there is a real need for it (indicated
2844 by FORCE_SKIP). If no such reason was found run a second pass where the
2845 prologue is not skipped (SKIP is false). */
2847 skip = 1;
2848 force_skip = 1;
2850 /* Be conservative - allow direct PC (without skipping prologue) only if we
2851 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2852 have to be set by the caller so we use SYM instead. */
2853 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2854 force_skip = 0;
2856 saved_pc = pc;
2859 pc = saved_pc;
2861 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2862 so that gdbarch_skip_prologue has something unique to work on. */
2863 if (section_is_overlay (section) && !section_is_mapped (section))
2864 pc = overlay_unmapped_address (pc, section);
2866 /* Skip "first line" of function (which is actually its prologue). */
2867 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2868 if (skip)
2869 pc = gdbarch_skip_prologue (gdbarch, pc);
2871 /* For overlays, map pc back into its mapped VMA range. */
2872 pc = overlay_mapped_address (pc, section);
2874 /* Calculate line number. */
2875 start_sal = find_pc_sect_line (pc, section, 0);
2877 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2878 line is still part of the same function. */
2879 if (skip && start_sal.pc != pc
2880 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2881 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2882 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2883 == lookup_minimal_symbol_by_pc_section (pc, section))))
2885 /* First pc of next line */
2886 pc = start_sal.end;
2887 /* Recalculate the line number (might not be N+1). */
2888 start_sal = find_pc_sect_line (pc, section, 0);
2891 /* On targets with executable formats that don't have a concept of
2892 constructors (ELF with .init has, PE doesn't), gcc emits a call
2893 to `__main' in `main' between the prologue and before user
2894 code. */
2895 if (gdbarch_skip_main_prologue_p (gdbarch)
2896 && name && strcmp_iw (name, "main") == 0)
2898 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2899 /* Recalculate the line number (might not be N+1). */
2900 start_sal = find_pc_sect_line (pc, section, 0);
2901 force_skip = 1;
2904 while (!force_skip && skip--);
2906 /* If we still don't have a valid source line, try to find the first
2907 PC in the lineinfo table that belongs to the same function. This
2908 happens with COFF debug info, which does not seem to have an
2909 entry in lineinfo table for the code after the prologue which has
2910 no direct relation to source. For example, this was found to be
2911 the case with the DJGPP target using "gcc -gcoff" when the
2912 compiler inserted code after the prologue to make sure the stack
2913 is aligned. */
2914 if (!force_skip && sym && start_sal.symtab == NULL)
2916 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2917 /* Recalculate the line number. */
2918 start_sal = find_pc_sect_line (pc, section, 0);
2921 do_cleanups (old_chain);
2923 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2924 forward SAL to the end of the prologue. */
2925 if (sal->pc >= pc)
2926 return;
2928 sal->pc = pc;
2929 sal->section = section;
2931 /* Unless the explicit_line flag was set, update the SAL line
2932 and symtab to correspond to the modified PC location. */
2933 if (sal->explicit_line)
2934 return;
2936 sal->symtab = start_sal.symtab;
2937 sal->line = start_sal.line;
2938 sal->end = start_sal.end;
2940 /* Check if we are now inside an inlined function. If we can,
2941 use the call site of the function instead. */
2942 b = block_for_pc_sect (sal->pc, sal->section);
2943 function_block = NULL;
2944 while (b != NULL)
2946 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2947 function_block = b;
2948 else if (BLOCK_FUNCTION (b) != NULL)
2949 break;
2950 b = BLOCK_SUPERBLOCK (b);
2952 if (function_block != NULL
2953 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2955 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2956 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2960 /* If P is of the form "operator[ \t]+..." where `...' is
2961 some legitimate operator text, return a pointer to the
2962 beginning of the substring of the operator text.
2963 Otherwise, return "". */
2965 static char *
2966 operator_chars (char *p, char **end)
2968 *end = "";
2969 if (strncmp (p, "operator", 8))
2970 return *end;
2971 p += 8;
2973 /* Don't get faked out by `operator' being part of a longer
2974 identifier. */
2975 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2976 return *end;
2978 /* Allow some whitespace between `operator' and the operator symbol. */
2979 while (*p == ' ' || *p == '\t')
2980 p++;
2982 /* Recognize 'operator TYPENAME'. */
2984 if (isalpha (*p) || *p == '_' || *p == '$')
2986 char *q = p + 1;
2988 while (isalnum (*q) || *q == '_' || *q == '$')
2989 q++;
2990 *end = q;
2991 return p;
2994 while (*p)
2995 switch (*p)
2997 case '\\': /* regexp quoting */
2998 if (p[1] == '*')
3000 if (p[2] == '=') /* 'operator\*=' */
3001 *end = p + 3;
3002 else /* 'operator\*' */
3003 *end = p + 2;
3004 return p;
3006 else if (p[1] == '[')
3008 if (p[2] == ']')
3009 error (_("mismatched quoting on brackets, "
3010 "try 'operator\\[\\]'"));
3011 else if (p[2] == '\\' && p[3] == ']')
3013 *end = p + 4; /* 'operator\[\]' */
3014 return p;
3016 else
3017 error (_("nothing is allowed between '[' and ']'"));
3019 else
3021 /* Gratuitous qoute: skip it and move on. */
3022 p++;
3023 continue;
3025 break;
3026 case '!':
3027 case '=':
3028 case '*':
3029 case '/':
3030 case '%':
3031 case '^':
3032 if (p[1] == '=')
3033 *end = p + 2;
3034 else
3035 *end = p + 1;
3036 return p;
3037 case '<':
3038 case '>':
3039 case '+':
3040 case '-':
3041 case '&':
3042 case '|':
3043 if (p[0] == '-' && p[1] == '>')
3045 /* Struct pointer member operator 'operator->'. */
3046 if (p[2] == '*')
3048 *end = p + 3; /* 'operator->*' */
3049 return p;
3051 else if (p[2] == '\\')
3053 *end = p + 4; /* Hopefully 'operator->\*' */
3054 return p;
3056 else
3058 *end = p + 2; /* 'operator->' */
3059 return p;
3062 if (p[1] == '=' || p[1] == p[0])
3063 *end = p + 2;
3064 else
3065 *end = p + 1;
3066 return p;
3067 case '~':
3068 case ',':
3069 *end = p + 1;
3070 return p;
3071 case '(':
3072 if (p[1] != ')')
3073 error (_("`operator ()' must be specified "
3074 "without whitespace in `()'"));
3075 *end = p + 2;
3076 return p;
3077 case '?':
3078 if (p[1] != ':')
3079 error (_("`operator ?:' must be specified "
3080 "without whitespace in `?:'"));
3081 *end = p + 2;
3082 return p;
3083 case '[':
3084 if (p[1] != ']')
3085 error (_("`operator []' must be specified "
3086 "without whitespace in `[]'"));
3087 *end = p + 2;
3088 return p;
3089 default:
3090 error (_("`operator %s' not supported"), p);
3091 break;
3094 *end = "";
3095 return *end;
3099 /* Cache to watch for file names already seen by filename_seen. */
3101 struct filename_seen_cache
3103 /* Table of files seen so far. */
3104 htab_t tab;
3105 /* Initial size of the table. It automagically grows from here. */
3106 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3109 /* filename_seen_cache constructor. */
3111 static struct filename_seen_cache *
3112 create_filename_seen_cache (void)
3114 struct filename_seen_cache *cache;
3116 cache = XNEW (struct filename_seen_cache);
3117 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3118 filename_hash, filename_eq,
3119 NULL, xcalloc, xfree);
3121 return cache;
3124 /* Empty the cache, but do not delete it. */
3126 static void
3127 clear_filename_seen_cache (struct filename_seen_cache *cache)
3129 htab_empty (cache->tab);
3132 /* filename_seen_cache destructor.
