usr.sbin/makefs/hammer2: Sync with recent userspace ondisk.c changes
[dragonfly.git] / contrib / gcc-8.0 / gcc / expmed.c
blobfd16c1590f12aa87a0006cf26d0e0bccf6127f06
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2018 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "expr.h"
42 #include "langhooks.h"
43 #include "tree-vector-builder.h"
45 struct target_expmed default_target_expmed;
46 #if SWITCHABLE_TARGET
47 struct target_expmed *this_target_expmed = &default_target_expmed;
48 #endif
50 static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
51 unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT,
53 poly_uint64, poly_uint64,
54 machine_mode, rtx, bool, bool);
55 static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
56 unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 poly_uint64, poly_uint64,
59 rtx, scalar_int_mode, bool);
60 static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
61 unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT,
63 rtx, scalar_int_mode, bool);
64 static void store_split_bit_field (rtx, opt_scalar_int_mode,
65 unsigned HOST_WIDE_INT,
66 unsigned HOST_WIDE_INT,
67 poly_uint64, poly_uint64,
68 rtx, scalar_int_mode, bool);
69 static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
70 unsigned HOST_WIDE_INT,
71 unsigned HOST_WIDE_INT, int, rtx,
72 machine_mode, machine_mode, bool, bool);
73 static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
74 unsigned HOST_WIDE_INT,
75 unsigned HOST_WIDE_INT, rtx, int, bool);
76 static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
77 unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT, rtx, int, bool);
79 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
80 static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, int, bool);
83 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
84 static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
85 static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
87 /* Return a constant integer mask value of mode MODE with BITSIZE ones
88 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
89 The mask is truncated if necessary to the width of mode MODE. The
90 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
92 static inline rtx
93 mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
95 return immed_wide_int_const
96 (wi::shifted_mask (bitpos, bitsize, complement,
97 GET_MODE_PRECISION (mode)), mode);
100 /* Test whether a value is zero of a power of two. */
101 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
102 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
104 struct init_expmed_rtl
106 rtx reg;
107 rtx plus;
108 rtx neg;
109 rtx mult;
110 rtx sdiv;
111 rtx udiv;
112 rtx sdiv_32;
113 rtx smod_32;
114 rtx wide_mult;
115 rtx wide_lshr;
116 rtx wide_trunc;
117 rtx shift;
118 rtx shift_mult;
119 rtx shift_add;
120 rtx shift_sub0;
121 rtx shift_sub1;
122 rtx zext;
123 rtx trunc;
125 rtx pow2[MAX_BITS_PER_WORD];
126 rtx cint[MAX_BITS_PER_WORD];
129 static void
130 init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
131 scalar_int_mode from_mode, bool speed)
133 int to_size, from_size;
134 rtx which;
136 to_size = GET_MODE_PRECISION (to_mode);
137 from_size = GET_MODE_PRECISION (from_mode);
139 /* Most partial integers have a precision less than the "full"
140 integer it requires for storage. In case one doesn't, for
141 comparison purposes here, reduce the bit size by one in that
142 case. */
143 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
144 && pow2p_hwi (to_size))
145 to_size --;
146 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
147 && pow2p_hwi (from_size))
148 from_size --;
150 /* Assume cost of zero-extend and sign-extend is the same. */
151 which = (to_size < from_size ? all->trunc : all->zext);
153 PUT_MODE (all->reg, from_mode);
154 set_convert_cost (to_mode, from_mode, speed,
155 set_src_cost (which, to_mode, speed));
158 static void
159 init_expmed_one_mode (struct init_expmed_rtl *all,
160 machine_mode mode, int speed)
162 int m, n, mode_bitsize;
163 machine_mode mode_from;
165 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
167 PUT_MODE (all->reg, mode);
168 PUT_MODE (all->plus, mode);
169 PUT_MODE (all->neg, mode);
170 PUT_MODE (all->mult, mode);
171 PUT_MODE (all->sdiv, mode);
172 PUT_MODE (all->udiv, mode);
173 PUT_MODE (all->sdiv_32, mode);
174 PUT_MODE (all->smod_32, mode);
175 PUT_MODE (all->wide_trunc, mode);
176 PUT_MODE (all->shift, mode);
177 PUT_MODE (all->shift_mult, mode);
178 PUT_MODE (all->shift_add, mode);
179 PUT_MODE (all->shift_sub0, mode);
180 PUT_MODE (all->shift_sub1, mode);
181 PUT_MODE (all->zext, mode);
182 PUT_MODE (all->trunc, mode);
184 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
185 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
186 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
187 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
188 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
190 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
191 <= 2 * add_cost (speed, mode)));
192 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
193 <= 4 * add_cost (speed, mode)));
195 set_shift_cost (speed, mode, 0, 0);
197 int cost = add_cost (speed, mode);
198 set_shiftadd_cost (speed, mode, 0, cost);
199 set_shiftsub0_cost (speed, mode, 0, cost);
200 set_shiftsub1_cost (speed, mode, 0, cost);
203 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
204 for (m = 1; m < n; m++)
206 XEXP (all->shift, 1) = all->cint[m];
207 XEXP (all->shift_mult, 1) = all->pow2[m];
209 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
210 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
211 speed));
212 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
213 speed));
214 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
215 speed));
218 scalar_int_mode int_mode_to;
219 if (is_a <scalar_int_mode> (mode, &int_mode_to))
221 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
222 mode_from = (machine_mode)(mode_from + 1))
223 init_expmed_one_conv (all, int_mode_to,
224 as_a <scalar_int_mode> (mode_from), speed);
226 scalar_int_mode wider_mode;
227 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
228 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
230 PUT_MODE (all->zext, wider_mode);
231 PUT_MODE (all->wide_mult, wider_mode);
232 PUT_MODE (all->wide_lshr, wider_mode);
233 XEXP (all->wide_lshr, 1)
234 = gen_int_shift_amount (wider_mode, mode_bitsize);
236 set_mul_widen_cost (speed, wider_mode,
237 set_src_cost (all->wide_mult, wider_mode, speed));
238 set_mul_highpart_cost (speed, int_mode_to,
239 set_src_cost (all->wide_trunc,
240 int_mode_to, speed));
245 void
246 init_expmed (void)
248 struct init_expmed_rtl all;
249 machine_mode mode = QImode;
250 int m, speed;
252 memset (&all, 0, sizeof all);
253 for (m = 1; m < MAX_BITS_PER_WORD; m++)
255 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
256 all.cint[m] = GEN_INT (m);
259 /* Avoid using hard regs in ways which may be unsupported. */
260 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
261 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
262 all.neg = gen_rtx_NEG (mode, all.reg);
263 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
264 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
265 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
266 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
267 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
268 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
269 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
270 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
271 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
272 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
273 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
274 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
275 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
276 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
277 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
279 for (speed = 0; speed < 2; speed++)
281 crtl->maybe_hot_insn_p = speed;
282 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
284 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
285 mode = (machine_mode)(mode + 1))
286 init_expmed_one_mode (&all, mode, speed);
288 if (MIN_MODE_PARTIAL_INT != VOIDmode)
289 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
290 mode = (machine_mode)(mode + 1))
291 init_expmed_one_mode (&all, mode, speed);
293 if (MIN_MODE_VECTOR_INT != VOIDmode)
294 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
295 mode = (machine_mode)(mode + 1))
296 init_expmed_one_mode (&all, mode, speed);
299 if (alg_hash_used_p ())
301 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
302 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
304 else
305 set_alg_hash_used_p (true);
306 default_rtl_profile ();
308 ggc_free (all.trunc);
309 ggc_free (all.shift_sub1);
310 ggc_free (all.shift_sub0);
311 ggc_free (all.shift_add);
312 ggc_free (all.shift_mult);
313 ggc_free (all.shift);
314 ggc_free (all.wide_trunc);
315 ggc_free (all.wide_lshr);
316 ggc_free (all.wide_mult);
317 ggc_free (all.zext);
318 ggc_free (all.smod_32);
319 ggc_free (all.sdiv_32);
320 ggc_free (all.udiv);
321 ggc_free (all.sdiv);
322 ggc_free (all.mult);
323 ggc_free (all.neg);
324 ggc_free (all.plus);
325 ggc_free (all.reg);
328 /* Return an rtx representing minus the value of X.
329 MODE is the intended mode of the result,
330 useful if X is a CONST_INT. */
333 negate_rtx (machine_mode mode, rtx x)
335 rtx result = simplify_unary_operation (NEG, mode, x, mode);
337 if (result == 0)
338 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
340 return result;
343 /* Whether reverse storage order is supported on the target. */
344 static int reverse_storage_order_supported = -1;
346 /* Check whether reverse storage order is supported on the target. */
348 static void
349 check_reverse_storage_order_support (void)
351 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
353 reverse_storage_order_supported = 0;
354 sorry ("reverse scalar storage order");
356 else
357 reverse_storage_order_supported = 1;
360 /* Whether reverse FP storage order is supported on the target. */
361 static int reverse_float_storage_order_supported = -1;
363 /* Check whether reverse FP storage order is supported on the target. */
365 static void
366 check_reverse_float_storage_order_support (void)
368 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
370 reverse_float_storage_order_supported = 0;
371 sorry ("reverse floating-point scalar storage order");
373 else
374 reverse_float_storage_order_supported = 1;
377 /* Return an rtx representing value of X with reverse storage order.
378 MODE is the intended mode of the result,
379 useful if X is a CONST_INT. */
382 flip_storage_order (machine_mode mode, rtx x)
384 scalar_int_mode int_mode;
385 rtx result;
387 if (mode == QImode)
388 return x;
390 if (COMPLEX_MODE_P (mode))
392 rtx real = read_complex_part (x, false);
393 rtx imag = read_complex_part (x, true);
395 real = flip_storage_order (GET_MODE_INNER (mode), real);
396 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
398 return gen_rtx_CONCAT (mode, real, imag);
401 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
402 check_reverse_storage_order_support ();
404 if (!is_a <scalar_int_mode> (mode, &int_mode))
406 if (FLOAT_MODE_P (mode)
407 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
408 check_reverse_float_storage_order_support ();
410 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode))
412 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
413 return x;
415 x = gen_lowpart (int_mode, x);
418 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
419 if (result == 0)
420 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
422 if (int_mode != mode)
423 result = gen_lowpart (mode, result);
425 return result;
428 /* If MODE is set, adjust bitfield memory MEM so that it points to the
429 first unit of mode MODE that contains a bitfield of size BITSIZE at
430 bit position BITNUM. If MODE is not set, return a BLKmode reference
431 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
432 of the field within the new memory. */
434 static rtx
435 narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
436 unsigned HOST_WIDE_INT bitsize,
437 unsigned HOST_WIDE_INT bitnum,
438 unsigned HOST_WIDE_INT *new_bitnum)
440 scalar_int_mode imode;
441 if (mode.exists (&imode))
443 unsigned int unit = GET_MODE_BITSIZE (imode);
444 *new_bitnum = bitnum % unit;
445 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
446 return adjust_bitfield_address (mem, imode, offset);
448 else
450 *new_bitnum = bitnum % BITS_PER_UNIT;
451 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
452 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
453 / BITS_PER_UNIT);
454 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
458 /* The caller wants to perform insertion or extraction PATTERN on a
459 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
460 BITREGION_START and BITREGION_END are as for store_bit_field
461 and FIELDMODE is the natural mode of the field.
463 Search for a mode that is compatible with the memory access
464 restrictions and (where applicable) with a register insertion or
465 extraction. Return the new memory on success, storing the adjusted
466 bit position in *NEW_BITNUM. Return null otherwise. */
468 static rtx
469 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
470 rtx op0, HOST_WIDE_INT bitsize,
471 HOST_WIDE_INT bitnum,
472 poly_uint64 bitregion_start,
473 poly_uint64 bitregion_end,
474 machine_mode fieldmode,
475 unsigned HOST_WIDE_INT *new_bitnum)
477 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
478 bitregion_end, MEM_ALIGN (op0),
479 MEM_VOLATILE_P (op0));
480 scalar_int_mode best_mode;
481 if (iter.next_mode (&best_mode))
483 /* We can use a memory in BEST_MODE. See whether this is true for
484 any wider modes. All other things being equal, we prefer to
485 use the widest mode possible because it tends to expose more
486 CSE opportunities. */
487 if (!iter.prefer_smaller_modes ())
489 /* Limit the search to the mode required by the corresponding
490 register insertion or extraction instruction, if any. */
491 scalar_int_mode limit_mode = word_mode;
492 extraction_insn insn;
493 if (get_best_reg_extraction_insn (&insn, pattern,
494 GET_MODE_BITSIZE (best_mode),
495 fieldmode))
496 limit_mode = insn.field_mode;
498 scalar_int_mode wider_mode;
499 while (iter.next_mode (&wider_mode)
500 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
501 best_mode = wider_mode;
503 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
504 new_bitnum);
506 return NULL_RTX;
509 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
510 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
511 offset is then BITNUM / BITS_PER_UNIT. */
513 static bool
514 lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
515 machine_mode struct_mode)
517 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
518 if (BYTES_BIG_ENDIAN)
519 return (multiple_p (bitnum, BITS_PER_UNIT)
520 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
521 || multiple_p (bitnum + bitsize,
522 regsize * BITS_PER_UNIT)));
523 else
524 return multiple_p (bitnum, regsize * BITS_PER_UNIT);
527 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
528 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
529 Return false if the access would touch memory outside the range
530 BITREGION_START to BITREGION_END for conformance to the C++ memory
531 model. */
533 static bool
534 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
535 unsigned HOST_WIDE_INT bitnum,
536 scalar_int_mode fieldmode,
537 poly_uint64 bitregion_start,
538 poly_uint64 bitregion_end)
540 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
542 /* -fstrict-volatile-bitfields must be enabled and we must have a
543 volatile MEM. */
544 if (!MEM_P (op0)
545 || !MEM_VOLATILE_P (op0)
546 || flag_strict_volatile_bitfields <= 0)
547 return false;
549 /* The bit size must not be larger than the field mode, and
550 the field mode must not be larger than a word. */
551 if (bitsize > modesize || modesize > BITS_PER_WORD)
552 return false;
554 /* Check for cases of unaligned fields that must be split. */
555 if (bitnum % modesize + bitsize > modesize)
556 return false;
558 /* The memory must be sufficiently aligned for a MODESIZE access.
559 This condition guarantees, that the memory access will not
560 touch anything after the end of the structure. */
561 if (MEM_ALIGN (op0) < modesize)
562 return false;
564 /* Check for cases where the C++ memory model applies. */
565 if (maybe_ne (bitregion_end, 0U)
566 && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
567 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
568 bitregion_end)))
569 return false;
571 return true;
574 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
575 bit number BITNUM can be treated as a simple value of mode MODE.
576 Store the byte offset in *BYTENUM if so. */
578 static bool
579 simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
580 machine_mode mode, poly_uint64 *bytenum)
582 return (MEM_P (op0)
583 && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
584 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
585 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
586 || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
587 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
590 /* Try to use instruction INSV to store VALUE into a field of OP0.
591 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
592 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
593 are as for store_bit_field. */
595 static bool
596 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
597 opt_scalar_int_mode op0_mode,
598 unsigned HOST_WIDE_INT bitsize,
599 unsigned HOST_WIDE_INT bitnum,
600 rtx value, scalar_int_mode value_mode)
602 struct expand_operand ops[4];
603 rtx value1;
604 rtx xop0 = op0;
605 rtx_insn *last = get_last_insn ();
606 bool copy_back = false;
608 scalar_int_mode op_mode = insv->field_mode;
609 unsigned int unit = GET_MODE_BITSIZE (op_mode);
610 if (bitsize == 0 || bitsize > unit)
611 return false;
613 if (MEM_P (xop0))
614 /* Get a reference to the first byte of the field. */
615 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
616 &bitnum);
617 else
619 /* Convert from counting within OP0 to counting in OP_MODE. */
620 if (BYTES_BIG_ENDIAN)
621 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
623 /* If xop0 is a register, we need it in OP_MODE
624 to make it acceptable to the format of insv. */
625 if (GET_CODE (xop0) == SUBREG)
626 /* We can't just change the mode, because this might clobber op0,
627 and we will need the original value of op0 if insv fails. */
628 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
629 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
630 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
633 /* If the destination is a paradoxical subreg such that we need a
634 truncate to the inner mode, perform the insertion on a temporary and
635 truncate the result to the original destination. Note that we can't
636 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
637 X) 0)) is (reg:N X). */
638 if (GET_CODE (xop0) == SUBREG
639 && REG_P (SUBREG_REG (xop0))
640 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
641 op_mode))
643 rtx tem = gen_reg_rtx (op_mode);
644 emit_move_insn (tem, xop0);
645 xop0 = tem;
646 copy_back = true;
649 /* There are similar overflow check at the start of store_bit_field_1,
650 but that only check the situation where the field lies completely
651 outside the register, while there do have situation where the field
652 lies partialy in the register, we need to adjust bitsize for this
653 partial overflow situation. Without this fix, pr48335-2.c on big-endian
654 will broken on those arch support bit insert instruction, like arm, aarch64
655 etc. */
656 if (bitsize + bitnum > unit && bitnum < unit)
658 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
659 "destination object, data truncated into %wu-bit",
660 bitsize, unit - bitnum);
661 bitsize = unit - bitnum;
664 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
665 "backwards" from the size of the unit we are inserting into.
666 Otherwise, we count bits from the most significant on a
667 BYTES/BITS_BIG_ENDIAN machine. */
669 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
670 bitnum = unit - bitsize - bitnum;
672 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
673 value1 = value;
674 if (value_mode != op_mode)
676 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
678 rtx tmp;
679 /* Optimization: Don't bother really extending VALUE
680 if it has all the bits we will actually use. However,
681 if we must narrow it, be sure we do it correctly. */
683 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
685 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
686 if (! tmp)
687 tmp = simplify_gen_subreg (op_mode,
688 force_reg (value_mode, value1),
689 value_mode, 0);
691 else
693 tmp = gen_lowpart_if_possible (op_mode, value1);
694 if (! tmp)
695 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
697 value1 = tmp;
699 else if (CONST_INT_P (value))
700 value1 = gen_int_mode (INTVAL (value), op_mode);
701 else
702 /* Parse phase is supposed to make VALUE's data type
703 match that of the component reference, which is a type
704 at least as wide as the field; so VALUE should have
705 a mode that corresponds to that type. */
706 gcc_assert (CONSTANT_P (value));
709 create_fixed_operand (&ops[0], xop0);
710 create_integer_operand (&ops[1], bitsize);
711 create_integer_operand (&ops[2], bitnum);
712 create_input_operand (&ops[3], value1, op_mode);
713 if (maybe_expand_insn (insv->icode, 4, ops))
715 if (copy_back)
716 convert_move (op0, xop0, true);
717 return true;
719 delete_insns_since (last);
720 return false;
723 /* A subroutine of store_bit_field, with the same arguments. Return true
724 if the operation could be implemented.
726 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
727 no other way of implementing the operation. If FALLBACK_P is false,
728 return false instead. */
730 static bool
731 store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
732 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
733 machine_mode fieldmode,
734 rtx value, bool reverse, bool fallback_p)
736 rtx op0 = str_rtx;
738 while (GET_CODE (op0) == SUBREG)
740 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
741 op0 = SUBREG_REG (op0);
744 /* No action is needed if the target is a register and if the field
745 lies completely outside that register. This can occur if the source
746 code contains an out-of-bounds access to a small array. */
747 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
748 return true;
750 /* Use vec_set patterns for inserting parts of vectors whenever
751 available. */
752 machine_mode outermode = GET_MODE (op0);
753 scalar_mode innermode = GET_MODE_INNER (outermode);
754 poly_uint64 pos;
755 if (VECTOR_MODE_P (outermode)
756 && !MEM_P (op0)
757 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
758 && fieldmode == innermode
759 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
760 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
762 struct expand_operand ops[3];
763 enum insn_code icode = optab_handler (vec_set_optab, outermode);
765 create_fixed_operand (&ops[0], op0);
766 create_input_operand (&ops[1], value, innermode);
767 create_integer_operand (&ops[2], pos);
768 if (maybe_expand_insn (icode, 3, ops))
769 return true;
772 /* If the target is a register, overwriting the entire object, or storing
773 a full-word or multi-word field can be done with just a SUBREG. */
774 if (!MEM_P (op0)
775 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
777 /* Use the subreg machinery either to narrow OP0 to the required
778 words or to cope with mode punning between equal-sized modes.
779 In the latter case, use subreg on the rhs side, not lhs. */
780 rtx sub;
781 HOST_WIDE_INT regnum;
782 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
783 if (known_eq (bitnum, 0U)
784 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
786 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
787 if (sub)
789 if (reverse)
790 sub = flip_storage_order (GET_MODE (op0), sub);
791 emit_move_insn (op0, sub);
792 return true;
795 else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, &regnum)
796 && multiple_p (bitsize, regsize * BITS_PER_UNIT))
798 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
799 regnum * regsize);
800 if (sub)
802 if (reverse)
803 value = flip_storage_order (fieldmode, value);
804 emit_move_insn (sub, value);
805 return true;
810 /* If the target is memory, storing any naturally aligned field can be
811 done with a simple store. For targets that support fast unaligned
812 memory, any naturally sized, unit aligned field can be done directly. */
813 poly_uint64 bytenum;
814 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
816 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
817 if (reverse)
818 value = flip_storage_order (fieldmode, value);
819 emit_move_insn (op0, value);
820 return true;
823 /* It's possible we'll need to handle other cases here for
824 polynomial bitnum and bitsize. */
826 /* From here on we need to be looking at a fixed-size insertion. */
827 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
828 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
830 /* Make sure we are playing with integral modes. Pun with subregs
831 if we aren't. This must come after the entire register case above,
832 since that case is valid for any mode. The following cases are only
833 valid for integral modes. */
834 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
835 scalar_int_mode imode;
836 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
838 if (MEM_P (op0))
839 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
840 0, MEM_SIZE (op0));
841 else
842 op0 = gen_lowpart (op0_mode.require (), op0);
845 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
846 bitregion_start, bitregion_end,
847 fieldmode, value, reverse, fallback_p);
850 /* Subroutine of store_bit_field_1, with the same arguments, except
851 that BITSIZE and BITNUM are constant. Handle cases specific to
852 integral modes. If OP0_MODE is defined, it is the mode of OP0,
853 otherwise OP0 is a BLKmode MEM. */
855 static bool
856 store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
857 unsigned HOST_WIDE_INT bitsize,
858 unsigned HOST_WIDE_INT bitnum,
859 poly_uint64 bitregion_start,
860 poly_uint64 bitregion_end,
861 machine_mode fieldmode,
862 rtx value, bool reverse, bool fallback_p)
864 /* Storing an lsb-aligned field in a register
865 can be done with a movstrict instruction. */
867 if (!MEM_P (op0)
868 && !reverse
869 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
870 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
871 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
873 struct expand_operand ops[2];
874 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
875 rtx arg0 = op0;
876 unsigned HOST_WIDE_INT subreg_off;
878 if (GET_CODE (arg0) == SUBREG)
880 /* Else we've got some float mode source being extracted into
881 a different float mode destination -- this combination of
882 subregs results in Severe Tire Damage. */
883 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
884 || GET_MODE_CLASS (fieldmode) == MODE_INT
885 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
886 arg0 = SUBREG_REG (arg0);
889 subreg_off = bitnum / BITS_PER_UNIT;
890 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
892 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
894 create_fixed_operand (&ops[0], arg0);
895 /* Shrink the source operand to FIELDMODE. */
896 create_convert_operand_to (&ops[1], value, fieldmode, false);
897 if (maybe_expand_insn (icode, 2, ops))
898 return true;
902 /* Handle fields bigger than a word. */
904 if (bitsize > BITS_PER_WORD)
906 /* Here we transfer the words of the field
907 in the order least significant first.
908 This is because the most significant word is the one which may
909 be less than full.
910 However, only do that if the value is not BLKmode. */
912 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
913 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
914 unsigned int i;
915 rtx_insn *last;
917 /* This is the mode we must force value to, so that there will be enough
918 subwords to extract. Note that fieldmode will often (always?) be
919 VOIDmode, because that is what store_field uses to indicate that this
920 is a bit field, but passing VOIDmode to operand_subword_force
921 is not allowed.
923 The mode must be fixed-size, since insertions into variable-sized
924 objects are meant to be handled before calling this function. */
925 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
926 if (value_mode == VOIDmode)
927 value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
929 last = get_last_insn ();
930 for (i = 0; i < nwords; i++)
932 /* If I is 0, use the low-order word in both field and target;
933 if I is 1, use the next to lowest word; and so on. */
934 unsigned int wordnum = (backwards
935 ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD
936 - i - 1
937 : i);
938 unsigned int bit_offset = (backwards ^ reverse
939 ? MAX ((int) bitsize - ((int) i + 1)
940 * BITS_PER_WORD,
942 : (int) i * BITS_PER_WORD);
943 rtx value_word = operand_subword_force (value, wordnum, value_mode);
944 unsigned HOST_WIDE_INT new_bitsize =
945 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
947 /* If the remaining chunk doesn't have full wordsize we have
948 to make sure that for big-endian machines the higher order
949 bits are used. */
950 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
952 int shift = BITS_PER_WORD - new_bitsize;
953 rtx shift_rtx = gen_int_shift_amount (word_mode, shift);
954 value_word = simplify_expand_binop (word_mode, lshr_optab,
955 value_word, shift_rtx,
956 NULL_RTX, true,
957 OPTAB_LIB_WIDEN);
960 if (!store_bit_field_1 (op0, new_bitsize,
961 bitnum + bit_offset,
962 bitregion_start, bitregion_end,
963 word_mode,
964 value_word, reverse, fallback_p))
966 delete_insns_since (last);
967 return false;
970 return true;
973 /* If VALUE has a floating-point or complex mode, access it as an
974 integer of the corresponding size. This can occur on a machine
975 with 64 bit registers that uses SFmode for float. It can also
976 occur for unaligned float or complex fields. */
977 rtx orig_value = value;
978 scalar_int_mode value_mode;
979 if (GET_MODE (value) == VOIDmode)
980 /* By this point we've dealt with values that are bigger than a word,
981 so word_mode is a conservatively correct choice. */
982 value_mode = word_mode;
983 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
985 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
986 value = gen_reg_rtx (value_mode);
987 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
990 /* If OP0 is a multi-word register, narrow it to the affected word.
991 If the region spans two words, defer to store_split_bit_field.
992 Don't do this if op0 is a single hard register wider than word
993 such as a float or vector register. */
994 if (!MEM_P (op0)
995 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
996 && (!REG_P (op0)
997 || !HARD_REGISTER_P (op0)
998 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
1000 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1002 if (!fallback_p)
1003 return false;
1005 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1006 bitregion_start, bitregion_end,
1007 value, value_mode, reverse);
1008 return true;
1010 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1011 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1012 gcc_assert (op0);
1013 op0_mode = word_mode;
1014 bitnum %= BITS_PER_WORD;
1017 /* From here on we can assume that the field to be stored in fits
1018 within a word. If the destination is a register, it too fits
1019 in a word. */
1021 extraction_insn insv;
1022 if (!MEM_P (op0)
1023 && !reverse
1024 && get_best_reg_extraction_insn (&insv, EP_insv,
1025 GET_MODE_BITSIZE (op0_mode.require ()),
1026 fieldmode)
1027 && store_bit_field_using_insv (&insv, op0, op0_mode,
1028 bitsize, bitnum, value, value_mode))
1029 return true;
1031 /* If OP0 is a memory, try copying it to a register and seeing if a
1032 cheap register alternative is available. */
1033 if (MEM_P (op0) && !reverse)
1035 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1036 fieldmode)
1037 && store_bit_field_using_insv (&insv, op0, op0_mode,
1038 bitsize, bitnum, value, value_mode))
1039 return true;
1041 rtx_insn *last = get_last_insn ();
1043 /* Try loading part of OP0 into a register, inserting the bitfield
1044 into that, and then copying the result back to OP0. */
1045 unsigned HOST_WIDE_INT bitpos;
1046 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1047 bitregion_start, bitregion_end,
1048 fieldmode, &bitpos);
1049 if (xop0)
1051 rtx tempreg = copy_to_reg (xop0);
1052 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1053 bitregion_start, bitregion_end,
1054 fieldmode, orig_value, reverse, false))
1056 emit_move_insn (xop0, tempreg);
1057 return true;
1059 delete_insns_since (last);
1063 if (!fallback_p)
1064 return false;
1066 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1067 bitregion_end, value, value_mode, reverse);
1068 return true;
1071 /* Generate code to store value from rtx VALUE
1072 into a bit-field within structure STR_RTX
1073 containing BITSIZE bits starting at bit BITNUM.
1075 BITREGION_START is bitpos of the first bitfield in this region.
1076 BITREGION_END is the bitpos of the ending bitfield in this region.
1077 These two fields are 0, if the C++ memory model does not apply,
1078 or we are not interested in keeping track of bitfield regions.
1080 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1082 If REVERSE is true, the store is to be done in reverse order. */
1084 void
1085 store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1086 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1087 machine_mode fieldmode,
1088 rtx value, bool reverse)
1090 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1091 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
1092 scalar_int_mode int_mode;
1093 if (bitsize.is_constant (&ibitsize)
1094 && bitnum.is_constant (&ibitnum)
1095 && is_a <scalar_int_mode> (fieldmode, &int_mode)
1096 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
1097 bitregion_start, bitregion_end))
1099 /* Storing of a full word can be done with a simple store.
1100 We know here that the field can be accessed with one single
1101 instruction. For targets that support unaligned memory,
1102 an unaligned access may be necessary. */
1103 if (ibitsize == GET_MODE_BITSIZE (int_mode))
1105 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1106 ibitnum / BITS_PER_UNIT);
1107 if (reverse)
1108 value = flip_storage_order (int_mode, value);
1109 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
1110 emit_move_insn (str_rtx, value);
1112 else
1114 rtx temp;
1116 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
1117 ibitnum, &ibitnum);
1118 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
1119 temp = copy_to_reg (str_rtx);
1120 if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
1121 int_mode, value, reverse, true))
1122 gcc_unreachable ();
1124 emit_move_insn (str_rtx, temp);
1127 return;
1130 /* Under the C++0x memory model, we must not touch bits outside the
1131 bit region. Adjust the address to start at the beginning of the
1132 bit region. */
1133 if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
1135 scalar_int_mode best_mode;
1136 machine_mode addr_mode = VOIDmode;
1138 poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
1139 bitnum -= bitregion_start;
1140 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1141 bitregion_end -= bitregion_start;
1142 bitregion_start = 0;
1143 if (bitsize.is_constant (&ibitsize)
1144 && bitnum.is_constant (&ibitnum)
1145 && get_best_mode (ibitsize, ibitnum,
1146 bitregion_start, bitregion_end,
1147 MEM_ALIGN (str_rtx), INT_MAX,
1148 MEM_VOLATILE_P (str_rtx), &best_mode))
1149 addr_mode = best_mode;
1150 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1151 offset, size);
1154 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1155 bitregion_start, bitregion_end,
1156 fieldmode, value, reverse, true))
1157 gcc_unreachable ();
1160 /* Use shifts and boolean operations to store VALUE into a bit field of
1161 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1162 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1163 the mode of VALUE.
1165 If REVERSE is true, the store is to be done in reverse order. */
1167 static void
1168 store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1169 unsigned HOST_WIDE_INT bitsize,
1170 unsigned HOST_WIDE_INT bitnum,
1171 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1172 rtx value, scalar_int_mode value_mode, bool reverse)
1174 /* There is a case not handled here:
1175 a structure with a known alignment of just a halfword
1176 and a field split across two aligned halfwords within the structure.
1177 Or likewise a structure with a known alignment of just a byte
1178 and a field split across two bytes.
1179 Such cases are not supposed to be able to occur. */
1181 scalar_int_mode best_mode;
1182 if (MEM_P (op0))
1184 unsigned int max_bitsize = BITS_PER_WORD;
1185 scalar_int_mode imode;
1186 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1187 max_bitsize = GET_MODE_BITSIZE (imode);
1189 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1190 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1191 &best_mode))
1193 /* The only way this should occur is if the field spans word
1194 boundaries. */
1195 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1196 bitregion_start, bitregion_end,
1197 value, value_mode, reverse);
1198 return;
1201 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
1203 else
1204 best_mode = op0_mode.require ();
1206 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1207 value, value_mode, reverse);
1210 /* Helper function for store_fixed_bit_field, stores
1211 the bit field always using MODE, which is the mode of OP0. The other
1212 arguments are as for store_fixed_bit_field. */
1214 static void
1215 store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1216 unsigned HOST_WIDE_INT bitsize,
1217 unsigned HOST_WIDE_INT bitnum,
1218 rtx value, scalar_int_mode value_mode, bool reverse)
1220 rtx temp;
1221 int all_zero = 0;
1222 int all_one = 0;
1224 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1225 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1227 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1228 /* BITNUM is the distance between our msb
1229 and that of the containing datum.
1230 Convert it to the distance from the lsb. */
1231 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1233 /* Now BITNUM is always the distance between our lsb
1234 and that of OP0. */
1236 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1237 we must first convert its mode to MODE. */
1239 if (CONST_INT_P (value))
1241 unsigned HOST_WIDE_INT v = UINTVAL (value);
1243 if (bitsize < HOST_BITS_PER_WIDE_INT)
1244 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1246 if (v == 0)
1247 all_zero = 1;
1248 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1249 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1250 || (bitsize == HOST_BITS_PER_WIDE_INT
1251 && v == HOST_WIDE_INT_M1U))
1252 all_one = 1;
1254 value = lshift_value (mode, v, bitnum);
1256 else
1258 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
1259 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1261 if (value_mode != mode)
1262 value = convert_to_mode (mode, value, 1);
1264 if (must_and)
1265 value = expand_binop (mode, and_optab, value,
1266 mask_rtx (mode, 0, bitsize, 0),
1267 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1268 if (bitnum > 0)
1269 value = expand_shift (LSHIFT_EXPR, mode, value,
1270 bitnum, NULL_RTX, 1);
1273 if (reverse)
1274 value = flip_storage_order (mode, value);
1276 /* Now clear the chosen bits in OP0,
1277 except that if VALUE is -1 we need not bother. */
1278 /* We keep the intermediates in registers to allow CSE to combine
1279 consecutive bitfield assignments. */
1281 temp = force_reg (mode, op0);
1283 if (! all_one)
1285 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1286 if (reverse)
1287 mask = flip_storage_order (mode, mask);
1288 temp = expand_binop (mode, and_optab, temp, mask,
1289 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1290 temp = force_reg (mode, temp);
1293 /* Now logical-or VALUE into OP0, unless it is zero. */
1295 if (! all_zero)
1297 temp = expand_binop (mode, ior_optab, temp, value,
1298 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1299 temp = force_reg (mode, temp);
1302 if (op0 != temp)
1304 op0 = copy_rtx (op0);
1305 emit_move_insn (op0, temp);
1309 /* Store a bit field that is split across multiple accessible memory objects.
1311 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1312 BITSIZE is the field width; BITPOS the position of its first bit
1313 (within the word).
1314 VALUE is the value to store, which has mode VALUE_MODE.
1315 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1316 a BLKmode MEM.
1318 If REVERSE is true, the store is to be done in reverse order.
1320 This does not yet handle fields wider than BITS_PER_WORD. */
1322 static void
1323 store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1324 unsigned HOST_WIDE_INT bitsize,
1325 unsigned HOST_WIDE_INT bitpos,
1326 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1327 rtx value, scalar_int_mode value_mode, bool reverse)
1329 unsigned int unit, total_bits, bitsdone = 0;
1331 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1332 much at a time. */
1333 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1334 unit = BITS_PER_WORD;
1335 else
1336 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1338 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1339 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1340 again, and we will mutually recurse forever. */
1341 if (MEM_P (op0) && op0_mode.exists ())
1342 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1344 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1345 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1346 that VALUE might be a floating-point constant. */
1347 if (CONSTANT_P (value) && !CONST_INT_P (value))
1349 rtx word = gen_lowpart_common (word_mode, value);
1351 if (word && (value != word))
1352 value = word;
1353 else
1354 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1355 value_mode = word_mode;
1358 total_bits = GET_MODE_BITSIZE (value_mode);
1360 while (bitsdone < bitsize)
1362 unsigned HOST_WIDE_INT thissize;
1363 unsigned HOST_WIDE_INT thispos;
1364 unsigned HOST_WIDE_INT offset;
1365 rtx part;
1367 offset = (bitpos + bitsdone) / unit;
1368 thispos = (bitpos + bitsdone) % unit;
1370 /* When region of bytes we can touch is restricted, decrease
1371 UNIT close to the end of the region as needed. If op0 is a REG
1372 or SUBREG of REG, don't do this, as there can't be data races
1373 on a register and we can expand shorter code in some cases. */
1374 if (maybe_ne (bitregion_end, 0U)
1375 && unit > BITS_PER_UNIT
1376 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
1377 && !REG_P (op0)
1378 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1380 unit = unit / 2;
1381 continue;
1384 /* THISSIZE must not overrun a word boundary. Otherwise,
1385 store_fixed_bit_field will call us again, and we will mutually
1386 recurse forever. */
1387 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1388 thissize = MIN (thissize, unit - thispos);
1390 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1392 /* Fetch successively less significant portions. */
1393 if (CONST_INT_P (value))
1394 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1395 >> (bitsize - bitsdone - thissize))
1396 & ((HOST_WIDE_INT_1 << thissize) - 1));
1397 /* Likewise, but the source is little-endian. */
1398 else if (reverse)
1399 part = extract_fixed_bit_field (word_mode, value, value_mode,
1400 thissize,
1401 bitsize - bitsdone - thissize,
1402 NULL_RTX, 1, false);
1403 else
1404 /* The args are chosen so that the last part includes the
1405 lsb. Give extract_bit_field the value it needs (with
1406 endianness compensation) to fetch the piece we want. */
1407 part = extract_fixed_bit_field (word_mode, value, value_mode,
1408 thissize,
1409 total_bits - bitsize + bitsdone,
1410 NULL_RTX, 1, false);
1412 else
1414 /* Fetch successively more significant portions. */
1415 if (CONST_INT_P (value))
1416 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1417 >> bitsdone)
1418 & ((HOST_WIDE_INT_1 << thissize) - 1));
1419 /* Likewise, but the source is big-endian. */
1420 else if (reverse)
1421 part = extract_fixed_bit_field (word_mode, value, value_mode,
1422 thissize,
1423 total_bits - bitsdone - thissize,
1424 NULL_RTX, 1, false);
1425 else
1426 part = extract_fixed_bit_field (word_mode, value, value_mode,
1427 thissize, bitsdone, NULL_RTX,
1428 1, false);
1431 /* If OP0 is a register, then handle OFFSET here. */
1432 rtx op0_piece = op0;
1433 opt_scalar_int_mode op0_piece_mode = op0_mode;
1434 if (SUBREG_P (op0) || REG_P (op0))
1436 scalar_int_mode imode;
1437 if (op0_mode.exists (&imode)
1438 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1440 if (offset)
1441 op0_piece = const0_rtx;
1443 else
1445 op0_piece = operand_subword_force (op0,
1446 offset * unit / BITS_PER_WORD,
1447 GET_MODE (op0));
1448 op0_piece_mode = word_mode;
1450 offset &= BITS_PER_WORD / unit - 1;
1453 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1454 it is just an out-of-bounds access. Ignore it. */
1455 if (op0_piece != const0_rtx)
1456 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1457 offset * unit + thispos, bitregion_start,
1458 bitregion_end, part, word_mode, reverse);
1459 bitsdone += thissize;
1463 /* A subroutine of extract_bit_field_1 that converts return value X
1464 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1465 to extract_bit_field. */
1467 static rtx
1468 convert_extracted_bit_field (rtx x, machine_mode mode,
1469 machine_mode tmode, bool unsignedp)
1471 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1472 return x;
1474 /* If the x mode is not a scalar integral, first convert to the
1475 integer mode of that size and then access it as a floating-point
1476 value via a SUBREG. */
1477 if (!SCALAR_INT_MODE_P (tmode))
1479 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1480 x = convert_to_mode (int_mode, x, unsignedp);
1481 x = force_reg (int_mode, x);
1482 return gen_lowpart (tmode, x);
1485 return convert_to_mode (tmode, x, unsignedp);
1488 /* Try to use an ext(z)v pattern to extract a field from OP0.
1489 Return the extracted value on success, otherwise return null.
1490 EXTV describes the extraction instruction to use. If OP0_MODE
1491 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1492 The other arguments are as for extract_bit_field. */
1494 static rtx
1495 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1496 opt_scalar_int_mode op0_mode,
1497 unsigned HOST_WIDE_INT bitsize,
1498 unsigned HOST_WIDE_INT bitnum,
1499 int unsignedp, rtx target,
1500 machine_mode mode, machine_mode tmode)
1502 struct expand_operand ops[4];
1503 rtx spec_target = target;
1504 rtx spec_target_subreg = 0;
1505 scalar_int_mode ext_mode = extv->field_mode;
1506 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1508 if (bitsize == 0 || unit < bitsize)
1509 return NULL_RTX;
1511 if (MEM_P (op0))
1512 /* Get a reference to the first byte of the field. */
1513 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1514 &bitnum);
1515 else
1517 /* Convert from counting within OP0 to counting in EXT_MODE. */
1518 if (BYTES_BIG_ENDIAN)
1519 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
1521 /* If op0 is a register, we need it in EXT_MODE to make it
1522 acceptable to the format of ext(z)v. */
1523 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1524 return NULL_RTX;
1525 if (REG_P (op0) && op0_mode.require () != ext_mode)
1526 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1529 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1530 "backwards" from the size of the unit we are extracting from.
1531 Otherwise, we count bits from the most significant on a
1532 BYTES/BITS_BIG_ENDIAN machine. */
1534 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1535 bitnum = unit - bitsize - bitnum;
1537 if (target == 0)
1538 target = spec_target = gen_reg_rtx (tmode);
1540 if (GET_MODE (target) != ext_mode)
1542 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1543 between the mode of the extraction (word_mode) and the target
1544 mode. Instead, create a temporary and use convert_move to set
1545 the target. */
1546 if (REG_P (target)
1547 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1549 target = gen_lowpart (ext_mode, target);
1550 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
1551 spec_target_subreg = target;
1553 else
1554 target = gen_reg_rtx (ext_mode);
1557 create_output_operand (&ops[0], target, ext_mode);
1558 create_fixed_operand (&ops[1], op0);
1559 create_integer_operand (&ops[2], bitsize);
1560 create_integer_operand (&ops[3], bitnum);
1561 if (maybe_expand_insn (extv->icode, 4, ops))
1563 target = ops[0].value;
1564 if (target == spec_target)
1565 return target;
1566 if (target == spec_target_subreg)
1567 return spec_target;
1568 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1570 return NULL_RTX;
1573 /* See whether it would be valid to extract the part of OP0 described
1574 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1575 operation. Return the subreg if so, otherwise return null. */
1577 static rtx
1578 extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1579 poly_uint64 bitsize, poly_uint64 bitnum)
1581 poly_uint64 bytenum;
1582 if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
1583 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1584 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1585 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
1586 return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
1587 return NULL_RTX;
1590 /* A subroutine of extract_bit_field, with the same arguments.
1591 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1592 if we can find no other means of implementing the operation.