3133 This takes a void * argument as it is generally used as a cleanup. */
3135 static void
3136 delete_filename_seen_cache (void *ptr)
3138 struct filename_seen_cache *cache = ptr;
3140 htab_delete (cache->tab);
3141 xfree (cache);
3144 /* If FILE is not already in the table of files in CACHE, return zero;
3145 otherwise return non-zero. Optionally add FILE to the table if ADD
3146 is non-zero.
3148 NOTE: We don't manage space for FILE, we assume FILE lives as long
3149 as the caller needs. */
3151 static int
3152 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3154 void **slot;
3156 /* Is FILE in tab? */
3157 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3158 if (*slot != NULL)
3159 return 1;
3161 /* No; maybe add it to tab. */
3162 if (add)
3163 *slot = (char *) file;
3165 return 0;
3168 /* Data structure to maintain printing state for output_source_filename. */
3170 struct output_source_filename_data
3172 /* Cache of what we've seen so far. */
3173 struct filename_seen_cache *filename_seen_cache;
3175 /* Flag of whether we're printing the first one. */
3176 int first;
3179 /* Slave routine for sources_info. Force line breaks at ,'s.
3180 NAME is the name to print.
3181 DATA contains the state for printing and watching for duplicates. */
3183 static void
3184 output_source_filename (const char *name,
3185 struct output_source_filename_data *data)
3187 /* Since a single source file can result in several partial symbol
3188 tables, we need to avoid printing it more than once. Note: if
3189 some of the psymtabs are read in and some are not, it gets
3190 printed both under "Source files for which symbols have been
3191 read" and "Source files for which symbols will be read in on
3192 demand". I consider this a reasonable way to deal with the
3193 situation. I'm not sure whether this can also happen for
3194 symtabs; it doesn't hurt to check. */
3196 /* Was NAME already seen? */
3197 if (filename_seen (data->filename_seen_cache, name, 1))
3199 /* Yes; don't print it again. */
3200 return;
3203 /* No; print it and reset *FIRST. */
3204 if (! data->first)
3205 printf_filtered (", ");
3206 data->first = 0;
3208 wrap_here ("");
3209 fputs_filtered (name, gdb_stdout);
3212 /* A callback for map_partial_symbol_filenames. */
3214 static void
3215 output_partial_symbol_filename (const char *filename, const char *fullname,
3216 void *data)
3218 output_source_filename (fullname ? fullname : filename, data);
3221 static void
3222 sources_info (char *ignore, int from_tty)
3224 struct symtab *s;
3225 struct objfile *objfile;
3226 struct output_source_filename_data data;
3227 struct cleanup *cleanups;
3229 if (!have_full_symbols () && !have_partial_symbols ())
3231 error (_("No symbol table is loaded. Use the \"file\" command."));
3234 data.filename_seen_cache = create_filename_seen_cache ();
3235 cleanups = make_cleanup (delete_filename_seen_cache,
3236 data.filename_seen_cache);
3238 printf_filtered ("Source files for which symbols have been read in:\n\n");
3240 data.first = 1;
3241 ALL_SYMTABS (objfile, s)
3243 const char *fullname = symtab_to_fullname (s);
3245 output_source_filename (fullname, &data);
3247 printf_filtered ("\n\n");
3249 printf_filtered ("Source files for which symbols "
3250 "will be read in on demand:\n\n");
3252 clear_filename_seen_cache (data.filename_seen_cache);
3253 data.first = 1;
3254 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3255 1 /*need_fullname*/);
3256 printf_filtered ("\n");
3258 do_cleanups (cleanups);
3261 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3262 non-zero compare only lbasename of FILES. */
3264 static int
3265 file_matches (const char *file, char *files[], int nfiles, int basenames)
3267 int i;
3269 if (file != NULL && nfiles != 0)
3271 for (i = 0; i < nfiles; i++)
3273 if (compare_filenames_for_search (file, (basenames
3274 ? lbasename (files[i])
3275 : files[i])))
3276 return 1;
3279 else if (nfiles == 0)
3280 return 1;
3281 return 0;
3284 /* Free any memory associated with a search. */
3286 void
3287 free_search_symbols (struct symbol_search *symbols)
3289 struct symbol_search *p;
3290 struct symbol_search *next;
3292 for (p = symbols; p != NULL; p = next)
3294 next = p->next;
3295 xfree (p);
3299 static void
3300 do_free_search_symbols_cleanup (void *symbols)
3302 free_search_symbols (symbols);
3305 struct cleanup *
3306 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3308 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3311 /* Helper function for sort_search_symbols and qsort. Can only
3312 sort symbols, not minimal symbols. */
3314 static int
3315 compare_search_syms (const void *sa, const void *sb)
3317 struct symbol_search **sym_a = (struct symbol_search **) sa;
3318 struct symbol_search **sym_b = (struct symbol_search **) sb;
3320 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3321 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3324 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3325 prevtail where it is, but update its next pointer to point to
3326 the first of the sorted symbols. */
3328 static struct symbol_search *
3329 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3331 struct symbol_search **symbols, *symp, *old_next;
3332 int i;
3334 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3335 * nfound);
3336 symp = prevtail->next;
3337 for (i = 0; i < nfound; i++)
3339 symbols[i] = symp;
3340 symp = symp->next;
3342 /* Generally NULL. */
3343 old_next = symp;
3345 qsort (symbols, nfound, sizeof (struct symbol_search *),
3346 compare_search_syms);
3348 symp = prevtail;
3349 for (i = 0; i < nfound; i++)
3351 symp->next = symbols[i];
3352 symp = symp->next;
3354 symp->next = old_next;
3356 xfree (symbols);
3357 return symp;
3360 /* An object of this type is passed as the user_data to the
3361 expand_symtabs_matching method. */
3362 struct search_symbols_data
3364 int nfiles;
3365 char **files;
3367 /* It is true if PREG contains valid data, false otherwise. */
3368 unsigned preg_p : 1;
3369 regex_t preg;
3372 /* A callback for expand_symtabs_matching. */
3374 static int
3375 search_symbols_file_matches (const char *filename, void *user_data,
3376 int basenames)
3378 struct search_symbols_data *data = user_data;
3380 return file_matches (filename, data->files, data->nfiles, basenames);
3383 /* A callback for expand_symtabs_matching. */
3385 static int
3386 search_symbols_name_matches (const char *symname, void *user_data)
3388 struct search_symbols_data *data = user_data;
3390 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3393 /* Search the symbol table for matches to the regular expression REGEXP,
3394 returning the results in *MATCHES.
3396 Only symbols of KIND are searched:
3397 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3398 and constants (enums)
3399 FUNCTIONS_DOMAIN - search all functions
3400 TYPES_DOMAIN - search all type names
3401 ALL_DOMAIN - an internal error for this function
3403 free_search_symbols should be called when *MATCHES is no longer needed.