1593 if FALLBACK_P is false, return NULL instead. */
1595 static rtx
1596 extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1597 int unsignedp, rtx target, machine_mode mode,
1598 machine_mode tmode, bool reverse, bool fallback_p,
1599 rtx *alt_rtl)
1601 rtx op0 = str_rtx;
1602 machine_mode mode1;
1604 if (tmode == VOIDmode)
1605 tmode = mode;
1607 while (GET_CODE (op0) == SUBREG)
1609 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1610 op0 = SUBREG_REG (op0);
1613 /* If we have an out-of-bounds access to a register, just return an
1614 uninitialized register of the required mode. This can occur if the
1615 source code contains an out-of-bounds access to a small array. */
1616 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
1617 return gen_reg_rtx (tmode);
1619 if (REG_P (op0)
1620 && mode == GET_MODE (op0)
1621 && known_eq (bitnum, 0U)
1622 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
1624 if (reverse)
1625 op0 = flip_storage_order (mode, op0);
1626 /* We're trying to extract a full register from itself. */
1627 return op0;
1630 /* First try to check for vector from vector extractions. */
1631 if (VECTOR_MODE_P (GET_MODE (op0))
1632 && !MEM_P (op0)
1633 && VECTOR_MODE_P (tmode)
1634 && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
1635 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
1637 machine_mode new_mode = GET_MODE (op0);
1638 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1640 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1641 poly_uint64 nunits;
1642 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
1643 GET_MODE_UNIT_BITSIZE (tmode), &nunits)
1644 || !mode_for_vector (inner_mode, nunits).exists (&new_mode)
1645 || !VECTOR_MODE_P (new_mode)
1646 || maybe_ne (GET_MODE_SIZE (new_mode),
1647 GET_MODE_SIZE (GET_MODE (op0)))
1648 || GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)
1649 || !targetm.vector_mode_supported_p (new_mode))
1650 new_mode = VOIDmode;
1652 poly_uint64 pos;
1653 if (new_mode != VOIDmode
1654 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1655 != CODE_FOR_nothing)
1656 && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
1658 struct expand_operand ops[3];
1659 machine_mode outermode = new_mode;
1660 machine_mode innermode = tmode;
1661 enum insn_code icode
1662 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1664 if (new_mode != GET_MODE (op0))
1665 op0 = gen_lowpart (new_mode, op0);
1666 create_output_operand (&ops[0], target, innermode);
1667 ops[0].target = 1;
1668 create_input_operand (&ops[1], op0, outermode);
1669 create_integer_operand (&ops[2], pos);
1670 if (maybe_expand_insn (icode, 3, ops))
1672 if (alt_rtl && ops[0].target)
1673 *alt_rtl = target;
1674 target = ops[0].value;
1675 if (GET_MODE (target) != mode)
1676 return gen_lowpart (tmode, target);
1677 return target;
1682 /* See if we can get a better vector mode before extracting. */
1683 if (VECTOR_MODE_P (GET_MODE (op0))
1684 && !MEM_P (op0)
1685 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1687 machine_mode new_mode;
1689 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1690 new_mode = MIN_MODE_VECTOR_FLOAT;
1691 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1692 new_mode = MIN_MODE_VECTOR_FRACT;
1693 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1694 new_mode = MIN_MODE_VECTOR_UFRACT;
1695 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1696 new_mode = MIN_MODE_VECTOR_ACCUM;
1697 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1698 new_mode = MIN_MODE_VECTOR_UACCUM;
1699 else
1700 new_mode = MIN_MODE_VECTOR_INT;
1702 FOR_EACH_MODE_FROM (new_mode, new_mode)
1703 if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
1704 && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
1705 && targetm.vector_mode_supported_p (new_mode))
1706 break;
1707 if (new_mode != VOIDmode)
1708 op0 = gen_lowpart (new_mode, op0);
1711 /* Use vec_extract patterns for extracting parts of vectors whenever
1712 available. If that fails, see whether the current modes and bitregion
1713 give a natural subreg. */
1714 machine_mode outermode = GET_MODE (op0);
1715 if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
1717 scalar_mode innermode = GET_MODE_INNER (outermode);
1718 enum insn_code icode
1719 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1720 poly_uint64 pos;
1721 if (icode != CODE_FOR_nothing
1722 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
1723 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
1725 struct expand_operand ops[3];
1727 create_output_operand (&ops[0], target, innermode);
1728 ops[0].target = 1;
1729 create_input_operand (&ops[1], op0, outermode);
1730 create_integer_operand (&ops[2], pos);
1731 if (maybe_expand_insn (icode, 3, ops))
1733 if (alt_rtl && ops[0].target)
1734 *alt_rtl = target;
1735 target = ops[0].value;
1736 if (GET_MODE (target) != mode)
1737 return gen_lowpart (tmode, target);
1738 return target;
1741 /* Using subregs is useful if we're extracting one register vector
1742 from a multi-register vector. extract_bit_field_as_subreg checks
1743 for valid bitsize and bitnum, so we don't need to do that here. */
1744 if (VECTOR_MODE_P (mode))
1746 rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum);
1747 if (sub)
1748 return sub;
1752 /* Make sure we are playing with integral modes. Pun with subregs
1753 if we aren't. */
1754 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1755 scalar_int_mode imode;
1756 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
1758 if (MEM_P (op0))
1759 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1760 0, MEM_SIZE (op0));
1761 else if (op0_mode.exists (&imode))
1763 op0 = gen_lowpart (imode, op0);
1765 /* If we got a SUBREG, force it into a register since we
1766 aren't going to be able to do another SUBREG on it. */
1767 if (GET_CODE (op0) == SUBREG)
1768 op0 = force_reg (imode, op0);
1770 else
1772 poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
1773 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1774 emit_move_insn (mem, op0);
1775 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1779 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1780 If that's wrong, the solution is to test for it and set TARGET to 0
1781 if needed. */
1783 /* Get the mode of the field to use for atomic access or subreg
1784 conversion. */
1785 if (!SCALAR_INT_MODE_P (tmode)
1786 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1787 mode1 = mode;
1788 gcc_assert (mode1 != BLKmode);
1790 /* Extraction of a full MODE1 value can be done with a subreg as long
1791 as the least significant bit of the value is the least significant
1792 bit of either OP0 or a word of OP0. */
1793 if (!MEM_P (op0) && !reverse)
1795 rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
1796 if (sub)
1797 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1800 /* Extraction of a full MODE1 value can be done with a load as long as
1801 the field is on a byte boundary and is sufficiently aligned. */
1802 poly_uint64 bytenum;
1803 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
1805 op0 = adjust_bitfield_address (op0, mode1, bytenum);
1806 if (reverse)
1807 op0 = flip_storage_order (mode1, op0);
1808 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1811 /* If we have a memory source and a non-constant bit offset, restrict
1812 the memory to the referenced bytes. This is a worst-case fallback
1813 but is useful for things like vector booleans. */
1814 if (MEM_P (op0) && !bitnum.is_constant ())
1816 bytenum = bits_to_bytes_round_down (bitnum);
1817 bitnum = num_trailing_bits (bitnum);
1818 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1819 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1820 op0_mode = opt_scalar_int_mode ();
1823 /* It's possible we'll need to handle other cases here for
1824 polynomial bitnum and bitsize. */
1826 /* From here on we need to be looking at a fixed-size insertion. */
1827 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1828 bitnum.to_constant (), unsignedp,
1829 target, mode, tmode, reverse, fallback_p);
1832 /* Subroutine of extract_bit_field_1, with the same arguments, except
1833 that BITSIZE and BITNUM are constant. Handle cases specific to
1834 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1835 otherwise OP0 is a BLKmode MEM. */
1837 static rtx
1838 extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1839 unsigned HOST_WIDE_INT bitsize,
1840 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1841 rtx target, machine_mode mode, machine_mode tmode,
1842 bool reverse, bool fallback_p)
1844 /* Handle fields bigger than a word. */
1846 if (bitsize > BITS_PER_WORD)
1848 /* Here we transfer the words of the field
1849 in the order least significant first.
1850 This is because the most significant word is the one which may
1851 be less than full. */
1853 const bool backwards = WORDS_BIG_ENDIAN;
1854 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1855 unsigned int i;
1856 rtx_insn *last;
1858 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1859 target = gen_reg_rtx (mode);
1861 /* In case we're about to clobber a base register or something
1862 (see gcc.c-torture/execute/20040625-1.c). */
1863 if (reg_mentioned_p (target, op0))
1864 target = gen_reg_rtx (mode);
1866 /* Indicate for flow that the entire target reg is being set. */
1867 emit_clobber (target);
1869 /* The mode must be fixed-size, since extract_bit_field_1 handles
1870 extractions from variable-sized objects before calling this
1871 function. */
1872 unsigned int target_size
1873 = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
1874 last = get_last_insn ();
1875 for (i = 0; i < nwords; i++)
1877 /* If I is 0, use the low-order word in both field and target;
1878 if I is 1, use the next to lowest word; and so on. */
1879 /* Word number in TARGET to use. */
1880 unsigned int wordnum
1881 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
1882 /* Offset from start of field in OP0. */
1883 unsigned int bit_offset = (backwards ^ reverse
1884 ? MAX ((int) bitsize - ((int) i + 1)
1885 * BITS_PER_WORD,
1887 : (int) i * BITS_PER_WORD);
1888 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1889 rtx result_part
1890 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1891 bitsize - i * BITS_PER_WORD),
1892 bitnum + bit_offset, 1, target_part,
1893 mode, word_mode, reverse, fallback_p, NULL);
1895 gcc_assert (target_part);
1896 if (!result_part)
1898 delete_insns_since (last);
1899 return NULL;
1902 if (result_part != target_part)
1903 emit_move_insn (target_part, result_part);
1906 if (unsignedp)
1908 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1909 need to be zero'd out. */
1910 if (target_size > nwords * UNITS_PER_WORD)
1912 unsigned int i, total_words;
1914 total_words = target_size / UNITS_PER_WORD;
1915 for (i = nwords; i < total_words; i++)
1916 emit_move_insn
1917 (operand_subword (target,
1918 backwards ? total_words - i - 1 : i,
1919 1, VOIDmode),
1920 const0_rtx);
1922 return target;
1925 /* Signed bit field: sign-extend with two arithmetic shifts. */
1926 target = expand_shift (LSHIFT_EXPR, mode, target,
1927 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1928 return expand_shift (RSHIFT_EXPR, mode, target,
1929 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1932 /* If OP0 is a multi-word register, narrow it to the affected word.
1933 If the region spans two words, defer to extract_split_bit_field. */
1934 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
1936 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1938 if (!fallback_p)
1939 return NULL_RTX;
1940 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1941 unsignedp, reverse);
1942 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1944 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1945 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1946 op0_mode = word_mode;
1947 bitnum %= BITS_PER_WORD;
1950 /* From here on we know the desired field is smaller than a word.
1951 If OP0 is a register, it too fits within a word. */
1952 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1953 extraction_insn extv;
1954 if (!MEM_P (op0)
1955 && !reverse
1956 /* ??? We could limit the structure size to the part of OP0 that
1957 contains the field, with appropriate checks for endianness
1958 and TARGET_TRULY_NOOP_TRUNCATION. */
1959 && get_best_reg_extraction_insn (&extv, pattern,
1960 GET_MODE_BITSIZE (op0_mode.require ()),
1961 tmode))
1963 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1964 bitsize, bitnum,
1965 unsignedp, target, mode,
1966 tmode);
1967 if (result)
1968 return result;
1971 /* If OP0 is a memory, try copying it to a register and seeing if a
1972 cheap register alternative is available. */
1973 if (MEM_P (op0) & !reverse)
1975 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1976 tmode))
1978 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1979 bitsize, bitnum,
1980 unsignedp, target, mode,
1981 tmode);
1982 if (result)
1983 return result;
1986 rtx_insn *last = get_last_insn ();
1988 /* Try loading part of OP0 into a register and extracting the
1989 bitfield from that. */
1990 unsigned HOST_WIDE_INT bitpos;
1991 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1992 0, 0, tmode, &bitpos);
1993 if (xop0)
1995 xop0 = copy_to_reg (xop0);
1996 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1997 unsignedp, target,
1998 mode, tmode, reverse, false, NULL);
1999 if (result)
2000 return result;
2001 delete_insns_since (last);
2005 if (!fallback_p)
2006 return NULL;
2008 /* Find a correspondingly-sized integer field, so we can apply
2009 shifts and masks to it. */
2010 scalar_int_mode int_mode;
2011 if (!int_mode_for_mode (tmode).exists (&int_mode))
2012 /* If this fails, we should probably push op0 out to memory and then
2013 do a load. */
2014 int_mode = int_mode_for_mode (mode).require ();
2016 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2017 bitnum, target, unsignedp, reverse);
2019 /* Complex values must be reversed piecewise, so we need to undo the global
2020 reversal, convert to the complex mode and reverse again. */
2021 if (reverse && COMPLEX_MODE_P (tmode))
2023 target = flip_storage_order (int_mode, target);
2024 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2025 target = flip_storage_order (tmode, target);
2027 else
2028 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2030 return target;
2033 /* Generate code to extract a byte-field from STR_RTX
2034 containing BITSIZE bits, starting at BITNUM,
2035 and put it in TARGET if possible (if TARGET is nonzero).
2036 Regardless of TARGET, we return the rtx for where the value is placed.
2038 STR_RTX is the structure containing the byte (a REG or MEM).
2039 UNSIGNEDP is nonzero if this is an unsigned bit field.
2040 MODE is the natural mode of the field value once extracted.
2041 TMODE is the mode the caller would like the value to have;
2042 but the value may be returned with type MODE instead.
2044 If REVERSE is true, the extraction is to be done in reverse order.
2046 If a TARGET is specified and we can store in it at no extra cost,
2047 we do so, and return TARGET.
2048 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2049 if they are equally easy. */
2052 extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2053 int unsignedp, rtx target, machine_mode mode,
2054 machine_mode tmode, bool reverse, rtx *alt_rtl)
2056 machine_mode mode1;
2058 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2059 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
2060 mode1 = GET_MODE (str_rtx);
2061 else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
2062 mode1 = GET_MODE (target);
2063 else
2064 mode1 = tmode;
2066 unsigned HOST_WIDE_INT ibitsize, ibitnum;
2067 scalar_int_mode int_mode;
2068 if (bitsize.is_constant (&ibitsize)
2069 && bitnum.is_constant (&ibitnum)
2070 && is_a <scalar_int_mode> (mode1, &int_mode)
2071 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
2072 int_mode, 0, 0))
2074 /* Extraction of a full INT_MODE value can be done with a simple load.
2075 We know here that the field can be accessed with one single
2076 instruction. For targets that support unaligned memory,
2077 an unaligned access may be necessary. */
2078 if (ibitsize == GET_MODE_BITSIZE (int_mode))
2080 rtx result = adjust_bitfield_address (str_rtx, int_mode,
2081 ibitnum / BITS_PER_UNIT);
2082 if (reverse)
2083 result = flip_storage_order (int_mode, result);
2084 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
2085 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
2088 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
2089 &ibitnum);
2090 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
2091 str_rtx = copy_to_reg (str_rtx);
2092 return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
2093 target, mode, tmode, reverse, true, alt_rtl);
2096 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
2097 target, mode, tmode, reverse, true, alt_rtl);
2100 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2101 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2102 otherwise OP0 is a BLKmode MEM.
2104 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2105 If REVERSE is true, the extraction is to be done in reverse order.
2107 If TARGET is nonzero, attempts to store the value there
2108 and return TARGET, but this is not guaranteed.
2109 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2111 static rtx
2112 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2113 opt_scalar_int_mode op0_mode,
2114 unsigned HOST_WIDE_INT bitsize,
2115 unsigned HOST_WIDE_INT bitnum, rtx target,
2116 int unsignedp, bool reverse)
2118 scalar_int_mode mode;
2119 if (MEM_P (op0))
2121 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2122 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2123 /* The only way this should occur is if the field spans word
2124 boundaries. */
2125 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2126 unsignedp, reverse);
2128 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2130 else
2131 mode = op0_mode.require ();
2133 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2134 target, unsignedp, reverse);
2137 /* Helper function for extract_fixed_bit_field, extracts
2138 the bit field always using MODE, which is the mode of OP0.
2139 The other arguments are as for extract_fixed_bit_field. */
2141 static rtx
2142 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2143 unsigned HOST_WIDE_INT bitsize,
2144 unsigned HOST_WIDE_INT bitnum, rtx target,
2145 int unsignedp, bool reverse)
2147 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2148 for invalid input, such as extract equivalent of f5 from
2149 gcc.dg/pr48335-2.c. */
2151 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2152 /* BITNUM is the distance between our msb and that of OP0.
2153 Convert it to the distance from the lsb. */
2154 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2156 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2157 We have reduced the big-endian case to the little-endian case. */
2158 if (reverse)
2159 op0 = flip_storage_order (mode, op0);
2161 if (unsignedp)
2163 if (bitnum)
2165 /* If the field does not already start at the lsb,
2166 shift it so it does. */
2167 /* Maybe propagate the target for the shift. */
2168 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2169 if (tmode != mode)
2170 subtarget = 0;
2171 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2173 /* Convert the value to the desired mode. TMODE must also be a
2174 scalar integer for this conversion to make sense, since we
2175 shouldn't reinterpret the bits. */
2176 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2177 if (mode != new_mode)
2178 op0 = convert_to_mode (new_mode, op0, 1);
2180 /* Unless the msb of the field used to be the msb when we shifted,
2181 mask out the upper bits. */
2183 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2184 return expand_binop (new_mode, and_optab, op0,
2185 mask_rtx (new_mode, 0, bitsize, 0),
2186 target, 1, OPTAB_LIB_WIDEN);
2187 return op0;
2190 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2191 then arithmetic-shift its lsb to the lsb of the word. */
2192 op0 = force_reg (mode, op0);
2194 /* Find the narrowest integer mode that contains the field. */
2196 opt_scalar_int_mode mode_iter;
2197 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2198 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2199 break;
2201 mode = mode_iter.require ();
2202 op0 = convert_to_mode (mode, op0, 0);
2204 if (mode != tmode)
2205 target = 0;
2207 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2209 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2210 /* Maybe propagate the target for the shift. */
2211 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2212 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2215 return expand_shift (RSHIFT_EXPR, mode, op0,
2216 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2219 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2220 VALUE << BITPOS. */
2222 static rtx
2223 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2224 int bitpos)
2226 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2229 /* Extract a bit field that is split across two words
2230 and return an RTX for the result.
2232 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2233 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2234 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2235 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2236 a BLKmode MEM.
2238 If REVERSE is true, the extraction is to be done in reverse order. */
2240 static rtx
2241 extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2242 unsigned HOST_WIDE_INT bitsize,
2243 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2244 bool reverse)
2246 unsigned int unit;
2247 unsigned int bitsdone = 0;
2248 rtx result = NULL_RTX;
2249 int first = 1;
2251 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2252 much at a time. */
2253 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2254 unit = BITS_PER_WORD;
2255 else
2256 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2258 while (bitsdone < bitsize)
2260 unsigned HOST_WIDE_INT thissize;
2261 rtx part;
2262 unsigned HOST_WIDE_INT thispos;
2263 unsigned HOST_WIDE_INT offset;
2265 offset = (bitpos + bitsdone) / unit;
2266 thispos = (bitpos + bitsdone) % unit;
2268 /* THISSIZE must not overrun a word boundary. Otherwise,
2269 extract_fixed_bit_field will call us again, and we will mutually
2270 recurse forever. */
2271 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2272 thissize = MIN (thissize, unit - thispos);
2274 /* If OP0 is a register, then handle OFFSET here. */
2275 rtx op0_piece = op0;
2276 opt_scalar_int_mode op0_piece_mode = op0_mode;
2277 if (SUBREG_P (op0) || REG_P (op0))
2279 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2280 op0_piece_mode = word_mode;
2281 offset = 0;
2284 /* Extract the parts in bit-counting order,
2285 whose meaning is determined by BYTES_PER_UNIT.
2286 OFFSET is in UNITs, and UNIT is in bits. */
2287 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2288 thissize, offset * unit + thispos,
2289 0, 1, reverse);
2290 bitsdone += thissize;
2292 /* Shift this part into place for the result. */
2293 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2295 if (bitsize != bitsdone)
2296 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2297 bitsize - bitsdone, 0, 1);
2299 else
2301 if (bitsdone != thissize)
2302 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2303 bitsdone - thissize, 0, 1);
2306 if (first)
2307 result = part;
2308 else
2309 /* Combine the parts with bitwise or. This works
2310 because we extracted each part as an unsigned bit field. */
2311 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2312 OPTAB_LIB_WIDEN);
2314 first = 0;
2317 /* Unsigned bit field: we are done. */
2318 if (unsignedp)
2319 return result;
2320 /* Signed bit field: sign-extend with two arithmetic shifts. */
2321 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2322 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2323 return expand_shift (RSHIFT_EXPR, word_mode, result,
2324 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2327 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2328 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2329 MODE, fill the upper bits with zeros. Fail if the layout of either
2330 mode is unknown (as for CC modes) or if the extraction would involve
2331 unprofitable mode punning. Return the value on success, otherwise
2332 return null.
2334 This is different from gen_lowpart* in these respects:
2336 - the returned value must always be considered an rvalue
2338 - when MODE is wider than SRC_MODE, the extraction involves
2339 a zero extension
2341 - when MODE is smaller than SRC_MODE, the extraction involves
2342 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2344 In other words, this routine performs a computation, whereas the
2345 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2346 operations. */
2349 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2351 scalar_int_mode int_mode, src_int_mode;
2353 if (mode == src_mode)
2354 return src;
2356 if (CONSTANT_P (src))
2358 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2359 fails, it will happily create (subreg (symbol_ref)) or similar
2360 invalid SUBREGs. */
2361 poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
2362 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2363 if (ret)
2364 return ret;
2366 if (GET_MODE (src) == VOIDmode
2367 || !validate_subreg (mode, src_mode, src, byte))
2368 return NULL_RTX;
2370 src = force_reg (GET_MODE (src), src);
2371 return gen_rtx_SUBREG (mode, src, byte);
2374 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2375 return NULL_RTX;
2377 if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
2378 && targetm.modes_tieable_p (mode, src_mode))
2380 rtx x = gen_lowpart_common (mode, src);
2381 if (x)
2382 return x;
2385 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2386 || !int_mode_for_mode (mode).exists (&int_mode))
2387 return NULL_RTX;
2389 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2390 return NULL_RTX;
2391 if (!targetm.modes_tieable_p (int_mode, mode))
2392 return NULL_RTX;
2394 src = gen_lowpart (src_int_mode, src);
2395 src = convert_modes (int_mode, src_int_mode, src, true);
2396 src = gen_lowpart (mode, src);
2397 return src;
2400 /* Add INC into TARGET. */
2402 void
2403 expand_inc (rtx target, rtx inc)
2405 rtx value = expand_binop (GET_MODE (target), add_optab,
2406 target, inc,
2407 target, 0, OPTAB_LIB_WIDEN);
2408 if (value != target)
2409 emit_move_insn (target, value);
2412 /* Subtract DEC from TARGET. */
2414 void
2415 expand_dec (rtx target, rtx dec)
2417 rtx value = expand_binop (GET_MODE (target), sub_optab,
2418 target, dec,
2419 target, 0, OPTAB_LIB_WIDEN);
2420 if (value != target)
2421 emit_move_insn (target, value);
2424 /* Output a shift instruction for expression code CODE,
2425 with SHIFTED being the rtx for the value to shift,
2426 and AMOUNT the rtx for the amount to shift by.
2427 Store the result in the rtx TARGET, if that is convenient.
2428 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2429 Return the rtx for where the value is.
2430 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2431 in which case 0 is returned. */
2433 static rtx
2434 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2435 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2437 rtx op1, temp = 0;
2438 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2439 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2440 optab lshift_optab = ashl_optab;
2441 optab rshift_arith_optab = ashr_optab;
2442 optab rshift_uns_optab = lshr_optab;
2443 optab lrotate_optab = rotl_optab;
2444 optab rrotate_optab = rotr_optab;
2445 machine_mode op1_mode;
2446 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2447 int attempt;
2448 bool speed = optimize_insn_for_speed_p ();
2450 op1 = amount;
2451 op1_mode = GET_MODE (op1);
2453 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2454 shift amount is a vector, use the vector/vector shift patterns. */
2455 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2457 lshift_optab = vashl_optab;
2458 rshift_arith_optab = vashr_optab;
2459 rshift_uns_optab = vlshr_optab;
2460 lrotate_optab = vrotl_optab;
2461 rrotate_optab = vrotr_optab;
2464 /* Previously detected shift-counts computed by NEGATE_EXPR
2465 and shifted in the other direction; but that does not work
2466 on all machines. */
2468 if (SHIFT_COUNT_TRUNCATED)
2470 if (CONST_INT_P (op1)
2471 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2472 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2473 op1 = gen_int_shift_amount (mode,
2474 (unsigned HOST_WIDE_INT) INTVAL (op1)
2475 % GET_MODE_BITSIZE (scalar_mode));
2476 else if (GET_CODE (op1) == SUBREG
2477 && subreg_lowpart_p (op1)
2478 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2479 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2480 op1 = SUBREG_REG (op1);
2483 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2484 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2485 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2486 amount instead. */
2487 if (rotate
2488 && CONST_INT_P (op1)
2489 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2490 GET_MODE_BITSIZE (scalar_mode) - 1))
2492 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2493 - INTVAL (op1)));
2494 left = !left;
2495 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2498 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2499 Note that this is not the case for bigger values. For instance a rotation
2500 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2501 0x04030201 (bswapsi). */
2502 if (rotate
2503 && CONST_INT_P (op1)
2504 && INTVAL (op1) == BITS_PER_UNIT
2505 && GET_MODE_SIZE (scalar_mode) == 2
2506 && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
2507 return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
2509 if (op1 == const0_rtx)
2510 return shifted;
2512 /* Check whether its cheaper to implement a left shift by a constant
2513 bit count by a sequence of additions. */
2514 if (code == LSHIFT_EXPR
2515 && CONST_INT_P (op1)
2516 && INTVAL (op1) > 0
2517 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2518 && INTVAL (op1) < MAX_BITS_PER_WORD
2519 && (shift_cost (speed, mode, INTVAL (op1))
2520 > INTVAL (op1) * add_cost (speed, mode))
2521 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2523 int i;
2524 for (i = 0; i < INTVAL (op1); i++)
2526 temp = force_reg (mode, shifted);
2527 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2528 unsignedp, OPTAB_LIB_WIDEN);
2530 return shifted;
2533 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2535 enum optab_methods methods;
2537 if (attempt == 0)
2538 methods = OPTAB_DIRECT;
2539 else if (attempt == 1)
2540 methods = OPTAB_WIDEN;
2541 else
2542 methods = OPTAB_LIB_WIDEN;
2544 if (rotate)
2546 /* Widening does not work for rotation. */
2547 if (methods == OPTAB_WIDEN)
2548 continue;
2549 else if (methods == OPTAB_LIB_WIDEN)
2551 /* If we have been unable to open-code this by a rotation,
2552 do it as the IOR of two shifts. I.e., to rotate A
2553 by N bits, compute
2554 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2555 where C is the bitsize of A.
2557 It is theoretically possible that the target machine might
2558 not be able to perform either shift and hence we would
2559 be making two libcalls rather than just the one for the
2560 shift (similarly if IOR could not be done). We will allow
2561 this extremely unlikely lossage to avoid complicating the
2562 code below. */
2564 rtx subtarget = target == shifted ? 0 : target;
2565 rtx new_amount, other_amount;
2566 rtx temp1;
2568 new_amount = op1;
2569 if (op1 == const0_rtx)
2570 return shifted;
2571 else if (CONST_INT_P (op1))
2572 other_amount = gen_int_shift_amount
2573 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2574 else
2576 other_amount
2577 = simplify_gen_unary (NEG, GET_MODE (op1),
2578 op1, GET_MODE (op1));
2579 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2580 other_amount
2581 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2582 gen_int_mode (mask, GET_MODE (op1)));
2585 shifted = force_reg (mode, shifted);
2587 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2588 mode, shifted, new_amount, 0, 1);
2589 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2590 mode, shifted, other_amount,
2591 subtarget, 1);
2592 return expand_binop (mode, ior_optab, temp, temp1, target,
2593 unsignedp, methods);
2596 temp = expand_binop (mode,
2597 left ? lrotate_optab : rrotate_optab,
2598 shifted, op1, target, unsignedp, methods);
2600 else if (unsignedp)
2601 temp = expand_binop (mode,
2602 left ? lshift_optab : rshift_uns_optab,
2603 shifted, op1, target, unsignedp, methods);
2605 /* Do arithmetic shifts.
2606 Also, if we are going to widen the operand, we can just as well
2607 use an arithmetic right-shift instead of a logical one. */
2608 if (temp == 0 && ! rotate
2609 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2611 enum optab_methods methods1 = methods;
2613 /* If trying to widen a log shift to an arithmetic shift,
2614 don't accept an arithmetic shift of the same size. */
2615 if (unsignedp)
2616 methods1 = OPTAB_MUST_WIDEN;
2618 /* Arithmetic shift */
2620 temp = expand_binop (mode,
2621 left ? lshift_optab : rshift_arith_optab,
2622 shifted, op1, target, unsignedp, methods1);
2625 /* We used to try extzv here for logical right shifts, but that was
2626 only useful for one machine, the VAX, and caused poor code
2627 generation there for lshrdi3, so the code was deleted and a
2628 define_expand for lshrsi3 was added to vax.md. */
2631 gcc_assert (temp != NULL_RTX || may_fail);
2632 return temp;
2635 /* Output a shift instruction for expression code CODE,
2636 with SHIFTED being the rtx for the value to shift,
2637 and AMOUNT the amount to shift by.
2638 Store the result in the rtx TARGET, if that is convenient.
2639 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2640 Return the rtx for where the value is. */
2643 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2644 poly_int64 amount, rtx target, int unsignedp)
2646 return expand_shift_1 (code, mode, shifted,
2647 gen_int_shift_amount (mode, amount),
2648 target, unsignedp);
2651 /* Likewise, but return 0 if that cannot be done. */
2653 static rtx
2654 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2655 int amount, rtx target, int unsignedp)
2657 return expand_shift_1 (code, mode,
2658 shifted, GEN_INT (amount), target, unsignedp, true);
2661 /* Output a shift instruction for expression code CODE,
2662 with SHIFTED being the rtx for the value to shift,
2663 and AMOUNT the tree for the amount to shift by.
2664 Store the result in the rtx TARGET, if that is convenient.
2665 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2666 Return the rtx for where the value is. */
2669 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2670 tree amount, rtx target, int unsignedp)
2672 return expand_shift_1 (code, mode,
2673 shifted, expand_normal (amount), target, unsignedp);
2677 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2678 const struct mult_cost *, machine_mode mode);
2679 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2680 const struct algorithm *, enum mult_variant);
2681 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2682 static rtx extract_high_half (scalar_int_mode, rtx);
2683 static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2684 static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2685 int, int);
2686 /* Compute and return the best algorithm for multiplying by T.
2687 The algorithm must cost less than cost_limit
2688 If retval.cost >= COST_LIMIT, no algorithm was found and all
2689 other field of the returned struct are undefined.
2690 MODE is the machine mode of the multiplication. */
2692 static void
2693 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2694 const struct mult_cost *cost_limit, machine_mode mode)
2696 int m;
2697 struct algorithm *alg_in, *best_alg;
2698 struct mult_cost best_cost;
2699 struct mult_cost new_limit;
2700 int op_cost, op_latency;
2701 unsigned HOST_WIDE_INT orig_t = t;
2702 unsigned HOST_WIDE_INT q;
2703 int maxm, hash_index;
2704 bool cache_hit = false;
2705 enum alg_code cache_alg = alg_zero;
2706 bool speed = optimize_insn_for_speed_p ();
2707 scalar_int_mode imode;
2708 struct alg_hash_entry *entry_ptr;
2710 /* Indicate that no algorithm is yet found. If no algorithm
2711 is found, this value will be returned and indicate failure. */
2712 alg_out->cost.cost = cost_limit->cost + 1;
2713 alg_out->cost.latency = cost_limit->latency + 1;
2715 if (cost_limit->cost < 0
2716 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2717 return;
2719 /* Be prepared for vector modes. */
2720 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2722 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2724 /* Restrict the bits of "t" to the multiplication's mode. */
2725 t &= GET_MODE_MASK (imode);
2727 /* t == 1 can be done in zero cost. */
2728 if (t == 1)
2730 alg_out->ops = 1;
2731 alg_out->cost.cost = 0;
2732 alg_out->cost.latency = 0;
2733 alg_out->op[0] = alg_m;
2734 return;
2737 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2738 fail now. */
2739 if (t == 0)
2741 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2742 return;
2743 else
2745 alg_out->ops = 1;
2746 alg_out->cost.cost = zero_cost (speed);
2747 alg_out->cost.latency = zero_cost (speed);
2748 alg_out->op[0] = alg_zero;
2749 return;
2753 /* We'll be needing a couple extra algorithm structures now. */
2755 alg_in = XALLOCA (struct algorithm);
2756 best_alg = XALLOCA (struct algorithm);
2757 best_cost = *cost_limit;
2759 /* Compute the hash index. */
2760 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2762 /* See if we already know what to do for T. */
2763 entry_ptr = alg_hash_entry_ptr (hash_index);
2764 if (entry_ptr->t == t
2765 && entry_ptr->mode == mode
2766 && entry_ptr->speed == speed
2767 && entry_ptr->alg != alg_unknown)
2769 cache_alg = entry_ptr->alg;
2771 if (cache_alg == alg_impossible)
2773 /* The cache tells us that it's impossible to synthesize
2774 multiplication by T within entry_ptr->cost. */
2775 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2776 /* COST_LIMIT is at least as restrictive as the one
2777 recorded in the hash table, in which case we have no
2778 hope of synthesizing a multiplication. Just
2779 return. */
2780 return;
2782 /* If we get here, COST_LIMIT is less restrictive than the
2783 one recorded in the hash table, so we may be able to
2784 synthesize a multiplication. Proceed as if we didn't
2785 have the cache entry. */
2787 else
2789 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2790 /* The cached algorithm shows that this multiplication
2791 requires more cost than COST_LIMIT. Just return. This
2792 way, we don't clobber this cache entry with
2793 alg_impossible but retain useful information. */
2794 return;
2796 cache_hit = true;
2798 switch (cache_alg)
2800 case alg_shift:
2801 goto do_alg_shift;
2803 case alg_add_t_m2:
2804 case alg_sub_t_m2:
2805 goto do_alg_addsub_t_m2;
2807 case alg_add_factor:
2808 case alg_sub_factor:
2809 goto do_alg_addsub_factor;
2811 case alg_add_t2_m:
2812 goto do_alg_add_t2_m;
2814 case alg_sub_t2_m:
2815 goto do_alg_sub_t2_m;
2817 default:
2818 gcc_unreachable ();
2823 /* If we have a group of zero bits at the low-order part of T, try
2824 multiplying by the remaining bits and then doing a shift. */
2826 if ((t & 1) == 0)
2828 do_alg_shift:
2829 m = ctz_or_zero (t); /* m = number of low zero bits */
2830 if (m < maxm)
2832 q = t >> m;
2833 /* The function expand_shift will choose between a shift and
2834 a sequence of additions, so the observed cost is given as
2835 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2836 op_cost = m * add_cost (speed, mode);
2837 if (shift_cost (speed, mode, m) < op_cost)
2838 op_cost = shift_cost (speed, mode, m);
2839 new_limit.cost = best_cost.cost - op_cost;
2840 new_limit.latency = best_cost.latency - op_cost;
2841 synth_mult (alg_in, q, &new_limit, mode);
2843 alg_in->cost.cost += op_cost;
2844 alg_in->cost.latency += op_cost;
2845 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2847 best_cost = alg_in->cost;
2848 std::swap (alg_in, best_alg);
2849 best_alg->log[best_alg->ops] = m;
2850 best_alg->op[best_alg->ops] = alg_shift;
2853 /* See if treating ORIG_T as a signed number yields a better
2854 sequence. Try this sequence only for a negative ORIG_T
2855 as it would be useless for a non-negative ORIG_T. */
2856 if ((HOST_WIDE_INT) orig_t < 0)
2858 /* Shift ORIG_T as follows because a right shift of a
2859 negative-valued signed type is implementation
2860 defined. */
2861 q = ~(~orig_t >> m);
2862 /* The function expand_shift will choose between a shift
2863 and a sequence of additions, so the observed cost is
2864 given as MIN (m * add_cost(speed, mode),
2865 shift_cost(speed, mode, m)). */
2866 op_cost = m * add_cost (speed, mode);
2867 if (shift_cost (speed, mode, m) < op_cost)
2868 op_cost = shift_cost (speed, mode, m);
2869 new_limit.cost = best_cost.cost - op_cost;
2870 new_limit.latency = best_cost.latency - op_cost;
2871 synth_mult (alg_in, q, &new_limit, mode);
2873 alg_in->cost.cost += op_cost;
2874 alg_in->cost.latency += op_cost;
2875 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2877 best_cost = alg_in->cost;
2878 std::swap (alg_in, best_alg);
2879 best_alg->log[best_alg->ops] = m;
2880 best_alg->op[best_alg->ops] = alg_shift;
2884 if (cache_hit)
2885 goto done;
2888 /* If we have an odd number, add or subtract one. */
2889 if ((t & 1) != 0)
2891 unsigned HOST_WIDE_INT w;
2893 do_alg_addsub_t_m2:
2894 for (w = 1; (w & t) != 0; w <<= 1)
2896 /* If T was -1, then W will be zero after the loop. This is another
2897 case where T ends with ...111. Handling this with (T + 1) and
2898 subtract 1 produces slightly better code and results in algorithm
2899 selection much faster than treating it like the ...0111 case
2900 below. */
2901 if (w == 0
2902 || (w > 2
2903 /* Reject the case where t is 3.
2904 Thus we prefer addition in that case. */
2905 && t != 3))
2907 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2909 op_cost = add_cost (speed, mode);
2910 new_limit.cost = best_cost.cost - op_cost;
2911 new_limit.latency = best_cost.latency - op_cost;
2912 synth_mult (alg_in, t + 1, &new_limit, mode);
2914 alg_in->cost.cost += op_cost;
2915 alg_in->cost.latency += op_cost;
2916 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2918 best_cost = alg_in->cost;
2919 std::swap (alg_in, best_alg);
2920 best_alg->log[best_alg->ops] = 0;
2921 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2924 else
2926 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2928 op_cost = add_cost (speed, mode);
2929 new_limit.cost = best_cost.cost - op_cost;
2930 new_limit.latency = best_cost.latency - op_cost;
2931 synth_mult (alg_in, t - 1, &new_limit, mode);
2933 alg_in->cost.cost += op_cost;
2934 alg_in->cost.latency += op_cost;
2935 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2937 best_cost = alg_in->cost;
2938 std::swap (alg_in, best_alg);
2939 best_alg->log[best_alg->ops] = 0;
2940 best_alg->op[best_alg->ops] = alg_add_t_m2;
2944 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2945 quickly with a - a * n for some appropriate constant n. */
2946 m = exact_log2 (-orig_t + 1);
2947 if (m >= 0 && m < maxm)
2949 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2950 /* If the target has a cheap shift-and-subtract insn use
2951 that in preference to a shift insn followed by a sub insn.
2952 Assume that the shift-and-sub is "atomic" with a latency
2953 equal to it's cost, otherwise assume that on superscalar
2954 hardware the shift may be executed concurrently with the
2955 earlier steps in the algorithm. */
2956 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2958 op_cost = shiftsub1_cost (speed, mode, m);
2959 op_latency = op_cost;
2961 else
2962 op_latency = add_cost (speed, mode);
2964 new_limit.cost = best_cost.cost - op_cost;
2965 new_limit.latency = best_cost.latency - op_latency;
2966 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2967 &new_limit, mode);
2969 alg_in->cost.cost += op_cost;
2970 alg_in->cost.latency += op_latency;
2971 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2973 best_cost = alg_in->cost;
2974 std::swap (alg_in, best_alg);
2975 best_alg->log[best_alg->ops] = m;
2976 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2980 if (cache_hit)
2981 goto done;
2984 /* Look for factors of t of the form
2985 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2986 If we find such a factor, we can multiply by t using an algorithm that
2987 multiplies by q, shift the result by m and add/subtract it to itself.
2989 We search for large factors first and loop down, even if large factors
2990 are less probable than small; if we find a large factor we will find a
2991 good sequence quickly, and therefore be able to prune (by decreasing
2992 COST_LIMIT) the search. */
2994 do_alg_addsub_factor:
2995 for (m = floor_log2 (t - 1); m >= 2; m--)
2997 unsigned HOST_WIDE_INT d;
2999 d = (HOST_WIDE_INT_1U << m) + 1;
3000 if (t % d == 0 && t > d && m < maxm
3001 && (!cache_hit || cache_alg == alg_add_factor))
3003 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3004 if (shiftadd_cost (speed, mode, m) <= op_cost)
3005 op_cost = shiftadd_cost (speed, mode, m);
3007 op_latency = op_cost;
3010 new_limit.cost = best_cost.cost - op_cost;
3011 new_limit.latency = best_cost.latency - op_latency;
3012 synth_mult (alg_in, t / d, &new_limit, mode);
3014 alg_in->cost.cost += op_cost;
3015 alg_in->cost.latency += op_latency;
3016 if (alg_in->cost.latency < op_cost)
3017 alg_in->cost.latency = op_cost;
3018 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3020 best_cost = alg_in->cost;
3021 std::swap (alg_in, best_alg);
3022 best_alg->log[best_alg->ops] = m;
3023 best_alg->op[best_alg->ops] = alg_add_factor;
3025 /* Other factors will have been taken care of in the recursion. */
3026 break;
3029 d = (HOST_WIDE_INT_1U << m) - 1;
3030 if (t % d == 0 && t > d && m < maxm
3031 && (!cache_hit || cache_alg == alg_sub_factor))
3033 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3034 if (shiftsub0_cost (speed, mode, m) <= op_cost)
3035 op_cost = shiftsub0_cost (speed, mode, m);
3037 op_latency = op_cost;
3039 new_limit.cost = best_cost.cost - op_cost;
3040 new_limit.latency = best_cost.latency - op_latency;
3041 synth_mult (alg_in, t / d, &new_limit, mode);
3043 alg_in->cost.cost += op_cost;
3044 alg_in->cost.latency += op_latency;
3045 if (alg_in->cost.latency < op_cost)
3046 alg_in->cost.latency = op_cost;
3047 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3049 best_cost = alg_in->cost;
3050 std::swap (alg_in, best_alg);
3051 best_alg->log[best_alg->ops] = m;
3052 best_alg->op[best_alg->ops] = alg_sub_factor;
3054 break;
3057 if (cache_hit)
3058 goto done;
3060 /* Try shift-and-add (load effective address) instructions,
3061 i.e. do a*3, a*5, a*9. */
3062 if ((t & 1) != 0)
3064 do_alg_add_t2_m:
3065 q = t - 1;
3066 m = ctz_hwi (q);
3067 if (q && m < maxm)
3069 op_cost = shiftadd_cost (speed, mode, m);
3070 new_limit.cost = best_cost.cost - op_cost;
3071 new_limit.latency = best_cost.latency - op_cost;
3072 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
3074 alg_in->cost.cost += op_cost;
3075 alg_in->cost.latency += op_cost;
3076 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3078 best_cost = alg_in->cost;
3079 std::swap (alg_in, best_alg);
3080 best_alg->log[best_alg->ops] = m;
3081 best_alg->op[best_alg->ops] = alg_add_t2_m;
3084 if (cache_hit)
3085 goto done;
3087 do_alg_sub_t2_m:
3088 q = t + 1;
3089 m = ctz_hwi (q);
3090 if (q && m < maxm)
3092 op_cost = shiftsub0_cost (speed, mode, m);
3093 new_limit.cost = best_cost.cost - op_cost;
3094 new_limit.latency = best_cost.latency - op_cost;
3095 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
3097 alg_in->cost.cost += op_cost;
3098 alg_in->cost.latency += op_cost;
3099 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3101 best_cost = alg_in->cost;
3102 std::swap (alg_in, best_alg);
3103 best_alg->log[best_alg->ops] = m;
3104 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3107 if (cache_hit)
3108 goto done;
3111 done:
3112 /* If best_cost has not decreased, we have not found any algorithm. */
3113 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3115 /* We failed to find an algorithm. Record alg_impossible for
3116 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3117 we are asked to find an algorithm for T within the same or
3118 lower COST_LIMIT, we can immediately return to the
3119 caller. */
3120 entry_ptr->t = t;
3121 entry_ptr->mode = mode;
3122 entry_ptr->speed = speed;
3123 entry_ptr->alg = alg_impossible;
3124 entry_ptr->cost = *cost_limit;
3125 return;
3128 /* Cache the result. */
3129 if (!cache_hit)
3131 entry_ptr->t = t;
3132 entry_ptr->mode = mode;
3133 entry_ptr->speed = speed;
3134 entry_ptr->alg = best_alg->op[best_alg->ops];
3135 entry_ptr->cost.cost = best_cost.cost;
3136 entry_ptr->cost.latency = best_cost.latency;
3139 /* If we are getting a too long sequence for `struct algorithm'
3140 to record, make this search fail. */
3141 if (best_alg->ops == MAX_BITS_PER_WORD)
3142 return;
3144 /* Copy the algorithm from temporary space to the space at alg_out.