3405 The results are sorted locally; each symtab's global and static blocks are
3406 separately alphabetized. */
3408 void
3409 search_symbols (char *regexp, enum search_domain kind,
3410 int nfiles, char *files[],
3411 struct symbol_search **matches)
3413 struct symtab *s;
3414 struct blockvector *bv;
3415 struct block *b;
3416 int i = 0;
3417 struct block_iterator iter;
3418 struct symbol *sym;
3419 struct objfile *objfile;
3420 struct minimal_symbol *msymbol;
3421 int found_misc = 0;
3422 static const enum minimal_symbol_type types[]
3423 = {mst_data, mst_text, mst_abs};
3424 static const enum minimal_symbol_type types2[]
3425 = {mst_bss, mst_file_text, mst_abs};
3426 static const enum minimal_symbol_type types3[]
3427 = {mst_file_data, mst_solib_trampoline, mst_abs};
3428 static const enum minimal_symbol_type types4[]
3429 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3430 enum minimal_symbol_type ourtype;
3431 enum minimal_symbol_type ourtype2;
3432 enum minimal_symbol_type ourtype3;
3433 enum minimal_symbol_type ourtype4;
3434 struct symbol_search *sr;
3435 struct symbol_search *psr;
3436 struct symbol_search *tail;
3437 struct search_symbols_data datum;
3439 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3440 CLEANUP_CHAIN is freed only in the case of an error. */
3441 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3442 struct cleanup *retval_chain;
3444 gdb_assert (kind <= TYPES_DOMAIN);
3446 ourtype = types[kind];
3447 ourtype2 = types2[kind];
3448 ourtype3 = types3[kind];
3449 ourtype4 = types4[kind];
3451 sr = *matches = NULL;
3452 tail = NULL;
3453 datum.preg_p = 0;
3455 if (regexp != NULL)
3457 /* Make sure spacing is right for C++ operators.
3458 This is just a courtesy to make the matching less sensitive
3459 to how many spaces the user leaves between 'operator'
3460 and <TYPENAME> or <OPERATOR>. */
3461 char *opend;
3462 char *opname = operator_chars (regexp, &opend);
3463 int errcode;
3465 if (*opname)
3467 int fix = -1; /* -1 means ok; otherwise number of
3468 spaces needed. */
3470 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3472 /* There should 1 space between 'operator' and 'TYPENAME'. */
3473 if (opname[-1] != ' ' || opname[-2] == ' ')
3474 fix = 1;
3476 else
3478 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3479 if (opname[-1] == ' ')
3480 fix = 0;
3482 /* If wrong number of spaces, fix it. */
3483 if (fix >= 0)
3485 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3487 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3488 regexp = tmp;
3492 errcode = regcomp (&datum.preg, regexp,
3493 REG_NOSUB | (case_sensitivity == case_sensitive_off
3494 ? REG_ICASE : 0));
3495 if (errcode != 0)
3497 char *err = get_regcomp_error (errcode, &datum.preg);
3499 make_cleanup (xfree, err);
3500 error (_("Invalid regexp (%s): %s"), err, regexp);
3502 datum.preg_p = 1;
3503 make_regfree_cleanup (&datum.preg);
3506 /* Search through the partial symtabs *first* for all symbols
3507 matching the regexp. That way we don't have to reproduce all of
3508 the machinery below. */
3510 datum.nfiles = nfiles;
3511 datum.files = files;
3512 ALL_OBJFILES (objfile)
3514 if (objfile->sf)
3515 objfile->sf->qf->expand_symtabs_matching (objfile,
3516 (nfiles == 0
3517 ? NULL
3518 : search_symbols_file_matches),
3519 search_symbols_name_matches,
3520 kind,
3521 &datum);
3524 retval_chain = old_chain;
3526 /* Here, we search through the minimal symbol tables for functions
3527 and variables that match, and force their symbols to be read.
3528 This is in particular necessary for demangled variable names,
3529 which are no longer put into the partial symbol tables.
3530 The symbol will then be found during the scan of symtabs below.
3532 For functions, find_pc_symtab should succeed if we have debug info
3533 for the function, for variables we have to call
3534 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3535 has debug info.
3536 If the lookup fails, set found_misc so that we will rescan to print
3537 any matching symbols without debug info.
3538 We only search the objfile the msymbol came from, we no longer search
3539 all objfiles. In large programs (1000s of shared libs) searching all
3540 objfiles is not worth the pain. */
3542 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3544 ALL_MSYMBOLS (objfile, msymbol)
3546 QUIT;
3548 if (msymbol->created_by_gdb)
3549 continue;
3551 if (MSYMBOL_TYPE (msymbol) == ourtype
3552 || MSYMBOL_TYPE (msymbol) == ourtype2
3553 || MSYMBOL_TYPE (msymbol) == ourtype3
3554 || MSYMBOL_TYPE (msymbol) == ourtype4)
3556 if (!datum.preg_p
3557 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3558 NULL, 0) == 0)
3560 /* Note: An important side-effect of these lookup functions
3561 is to expand the symbol table if msymbol is found, for the
3562 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3563 if (kind == FUNCTIONS_DOMAIN
3564 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3565 : (lookup_symbol_in_objfile_from_linkage_name
3566 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3567 == NULL))
3568 found_misc = 1;
3574 ALL_PRIMARY_SYMTABS (objfile, s)
3576 bv = BLOCKVECTOR (s);
3577 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3579 struct symbol_search *prevtail = tail;
3580 int nfound = 0;
3582 b = BLOCKVECTOR_BLOCK (bv, i);
3583 ALL_BLOCK_SYMBOLS (b, iter, sym)
3585 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3587 QUIT;
3589 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3590 a substring of symtab_to_fullname as it may contain "./" etc. */
3591 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3592 || ((basenames_may_differ
3593 || file_matches (lbasename (real_symtab->filename),
3594 files, nfiles, 1))
3595 && file_matches (symtab_to_fullname (real_symtab),
3596 files, nfiles, 0)))
3597 && ((!datum.preg_p
3598 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3599 NULL, 0) == 0)
3600 && ((kind == VARIABLES_DOMAIN
3601 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3602 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3603 && SYMBOL_CLASS (sym) != LOC_BLOCK
3604 /* LOC_CONST can be used for more than just enums,
3605 e.g., c++ static const members.