3145 We avoid using structure assignment because the majority of
3146 best_alg is normally undefined, and this is a critical function. */
3147 alg_out->ops = best_alg->ops + 1;
3148 alg_out->cost = best_cost;
3149 memcpy (alg_out->op, best_alg->op,
3150 alg_out->ops * sizeof *alg_out->op);
3151 memcpy (alg_out->log, best_alg->log,
3152 alg_out->ops * sizeof *alg_out->log);
3155 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3156 Try three variations:
3158 - a shift/add sequence based on VAL itself
3159 - a shift/add sequence based on -VAL, followed by a negation
3160 - a shift/add sequence based on VAL - 1, followed by an addition.
3162 Return true if the cheapest of these cost less than MULT_COST,
3163 describing the algorithm in *ALG and final fixup in *VARIANT. */
3165 bool
3166 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3167 struct algorithm *alg, enum mult_variant *variant,
3168 int mult_cost)
3170 struct algorithm alg2;
3171 struct mult_cost limit;
3172 int op_cost;
3173 bool speed = optimize_insn_for_speed_p ();
3175 /* Fail quickly for impossible bounds. */
3176 if (mult_cost < 0)
3177 return false;
3179 /* Ensure that mult_cost provides a reasonable upper bound.
3180 Any constant multiplication can be performed with less
3181 than 2 * bits additions. */
3182 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3183 if (mult_cost > op_cost)
3184 mult_cost = op_cost;
3186 *variant = basic_variant;
3187 limit.cost = mult_cost;
3188 limit.latency = mult_cost;
3189 synth_mult (alg, val, &limit, mode);
3191 /* This works only if the inverted value actually fits in an
3192 `unsigned int' */
3193 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3195 op_cost = neg_cost (speed, mode);
3196 if (MULT_COST_LESS (&alg->cost, mult_cost))
3198 limit.cost = alg->cost.cost - op_cost;
3199 limit.latency = alg->cost.latency - op_cost;
3201 else
3203 limit.cost = mult_cost - op_cost;
3204 limit.latency = mult_cost - op_cost;
3207 synth_mult (&alg2, -val, &limit, mode);
3208 alg2.cost.cost += op_cost;
3209 alg2.cost.latency += op_cost;
3210 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3211 *alg = alg2, *variant = negate_variant;
3214 /* This proves very useful for division-by-constant. */
3215 op_cost = add_cost (speed, mode);
3216 if (MULT_COST_LESS (&alg->cost, mult_cost))
3218 limit.cost = alg->cost.cost - op_cost;
3219 limit.latency = alg->cost.latency - op_cost;
3221 else
3223 limit.cost = mult_cost - op_cost;
3224 limit.latency = mult_cost - op_cost;
3227 synth_mult (&alg2, val - 1, &limit, mode);
3228 alg2.cost.cost += op_cost;
3229 alg2.cost.latency += op_cost;
3230 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3231 *alg = alg2, *variant = add_variant;
3233 return MULT_COST_LESS (&alg->cost, mult_cost);
3236 /* A subroutine of expand_mult, used for constant multiplications.
3237 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3238 convenient. Use the shift/add sequence described by ALG and apply
3239 the final fixup specified by VARIANT. */
3241 static rtx
3242 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3243 rtx target, const struct algorithm *alg,
3244 enum mult_variant variant)
3246 unsigned HOST_WIDE_INT val_so_far;
3247 rtx_insn *insn;
3248 rtx accum, tem;
3249 int opno;
3250 machine_mode nmode;
3252 /* Avoid referencing memory over and over and invalid sharing
3253 on SUBREGs. */
3254 op0 = force_reg (mode, op0);
3256 /* ACCUM starts out either as OP0 or as a zero, depending on
3257 the first operation. */
3259 if (alg->op[0] == alg_zero)
3261 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3262 val_so_far = 0;
3264 else if (alg->op[0] == alg_m)
3266 accum = copy_to_mode_reg (mode, op0);
3267 val_so_far = 1;
3269 else
3270 gcc_unreachable ();
3272 for (opno = 1; opno < alg->ops; opno++)
3274 int log = alg->log[opno];
3275 rtx shift_subtarget = optimize ? 0 : accum;
3276 rtx add_target
3277 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3278 && !optimize)
3279 ? target : 0;
3280 rtx accum_target = optimize ? 0 : accum;
3281 rtx accum_inner;
3283 switch (alg->op[opno])
3285 case alg_shift:
3286 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3287 /* REG_EQUAL note will be attached to the following insn. */
3288 emit_move_insn (accum, tem);
3289 val_so_far <<= log;
3290 break;
3292 case alg_add_t_m2:
3293 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3294 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3295 add_target ? add_target : accum_target);
3296 val_so_far += HOST_WIDE_INT_1U << log;
3297 break;
3299 case alg_sub_t_m2:
3300 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3301 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3302 add_target ? add_target : accum_target);
3303 val_so_far -= HOST_WIDE_INT_1U << log;
3304 break;
3306 case alg_add_t2_m:
3307 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3308 log, shift_subtarget, 0);
3309 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3310 add_target ? add_target : accum_target);
3311 val_so_far = (val_so_far << log) + 1;
3312 break;
3314 case alg_sub_t2_m:
3315 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3316 log, shift_subtarget, 0);
3317 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3318 add_target ? add_target : accum_target);
3319 val_so_far = (val_so_far << log) - 1;
3320 break;
3322 case alg_add_factor:
3323 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3324 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3325 add_target ? add_target : accum_target);
3326 val_so_far += val_so_far << log;
3327 break;
3329 case alg_sub_factor:
3330 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3331 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3332 (add_target
3333 ? add_target : (optimize ? 0 : tem)));
3334 val_so_far = (val_so_far << log) - val_so_far;
3335 break;
3337 default:
3338 gcc_unreachable ();
3341 if (SCALAR_INT_MODE_P (mode))
3343 /* Write a REG_EQUAL note on the last insn so that we can cse
3344 multiplication sequences. Note that if ACCUM is a SUBREG,
3345 we've set the inner register and must properly indicate that. */
3346 tem = op0, nmode = mode;
3347 accum_inner = accum;
3348 if (GET_CODE (accum) == SUBREG)
3350 accum_inner = SUBREG_REG (accum);
3351 nmode = GET_MODE (accum_inner);
3352 tem = gen_lowpart (nmode, op0);
3355 insn = get_last_insn ();
3356 wide_int wval_so_far
3357 = wi::uhwi (val_so_far,
3358 GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
3359 rtx c = immed_wide_int_const (wval_so_far, nmode);
3360 set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
3361 accum_inner);
3365 if (variant == negate_variant)
3367 val_so_far = -val_so_far;
3368 accum = expand_unop (mode, neg_optab, accum, target, 0);
3370 else if (variant == add_variant)
3372 val_so_far = val_so_far + 1;
3373 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3376 /* Compare only the bits of val and val_so_far that are significant
3377 in the result mode, to avoid sign-/zero-extension confusion. */
3378 nmode = GET_MODE_INNER (mode);
3379 val &= GET_MODE_MASK (nmode);
3380 val_so_far &= GET_MODE_MASK (nmode);
3381 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3383 return accum;
3386 /* Perform a multiplication and return an rtx for the result.
3387 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3388 TARGET is a suggestion for where to store the result (an rtx).
3390 We check specially for a constant integer as OP1.
3391 If you want this check for OP0 as well, then before calling
3392 you should swap the two operands if OP0 would be constant. */
3395 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3396 int unsignedp, bool no_libcall)
3398 enum mult_variant variant;
3399 struct algorithm algorithm;
3400 rtx scalar_op1;
3401 int max_cost;
3402 bool speed = optimize_insn_for_speed_p ();
3403 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3405 if (CONSTANT_P (op0))
3406 std::swap (op0, op1);
3408 /* For vectors, there are several simplifications that can be made if
3409 all elements of the vector constant are identical. */
3410 scalar_op1 = unwrap_const_vec_duplicate (op1);
3412 if (INTEGRAL_MODE_P (mode))
3414 rtx fake_reg;
3415 HOST_WIDE_INT coeff;
3416 bool is_neg;
3417 int mode_bitsize;
3419 if (op1 == CONST0_RTX (mode))
3420 return op1;
3421 if (op1 == CONST1_RTX (mode))
3422 return op0;
3423 if (op1 == CONSTM1_RTX (mode))
3424 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3425 op0, target, 0);
3427 if (do_trapv)
3428 goto skip_synth;
3430 /* If mode is integer vector mode, check if the backend supports
3431 vector lshift (by scalar or vector) at all. If not, we can't use
3432 synthetized multiply. */
3433 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3434 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3435 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3436 goto skip_synth;
3438 /* These are the operations that are potentially turned into
3439 a sequence of shifts and additions. */
3440 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3442 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3443 less than or equal in size to `unsigned int' this doesn't matter.
3444 If the mode is larger than `unsigned int', then synth_mult works
3445 only if the constant value exactly fits in an `unsigned int' without
3446 any truncation. This means that multiplying by negative values does
3447 not work; results are off by 2^32 on a 32 bit machine. */
3448 if (CONST_INT_P (scalar_op1))
3450 coeff = INTVAL (scalar_op1);
3451 is_neg = coeff < 0;
3453 #if TARGET_SUPPORTS_WIDE_INT
3454 else if (CONST_WIDE_INT_P (scalar_op1))
3455 #else
3456 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3457 #endif
3459 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3460 /* Perfect power of 2 (other than 1, which is handled above). */
3461 if (shift > 0)
3462 return expand_shift (LSHIFT_EXPR, mode, op0,
3463 shift, target, unsignedp);
3464 else
3465 goto skip_synth;
3467 else
3468 goto skip_synth;
3470 /* We used to test optimize here, on the grounds that it's better to
3471 produce a smaller program when -O is not used. But this causes
3472 such a terrible slowdown sometimes that it seems better to always
3473 use synth_mult. */
3475 /* Special case powers of two. */
3476 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3477 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3478 return expand_shift (LSHIFT_EXPR, mode, op0,
3479 floor_log2 (coeff), target, unsignedp);
3481 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3483 /* Attempt to handle multiplication of DImode values by negative
3484 coefficients, by performing the multiplication by a positive
3485 multiplier and then inverting the result. */
3486 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3488 /* Its safe to use -coeff even for INT_MIN, as the
3489 result is interpreted as an unsigned coefficient.
3490 Exclude cost of op0 from max_cost to match the cost
3491 calculation of the synth_mult. */
3492 coeff = -(unsigned HOST_WIDE_INT) coeff;
3493 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3494 mode, speed)
3495 - neg_cost (speed, mode));
3496 if (max_cost <= 0)
3497 goto skip_synth;
3499 /* Special case powers of two. */
3500 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3502 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3503 floor_log2 (coeff), target, unsignedp);
3504 return expand_unop (mode, neg_optab, temp, target, 0);
3507 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3508 max_cost))
3510 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3511 &algorithm, variant);
3512 return expand_unop (mode, neg_optab, temp, target, 0);
3514 goto skip_synth;
3517 /* Exclude cost of op0 from max_cost to match the cost
3518 calculation of the synth_mult. */
3519 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3520 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3521 return expand_mult_const (mode, op0, coeff, target,
3522 &algorithm, variant);
3524 skip_synth:
3526 /* Expand x*2.0 as x+x. */
3527 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3528 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3530 op0 = force_reg (GET_MODE (op0), op0);
3531 return expand_binop (mode, add_optab, op0, op0,
3532 target, unsignedp,
3533 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3536 /* This used to use umul_optab if unsigned, but for non-widening multiply
3537 there is no difference between signed and unsigned. */
3538 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3539 op0, op1, target, unsignedp,
3540 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3541 gcc_assert (op0 || no_libcall);
3542 return op0;
3545 /* Return a cost estimate for multiplying a register by the given
3546 COEFFicient in the given MODE and SPEED. */
3549 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3551 int max_cost;
3552 struct algorithm algorithm;
3553 enum mult_variant variant;
3555 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3556 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3557 mode, speed);
3558 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3559 return algorithm.cost.cost;
3560 else
3561 return max_cost;
3564 /* Perform a widening multiplication and return an rtx for the result.
3565 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3566 TARGET is a suggestion for where to store the result (an rtx).
3567 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3568 or smul_widen_optab.
3570 We check specially for a constant integer as OP1, comparing the
3571 cost of a widening multiply against the cost of a sequence of shifts
3572 and adds. */
3575 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3576 int unsignedp, optab this_optab)
3578 bool speed = optimize_insn_for_speed_p ();
3579 rtx cop1;
3581 if (CONST_INT_P (op1)
3582 && GET_MODE (op0) != VOIDmode
3583 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3584 this_optab == umul_widen_optab))
3585 && CONST_INT_P (cop1)
3586 && (INTVAL (cop1) >= 0
3587 || HWI_COMPUTABLE_MODE_P (mode)))
3589 HOST_WIDE_INT coeff = INTVAL (cop1);
3590 int max_cost;
3591 enum mult_variant variant;
3592 struct algorithm algorithm;
3594 if (coeff == 0)
3595 return CONST0_RTX (mode);
3597 /* Special case powers of two. */
3598 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3600 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3601 return expand_shift (LSHIFT_EXPR, mode, op0,
3602 floor_log2 (coeff), target, unsignedp);
3605 /* Exclude cost of op0 from max_cost to match the cost
3606 calculation of the synth_mult. */
3607 max_cost = mul_widen_cost (speed, mode);
3608 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3609 max_cost))
3611 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3612 return expand_mult_const (mode, op0, coeff, target,
3613 &algorithm, variant);
3616 return expand_binop (mode, this_optab, op0, op1, target,
3617 unsignedp, OPTAB_LIB_WIDEN);
3620 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3621 replace division by D, and put the least significant N bits of the result
3622 in *MULTIPLIER_PTR and return the most significant bit.
3624 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3625 needed precision is in PRECISION (should be <= N).
3627 PRECISION should be as small as possible so this function can choose
3628 multiplier more freely.
3630 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3631 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3633 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3634 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3636 unsigned HOST_WIDE_INT
3637 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3638 unsigned HOST_WIDE_INT *multiplier_ptr,
3639 int *post_shift_ptr, int *lgup_ptr)
3641 int lgup, post_shift;
3642 int pow, pow2;
3644 /* lgup = ceil(log2(divisor)); */
3645 lgup = ceil_log2 (d);
3647 gcc_assert (lgup <= n);
3649 pow = n + lgup;
3650 pow2 = n + lgup - precision;
3652 /* mlow = 2^(N + lgup)/d */
3653 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3654 wide_int mlow = wi::udiv_trunc (val, d);
3656 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3657 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3658 wide_int mhigh = wi::udiv_trunc (val, d);
3660 /* If precision == N, then mlow, mhigh exceed 2^N
3661 (but they do not exceed 2^(N+1)). */
3663 /* Reduce to lowest terms. */
3664 for (post_shift = lgup; post_shift > 0; post_shift--)
3666 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3667 HOST_BITS_PER_WIDE_INT);
3668 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3669 HOST_BITS_PER_WIDE_INT);
3670 if (ml_lo >= mh_lo)
3671 break;
3673 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3674 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3677 *post_shift_ptr = post_shift;
3678 *lgup_ptr = lgup;
3679 if (n < HOST_BITS_PER_WIDE_INT)
3681 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3682 *multiplier_ptr = mhigh.to_uhwi () & mask;
3683 return mhigh.to_uhwi () >= mask;
3685 else
3687 *multiplier_ptr = mhigh.to_uhwi ();
3688 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3692 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3693 congruent to 1 (mod 2**N). */
3695 static unsigned HOST_WIDE_INT
3696 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3698 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3700 /* The algorithm notes that the choice y = x satisfies
3701 x*y == 1 mod 2^3, since x is assumed odd.
3702 Each iteration doubles the number of bits of significance in y. */
3704 unsigned HOST_WIDE_INT mask;
3705 unsigned HOST_WIDE_INT y = x;
3706 int nbit = 3;
3708 mask = (n == HOST_BITS_PER_WIDE_INT
3709 ? HOST_WIDE_INT_M1U
3710 : (HOST_WIDE_INT_1U << n) - 1);
3712 while (nbit < n)
3714 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3715 nbit *= 2;
3717 return y;
3720 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3721 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3722 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3723 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3724 become signed.
3726 The result is put in TARGET if that is convenient.
3728 MODE is the mode of operation. */
3731 expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3732 rtx op1, rtx target, int unsignedp)
3734 rtx tem;
3735 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3737 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3738 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3739 tem = expand_and (mode, tem, op1, NULL_RTX);
3740 adj_operand
3741 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3742 adj_operand);
3744 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3745 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3746 tem = expand_and (mode, tem, op0, NULL_RTX);
3747 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3748 target);
3750 return target;
3753 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3755 static rtx
3756 extract_high_half (scalar_int_mode mode, rtx op)
3758 if (mode == word_mode)
3759 return gen_highpart (mode, op);
3761 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3763 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3764 GET_MODE_BITSIZE (mode), 0, 1);
3765 return convert_modes (mode, wider_mode, op, 0);
3768 /* Like expmed_mult_highpart, but only consider using a multiplication
3769 optab. OP1 is an rtx for the constant operand. */
3771 static rtx
3772 expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3773 rtx target, int unsignedp, int max_cost)
3775 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3776 optab moptab;
3777 rtx tem;
3778 int size;
3779 bool speed = optimize_insn_for_speed_p ();
3781 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3783 size = GET_MODE_BITSIZE (mode);
3785 /* Firstly, try using a multiplication insn that only generates the needed
3786 high part of the product, and in the sign flavor of unsignedp. */
3787 if (mul_highpart_cost (speed, mode) < max_cost)
3789 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3790 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3791 unsignedp, OPTAB_DIRECT);
3792 if (tem)
3793 return tem;
3796 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3797 Need to adjust the result after the multiplication. */
3798 if (size - 1 < BITS_PER_WORD
3799 && (mul_highpart_cost (speed, mode)
3800 + 2 * shift_cost (speed, mode, size-1)
3801 + 4 * add_cost (speed, mode) < max_cost))
3803 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3804 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3805 unsignedp, OPTAB_DIRECT);
3806 if (tem)
3807 /* We used the wrong signedness. Adjust the result. */
3808 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3809 tem, unsignedp);
3812 /* Try widening multiplication. */
3813 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3814 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3815 && mul_widen_cost (speed, wider_mode) < max_cost)
3817 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3818 unsignedp, OPTAB_WIDEN);
3819 if (tem)
3820 return extract_high_half (mode, tem);
3823 /* Try widening the mode and perform a non-widening multiplication. */
3824 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3825 && size - 1 < BITS_PER_WORD
3826 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3827 < max_cost))
3829 rtx_insn *insns;
3830 rtx wop0, wop1;
3832 /* We need to widen the operands, for example to ensure the
3833 constant multiplier is correctly sign or zero extended.
3834 Use a sequence to clean-up any instructions emitted by
3835 the conversions if things don't work out. */
3836 start_sequence ();
3837 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3838 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3839 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3840 unsignedp, OPTAB_WIDEN);
3841 insns = get_insns ();
3842 end_sequence ();
3844 if (tem)
3846 emit_insn (insns);
3847 return extract_high_half (mode, tem);
3851 /* Try widening multiplication of opposite signedness, and adjust. */
3852 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3853 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3854 && size - 1 < BITS_PER_WORD
3855 && (mul_widen_cost (speed, wider_mode)
3856 + 2 * shift_cost (speed, mode, size-1)
3857 + 4 * add_cost (speed, mode) < max_cost))
3859 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3860 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3861 if (tem != 0)
3863 tem = extract_high_half (mode, tem);
3864 /* We used the wrong signedness. Adjust the result. */
3865 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3866 target, unsignedp);
3870 return 0;
3873 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3874 putting the high half of the result in TARGET if that is convenient,
3875 and return where the result is. If the operation can not be performed,
3876 0 is returned.
3878 MODE is the mode of operation and result.
3880 UNSIGNEDP nonzero means unsigned multiply.
3882 MAX_COST is the total allowed cost for the expanded RTL. */
3884 static rtx
3885 expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3886 rtx target, int unsignedp, int max_cost)
3888 unsigned HOST_WIDE_INT cnst1;
3889 int extra_cost;
3890 bool sign_adjust = false;
3891 enum mult_variant variant;
3892 struct algorithm alg;
3893 rtx tem;
3894 bool speed = optimize_insn_for_speed_p ();
3896 /* We can't support modes wider than HOST_BITS_PER_INT. */
3897 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3899 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3901 /* We can't optimize modes wider than BITS_PER_WORD.
3902 ??? We might be able to perform double-word arithmetic if
3903 mode == word_mode, however all the cost calculations in
3904 synth_mult etc. assume single-word operations. */
3905 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3906 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3907 return expmed_mult_highpart_optab (mode, op0, op1, target,
3908 unsignedp, max_cost);
3910 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3912 /* Check whether we try to multiply by a negative constant. */
3913 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3915 sign_adjust = true;
3916 extra_cost += add_cost (speed, mode);
3919 /* See whether shift/add multiplication is cheap enough. */
3920 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3921 max_cost - extra_cost))
3923 /* See whether the specialized multiplication optabs are
3924 cheaper than the shift/add version. */
3925 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3926 alg.cost.cost + extra_cost);
3927 if (tem)
3928 return tem;
3930 tem = convert_to_mode (wider_mode, op0, unsignedp);
3931 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3932 tem = extract_high_half (mode, tem);
3934 /* Adjust result for signedness. */
3935 if (sign_adjust)
3936 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3938 return tem;
3940 return expmed_mult_highpart_optab (mode, op0, op1, target,
3941 unsignedp, max_cost);
3945 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3947 static rtx
3948 expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
3950 rtx result, temp, shift;
3951 rtx_code_label *label;
3952 int logd;
3953 int prec = GET_MODE_PRECISION (mode);
3955 logd = floor_log2 (d);
3956 result = gen_reg_rtx (mode);
3958 /* Avoid conditional branches when they're expensive. */
3959 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3960 && optimize_insn_for_speed_p ())
3962 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3963 mode, 0, -1);
3964 if (signmask)
3966 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
3967 signmask = force_reg (mode, signmask);
3968 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
3970 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3971 which instruction sequence to use. If logical right shifts
3972 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3973 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3975 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3976 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3977 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3978 > COSTS_N_INSNS (2)))
3980 temp = expand_binop (mode, xor_optab, op0, signmask,
3981 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3982 temp = expand_binop (mode, sub_optab, temp, signmask,
3983 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3984 temp = expand_binop (mode, and_optab, temp,
3985 gen_int_mode (masklow, mode),
3986 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3987 temp = expand_binop (mode, xor_optab, temp, signmask,
3988 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3989 temp = expand_binop (mode, sub_optab, temp, signmask,
3990 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3992 else
3994 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3995 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3996 signmask = force_reg (mode, signmask);
3998 temp = expand_binop (mode, add_optab, op0, signmask,
3999 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4000 temp = expand_binop (mode, and_optab, temp,
4001 gen_int_mode (masklow, mode),
4002 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4003 temp = expand_binop (mode, sub_optab, temp, signmask,
4004 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4006 return temp;
4010 /* Mask contains the mode's signbit and the significant bits of the
4011 modulus. By including the signbit in the operation, many targets
4012 can avoid an explicit compare operation in the following comparison
4013 against zero. */
4014 wide_int mask = wi::mask (logd, false, prec);
4015 mask = wi::set_bit (mask, prec - 1);
4017 temp = expand_binop (mode, and_optab, op0,
4018 immed_wide_int_const (mask, mode),
4019 result, 1, OPTAB_LIB_WIDEN);
4020 if (temp != result)
4021 emit_move_insn (result, temp);
4023 label = gen_label_rtx ();
4024 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4026 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4027 0, OPTAB_LIB_WIDEN);
4029 mask = wi::mask (logd, true, prec);
4030 temp = expand_binop (mode, ior_optab, temp,
4031 immed_wide_int_const (mask, mode),
4032 result, 1, OPTAB_LIB_WIDEN);
4033 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4034 0, OPTAB_LIB_WIDEN);
4035 if (temp != result)
4036 emit_move_insn (result, temp);
4037 emit_label (label);
4038 return result;
4041 /* Expand signed division of OP0 by a power of two D in mode MODE.
4042 This routine is only called for positive values of D. */
4044 static rtx
4045 expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4047 rtx temp;
4048 rtx_code_label *label;
4049 int logd;
4051 logd = floor_log2 (d);
4053 if (d == 2
4054 && BRANCH_COST (optimize_insn_for_speed_p (),
4055 false) >= 1)
4057 temp = gen_reg_rtx (mode);
4058 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
4059 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4060 0, OPTAB_LIB_WIDEN);
4061 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4064 if (HAVE_conditional_move
4065 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4067 rtx temp2;
4069 start_sequence ();
4070 temp2 = copy_to_mode_reg (mode, op0);
4071 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
4072 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4073 temp = force_reg (mode, temp);
4075 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4076 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
4077 mode, temp, temp2, mode, 0);
4078 if (temp2)
4080 rtx_insn *seq = get_insns ();
4081 end_sequence ();
4082 emit_insn (seq);
4083 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
4085 end_sequence ();
4088 if (BRANCH_COST (optimize_insn_for_speed_p (),
4089 false) >= 2)
4091 int ushift = GET_MODE_BITSIZE (mode) - logd;
4093 temp = gen_reg_rtx (mode);
4094 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
4095 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4096 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
4097 > COSTS_N_INSNS (1))
4098 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
4099 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4100 else
4101 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4102 ushift, NULL_RTX, 1);
4103 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4104 0, OPTAB_LIB_WIDEN);
4105 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4108 label = gen_label_rtx ();
4109 temp = copy_to_mode_reg (mode, op0);
4110 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4111 expand_inc (temp, gen_int_mode (d - 1, mode));
4112 emit_label (label);
4113 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4116 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4117 if that is convenient, and returning where the result is.
4118 You may request either the quotient or the remainder as the result;
4119 specify REM_FLAG nonzero to get the remainder.
4121 CODE is the expression code for which kind of division this is;
4122 it controls how rounding is done. MODE is the machine mode to use.
4123 UNSIGNEDP nonzero means do unsigned division. */
4125 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4126 and then correct it by or'ing in missing high bits
4127 if result of ANDI is nonzero.
4128 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4129 This could optimize to a bfexts instruction.
4130 But C doesn't use these operations, so their optimizations are
4131 left for later. */
4132 /* ??? For modulo, we don't actually need the highpart of the first product,
4133 the low part will do nicely. And for small divisors, the second multiply
4134 can also be a low-part only multiply or even be completely left out.
4135 E.g. to calculate the remainder of a division by 3 with a 32 bit
4136 multiply, multiply with 0x55555556 and extract the upper two bits;
4137 the result is exact for inputs up to 0x1fffffff.
4138 The input range can be reduced by using cross-sum rules.
4139 For odd divisors >= 3, the following table gives right shift counts
4140 so that if a number is shifted by an integer multiple of the given
4141 amount, the remainder stays the same:
4142 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4143 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4144 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4145 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4146 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4148 Cross-sum rules for even numbers can be derived by leaving as many bits
4149 to the right alone as the divisor has zeros to the right.
4150 E.g. if x is an unsigned 32 bit number:
4151 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4155 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4156 rtx op0, rtx op1, rtx target, int unsignedp)
4158 machine_mode compute_mode;
4159 rtx tquotient;
4160 rtx quotient = 0, remainder = 0;
4161 rtx_insn *last;
4162 rtx_insn *insn;
4163 optab optab1, optab2;
4164 int op1_is_constant, op1_is_pow2 = 0;
4165 int max_cost, extra_cost;
4166 static HOST_WIDE_INT last_div_const = 0;
4167 bool speed = optimize_insn_for_speed_p ();
4169 op1_is_constant = CONST_INT_P (op1);
4170 if (op1_is_constant)
4172 wide_int ext_op1 = rtx_mode_t (op1, mode);
4173 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4174 || (! unsignedp
4175 && wi::popcount (wi::neg (ext_op1)) == 1));
4179 This is the structure of expand_divmod:
4181 First comes code to fix up the operands so we can perform the operations
4182 correctly and efficiently.
4184 Second comes a switch statement with code specific for each rounding mode.
4185 For some special operands this code emits all RTL for the desired
4186 operation, for other cases, it generates only a quotient and stores it in
4187 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4188 to indicate that it has not done anything.
4190 Last comes code that finishes the operation. If QUOTIENT is set and
4191 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4192 QUOTIENT is not set, it is computed using trunc rounding.
4194 We try to generate special code for division and remainder when OP1 is a
4195 constant. If |OP1| = 2**n we can use shifts and some other fast
4196 operations. For other values of OP1, we compute a carefully selected
4197 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4198 by m.
4200 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4201 half of the product. Different strategies for generating the product are
4202 implemented in expmed_mult_highpart.
4204 If what we actually want is the remainder, we generate that by another
4205 by-constant multiplication and a subtraction. */
4207 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4208 code below will malfunction if we are, so check here and handle
4209 the special case if so. */
4210 if (op1 == const1_rtx)
4211 return rem_flag ? const0_rtx : op0;
4213 /* When dividing by -1, we could get an overflow.
4214 negv_optab can handle overflows. */
4215 if (! unsignedp && op1 == constm1_rtx)
4217 if (rem_flag)
4218 return const0_rtx;
4219 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4220 ? negv_optab : neg_optab, op0, target, 0);
4223 if (target
4224 /* Don't use the function value register as a target
4225 since we have to read it as well as write it,
4226 and function-inlining gets confused by this. */
4227 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4228 /* Don't clobber an operand while doing a multi-step calculation. */
4229 || ((rem_flag || op1_is_constant)
4230 && (reg_mentioned_p (target, op0)
4231 || (MEM_P (op0) && MEM_P (target))))
4232 || reg_mentioned_p (target, op1)
4233 || (MEM_P (op1) && MEM_P (target))))
4234 target = 0;
4236 /* Get the mode in which to perform this computation. Normally it will
4237 be MODE, but sometimes we can't do the desired operation in MODE.
4238 If so, pick a wider mode in which we can do the operation. Convert
4239 to that mode at the start to avoid repeated conversions.
4241 First see what operations we need. These depend on the expression
4242 we are evaluating. (We assume that divxx3 insns exist under the
4243 same conditions that modxx3 insns and that these insns don't normally
4244 fail. If these assumptions are not correct, we may generate less
4245 efficient code in some cases.)
4247 Then see if we find a mode in which we can open-code that operation
4248 (either a division, modulus, or shift). Finally, check for the smallest
4249 mode for which we can do the operation with a library call. */
4251 /* We might want to refine this now that we have division-by-constant
4252 optimization. Since expmed_mult_highpart tries so many variants, it is
4253 not straightforward to generalize this. Maybe we should make an array
4254 of possible modes in init_expmed? Save this for GCC 2.7. */
4256 optab1 = (op1_is_pow2
4257 ? (unsignedp ? lshr_optab : ashr_optab)
4258 : (unsignedp ? udiv_optab : sdiv_optab));
4259 optab2 = (op1_is_pow2 ? optab1
4260 : (unsignedp ? udivmod_optab : sdivmod_optab));
4262 FOR_EACH_MODE_FROM (compute_mode, mode)
4263 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4264 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4265 break;
4267 if (compute_mode == VOIDmode)
4268 FOR_EACH_MODE_FROM (compute_mode, mode)
4269 if (optab_libfunc (optab1, compute_mode)
4270 || optab_libfunc (optab2, compute_mode))
4271 break;
4273 /* If we still couldn't find a mode, use MODE, but expand_binop will
4274 probably die. */
4275 if (compute_mode == VOIDmode)
4276 compute_mode = mode;
4278 if (target && GET_MODE (target) == compute_mode)
4279 tquotient = target;
4280 else
4281 tquotient = gen_reg_rtx (compute_mode);
4283 #if 0
4284 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4285 (mode), and thereby get better code when OP1 is a constant. Do that
4286 later. It will require going over all usages of SIZE below. */
4287 size = GET_MODE_BITSIZE (mode);
4288 #endif
4290 /* Only deduct something for a REM if the last divide done was
4291 for a different constant. Then set the constant of the last
4292 divide. */
4293 max_cost = (unsignedp
4294 ? udiv_cost (speed, compute_mode)
4295 : sdiv_cost (speed, compute_mode));
4296 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4297 && INTVAL (op1) == last_div_const))
4298 max_cost -= (mul_cost (speed, compute_mode)
4299 + add_cost (speed, compute_mode));
4301 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4303 /* Now convert to the best mode to use. */
4304 if (compute_mode != mode)
4306 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4307 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4309 /* convert_modes may have placed op1 into a register, so we
4310 must recompute the following. */
4311 op1_is_constant = CONST_INT_P (op1);
4312 if (op1_is_constant)
4314 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4315 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4316 || (! unsignedp
4317 && wi::popcount (wi::neg (ext_op1)) == 1));
4319 else
4320 op1_is_pow2 = 0;
4323 /* If one of the operands is a volatile MEM, copy it into a register. */
4325 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4326 op0 = force_reg (compute_mode, op0);
4327 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4328 op1 = force_reg (compute_mode, op1);
4330 /* If we need the remainder or if OP1 is constant, we need to
4331 put OP0 in a register in case it has any queued subexpressions. */
4332 if (rem_flag || op1_is_constant)
4333 op0 = force_reg (compute_mode, op0);
4335 last = get_last_insn ();
4337 /* Promote floor rounding to trunc rounding for unsigned operations. */
4338 if (unsignedp)
4340 if (code == FLOOR_DIV_EXPR)
4341 code = TRUNC_DIV_EXPR;
4342 if (code == FLOOR_MOD_EXPR)
4343 code = TRUNC_MOD_EXPR;
4344 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4345 code = TRUNC_DIV_EXPR;
4348 if (op1 != const0_rtx)
4349 switch (code)
4351 case TRUNC_MOD_EXPR:
4352 case TRUNC_DIV_EXPR:
4353 if (op1_is_constant)
4355 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4356 int size = GET_MODE_BITSIZE (int_mode);
4357 if (unsignedp)
4359 unsigned HOST_WIDE_INT mh, ml;
4360 int pre_shift, post_shift;
4361 int dummy;
4362 wide_int wd = rtx_mode_t (op1, int_mode);
4363 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4365 if (wi::popcount (wd) == 1)
4367 pre_shift = floor_log2 (d);
4368 if (rem_flag)
4370 unsigned HOST_WIDE_INT mask
4371 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4372 remainder
4373 = expand_binop (int_mode, and_optab, op0,
4374 gen_int_mode (mask, int_mode),
4375 remainder, 1,
4376 OPTAB_LIB_WIDEN);
4377 if (remainder)
4378 return gen_lowpart (mode, remainder);
4380 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
4381 pre_shift, tquotient, 1);
4383 else if (size <= HOST_BITS_PER_WIDE_INT)
4385 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4387 /* Most significant bit of divisor is set; emit an scc
4388 insn. */
4389 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4390 int_mode, 1, 1);
4392 else
4394 /* Find a suitable multiplier and right shift count
4395 instead of multiplying with D. */
4397 mh = choose_multiplier (d, size, size,
4398 &ml, &post_shift, &dummy);
4400 /* If the suggested multiplier is more than SIZE bits,
4401 we can do better for even divisors, using an
4402 initial right shift. */
4403 if (mh != 0 && (d & 1) == 0)
4405 pre_shift = ctz_or_zero (d);
4406 mh = choose_multiplier (d >> pre_shift, size,
4407 size - pre_shift,
4408 &ml, &post_shift, &dummy);
4409 gcc_assert (!mh);
4411 else
4412 pre_shift = 0;
4414 if (mh != 0)
4416 rtx t1, t2, t3, t4;
4418 if (post_shift - 1 >= BITS_PER_WORD)
4419 goto fail1;
4421 extra_cost
4422 = (shift_cost (speed, int_mode, post_shift - 1)
4423 + shift_cost (speed, int_mode, 1)
4424 + 2 * add_cost (speed, int_mode));
4425 t1 = expmed_mult_highpart
4426 (int_mode, op0, gen_int_mode (ml, int_mode),
4427 NULL_RTX, 1, max_cost - extra_cost);
4428 if (t1 == 0)
4429 goto fail1;
4430 t2 = force_operand (gen_rtx_MINUS (int_mode,
4431 op0, t1),
4432 NULL_RTX);
4433 t3 = expand_shift (RSHIFT_EXPR, int_mode,
4434 t2, 1, NULL_RTX, 1);
4435 t4 = force_operand (gen_rtx_PLUS (int_mode,
4436 t1, t3),
4437 NULL_RTX);
4438 quotient = expand_shift
4439 (RSHIFT_EXPR, int_mode, t4,
4440 post_shift - 1, tquotient, 1);
4442 else
4444 rtx t1, t2;
4446 if (pre_shift >= BITS_PER_WORD
4447 || post_shift >= BITS_PER_WORD)
4448 goto fail1;
4450 t1 = expand_shift
4451 (RSHIFT_EXPR, int_mode, op0,
4452 pre_shift, NULL_RTX, 1);
4453 extra_cost
4454 = (shift_cost (speed, int_mode, pre_shift)
4455 + shift_cost (speed, int_mode, post_shift));
4456 t2 = expmed_mult_highpart
4457 (int_mode, t1,
4458 gen_int_mode (ml, int_mode),
4459 NULL_RTX, 1, max_cost - extra_cost);
4460 if (t2 == 0)
4461 goto fail1;
4462 quotient = expand_shift
4463 (RSHIFT_EXPR, int_mode, t2,
4464 post_shift, tquotient, 1);
4468 else /* Too wide mode to use tricky code */
4469 break;
4471 insn = get_last_insn ();
4472 if (insn != last)
4473 set_dst_reg_note (insn, REG_EQUAL,
4474 gen_rtx_UDIV (int_mode, op0, op1),
4475 quotient);
4477 else /* TRUNC_DIV, signed */
4479 unsigned HOST_WIDE_INT ml;
4480 int lgup, post_shift;
4481 rtx mlr;
4482 HOST_WIDE_INT d = INTVAL (op1);
4483 unsigned HOST_WIDE_INT abs_d;
4485 /* Not prepared to handle division/remainder by
4486 0xffffffffffffffff8000000000000000 etc. */
4487 if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
4488 break;
4490 /* Since d might be INT_MIN, we have to cast to
4491 unsigned HOST_WIDE_INT before negating to avoid
4492 undefined signed overflow. */
4493 abs_d = (d >= 0
4494 ? (unsigned HOST_WIDE_INT) d
4495 : - (unsigned HOST_WIDE_INT) d);
4497 /* n rem d = n rem -d */
4498 if (rem_flag && d < 0)
4500 d = abs_d;
4501 op1 = gen_int_mode (abs_d, int_mode);
4504 if (d == 1)
4505 quotient = op0;
4506 else if (d == -1)
4507 quotient = expand_unop (int_mode, neg_optab, op0,
4508 tquotient, 0);
4509 else if (size <= HOST_BITS_PER_WIDE_INT
4510 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4512 /* This case is not handled correctly below. */
4513 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4514 int_mode, 1, 1);
4515 if (quotient == 0)
4516 goto fail1;
4518 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4519 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4520 && (rem_flag
4521 ? smod_pow2_cheap (speed, int_mode)
4522 : sdiv_pow2_cheap (speed, int_mode))
4523 /* We assume that cheap metric is true if the
4524 optab has an expander for this mode. */
4525 && ((optab_handler ((rem_flag ? smod_optab
4526 : sdiv_optab),
4527 int_mode)
4528 != CODE_FOR_nothing)
4529 || (optab_handler (sdivmod_optab, int_mode)
4530 != CODE_FOR_nothing)))
4532 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4534 if (rem_flag)
4536 remainder = expand_smod_pow2 (int_mode, op0, d);
4537 if (remainder)
4538 return gen_lowpart (mode, remainder);
4541 if (sdiv_pow2_cheap (speed, int_mode)
4542 && ((optab_handler (sdiv_optab, int_mode)
4543 != CODE_FOR_nothing)
4544 || (optab_handler (sdivmod_optab, int_mode)
4545 != CODE_FOR_nothing)))
4546 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4547 int_mode, op0,
4548 gen_int_mode (abs_d,
4549 int_mode),
4550 NULL_RTX, 0);
4551 else
4552 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
4554 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4555 negate the quotient. */
4556 if (d < 0)
4558 insn = get_last_insn ();
4559 if (insn != last
4560 && abs_d < (HOST_WIDE_INT_1U
4561 << (HOST_BITS_PER_WIDE_INT - 1)))
4562 set_dst_reg_note (insn, REG_EQUAL,
4563 gen_rtx_DIV (int_mode, op0,
4564 gen_int_mode
4565 (abs_d,
4566 int_mode)),
4567 quotient);
4569 quotient = expand_unop (int_mode, neg_optab,
4570 quotient, quotient, 0);
4573 else if (size <= HOST_BITS_PER_WIDE_INT)
4575 choose_multiplier (abs_d, size, size - 1,
4576 &ml, &post_shift, &lgup);
4577 if (ml < HOST_WIDE_INT_1U << (size - 1))
4579 rtx t1, t2, t3;
4581 if (post_shift >= BITS_PER_WORD
4582 || size - 1 >= BITS_PER_WORD)
4583 goto fail1;
4585 extra_cost = (shift_cost (speed, int_mode, post_shift)
4586 + shift_cost (speed, int_mode, size - 1)
4587 + add_cost (speed, int_mode));
4588 t1 = expmed_mult_highpart
4589 (int_mode, op0, gen_int_mode (ml, int_mode),
4590 NULL_RTX, 0, max_cost - extra_cost);
4591 if (t1 == 0)
4592 goto fail1;
4593 t2 = expand_shift
4594 (RSHIFT_EXPR, int_mode, t1,
4595 post_shift, NULL_RTX, 0);
4596 t3 = expand_shift
4597 (RSHIFT_EXPR, int_mode, op0,
4598 size - 1, NULL_RTX, 0);
4599 if (d < 0)
4600 quotient
4601 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4602 tquotient);
4603 else
4604 quotient
4605 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4606 tquotient);
4608 else
4610 rtx t1, t2, t3, t4;
4612 if (post_shift >= BITS_PER_WORD
4613 || size - 1 >= BITS_PER_WORD)
4614 goto fail1;
4616 ml |= HOST_WIDE_INT_M1U << (size - 1);
4617 mlr = gen_int_mode (ml, int_mode);
4618 extra_cost = (shift_cost (speed, int_mode, post_shift)
4619 + shift_cost (speed, int_mode, size - 1)
4620 + 2 * add_cost (speed, int_mode));
4621 t1 = expmed_mult_highpart (int_mode, op0, mlr,
4622 NULL_RTX, 0,
4623 max_cost - extra_cost);
4624 if (t1 == 0)
4625 goto fail1;
4626 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4627 NULL_RTX);
4628 t3 = expand_shift
4629 (RSHIFT_EXPR, int_mode, t2,
4630 post_shift, NULL_RTX, 0);
4631 t4 = expand_shift
4632 (RSHIFT_EXPR, int_mode, op0,
4633 size - 1, NULL_RTX, 0);
4634 if (d < 0)
4635 quotient
4636 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4637 tquotient);
4638 else
4639 quotient
4640 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4641 tquotient);
4644 else /* Too wide mode to use tricky code */
4645 break;
4647 insn = get_last_insn ();
4648 if (insn != last)
4649 set_dst_reg_note (insn, REG_EQUAL,
4650 gen_rtx_DIV (int_mode, op0, op1),
4651 quotient);
4653 break;
4655 fail1:
4656 delete_insns_since (last);
4657 break;
4659 case FLOOR_DIV_EXPR:
4660 case FLOOR_MOD_EXPR:
4661 /* We will come here only for signed operations. */
4662 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4664 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4665 int size = GET_MODE_BITSIZE (int_mode);
4666 unsigned HOST_WIDE_INT mh, ml;
4667 int pre_shift, lgup, post_shift;
4668 HOST_WIDE_INT d = INTVAL (op1);
4670 if (d > 0)
4672 /* We could just as easily deal with negative constants here,
4673 but it does not seem worth the trouble for GCC 2.6. */
4674 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4676 pre_shift = floor_log2 (d);
4677 if (rem_flag)
4679 unsigned HOST_WIDE_INT mask
4680 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4681 remainder = expand_binop
4682 (int_mode, and_optab, op0,
4683 gen_int_mode (mask, int_mode),
4684 remainder, 0, OPTAB_LIB_WIDEN);
4685 if (remainder)
4686 return gen_lowpart (mode, remainder);
4688 quotient = expand_shift
4689 (RSHIFT_EXPR, int_mode, op0,
4690 pre_shift, tquotient, 0);
4692 else
4694 rtx t1, t2, t3, t4;
4696 mh = choose_multiplier (d, size, size - 1,
4697 &ml, &post_shift, &lgup);
4698 gcc_assert (!mh);
4700 if (post_shift < BITS_PER_WORD
4701 && size - 1 < BITS_PER_WORD)
4703 t1 = expand_shift
4704 (RSHIFT_EXPR, int_mode, op0,
4705 size - 1, NULL_RTX, 0);
4706 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4707 NULL_RTX, 0, OPTAB_WIDEN);
4708 extra_cost = (shift_cost (speed, int_mode, post_shift)
4709 + shift_cost (speed, int_mode, size - 1)
4710 + 2 * add_cost (speed, int_mode));
4711 t3 = expmed_mult_highpart
4712 (int_mode, t2, gen_int_mode (ml, int_mode),
4713 NULL_RTX, 1, max_cost - extra_cost);
4714 if (t3 != 0)
4716 t4 = expand_shift
4717 (RSHIFT_EXPR, int_mode, t3,
4718 post_shift, NULL_RTX, 1);
4719 quotient = expand_binop (int_mode, xor_optab,
4720 t4, t1, tquotient, 0,
4721 OPTAB_WIDEN);
4726 else
4728 rtx nsign, t1, t2, t3, t4;
4729 t1 = force_operand (gen_rtx_PLUS (int_mode,
4730 op0, constm1_rtx), NULL_RTX);
4731 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4732 0, OPTAB_WIDEN);
4733 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
4734 size - 1, NULL_RTX, 0);
4735 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4736 NULL_RTX);
4737 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
4738 NULL_RTX, 0);
4739 if (t4)
4741 rtx t5;
4742 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4743 NULL_RTX, 0);
4744 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4745 tquotient);
4750 if (quotient != 0)
4751 break;
4752 delete_insns_since (last);
4754 /* Try using an instruction that produces both the quotient and
4755 remainder, using truncation. We can easily compensate the quotient
4756 or remainder to get floor rounding, once we have the remainder.