3606 We only want to skip enums here. */
3607 && !(SYMBOL_CLASS (sym) == LOC_CONST
3608 && TYPE_CODE (SYMBOL_TYPE (sym))
3609 == TYPE_CODE_ENUM))
3610 || (kind == FUNCTIONS_DOMAIN
3611 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3612 || (kind == TYPES_DOMAIN
3613 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3615 /* match */
3616 psr = (struct symbol_search *)
3617 xmalloc (sizeof (struct symbol_search));
3618 psr->block = i;
3619 psr->symtab = real_symtab;
3620 psr->symbol = sym;
3621 psr->msymbol = NULL;
3622 psr->next = NULL;
3623 if (tail == NULL)
3624 sr = psr;
3625 else
3626 tail->next = psr;
3627 tail = psr;
3628 nfound ++;
3631 if (nfound > 0)
3633 if (prevtail == NULL)
3635 struct symbol_search dummy;
3637 dummy.next = sr;
3638 tail = sort_search_symbols (&dummy, nfound);
3639 sr = dummy.next;
3641 make_cleanup_free_search_symbols (sr);
3643 else
3644 tail = sort_search_symbols (prevtail, nfound);
3649 /* If there are no eyes, avoid all contact. I mean, if there are
3650 no debug symbols, then print directly from the msymbol_vector. */
3652 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3654 ALL_MSYMBOLS (objfile, msymbol)
3656 QUIT;
3658 if (msymbol->created_by_gdb)
3659 continue;
3661 if (MSYMBOL_TYPE (msymbol) == ourtype
3662 || MSYMBOL_TYPE (msymbol) == ourtype2
3663 || MSYMBOL_TYPE (msymbol) == ourtype3
3664 || MSYMBOL_TYPE (msymbol) == ourtype4)
3666 if (!datum.preg_p
3667 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3668 NULL, 0) == 0)
3670 /* For functions we can do a quick check of whether the
3671 symbol might be found via find_pc_symtab. */
3672 if (kind != FUNCTIONS_DOMAIN
3673 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3675 if (lookup_symbol_in_objfile_from_linkage_name
3676 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3677 == NULL)
3679 /* match */
3680 psr = (struct symbol_search *)
3681 xmalloc (sizeof (struct symbol_search));
3682 psr->block = i;
3683 psr->msymbol = msymbol;
3684 psr->symtab = NULL;
3685 psr->symbol = NULL;
3686 psr->next = NULL;
3687 if (tail == NULL)
3689 sr = psr;
3690 make_cleanup_free_search_symbols (sr);
3692 else
3693 tail->next = psr;
3694 tail = psr;
3702 discard_cleanups (retval_chain);
3703 do_cleanups (old_chain);
3704 *matches = sr;
3707 /* Helper function for symtab_symbol_info, this function uses
3708 the data returned from search_symbols() to print information
3709 regarding the match to gdb_stdout. */
3711 static void
3712 print_symbol_info (enum search_domain kind,
3713 struct symtab *s, struct symbol *sym,
3714 int block, const char *last)
3716 const char *s_filename = symtab_to_filename_for_display (s);
3718 if (last == NULL || filename_cmp (last, s_filename) != 0)
3720 fputs_filtered ("\nFile ", gdb_stdout);
3721 fputs_filtered (s_filename, gdb_stdout);
3722 fputs_filtered (":\n", gdb_stdout);
3725 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3726 printf_filtered ("static ");
3728 /* Typedef that is not a C++ class. */
3729 if (kind == TYPES_DOMAIN
3730 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3731 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3732 /* variable, func, or typedef-that-is-c++-class. */
3733 else if (kind < TYPES_DOMAIN
3734 || (kind == TYPES_DOMAIN
3735 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3737 type_print (SYMBOL_TYPE (sym),
3738 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3739 ? "" : SYMBOL_PRINT_NAME (sym)),
3740 gdb_stdout, 0);
3742 printf_filtered (";\n");
3746 /* This help function for symtab_symbol_info() prints information
3747 for non-debugging symbols to gdb_stdout. */
3749 static void
3750 print_msymbol_info (struct minimal_symbol *msymbol)
3752 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3753 char *tmp;
3755 if (gdbarch_addr_bit (gdbarch) <= 32)
3756 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3757 & (CORE_ADDR) 0xffffffff,
3759 else
3760 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3761 16);
3762 printf_filtered ("%s %s\n",
3763 tmp, SYMBOL_PRINT_NAME (msymbol));
3766 /* This is the guts of the commands "info functions", "info types", and
3767 "info variables". It calls search_symbols to find all matches and then
3768 print_[m]symbol_info to print out some useful information about the
3769 matches. */
3771 static void
3772 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3774 static const char * const classnames[] =
3775 {"variable", "function", "type"};
3776 struct symbol_search *symbols;
3777 struct symbol_search *p;
3778 struct cleanup *old_chain;
3779 const char *last_filename = NULL;
3780 int first = 1;
3782 gdb_assert (kind <= TYPES_DOMAIN);
3784 /* Must make sure that if we're interrupted, symbols gets freed. */
3785 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3786 old_chain = make_cleanup_free_search_symbols (symbols);
3788 if (regexp != NULL)
3789 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3790 classnames[kind], regexp);
3791 else
3792 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3794 for (p = symbols; p != NULL; p = p->next)
3796 QUIT;
3798 if (p->msymbol != NULL)
3800 if (first)
3802 printf_filtered (_("\nNon-debugging symbols:\n"));
3803 first = 0;
3805 print_msymbol_info (p->msymbol);
3807 else
3809 print_symbol_info (kind,
3810 p->symtab,
3811 p->symbol,
3812 p->block,
3813 last_filename);
3814 last_filename = symtab_to_filename_for_display (p->symtab);
3818 do_cleanups (old_chain);
3821 static void
3822 variables_info (char *regexp, int from_tty)
3824 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3827 static void
3828 functions_info (char *regexp, int from_tty)
3830 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3834 static void
3835 types_info (char *regexp, int from_tty)
3837 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3840 /* Breakpoint all functions matching regular expression. */
3842 void
3843 rbreak_command_wrapper (char *regexp, int from_tty)
3845 rbreak_command (regexp, from_tty);
3848 /* A cleanup function that calls end_rbreak_breakpoints. */
3850 static void
3851 do_end_rbreak_breakpoints (void *ignore)
3853 end_rbreak_breakpoints ();
3856 static void
3857 rbreak_command (char *regexp, int from_tty)
3859 struct symbol_search *ss;
3860 struct symbol_search *p;
3861 struct cleanup *old_chain;
3862 char *string = NULL;
3863 int len = 0;
3864 char **files = NULL, *file_name;
3865 int nfiles = 0;
3867 if (regexp)
3869 char *colon = strchr (regexp, ':');
3871 if (colon && *(colon + 1) != ':')
3873 int colon_index;
3875 colon_index = colon - regexp;
3876 file_name = alloca (colon_index + 1);
3877 memcpy (file_name, regexp, colon_index);
3878 file_name[colon_index--] = 0;
3879 while (isspace (file_name[colon_index]))
3880 file_name[colon_index--] = 0;
3881 files = &file_name;
3882 nfiles = 1;
3883 regexp = skip_spaces (colon + 1);
3887 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3888 old_chain = make_cleanup_free_search_symbols (ss);
3889 make_cleanup (free_current_contents, &string);
3891 start_rbreak_breakpoints ();
3892 make_cleanup (do_end_rbreak_breakpoints, NULL);
3893 for (p = ss; p != NULL; p = p->next)
3895 if (p->msymbol == NULL)
3897 const char *fullname = symtab_to_fullname (p->symtab);
3899 int newlen = (strlen (fullname)
3900 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3901 + 4);
3903 if (newlen > len)
3905 string = xrealloc (string, newlen);
3906 len = newlen;
3908 strcpy (string, fullname);
3909 strcat (string, ":'");
3910 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3911 strcat (string, "'");
3912 break_command (string, from_tty);
3913 print_symbol_info (FUNCTIONS_DOMAIN,
3914 p->symtab,
3915 p->symbol,
3916 p->block,
3917 symtab_to_filename_for_display (p->symtab));
3919 else
3921 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3923 if (newlen > len)
3925 string = xrealloc (string, newlen);
3926 len = newlen;
3928 strcpy (string, "'");
3929 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3930 strcat (string, "'");
3932 break_command (string, from_tty);
3933 printf_filtered ("<function, no debug info> %s;\n",
3934 SYMBOL_PRINT_NAME (p->msymbol));
3938 do_cleanups (old_chain);
3942 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3944 Either sym_text[sym_text_len] != '(' and then we search for any
3945 symbol starting with SYM_TEXT text.
3947 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3948 be terminated at that point. Partial symbol tables do not have parameters
3949 information. */
3951 static int
3952 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3954 int (*ncmp) (const char *, const char *, size_t);
3956 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3958 if (ncmp (name, sym_text, sym_text_len) != 0)
3959 return 0;
3961 if (sym_text[sym_text_len] == '(')
3963 /* User searches for `name(someth...'. Require NAME to be terminated.