4757 Notice that we compute also the final remainder value here,
4758 and return the result right away. */
4759 if (target == 0 || GET_MODE (target) != compute_mode)
4760 target = gen_reg_rtx (compute_mode);
4762 if (rem_flag)
4764 remainder
4765 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4766 quotient = gen_reg_rtx (compute_mode);
4768 else
4770 quotient
4771 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4772 remainder = gen_reg_rtx (compute_mode);
4775 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4776 quotient, remainder, 0))
4778 /* This could be computed with a branch-less sequence.
4779 Save that for later. */
4780 rtx tem;
4781 rtx_code_label *label = gen_label_rtx ();
4782 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4783 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4784 NULL_RTX, 0, OPTAB_WIDEN);
4785 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4786 expand_dec (quotient, const1_rtx);
4787 expand_inc (remainder, op1);
4788 emit_label (label);
4789 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4792 /* No luck with division elimination or divmod. Have to do it
4793 by conditionally adjusting op0 *and* the result. */
4795 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4796 rtx adjusted_op0;
4797 rtx tem;
4799 quotient = gen_reg_rtx (compute_mode);
4800 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4801 label1 = gen_label_rtx ();
4802 label2 = gen_label_rtx ();
4803 label3 = gen_label_rtx ();
4804 label4 = gen_label_rtx ();
4805 label5 = gen_label_rtx ();
4806 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4807 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4808 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4809 quotient, 0, OPTAB_LIB_WIDEN);
4810 if (tem != quotient)
4811 emit_move_insn (quotient, tem);
4812 emit_jump_insn (targetm.gen_jump (label5));
4813 emit_barrier ();
4814 emit_label (label1);
4815 expand_inc (adjusted_op0, const1_rtx);
4816 emit_jump_insn (targetm.gen_jump (label4));
4817 emit_barrier ();
4818 emit_label (label2);
4819 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4820 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4821 quotient, 0, OPTAB_LIB_WIDEN);
4822 if (tem != quotient)
4823 emit_move_insn (quotient, tem);
4824 emit_jump_insn (targetm.gen_jump (label5));
4825 emit_barrier ();
4826 emit_label (label3);
4827 expand_dec (adjusted_op0, const1_rtx);
4828 emit_label (label4);
4829 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4830 quotient, 0, OPTAB_LIB_WIDEN);
4831 if (tem != quotient)
4832 emit_move_insn (quotient, tem);
4833 expand_dec (quotient, const1_rtx);
4834 emit_label (label5);
4836 break;
4838 case CEIL_DIV_EXPR:
4839 case CEIL_MOD_EXPR:
4840 if (unsignedp)
4842 if (op1_is_constant
4843 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4844 && (HWI_COMPUTABLE_MODE_P (compute_mode)
4845 || INTVAL (op1) >= 0))
4847 scalar_int_mode int_mode
4848 = as_a <scalar_int_mode> (compute_mode);
4849 rtx t1, t2, t3;
4850 unsigned HOST_WIDE_INT d = INTVAL (op1);
4851 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4852 floor_log2 (d), tquotient, 1);
4853 t2 = expand_binop (int_mode, and_optab, op0,
4854 gen_int_mode (d - 1, int_mode),
4855 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4856 t3 = gen_reg_rtx (int_mode);
4857 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4858 if (t3 == 0)
4860 rtx_code_label *lab;
4861 lab = gen_label_rtx ();
4862 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4863 expand_inc (t1, const1_rtx);
4864 emit_label (lab);
4865 quotient = t1;
4867 else
4868 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4869 tquotient);
4870 break;
4873 /* Try using an instruction that produces both the quotient and
4874 remainder, using truncation. We can easily compensate the
4875 quotient or remainder to get ceiling rounding, once we have the
4876 remainder. Notice that we compute also the final remainder
4877 value here, and return the result right away. */
4878 if (target == 0 || GET_MODE (target) != compute_mode)
4879 target = gen_reg_rtx (compute_mode);
4881 if (rem_flag)
4883 remainder = (REG_P (target)
4884 ? target : gen_reg_rtx (compute_mode));
4885 quotient = gen_reg_rtx (compute_mode);
4887 else
4889 quotient = (REG_P (target)
4890 ? target : gen_reg_rtx (compute_mode));
4891 remainder = gen_reg_rtx (compute_mode);
4894 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4895 remainder, 1))
4897 /* This could be computed with a branch-less sequence.
4898 Save that for later. */
4899 rtx_code_label *label = gen_label_rtx ();
4900 do_cmp_and_jump (remainder, const0_rtx, EQ,
4901 compute_mode, label);
4902 expand_inc (quotient, const1_rtx);
4903 expand_dec (remainder, op1);
4904 emit_label (label);
4905 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4908 /* No luck with division elimination or divmod. Have to do it
4909 by conditionally adjusting op0 *and* the result. */
4911 rtx_code_label *label1, *label2;
4912 rtx adjusted_op0, tem;
4914 quotient = gen_reg_rtx (compute_mode);
4915 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4916 label1 = gen_label_rtx ();
4917 label2 = gen_label_rtx ();
4918 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4919 compute_mode, label1);
4920 emit_move_insn (quotient, const0_rtx);
4921 emit_jump_insn (targetm.gen_jump (label2));
4922 emit_barrier ();
4923 emit_label (label1);
4924 expand_dec (adjusted_op0, const1_rtx);
4925 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4926 quotient, 1, OPTAB_LIB_WIDEN);
4927 if (tem != quotient)
4928 emit_move_insn (quotient, tem);
4929 expand_inc (quotient, const1_rtx);
4930 emit_label (label2);
4933 else /* signed */
4935 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4936 && INTVAL (op1) >= 0)
4938 /* This is extremely similar to the code for the unsigned case
4939 above. For 2.7 we should merge these variants, but for
4940 2.6.1 I don't want to touch the code for unsigned since that
4941 get used in C. The signed case will only be used by other
4942 languages (Ada). */
4944 rtx t1, t2, t3;
4945 unsigned HOST_WIDE_INT d = INTVAL (op1);
4946 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4947 floor_log2 (d), tquotient, 0);
4948 t2 = expand_binop (compute_mode, and_optab, op0,
4949 gen_int_mode (d - 1, compute_mode),
4950 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4951 t3 = gen_reg_rtx (compute_mode);
4952 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4953 compute_mode, 1, 1);
4954 if (t3 == 0)
4956 rtx_code_label *lab;
4957 lab = gen_label_rtx ();
4958 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4959 expand_inc (t1, const1_rtx);
4960 emit_label (lab);
4961 quotient = t1;
4963 else
4964 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4965 t1, t3),
4966 tquotient);
4967 break;
4970 /* Try using an instruction that produces both the quotient and
4971 remainder, using truncation. We can easily compensate the
4972 quotient or remainder to get ceiling rounding, once we have the
4973 remainder. Notice that we compute also the final remainder
4974 value here, and return the result right away. */
4975 if (target == 0 || GET_MODE (target) != compute_mode)
4976 target = gen_reg_rtx (compute_mode);
4977 if (rem_flag)
4979 remainder= (REG_P (target)
4980 ? target : gen_reg_rtx (compute_mode));
4981 quotient = gen_reg_rtx (compute_mode);
4983 else
4985 quotient = (REG_P (target)
4986 ? target : gen_reg_rtx (compute_mode));
4987 remainder = gen_reg_rtx (compute_mode);
4990 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4991 remainder, 0))
4993 /* This could be computed with a branch-less sequence.
4994 Save that for later. */
4995 rtx tem;
4996 rtx_code_label *label = gen_label_rtx ();
4997 do_cmp_and_jump (remainder, const0_rtx, EQ,
4998 compute_mode, label);
4999 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5000 NULL_RTX, 0, OPTAB_WIDEN);
5001 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
5002 expand_inc (quotient, const1_rtx);
5003 expand_dec (remainder, op1);
5004 emit_label (label);
5005 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5008 /* No luck with division elimination or divmod. Have to do it
5009 by conditionally adjusting op0 *and* the result. */
5011 rtx_code_label *label1, *label2, *label3, *label4, *label5;
5012 rtx adjusted_op0;
5013 rtx tem;
5015 quotient = gen_reg_rtx (compute_mode);
5016 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5017 label1 = gen_label_rtx ();
5018 label2 = gen_label_rtx ();
5019 label3 = gen_label_rtx ();
5020 label4 = gen_label_rtx ();
5021 label5 = gen_label_rtx ();
5022 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5023 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5024 compute_mode, label1);
5025 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5026 quotient, 0, OPTAB_LIB_WIDEN);
5027 if (tem != quotient)
5028 emit_move_insn (quotient, tem);
5029 emit_jump_insn (targetm.gen_jump (label5));
5030 emit_barrier ();
5031 emit_label (label1);
5032 expand_dec (adjusted_op0, const1_rtx);
5033 emit_jump_insn (targetm.gen_jump (label4));
5034 emit_barrier ();
5035 emit_label (label2);
5036 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5037 compute_mode, label3);
5038 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5039 quotient, 0, OPTAB_LIB_WIDEN);
5040 if (tem != quotient)
5041 emit_move_insn (quotient, tem);
5042 emit_jump_insn (targetm.gen_jump (label5));
5043 emit_barrier ();
5044 emit_label (label3);
5045 expand_inc (adjusted_op0, const1_rtx);
5046 emit_label (label4);
5047 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5048 quotient, 0, OPTAB_LIB_WIDEN);
5049 if (tem != quotient)
5050 emit_move_insn (quotient, tem);
5051 expand_inc (quotient, const1_rtx);
5052 emit_label (label5);
5055 break;
5057 case EXACT_DIV_EXPR:
5058 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
5060 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5061 int size = GET_MODE_BITSIZE (int_mode);
5062 HOST_WIDE_INT d = INTVAL (op1);
5063 unsigned HOST_WIDE_INT ml;
5064 int pre_shift;
5065 rtx t1;
5067 pre_shift = ctz_or_zero (d);
5068 ml = invert_mod2n (d >> pre_shift, size);
5069 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5070 pre_shift, NULL_RTX, unsignedp);
5071 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
5072 NULL_RTX, 1);
5074 insn = get_last_insn ();
5075 set_dst_reg_note (insn, REG_EQUAL,
5076 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5077 int_mode, op0, op1),
5078 quotient);
5080 break;
5082 case ROUND_DIV_EXPR:
5083 case ROUND_MOD_EXPR:
5084 if (unsignedp)
5086 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5087 rtx tem;
5088 rtx_code_label *label;
5089 label = gen_label_rtx ();
5090 quotient = gen_reg_rtx (int_mode);
5091 remainder = gen_reg_rtx (int_mode);
5092 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5094 rtx tem;
5095 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
5096 quotient, 1, OPTAB_LIB_WIDEN);
5097 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
5098 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5099 remainder, 1, OPTAB_LIB_WIDEN);
5101 tem = plus_constant (int_mode, op1, -1);
5102 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
5103 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
5104 expand_inc (quotient, const1_rtx);
5105 expand_dec (remainder, op1);
5106 emit_label (label);
5108 else
5110 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5111 int size = GET_MODE_BITSIZE (int_mode);
5112 rtx abs_rem, abs_op1, tem, mask;
5113 rtx_code_label *label;
5114 label = gen_label_rtx ();
5115 quotient = gen_reg_rtx (int_mode);
5116 remainder = gen_reg_rtx (int_mode);
5117 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5119 rtx tem;
5120 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5121 quotient, 0, OPTAB_LIB_WIDEN);
5122 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5123 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5124 remainder, 0, OPTAB_LIB_WIDEN);
5126 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5127 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5128 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
5129 1, NULL_RTX, 1);
5130 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5131 tem = expand_binop (int_mode, xor_optab, op0, op1,
5132 NULL_RTX, 0, OPTAB_WIDEN);
5133 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
5134 size - 1, NULL_RTX, 0);
5135 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5136 NULL_RTX, 0, OPTAB_WIDEN);
5137 tem = expand_binop (int_mode, sub_optab, tem, mask,
5138 NULL_RTX, 0, OPTAB_WIDEN);
5139 expand_inc (quotient, tem);
5140 tem = expand_binop (int_mode, xor_optab, mask, op1,
5141 NULL_RTX, 0, OPTAB_WIDEN);
5142 tem = expand_binop (int_mode, sub_optab, tem, mask,
5143 NULL_RTX, 0, OPTAB_WIDEN);
5144 expand_dec (remainder, tem);
5145 emit_label (label);
5147 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5149 default:
5150 gcc_unreachable ();
5153 if (quotient == 0)
5155 if (target && GET_MODE (target) != compute_mode)
5156 target = 0;
5158 if (rem_flag)
5160 /* Try to produce the remainder without producing the quotient.
5161 If we seem to have a divmod pattern that does not require widening,
5162 don't try widening here. We should really have a WIDEN argument
5163 to expand_twoval_binop, since what we'd really like to do here is
5164 1) try a mod insn in compute_mode
5165 2) try a divmod insn in compute_mode
5166 3) try a div insn in compute_mode and multiply-subtract to get
5167 remainder
5168 4) try the same things with widening allowed. */
5169 remainder
5170 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5171 op0, op1, target,
5172 unsignedp,
5173 ((optab_handler (optab2, compute_mode)
5174 != CODE_FOR_nothing)
5175 ? OPTAB_DIRECT : OPTAB_WIDEN));
5176 if (remainder == 0)
5178 /* No luck there. Can we do remainder and divide at once
5179 without a library call? */
5180 remainder = gen_reg_rtx (compute_mode);
5181 if (! expand_twoval_binop ((unsignedp
5182 ? udivmod_optab
5183 : sdivmod_optab),
5184 op0, op1,
5185 NULL_RTX, remainder, unsignedp))
5186 remainder = 0;
5189 if (remainder)
5190 return gen_lowpart (mode, remainder);
5193 /* Produce the quotient. Try a quotient insn, but not a library call.
5194 If we have a divmod in this mode, use it in preference to widening
5195 the div (for this test we assume it will not fail). Note that optab2
5196 is set to the one of the two optabs that the call below will use. */
5197 quotient
5198 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5199 op0, op1, rem_flag ? NULL_RTX : target,
5200 unsignedp,
5201 ((optab_handler (optab2, compute_mode)
5202 != CODE_FOR_nothing)
5203 ? OPTAB_DIRECT : OPTAB_WIDEN));
5205 if (quotient == 0)
5207 /* No luck there. Try a quotient-and-remainder insn,
5208 keeping the quotient alone. */
5209 quotient = gen_reg_rtx (compute_mode);
5210 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5211 op0, op1,
5212 quotient, NULL_RTX, unsignedp))
5214 quotient = 0;
5215 if (! rem_flag)
5216 /* Still no luck. If we are not computing the remainder,
5217 use a library call for the quotient. */
5218 quotient = sign_expand_binop (compute_mode,
5219 udiv_optab, sdiv_optab,
5220 op0, op1, target,
5221 unsignedp, OPTAB_LIB_WIDEN);
5226 if (rem_flag)
5228 if (target && GET_MODE (target) != compute_mode)
5229 target = 0;
5231 if (quotient == 0)
5233 /* No divide instruction either. Use library for remainder. */
5234 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5235 op0, op1, target,
5236 unsignedp, OPTAB_LIB_WIDEN);
5237 /* No remainder function. Try a quotient-and-remainder
5238 function, keeping the remainder. */
5239 if (!remainder)
5241 remainder = gen_reg_rtx (compute_mode);
5242 if (!expand_twoval_binop_libfunc
5243 (unsignedp ? udivmod_optab : sdivmod_optab,
5244 op0, op1,
5245 NULL_RTX, remainder,
5246 unsignedp ? UMOD : MOD))
5247 remainder = NULL_RTX;
5250 else
5252 /* We divided. Now finish doing X - Y * (X / Y). */
5253 remainder = expand_mult (compute_mode, quotient, op1,
5254 NULL_RTX, unsignedp);
5255 remainder = expand_binop (compute_mode, sub_optab, op0,
5256 remainder, target, unsignedp,
5257 OPTAB_LIB_WIDEN);
5261 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5264 /* Return a tree node with data type TYPE, describing the value of X.
5265 Usually this is an VAR_DECL, if there is no obvious better choice.
5266 X may be an expression, however we only support those expressions
5267 generated by loop.c. */
5269 tree
5270 make_tree (tree type, rtx x)
5272 tree t;
5274 switch (GET_CODE (x))
5276 case CONST_INT:
5277 case CONST_WIDE_INT:
5278 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5279 return t;
5281 case CONST_DOUBLE:
5282 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5283 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5284 t = wide_int_to_tree (type,
5285 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5286 HOST_BITS_PER_WIDE_INT * 2));
5287 else
5288 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5290 return t;
5292 case CONST_VECTOR:
5294 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5295 unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
5296 tree itype = TREE_TYPE (type);
5298 /* Build a tree with vector elements. */
5299 tree_vector_builder elts (type, npatterns, nelts_per_pattern);
5300 unsigned int count = elts.encoded_nelts ();
5301 for (unsigned int i = 0; i < count; ++i)
5303 rtx elt = CONST_VECTOR_ELT (x, i);
5304 elts.quick_push (make_tree (itype, elt));
5307 return elts.build ();
5310 case PLUS:
5311 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5312 make_tree (type, XEXP (x, 1)));
5314 case MINUS:
5315 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5316 make_tree (type, XEXP (x, 1)));
5318 case NEG:
5319 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5321 case MULT:
5322 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5323 make_tree (type, XEXP (x, 1)));
5325 case ASHIFT:
5326 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5327 make_tree (type, XEXP (x, 1)));
5329 case LSHIFTRT:
5330 t = unsigned_type_for (type);
5331 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5332 make_tree (t, XEXP (x, 0)),
5333 make_tree (type, XEXP (x, 1))));
5335 case ASHIFTRT:
5336 t = signed_type_for (type);
5337 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5338 make_tree (t, XEXP (x, 0)),
5339 make_tree (type, XEXP (x, 1))));
5341 case DIV:
5342 if (TREE_CODE (type) != REAL_TYPE)
5343 t = signed_type_for (type);
5344 else
5345 t = type;
5347 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5348 make_tree (t, XEXP (x, 0)),
5349 make_tree (t, XEXP (x, 1))));
5350 case UDIV:
5351 t = unsigned_type_for (type);
5352 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5353 make_tree (t, XEXP (x, 0)),
5354 make_tree (t, XEXP (x, 1))));
5356 case SIGN_EXTEND:
5357 case ZERO_EXTEND:
5358 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5359 GET_CODE (x) == ZERO_EXTEND);
5360 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5362 case CONST:
5363 return make_tree (type, XEXP (x, 0));
5365 case SYMBOL_REF:
5366 t = SYMBOL_REF_DECL (x);
5367 if (t)
5368 return fold_convert (type, build_fold_addr_expr (t));
5369 /* fall through. */
5371 default:
5372 if (CONST_POLY_INT_P (x))
5373 return wide_int_to_tree (t, const_poly_int_value (x));
5375 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5377 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5378 address mode to pointer mode. */
5379 if (POINTER_TYPE_P (type))
5380 x = convert_memory_address_addr_space
5381 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5383 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5384 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5385 t->decl_with_rtl.rtl = x;
5387 return t;
5391 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5392 and returning TARGET.