3964 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3965 present but accept even parameters presence. In this case this
3966 function is in fact strcmp_iw but whitespace skipping is not supported
3967 for tab completion. */
3969 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3970 return 0;
3973 return 1;
3976 /* Free any memory associated with a completion list. */
3978 static void
3979 free_completion_list (VEC (char_ptr) **list_ptr)
3981 int i;
3982 char *p;
3984 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3985 xfree (p);
3986 VEC_free (char_ptr, *list_ptr);
3989 /* Callback for make_cleanup. */
3991 static void
3992 do_free_completion_list (void *list)
3994 free_completion_list (list);
3997 /* Helper routine for make_symbol_completion_list. */
3999 static VEC (char_ptr) *return_val;
4001 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4002 completion_list_add_name \
4003 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4005 /* Test to see if the symbol specified by SYMNAME (which is already
4006 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4007 characters. If so, add it to the current completion list. */
4009 static void
4010 completion_list_add_name (const char *symname,
4011 const char *sym_text, int sym_text_len,
4012 const char *text, const char *word)
4014 /* Clip symbols that cannot match. */
4015 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4016 return;
4018 /* We have a match for a completion, so add SYMNAME to the current list
4019 of matches. Note that the name is moved to freshly malloc'd space. */
4022 char *new;
4024 if (word == sym_text)
4026 new = xmalloc (strlen (symname) + 5);
4027 strcpy (new, symname);
4029 else if (word > sym_text)
4031 /* Return some portion of symname. */
4032 new = xmalloc (strlen (symname) + 5);
4033 strcpy (new, symname + (word - sym_text));
4035 else
4037 /* Return some of SYM_TEXT plus symname. */
4038 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4039 strncpy (new, word, sym_text - word);
4040 new[sym_text - word] = '\0';
4041 strcat (new, symname);
4044 VEC_safe_push (char_ptr, return_val, new);
4048 /* ObjC: In case we are completing on a selector, look as the msymbol
4049 again and feed all the selectors into the mill. */
4051 static void
4052 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4053 const char *sym_text, int sym_text_len,
4054 const char *text, const char *word)
4056 static char *tmp = NULL;
4057 static unsigned int tmplen = 0;
4059 const char *method, *category, *selector;
4060 char *tmp2 = NULL;
4062 method = SYMBOL_NATURAL_NAME (msymbol);
4064 /* Is it a method? */
4065 if ((method[0] != '-') && (method[0] != '+'))
4066 return;
4068 if (sym_text[0] == '[')
4069 /* Complete on shortened method method. */
4070 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4072 while ((strlen (method) + 1) >= tmplen)
4074 if (tmplen == 0)
4075 tmplen = 1024;
4076 else
4077 tmplen *= 2;
4078 tmp = xrealloc (tmp, tmplen);
4080 selector = strchr (method, ' ');
4081 if (selector != NULL)
4082 selector++;
4084 category = strchr (method, '(');
4086 if ((category != NULL) && (selector != NULL))
4088 memcpy (tmp, method, (category - method));
4089 tmp[category - method] = ' ';
4090 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4091 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4092 if (sym_text[0] == '[')
4093 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4096 if (selector != NULL)
4098 /* Complete on selector only. */
4099 strcpy (tmp, selector);
4100 tmp2 = strchr (tmp, ']');
4101 if (tmp2 != NULL)
4102 *tmp2 = '\0';
4104 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4108 /* Break the non-quoted text based on the characters which are in
4109 symbols. FIXME: This should probably be language-specific. */
4111 static char *
4112 language_search_unquoted_string (char *text, char *p)
4114 for (; p > text; --p)
4116 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4117 continue;
4118 else
4120 if ((current_language->la_language == language_objc))
4122 if (p[-1] == ':') /* Might be part of a method name. */
4123 continue;
4124 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4125 p -= 2; /* Beginning of a method name. */
4126 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4127 { /* Might be part of a method name. */
4128 char *t = p;
4130 /* Seeing a ' ' or a '(' is not conclusive evidence
4131 that we are in the middle of a method name. However,
4132 finding "-[" or "+[" should be pretty un-ambiguous.
4133 Unfortunately we have to find it now to decide. */
4135 while (t > text)
4136 if (isalnum (t[-1]) || t[-1] == '_' ||
4137 t[-1] == ' ' || t[-1] == ':' ||
4138 t[-1] == '(' || t[-1] == ')')
4139 --t;
4140 else
4141 break;
4143 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4144 p = t - 2; /* Method name detected. */
4145 /* Else we leave with p unchanged. */
4148 break;
4151 return p;
4154 static void
4155 completion_list_add_fields (struct symbol *sym, char *sym_text,
4156 int sym_text_len, char *text, char *word)
4158 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4160 struct type *t = SYMBOL_TYPE (sym);
4161 enum type_code c = TYPE_CODE (t);
4162 int j;
4164 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4165 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4166 if (TYPE_FIELD_NAME (t, j))
4167 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4168 sym_text, sym_text_len, text, word);
4172 /* Type of the user_data argument passed to add_macro_name or
4173 expand_partial_symbol_name. The contents are simply whatever is
4174 needed by completion_list_add_name. */
4175 struct add_name_data
4177 char *sym_text;
4178 int sym_text_len;
4179 char *text;
4180 char *word;
4183 /* A callback used with macro_for_each and macro_for_each_in_scope.
4184 This adds a macro's name to the current completion list. */
4186 static void
4187 add_macro_name (const char *name, const struct macro_definition *ignore,
4188 struct macro_source_file *ignore2, int ignore3,
4189 void *user_data)
4191 struct add_name_data *datum = (struct add_name_data *) user_data;
4193 completion_list_add_name ((char *) name,
4194 datum->sym_text, datum->sym_text_len,
4195 datum->text, datum->word);
4198 /* A callback for expand_partial_symbol_names. */
4200 static int
4201 expand_partial_symbol_name (const char *name, void *user_data)
4203 struct add_name_data *datum = (struct add_name_data *) user_data;
4205 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4208 VEC (char_ptr) *
4209 default_make_symbol_completion_list_break_on (char *text, char *word,
4210 const char *break_on,
4211 enum type_code code)
4213 /* Problem: All of the symbols have to be copied because readline
4214 frees them. I'm not going to worry about this; hopefully there
4215 won't be that many. */
4217 struct symbol *sym;
4218 struct symtab *s;
4219 struct minimal_symbol *msymbol;
4220 struct objfile *objfile;
4221 struct block *b;
4222 const struct block *surrounding_static_block, *surrounding_global_block;
4223 struct block_iterator iter;
4224 /* The symbol we are completing on. Points in same buffer as text. */
4225 char *sym_text;
4226 /* Length of sym_text. */
4227 int sym_text_len;
4228 struct add_name_data datum;
4229 struct cleanup *back_to;
4231 /* Now look for the symbol we are supposed to complete on. */
4233 char *p;
4234 char quote_found;
4235 char *quote_pos = NULL;
4237 /* First see if this is a quoted string. */
4238 quote_found = '\0';
4239 for (p = text; *p != '\0'; ++p)
4241 if (quote_found != '\0')
4243 if (*p == quote_found)
4244 /* Found close quote. */
4245 quote_found = '\0';
4246 else if (*p == '\\' && p[1] == quote_found)
4247 /* A backslash followed by the quote character
4248 doesn't end the string. */
4249 ++p;
4251 else if (*p == '\'' || *p == '"')
4253 quote_found = *p;
4254 quote_pos = p;
4257 if (quote_found == '\'')
4258 /* A string within single quotes can be a symbol, so complete on it. */
4259 sym_text = quote_pos + 1;
4260 else if (quote_found == '"')
4261 /* A double-quoted string is never a symbol, nor does it make sense
4262 to complete it any other way. */
4264 return NULL;
4266 else
4268 /* It is not a quoted string. Break it based on the characters
4269 which are in symbols. */
4270 while (p > text)
4272 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4273 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4274 --p;
4275 else
4276 break;
4278 sym_text = p;
4282 sym_text_len = strlen (sym_text);
4284 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4286 if (current_language->la_language == language_cplus
4287 || current_language->la_language == language_java
4288 || current_language->la_language == language_fortran)
4290 /* These languages may have parameters entered by user but they are never
4291 present in the partial symbol tables. */
4293 const char *cs = memchr (sym_text, '(', sym_text_len);
4295 if (cs)
4296 sym_text_len = cs - sym_text;
4298 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4300 return_val = NULL;
4301 back_to = make_cleanup (do_free_completion_list, &return_val);
4303 datum.sym_text = sym_text;
4304 datum.sym_text_len = sym_text_len;
4305 datum.text = text;
4306 datum.word = word;
4308 /* Look through the partial symtabs for all symbols which begin
4309 by matching SYM_TEXT. Expand all CUs that you find to the list.
4310 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4311 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4313 /* At this point scan through the misc symbol vectors and add each
4314 symbol you find to the list. Eventually we want to ignore
4315 anything that isn't a text symbol (everything else will be
4316 handled by the psymtab code above). */
4318 if (code == TYPE_CODE_UNDEF)
4320 ALL_MSYMBOLS (objfile, msymbol)
4322 QUIT;
4323 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4324 word);
4326 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4327 word);
4331 /* Search upwards from currently selected frame (so that we can
4332 complete on local vars). Also catch fields of types defined in
4333 this places which match our text string. Only complete on types
4334 visible from current context. */
4336 b = get_selected_block (0);
4337 surrounding_static_block = block_static_block (b);
4338 surrounding_global_block = block_global_block (b);
4339 if (surrounding_static_block != NULL)
4340 while (b != surrounding_static_block)
4342 QUIT;
4344 ALL_BLOCK_SYMBOLS (b, iter, sym)
4346 if (code == TYPE_CODE_UNDEF)
4348 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4349 word);
4350 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4351 word);
4353 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4354 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4355 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4356 word);
4359 /* Stop when we encounter an enclosing function. Do not stop for
4360 non-inlined functions - the locals of the enclosing function
4361 are in scope for a nested function. */
4362 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4363 break;
4364 b = BLOCK_SUPERBLOCK (b);
4367 /* Add fields from the file's types; symbols will be added below. */
4369 if (code == TYPE_CODE_UNDEF)
4371 if (surrounding_static_block != NULL)
4372 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4373 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4375 if (surrounding_global_block != NULL)
4376 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4377 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4380 /* Go through the symtabs and check the externs and statics for
4381 symbols which match. */
4383 ALL_PRIMARY_SYMTABS (objfile, s)
4385 QUIT;
4386 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4387 ALL_BLOCK_SYMBOLS (b, iter, sym)
4389 if (code == TYPE_CODE_UNDEF
4390 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4391 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4392 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4396 ALL_PRIMARY_SYMTABS (objfile, s)
4398 QUIT;
4399 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4400 ALL_BLOCK_SYMBOLS (b, iter, sym)
4402 if (code == TYPE_CODE_UNDEF
4403 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4404 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4405 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4409 /* Skip macros if we are completing a struct tag -- arguable but
4410 usually what is expected. */
4411 if (current_language->la_macro_expansion == macro_expansion_c
4412 && code == TYPE_CODE_UNDEF)
4414 struct macro_scope *scope;
4416 /* Add any macros visible in the default scope. Note that this
4417 may yield the occasional wrong result, because an expression
4418 might be evaluated in a scope other than the default. For
4419 example, if the user types "break file:line if <TAB>", the
4420 resulting expression will be evaluated at "file:line" -- but
4421 at there does not seem to be a way to detect this at
4422 completion time. */
4423 scope = default_macro_scope ();
4424 if (scope)
4426 macro_for_each_in_scope (scope->file, scope->line,
4427 add_macro_name, &datum);
4428 xfree (scope);
4431 /* User-defined macros are always visible. */
4432 macro_for_each (macro_user_macros, add_macro_name, &datum);
4435 discard_cleanups (back_to);
4436 return (return_val);
4439 VEC (char_ptr) *
4440 default_make_symbol_completion_list (char *text, char *word,
4441 enum type_code code)
4443 return default_make_symbol_completion_list_break_on (text, word, "", code);
4446 /* Return a vector of all symbols (regardless of class) which begin by
4447 matching TEXT. If the answer is no symbols, then the return value
4448 is NULL. */
4450 VEC (char_ptr) *
4451 make_symbol_completion_list (char *text, char *word)
4453 return current_language->la_make_symbol_completion_list (text, word,
4454 TYPE_CODE_UNDEF);
4457 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4458 symbols whose type code is CODE. */
4460 VEC (char_ptr) *
4461 make_symbol_completion_type (char *text, char *word, enum type_code code)
4463 gdb_assert (code == TYPE_CODE_UNION
4464 || code == TYPE_CODE_STRUCT
4465 || code == TYPE_CODE_CLASS
4466 || code == TYPE_CODE_ENUM);
4467 return current_language->la_make_symbol_completion_list (text, word, code);
4470 /* Like make_symbol_completion_list, but suitable for use as a
4471 completion function. */
4473 VEC (char_ptr) *
4474 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4475 char *text, char *word)
4477 return make_symbol_completion_list (text, word);
4480 /* Like make_symbol_completion_list, but returns a list of symbols
4481 defined in a source file FILE. */
4483 VEC (char_ptr) *
4484 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4486 struct symbol *sym;
4487 struct symtab *s;
4488 struct block *b;
4489 struct block_iterator iter;
4490 /* The symbol we are completing on. Points in same buffer as text. */
4491 char *sym_text;
4492 /* Length of sym_text. */
4493 int sym_text_len;
4495 /* Now look for the symbol we are supposed to complete on.
4496 FIXME: This should be language-specific. */
4498 char *p;
4499 char quote_found;
4500 char *quote_pos = NULL;
4502 /* First see if this is a quoted string. */
4503 quote_found = '\0';
4504 for (p = text; *p != '\0'; ++p)
4506 if (quote_found != '\0')
4508 if (*p == quote_found)
4509 /* Found close quote. */
4510 quote_found = '\0';
4511 else if (*p == '\\' && p[1] == quote_found)
4512 /* A backslash followed by the quote character
4513 doesn't end the string. */
4514 ++p;
4516 else if (*p == '\'' || *p == '"')
4518 quote_found = *p;
4519 quote_pos = p;
4522 if (quote_found == '\'')
4523 /* A string within single quotes can be a symbol, so complete on it. */
4524 sym_text = quote_pos + 1;
4525 else if (quote_found == '"')
4526 /* A double-quoted string is never a symbol, nor does it make sense
4527 to complete it any other way. */
4529 return NULL;
4531 else
4533 /* Not a quoted string. */
4534 sym_text = language_search_unquoted_string (text, p);
4538 sym_text_len = strlen (sym_text);
4540 return_val = NULL;
4542 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4543 in). */
4544 s = lookup_symtab (srcfile);
4545 if (s == NULL)
4547 /* Maybe they typed the file with leading directories, while the
4548 symbol tables record only its basename. */
4549 const char *tail = lbasename (srcfile);
4551 if (tail > srcfile)
4552 s = lookup_symtab (tail);
4555 /* If we have no symtab for that file, return an empty list. */
4556 if (s == NULL)
4557 return (return_val);
4559 /* Go through this symtab and check the externs and statics for
4560 symbols which match. */
4562 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4563 ALL_BLOCK_SYMBOLS (b, iter, sym)
4565 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4568 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4569 ALL_BLOCK_SYMBOLS (b, iter, sym)
4571 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4574 return (return_val);
4577 /* A helper function for make_source_files_completion_list. It adds
4578 another file name to a list of possible completions, growing the
4579 list as necessary. */
4581 static void
4582 add_filename_to_list (const char *fname, char *text, char *word,
4583 VEC (char_ptr) **list)
4585 char *new;
4586 size_t fnlen = strlen (fname);
4588 if (word == text)
4590 /* Return exactly fname. */
4591 new = xmalloc (fnlen + 5);
4592 strcpy (new, fname);