5394 If TARGET is 0, a pseudo-register or constant is returned. */
5397 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5399 rtx tem = 0;
5401 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5402 tem = simplify_binary_operation (AND, mode, op0, op1);
5403 if (tem == 0)
5404 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5406 if (target == 0)
5407 target = tem;
5408 else if (tem != target)
5409 emit_move_insn (target, tem);
5410 return target;
5413 /* Helper function for emit_store_flag. */
5415 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5416 machine_mode mode, machine_mode compare_mode,
5417 int unsignedp, rtx x, rtx y, int normalizep,
5418 machine_mode target_mode)
5420 struct expand_operand ops[4];
5421 rtx op0, comparison, subtarget;
5422 rtx_insn *last;
5423 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5424 scalar_int_mode int_target_mode;
5426 last = get_last_insn ();
5427 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5428 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5429 if (!x || !y)
5431 delete_insns_since (last);
5432 return NULL_RTX;
5435 if (target_mode == VOIDmode)
5436 int_target_mode = result_mode;
5437 else
5438 int_target_mode = as_a <scalar_int_mode> (target_mode);
5439 if (!target)
5440 target = gen_reg_rtx (int_target_mode);
5442 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5444 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5445 create_fixed_operand (&ops[1], comparison);
5446 create_fixed_operand (&ops[2], x);
5447 create_fixed_operand (&ops[3], y);
5448 if (!maybe_expand_insn (icode, 4, ops))
5450 delete_insns_since (last);
5451 return NULL_RTX;
5453 subtarget = ops[0].value;
5455 /* If we are converting to a wider mode, first convert to
5456 INT_TARGET_MODE, then normalize. This produces better combining
5457 opportunities on machines that have a SIGN_EXTRACT when we are
5458 testing a single bit. This mostly benefits the 68k.
5460 If STORE_FLAG_VALUE does not have the sign bit set when
5461 interpreted in MODE, we can do this conversion as unsigned, which
5462 is usually more efficient. */
5463 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (result_mode))
5465 convert_move (target, subtarget,
5466 val_signbit_known_clear_p (result_mode,
5467 STORE_FLAG_VALUE));
5468 op0 = target;
5469 result_mode = int_target_mode;
5471 else
5472 op0 = subtarget;
5474 /* If we want to keep subexpressions around, don't reuse our last
5475 target. */
5476 if (optimize)
5477 subtarget = 0;
5479 /* Now normalize to the proper value in MODE. Sometimes we don't
5480 have to do anything. */
5481 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5483 /* STORE_FLAG_VALUE might be the most negative number, so write
5484 the comparison this way to avoid a compiler-time warning. */
5485 else if (- normalizep == STORE_FLAG_VALUE)
5486 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5488 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5489 it hard to use a value of just the sign bit due to ANSI integer
5490 constant typing rules. */
5491 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5492 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5493 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5494 normalizep == 1);
5495 else
5497 gcc_assert (STORE_FLAG_VALUE & 1);
5499 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5500 if (normalizep == -1)
5501 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5504 /* If we were converting to a smaller mode, do the conversion now. */
5505 if (int_target_mode != result_mode)
5507 convert_move (target, op0, 0);
5508 return target;
5510 else
5511 return op0;
5515 /* A subroutine of emit_store_flag only including "tricks" that do not
5516 need a recursive call. These are kept separate to avoid infinite
5517 loops. */
5519 static rtx
5520 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5521 machine_mode mode, int unsignedp, int normalizep,
5522 machine_mode target_mode)
5524 rtx subtarget;
5525 enum insn_code icode;
5526 machine_mode compare_mode;
5527 enum mode_class mclass;
5528 enum rtx_code scode;
5530 if (unsignedp)
5531 code = unsigned_condition (code);
5532 scode = swap_condition (code);
5534 /* If one operand is constant, make it the second one. Only do this
5535 if the other operand is not constant as well. */
5537 if (swap_commutative_operands_p (op0, op1))
5539 std::swap (op0, op1);
5540 code = swap_condition (code);
5543 if (mode == VOIDmode)
5544 mode = GET_MODE (op0);
5546 /* For some comparisons with 1 and -1, we can convert this to
5547 comparisons with zero. This will often produce more opportunities for
5548 store-flag insns. */
5550 switch (code)
5552 case LT:
5553 if (op1 == const1_rtx)
5554 op1 = const0_rtx, code = LE;
5555 break;
5556 case LE:
5557 if (op1 == constm1_rtx)
5558 op1 = const0_rtx, code = LT;
5559 break;
5560 case GE:
5561 if (op1 == const1_rtx)
5562 op1 = const0_rtx, code = GT;
5563 break;
5564 case GT:
5565 if (op1 == constm1_rtx)
5566 op1 = const0_rtx, code = GE;
5567 break;
5568 case GEU:
5569 if (op1 == const1_rtx)
5570 op1 = const0_rtx, code = NE;
5571 break;
5572 case LTU:
5573 if (op1 == const1_rtx)
5574 op1 = const0_rtx, code = EQ;
5575 break;
5576 default:
5577 break;
5580 /* If we are comparing a double-word integer with zero or -1, we can
5581 convert the comparison into one involving a single word. */
5582 scalar_int_mode int_mode;
5583 if (is_int_mode (mode, &int_mode)
5584 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
5585 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5587 rtx tem;
5588 if ((code == EQ || code == NE)
5589 && (op1 == const0_rtx || op1 == constm1_rtx))
5591 rtx op00, op01;
5593 /* Do a logical OR or AND of the two words and compare the
5594 result. */
5595 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5596 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
5597 tem = expand_binop (word_mode,
5598 op1 == const0_rtx ? ior_optab : and_optab,
5599 op00, op01, NULL_RTX, unsignedp,
5600 OPTAB_DIRECT);
5602 if (tem != 0)
5603 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5604 unsignedp, normalizep);
5606 else if ((code == LT || code == GE) && op1 == const0_rtx)
5608 rtx op0h;
5610 /* If testing the sign bit, can just test on high word. */
5611 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
5612 subreg_highpart_offset (word_mode,
5613 int_mode));
5614 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5615 unsignedp, normalizep);
5617 else
5618 tem = NULL_RTX;
5620 if (tem)
5622 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5623 return tem;
5624 if (!target)
5625 target = gen_reg_rtx (target_mode);
5627 convert_move (target, tem,
5628 !val_signbit_known_set_p (word_mode,
5629 (normalizep ? normalizep
5630 : STORE_FLAG_VALUE)));
5631 return target;
5635 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5636 complement of A (for GE) and shifting the sign bit to the low bit. */
5637 if (op1 == const0_rtx && (code == LT || code == GE)
5638 && is_int_mode (mode, &int_mode)
5639 && (normalizep || STORE_FLAG_VALUE == 1
5640 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5642 scalar_int_mode int_target_mode;
5643 subtarget = target;
5645 if (!target)
5646 int_target_mode = int_mode;
5647 else
5649 /* If the result is to be wider than OP0, it is best to convert it
5650 first. If it is to be narrower, it is *incorrect* to convert it
5651 first. */
5652 int_target_mode = as_a <scalar_int_mode> (target_mode);
5653 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5655 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5656 int_mode = int_target_mode;
5660 if (int_target_mode != int_mode)
5661 subtarget = 0;
5663 if (code == GE)
5664 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5665 ((STORE_FLAG_VALUE == 1 || normalizep)
5666 ? 0 : subtarget), 0);
5668 if (STORE_FLAG_VALUE == 1 || normalizep)
5669 /* If we are supposed to produce a 0/1 value, we want to do
5670 a logical shift from the sign bit to the low-order bit; for
5671 a -1/0 value, we do an arithmetic shift. */
5672 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5673 GET_MODE_BITSIZE (int_mode) - 1,
5674 subtarget, normalizep != -1);
5676 if (int_mode != int_target_mode)
5677 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5679 return op0;
5682 mclass = GET_MODE_CLASS (mode);
5683 FOR_EACH_MODE_FROM (compare_mode, mode)
5685 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5686 icode = optab_handler (cstore_optab, optab_mode);
5687 if (icode != CODE_FOR_nothing)
5689 do_pending_stack_adjust ();
5690 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5691 unsignedp, op0, op1, normalizep, target_mode);
5692 if (tem)
5693 return tem;
5695 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5697 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5698 unsignedp, op1, op0, normalizep, target_mode);
5699 if (tem)
5700 return tem;
5702 break;
5706 return 0;
5709 /* Subroutine of emit_store_flag that handles cases in which the operands
5710 are scalar integers. SUBTARGET is the target to use for temporary
5711 operations and TRUEVAL is the value to store when the condition is
5712 true. All other arguments are as for emit_store_flag. */
5715 emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5716 rtx op1, scalar_int_mode mode, int unsignedp,
5717 int normalizep, rtx trueval)
5719 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5720 rtx_insn *last = get_last_insn ();
5722 /* If this is an equality comparison of integers, we can try to exclusive-or
5723 (or subtract) the two operands and use a recursive call to try the
5724 comparison with zero. Don't do any of these cases if branches are
5725 very cheap. */
5727 if ((code == EQ || code == NE) && op1 != const0_rtx)
5729 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5730 OPTAB_WIDEN);
5732 if (tem == 0)
5733 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5734 OPTAB_WIDEN);
5735 if (tem != 0)
5736 tem = emit_store_flag (target, code, tem, const0_rtx,
5737 mode, unsignedp, normalizep);
5738 if (tem != 0)
5739 return tem;
5741 delete_insns_since (last);
5744 /* For integer comparisons, try the reverse comparison. However, for
5745 small X and if we'd have anyway to extend, implementing "X != 0"
5746 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5747 rtx_code rcode = reverse_condition (code);
5748 if (can_compare_p (rcode, mode, ccp_store_flag)
5749 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5750 && code == NE
5751 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5752 && op1 == const0_rtx))
5754 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5755 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5757 /* Again, for the reverse comparison, use either an addition or a XOR. */
5758 if (want_add
5759 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5760 optimize_insn_for_speed_p ()) == 0)
5762 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5763 STORE_FLAG_VALUE, target_mode);
5764 if (tem != 0)
5765 tem = expand_binop (target_mode, add_optab, tem,
5766 gen_int_mode (normalizep, target_mode),
5767 target, 0, OPTAB_WIDEN);
5768 if (tem != 0)
5769 return tem;
5771 else if (!want_add
5772 && rtx_cost (trueval, mode, XOR, 1,
5773 optimize_insn_for_speed_p ()) == 0)
5775 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5776 normalizep, target_mode);
5777 if (tem != 0)
5778 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5779 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5780 if (tem != 0)
5781 return tem;
5784 delete_insns_since (last);
5787 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5788 the constant zero. Reject all other comparisons at this point. Only
5789 do LE and GT if branches are expensive since they are expensive on
5790 2-operand machines. */
5792 if (op1 != const0_rtx
5793 || (code != EQ && code != NE
5794 && (BRANCH_COST (optimize_insn_for_speed_p (),
5795 false) <= 1 || (code != LE && code != GT))))
5796 return 0;
5798 /* Try to put the result of the comparison in the sign bit. Assume we can't
5799 do the necessary operation below. */
5801 rtx tem = 0;
5803 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5804 the sign bit set. */
5806 if (code == LE)
5808 /* This is destructive, so SUBTARGET can't be OP0. */
5809 if (rtx_equal_p (subtarget, op0))
5810 subtarget = 0;
5812 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5813 OPTAB_WIDEN);
5814 if (tem)
5815 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5816 OPTAB_WIDEN);
5819 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5820 number of bits in the mode of OP0, minus one. */
5822 if (code == GT)
5824 if (rtx_equal_p (subtarget, op0))
5825 subtarget = 0;
5827 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5828 GET_MODE_BITSIZE (mode) - 1,
5829 subtarget, 0);
5830 if (tem)
5831 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5832 OPTAB_WIDEN);
5835 if (code == EQ || code == NE)
5837 /* For EQ or NE, one way to do the comparison is to apply an operation
5838 that converts the operand into a positive number if it is nonzero
5839 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5840 for NE we negate. This puts the result in the sign bit. Then we
5841 normalize with a shift, if needed.
5843 Two operations that can do the above actions are ABS and FFS, so try
5844 them. If that doesn't work, and MODE is smaller than a full word,
5845 we can use zero-extension to the wider mode (an unsigned conversion)
5846 as the operation. */
5848 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5849 that is compensated by the subsequent overflow when subtracting
5850 one / negating. */
5852 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5853 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5854 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5855 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5856 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5858 tem = convert_modes (word_mode, mode, op0, 1);
5859 mode = word_mode;
5862 if (tem != 0)
5864 if (code == EQ)
5865 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5866 0, OPTAB_WIDEN);
5867 else
5868 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5871 /* If we couldn't do it that way, for NE we can "or" the two's complement
5872 of the value with itself. For EQ, we take the one's complement of
5873 that "or", which is an extra insn, so we only handle EQ if branches
5874 are expensive. */
5876 if (tem == 0
5877 && (code == NE
5878 || BRANCH_COST (optimize_insn_for_speed_p (),
5879 false) > 1))
5881 if (rtx_equal_p (subtarget, op0))
5882 subtarget = 0;
5884 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5885 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5886 OPTAB_WIDEN);
5888 if (tem && code == EQ)
5889 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5893 if (tem && normalizep)
5894 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5895 GET_MODE_BITSIZE (mode) - 1,
5896 subtarget, normalizep == 1);
5898 if (tem)
5900 if (!target)
5902 else if (GET_MODE (tem) != target_mode)
5904 convert_move (target, tem, 0);
5905 tem = target;
5907 else if (!subtarget)
5909 emit_move_insn (target, tem);
5910 tem = target;
5913 else
5914 delete_insns_since (last);
5916 return tem;
5919 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5920 and storing in TARGET. Normally return TARGET.
5921 Return 0 if that cannot be done.
5923 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5924 it is VOIDmode, they cannot both be CONST_INT.
5926 UNSIGNEDP is for the case where we have to widen the operands
5927 to perform the operation. It says to use zero-extension.
5929 NORMALIZEP is 1 if we should convert the result to be either zero
5930 or one. Normalize is -1 if we should convert the result to be
5931 either zero or -1. If NORMALIZEP is zero, the result will be left
5932 "raw" out of the scc insn. */
5935 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5936 machine_mode mode, int unsignedp, int normalizep)
5938 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5939 enum rtx_code rcode;
5940 rtx subtarget;
5941 rtx tem, trueval;
5942 rtx_insn *last;
5944 /* If we compare constants, we shouldn't use a store-flag operation,
5945 but a constant load. We can get there via the vanilla route that
5946 usually generates a compare-branch sequence, but will in this case
5947 fold the comparison to a constant, and thus elide the branch. */
5948 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5949 return NULL_RTX;
5951 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5952 target_mode);
5953 if (tem)
5954 return tem;
5956 /* If we reached here, we can't do this with a scc insn, however there
5957 are some comparisons that can be done in other ways. Don't do any
5958 of these cases if branches are very cheap. */
5959 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5960 return 0;
5962 /* See what we need to return. We can only return a 1, -1, or the
5963 sign bit. */
5965 if (normalizep == 0)
5967 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5968 normalizep = STORE_FLAG_VALUE;
5970 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5972 else
5973 return 0;
5976 last = get_last_insn ();
5978 /* If optimizing, use different pseudo registers for each insn, instead
5979 of reusing the same pseudo. This leads to better CSE, but slows
5980 down the compiler, since there are more pseudos. */
5981 subtarget = (!optimize
5982 && (target_mode == mode)) ? target : NULL_RTX;
5983 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5985 /* For floating-point comparisons, try the reverse comparison or try
5986 changing the "orderedness" of the comparison. */
5987 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5989 enum rtx_code first_code;
5990 bool and_them;
5992 rcode = reverse_condition_maybe_unordered (code);
5993 if (can_compare_p (rcode, mode, ccp_store_flag)
5994 && (code == ORDERED || code == UNORDERED
5995 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5996 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5998 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5999 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
6001 /* For the reverse comparison, use either an addition or a XOR. */
6002 if (want_add
6003 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6004 optimize_insn_for_speed_p ()) == 0)
6006 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6007 STORE_FLAG_VALUE, target_mode);
6008 if (tem)
6009 return expand_binop (target_mode, add_optab, tem,
6010 gen_int_mode (normalizep, target_mode),
6011 target, 0, OPTAB_WIDEN);
6013 else if (!want_add
6014 && rtx_cost (trueval, mode, XOR, 1,
6015 optimize_insn_for_speed_p ()) == 0)
6017 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6018 normalizep, target_mode);
6019 if (tem)
6020 return expand_binop (target_mode, xor_optab, tem, trueval,
6021 target, INTVAL (trueval) >= 0,
6022 OPTAB_WIDEN);
6026 delete_insns_since (last);
6028 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6029 if (code == ORDERED || code == UNORDERED)
6030 return 0;
6032 and_them = split_comparison (code, mode, &first_code, &code);
6034 /* If there are no NaNs, the first comparison should always fall through.
6035 Effectively change the comparison to the other one. */
6036 if (!HONOR_NANS (mode))
6038 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6039 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
6040 target_mode);
6043 if (!HAVE_conditional_move)
6044 return 0;
6046 /* Do not turn a trapping comparison into a non-trapping one. */
6047 if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
6048 && flag_trapping_math)
6049 return 0;
6051 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6052 conditional move. */
6053 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
6054 normalizep, target_mode);
6055 if (tem == 0)
6056 return 0;
6058 if (and_them)
6059 tem = emit_conditional_move (target, code, op0, op1, mode,
6060 tem, const0_rtx, GET_MODE (tem), 0);
6061 else
6062 tem = emit_conditional_move (target, code, op0, op1, mode,
6063 trueval, tem, GET_MODE (tem), 0);
6065 if (tem == 0)
6066 delete_insns_since (last);
6067 return tem;
6070 /* The remaining tricks only apply to integer comparisons. */
6072 scalar_int_mode int_mode;
6073 if (is_int_mode (mode, &int_mode))
6074 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
6075 unsignedp, normalizep, trueval);
6077 return 0;
6080 /* Like emit_store_flag, but always succeeds. */
6083 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
6084 machine_mode mode, int unsignedp, int normalizep)
6086 rtx tem;
6087 rtx_code_label *label;
6088 rtx trueval, falseval;
6090 /* First see if emit_store_flag can do the job. */
6091 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6092 if (tem != 0)
6093 return tem;
6095 /* If one operand is constant, make it the second one. Only do this
6096 if the other operand is not constant as well. */
6097 if (swap_commutative_operands_p (op0, op1))
6099 std::swap (op0, op1);
6100 code = swap_condition (code);
6103 if (mode == VOIDmode)
6104 mode = GET_MODE (op0);
6106 if (!target)
6107 target = gen_reg_rtx (word_mode);
6109 /* If this failed, we have to do this with set/compare/jump/set code.
6110 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6111 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6112 if (code == NE
6113 && GET_MODE_CLASS (mode) == MODE_INT
6114 && REG_P (target)
6115 && op0 == target
6116 && op1 == const0_rtx)
6118 label = gen_label_rtx ();
6119 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6120 NULL_RTX, NULL, label,
6121 profile_probability::uninitialized ());
6122 emit_move_insn (target, trueval);
6123 emit_label (label);
6124 return target;
6127 if (!REG_P (target)
6128 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6129 target = gen_reg_rtx (GET_MODE (target));
6131 /* Jump in the right direction if the target cannot implement CODE
6132 but can jump on its reverse condition. */
6133 falseval = const0_rtx;
6134 if (! can_compare_p (code, mode, ccp_jump)
6135 && (! FLOAT_MODE_P (mode)
6136 || code == ORDERED || code == UNORDERED
6137 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6138 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6140 enum rtx_code rcode;
6141 if (FLOAT_MODE_P (mode))
6142 rcode = reverse_condition_maybe_unordered (code);
6143 else
6144 rcode = reverse_condition (code);
6146 /* Canonicalize to UNORDERED for the libcall. */
6147 if (can_compare_p (rcode, mode, ccp_jump)
6148 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6150 falseval = trueval;
6151 trueval = const0_rtx;
6152 code = rcode;
6156 emit_move_insn (target, trueval);
6157 label = gen_label_rtx ();
6158 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6159 label, profile_probability::uninitialized ());
6161 emit_move_insn (target, falseval);
6162 emit_label (label);
6164 return target;
6167 /* Perform possibly multi-word comparison and conditional jump to LABEL
6168 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6169 now a thin wrapper around do_compare_rtx_and_jump. */
6171 static void
6172 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6173 rtx_code_label *label)
6175 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6176 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6177 NULL, label, profile_probability::uninitialized ());