4594 else if (word > text)
4596 /* Return some portion of fname. */
4597 new = xmalloc (fnlen + 5);
4598 strcpy (new, fname + (word - text));
4600 else
4602 /* Return some of TEXT plus fname. */
4603 new = xmalloc (fnlen + (text - word) + 5);
4604 strncpy (new, word, text - word);
4605 new[text - word] = '\0';
4606 strcat (new, fname);
4608 VEC_safe_push (char_ptr, *list, new);
4611 static int
4612 not_interesting_fname (const char *fname)
4614 static const char *illegal_aliens[] = {
4615 "_globals_", /* inserted by coff_symtab_read */
4616 NULL
4618 int i;
4620 for (i = 0; illegal_aliens[i]; i++)
4622 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4623 return 1;
4625 return 0;
4628 /* An object of this type is passed as the user_data argument to
4629 map_partial_symbol_filenames. */
4630 struct add_partial_filename_data
4632 struct filename_seen_cache *filename_seen_cache;
4633 char *text;
4634 char *word;
4635 int text_len;
4636 VEC (char_ptr) **list;
4639 /* A callback for map_partial_symbol_filenames. */
4641 static void
4642 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4643 void *user_data)
4645 struct add_partial_filename_data *data = user_data;
4647 if (not_interesting_fname (filename))
4648 return;
4649 if (!filename_seen (data->filename_seen_cache, filename, 1)
4650 && filename_ncmp (filename, data->text, data->text_len) == 0)
4652 /* This file matches for a completion; add it to the
4653 current list of matches. */
4654 add_filename_to_list (filename, data->text, data->word, data->list);
4656 else
4658 const char *base_name = lbasename (filename);
4660 if (base_name != filename
4661 && !filename_seen (data->filename_seen_cache, base_name, 1)
4662 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4663 add_filename_to_list (base_name, data->text, data->word, data->list);
4667 /* Return a vector of all source files whose names begin with matching
4668 TEXT. The file names are looked up in the symbol tables of this
4669 program. If the answer is no matchess, then the return value is
4670 NULL. */
4672 VEC (char_ptr) *
4673 make_source_files_completion_list (char *text, char *word)
4675 struct symtab *s;
4676 struct objfile *objfile;
4677 size_t text_len = strlen (text);
4678 VEC (char_ptr) *list = NULL;
4679 const char *base_name;
4680 struct add_partial_filename_data datum;
4681 struct filename_seen_cache *filename_seen_cache;
4682 struct cleanup *back_to, *cache_cleanup;
4684 if (!have_full_symbols () && !have_partial_symbols ())
4685 return list;
4687 back_to = make_cleanup (do_free_completion_list, &list);
4689 filename_seen_cache = create_filename_seen_cache ();
4690 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4691 filename_seen_cache);
4693 ALL_SYMTABS (objfile, s)
4695 if (not_interesting_fname (s->filename))
4696 continue;
4697 if (!filename_seen (filename_seen_cache, s->filename, 1)
4698 && filename_ncmp (s->filename, text, text_len) == 0)
4700 /* This file matches for a completion; add it to the current
4701 list of matches. */
4702 add_filename_to_list (s->filename, text, word, &list);
4704 else
4706 /* NOTE: We allow the user to type a base name when the
4707 debug info records leading directories, but not the other
4708 way around. This is what subroutines of breakpoint
4709 command do when they parse file names. */
4710 base_name = lbasename (s->filename);
4711 if (base_name != s->filename
4712 && !filename_seen (filename_seen_cache, base_name, 1)
4713 && filename_ncmp (base_name, text, text_len) == 0)
4714 add_filename_to_list (base_name, text, word, &list);
4718 datum.filename_seen_cache = filename_seen_cache;
4719 datum.text = text;
4720 datum.word = word;
4721 datum.text_len = text_len;
4722 datum.list = &list;
4723 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4724 0 /*need_fullname*/);
4726 do_cleanups (cache_cleanup);
4727 discard_cleanups (back_to);
4729 return list;
4732 /* Determine if PC is in the prologue of a function. The prologue is the area
4733 between the first instruction of a function, and the first executable line.
4734 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4736 If non-zero, func_start is where we think the prologue starts, possibly
4737 by previous examination of symbol table information. */
4740 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4742 struct symtab_and_line sal;
4743 CORE_ADDR func_addr, func_end;
4745 /* We have several sources of information we can consult to figure
4746 this out.
4747 - Compilers usually emit line number info that marks the prologue
4748 as its own "source line". So the ending address of that "line"
4749 is the end of the prologue. If available, this is the most
4750 reliable method.
4751 - The minimal symbols and partial symbols, which can usually tell
4752 us the starting and ending addresses of a function.
4753 - If we know the function's start address, we can call the
4754 architecture-defined gdbarch_skip_prologue function to analyze the
4755 instruction stream and guess where the prologue ends.
4756 - Our `func_start' argument; if non-zero, this is the caller's
4757 best guess as to the function's entry point. At the time of
4758 this writing, handle_inferior_event doesn't get this right, so
4759 it should be our last resort. */
4761 /* Consult the partial symbol table, to find which function
4762 the PC is in. */
4763 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4765 CORE_ADDR prologue_end;
4767 /* We don't even have minsym information, so fall back to using
4768 func_start, if given. */
4769 if (! func_start)
4770 return 1; /* We *might* be in a prologue. */
4772 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4774 return func_start <= pc && pc < prologue_end;
4777 /* If we have line number information for the function, that's
4778 usually pretty reliable. */
4779 sal = find_pc_line (func_addr, 0);
4781 /* Now sal describes the source line at the function's entry point,
4782 which (by convention) is the prologue. The end of that "line",
4783 sal.end, is the end of the prologue.
4785 Note that, for functions whose source code is all on a single
4786 line, the line number information doesn't always end up this way.
4787 So we must verify that our purported end-of-prologue address is
4788 *within* the function, not at its start or end. */
4789 if (sal.line == 0
4790 || sal.end <= func_addr
4791 || func_end <= sal.end)
4793 /* We don't have any good line number info, so use the minsym
4794 information, together with the architecture-specific prologue
4795 scanning code. */
4796 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4798 return func_addr <= pc && pc < prologue_end;
4801 /* We have line number info, and it looks good. */
4802 return func_addr <= pc && pc < sal.end;
4805 /* Given PC at the function's start address, attempt to find the
4806 prologue end using SAL information. Return zero if the skip fails.
4808 A non-optimized prologue traditionally has one SAL for the function
4809 and a second for the function body. A single line function has
4810 them both pointing at the same line.
4812 An optimized prologue is similar but the prologue may contain
4813 instructions (SALs) from the instruction body. Need to skip those
4814 while not getting into the function body.
4816 The functions end point and an increasing SAL line are used as
4817 indicators of the prologue's endpoint.
4819 This code is based on the function refine_prologue_limit
4820 (found in ia64). */
4822 CORE_ADDR
4823 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4825 struct symtab_and_line prologue_sal;
4826 CORE_ADDR start_pc;
4827 CORE_ADDR end_pc;
4828 struct block *bl;
4830 /* Get an initial range for the function. */
4831 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4832 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4834 prologue_sal = find_pc_line (start_pc, 0);
4835 if (prologue_sal.line != 0)
4837 /* For languages other than assembly, treat two consecutive line
4838 entries at the same address as a zero-instruction prologue.
4839 The GNU assembler emits separate line notes for each instruction
4840 in a multi-instruction macro, but compilers generally will not
4841 do this. */
4842 if (prologue_sal.symtab->language != language_asm)
4844 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4845 int idx = 0;
4847 /* Skip any earlier lines, and any end-of-sequence marker
4848 from a previous function. */
4849 while (linetable->item[idx].pc != prologue_sal.pc
4850 || linetable->item[idx].line == 0)
4851 idx++;
4853 if (idx+1 < linetable->nitems
4854 && linetable->item[idx+1].line != 0
4855 && linetable->item[idx+1].pc == start_pc)
4856 return start_pc;
4859 /* If there is only one sal that covers the entire function,
4860 then it is probably a single line function, like
4861 "foo(){}". */
4862 if (prologue_sal.end >= end_pc)
4863 return 0;
4865 while (prologue_sal.end < end_pc)
4867 struct symtab_and_line sal;
4869 sal = find_pc_line (prologue_sal.end, 0);
4870 if (sal.line == 0)
4871 break;
4872 /* Assume that a consecutive SAL for the same (or larger)
4873 line mark the prologue -> body transition. */
4874 if (sal.line >= prologue_sal.line)
4875 break;
4876 /* Likewise if we are in a different symtab altogether
4877 (e.g. within a file included via #include).  */
4878 if (sal.symtab != prologue_sal.symtab)
4879 break;
4881 /* The line number is smaller. Check that it's from the
4882 same function, not something inlined. If it's inlined,
4883 then there is no point comparing the line numbers. */
4884 bl = block_for_pc (prologue_sal.end);
4885 while (bl)
4887 if (block_inlined_p (bl))
4888 break;
4889 if (BLOCK_FUNCTION (bl))
4891 bl = NULL;
4892 break;
4894 bl = BLOCK_SUPERBLOCK (bl);
4896 if (bl != NULL)
4897 break;
4899 /* The case in which compiler's optimizer/scheduler has
4900 moved instructions into the prologue. We look ahead in
4901 the function looking for address ranges whose
4902 corresponding line number is less the first one that we
4903 found for the function. This is more conservative then
4904 refine_prologue_limit which scans a large number of SALs
4905 looking for any in the prologue. */
4906 prologue_sal = sal;
4910 if (prologue_sal.end < end_pc)
4911 /* Return the end of this line, or zero if we could not find a
4912 line. */
4913 return prologue_sal.end;
4914 else
4915 /* Don't return END_PC, which is past the end of the function. */
4916 return prologue_sal.pc;
4919 /* Track MAIN */
4920 static char *name_of_main;
4921 enum language language_of_main = language_unknown;
4923 void
4924 set_main_name (const char *name)
4926 if (name_of_main != NULL)
4928 xfree (name_of_main);
4929 name_of_main = NULL;
4930 language_of_main = language_unknown;
4932 if (name != NULL)
4934 name_of_main = xstrdup (name);
4935 language_of_main = language_unknown;
4939 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4940 accordingly. */
4942 static void
4943 find_main_name (void)
4945 const char *new_main_name;
4947 /* Try to see if the main procedure is in Ada. */
4948 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4949 be to add a new method in the language vector, and call this
4950 method for each language until one of them returns a non-empty
4951 name. This would allow us to remove this hard-coded call to
4952 an Ada function. It is not clear that this is a better approach
4953 at this point, because all methods need to be written in a way
4954 such that false positives never be returned. For instance, it is
4955 important that a method does not return a wrong name for the main
4956 procedure if the main procedure is actually written in a different
4957 language. It is easy to guaranty this with Ada, since we use a
4958 special symbol generated only when the main in Ada to find the name
4959 of the main procedure. It is difficult however to see how this can
4960 be guarantied for languages such as C, for instance. This suggests
4961 that order of call for these methods becomes important, which means
4962 a more complicated approach. */
4963 new_main_name = ada_main_name ();
4964 if (new_main_name != NULL)
4966 set_main_name (new_main_name);
4967 return;
4970 new_main_name = go_main_name ();
4971 if (new_main_name != NULL)
4973 set_main_name (new_main_name);
4974 return;
4977 new_main_name = pascal_main_name ();
4978 if (new_main_name != NULL)
4980 set_main_name (new_main_name);
4981 return;
4984 /* The languages above didn't identify the name of the main procedure.
4985 Fallback to "main". */
4986 set_main_name ("main");
4989 char *
4990 main_name (void)
4992 if (name_of_main == NULL)
4993 find_main_name ();
4995 return name_of_main;
4998 /* Handle ``executable_changed'' events for the symtab module. */
5000 static void
5001 symtab_observer_executable_changed (void)
5003 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5004 set_main_name (NULL);
5007 /* Return 1 if the supplied producer string matches the ARM RealView
5008 compiler (armcc). */
5011 producer_is_realview (const char *producer)
5013 static const char *const arm_idents[] = {
5014 "ARM C Compiler, ADS",
5015 "Thumb C Compiler, ADS",
5016 "ARM C++ Compiler, ADS",
5017 "Thumb C++ Compiler, ADS",
5018 "ARM/Thumb C/C++ Compiler, RVCT",
5019 "ARM C/C++ Compiler, RVCT"
5021 int i;
5023 if (producer == NULL)
5024 return 0;
5026 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5027 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5028 return 1;
5030 return 0;
5033 void
5034 _initialize_symtab (void)
5036 add_info ("variables", variables_info, _("\
5037 All global and static variable names, or those matching REGEXP."));
5038 if (dbx_commands)
5039 add_com ("whereis", class_info, variables_info, _("\
5040 All global and static variable names, or those matching REGEXP."));
5042 add_info ("functions", functions_info,
5043 _("All function names, or those matching REGEXP."));
5045 /* FIXME: This command has at least the following problems:
5046 1. It prints builtin types (in a very strange and confusing fashion).
5047 2. It doesn't print right, e.g. with
5048 typedef struct foo *FOO
5049 type_print prints "FOO" when we want to make it (in this situation)
5050 print "struct foo *".
5051 I also think "ptype" or "whatis" is more likely to be useful (but if
5052 there is much disagreement "info types" can be fixed). */
5053 add_info ("types", types_info,
5054 _("All type names, or those matching REGEXP."));
5056 add_info ("sources", sources_info,
5057 _("Source files in the program."));
5059 add_com ("rbreak", class_breakpoint, rbreak_command,
5060 _("Set a breakpoint for all functions matching REGEXP."));
5062 if (xdb_commands)
5064 add_com ("lf", class_info, sources_info,
5065 _("Source files in the program"));
5066 add_com ("lg", class_info, variables_info, _("\
5067 All global and static variable names, or those matching REGEXP."));
5070 add_setshow_enum_cmd ("multiple-symbols", no_class,
5071 multiple_symbols_modes, &multiple_symbols_mode,
5072 _("\
5073 Set the debugger behavior when more than one symbol are possible matches\n\
5074 in an expression."), _("\
5075 Show how the debugger handles ambiguities in expressions."), _("\
5076 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5077 NULL, NULL, &setlist, &showlist);
5079 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5080 &basenames_may_differ, _("\
5081 Set whether a source file may have multiple base names."), _("\
5082 Show whether a source file may have multiple base names."), _("\
5083 (A \"base name\" is the name of a file with the directory part removed.\n\
5084 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5085 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5086 before comparing them. Canonicalization is an expensive operation,\n\
5087 but it allows the same file be known by more than one base name.\n\
5088 If not set (the default), all source files are assumed to have just\n\
5089 one base name, and gdb will do file name comparisons more efficiently."),
5090 NULL, NULL,
5091 &setlist, &showlist);
5093 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5094 _("Set debugging of symbol table creation."),
5095 _("Show debugging of symbol table creation."), _("\
5096 When enabled, debugging messages are printed when building symbol tables."),
5097 NULL,
5098 NULL,
5099 &setdebuglist, &showdebuglist);
5101 observer_attach_executable_changed (symtab_observer_executable_changed);