Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / kern / usched_bsd4.c
blob1ea8afcf79390d3dafcfc66180e75f4d3333fae4
1 /*
2 * Copyright (c) 2012 The DragonFly Project. All rights reserved.
3 * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>,
7 * by Mihai Carabas <mihai.carabas@gmail.com>
8 * and many others.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/queue.h>
37 #include <sys/proc.h>
38 #include <sys/rtprio.h>
39 #include <sys/uio.h>
40 #include <sys/sysctl.h>
41 #include <sys/resourcevar.h>
42 #include <sys/spinlock.h>
43 #include <sys/cpu_topology.h>
44 #include <sys/thread2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/mplock2.h>
48 #include <sys/ktr.h>
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
54 * Priorities. Note that with 32 run queues per scheduler each queue
55 * represents four priority levels.
58 #define MAXPRI 128
59 #define PRIMASK (MAXPRI - 1)
60 #define PRIBASE_REALTIME 0
61 #define PRIBASE_NORMAL MAXPRI
62 #define PRIBASE_IDLE (MAXPRI * 2)
63 #define PRIBASE_THREAD (MAXPRI * 3)
64 #define PRIBASE_NULL (MAXPRI * 4)
66 #define NQS 32 /* 32 run queues. */
67 #define PPQ (MAXPRI / NQS) /* priorities per queue */
68 #define PPQMASK (PPQ - 1)
71 * NICEPPQ - number of nice units per priority queue
73 * ESTCPUPPQ - number of estcpu units per priority queue
74 * ESTCPUMAX - number of estcpu units
76 #define NICEPPQ 2
77 #define ESTCPUPPQ 512
78 #define ESTCPUMAX (ESTCPUPPQ * NQS)
79 #define BATCHMAX (ESTCPUFREQ * 30)
80 #define PRIO_RANGE (PRIO_MAX - PRIO_MIN + 1)
82 #define ESTCPULIM(v) min((v), ESTCPUMAX)
84 TAILQ_HEAD(rq, lwp);
86 #define lwp_priority lwp_usdata.bsd4.priority
87 #define lwp_rqindex lwp_usdata.bsd4.rqindex
88 #define lwp_estcpu lwp_usdata.bsd4.estcpu
89 #define lwp_batch lwp_usdata.bsd4.batch
90 #define lwp_rqtype lwp_usdata.bsd4.rqtype
92 static void bsd4_acquire_curproc(struct lwp *lp);
93 static void bsd4_release_curproc(struct lwp *lp);
94 static void bsd4_select_curproc(globaldata_t gd);
95 static void bsd4_setrunqueue(struct lwp *lp);
96 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
97 sysclock_t cpstamp);
98 static void bsd4_recalculate_estcpu(struct lwp *lp);
99 static void bsd4_resetpriority(struct lwp *lp);
100 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
101 static void bsd4_exiting(struct lwp *lp, struct proc *);
102 static void bsd4_uload_update(struct lwp *lp);
103 static void bsd4_yield(struct lwp *lp);
104 static void bsd4_need_user_resched_remote(void *dummy);
105 static int bsd4_batchy_looser_pri_test(struct lwp* lp);
106 static struct lwp *bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp);
107 static void bsd4_kick_helper(struct lwp *lp);
108 static struct lwp *bsd4_chooseproc_locked(struct lwp *chklp);
109 static void bsd4_remrunqueue_locked(struct lwp *lp);
110 static void bsd4_setrunqueue_locked(struct lwp *lp);
112 struct usched usched_bsd4 = {
113 { NULL },
114 "bsd4", "Original DragonFly Scheduler",
115 NULL, /* default registration */
116 NULL, /* default deregistration */
117 bsd4_acquire_curproc,
118 bsd4_release_curproc,
119 bsd4_setrunqueue,
120 bsd4_schedulerclock,
121 bsd4_recalculate_estcpu,
122 bsd4_resetpriority,
123 bsd4_forking,
124 bsd4_exiting,
125 bsd4_uload_update,
126 NULL, /* setcpumask not supported */
127 bsd4_yield
130 struct usched_bsd4_pcpu {
131 struct thread helper_thread;
132 short rrcount;
133 short upri;
134 struct lwp *uschedcp;
135 struct lwp *old_uschedcp;
136 cpu_node_t *cpunode;
139 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t;
142 * We have NQS (32) run queues per scheduling class. For the normal
143 * class, there are 128 priorities scaled onto these 32 queues. New
144 * processes are added to the last entry in each queue, and processes
145 * are selected for running by taking them from the head and maintaining
146 * a simple FIFO arrangement. Realtime and Idle priority processes have
147 * and explicit 0-31 priority which maps directly onto their class queue
148 * index. When a queue has something in it, the corresponding bit is
149 * set in the queuebits variable, allowing a single read to determine
150 * the state of all 32 queues and then a ffs() to find the first busy
151 * queue.
153 static struct rq bsd4_queues[NQS];
154 static struct rq bsd4_rtqueues[NQS];
155 static struct rq bsd4_idqueues[NQS];
156 static u_int32_t bsd4_queuebits;
157 static u_int32_t bsd4_rtqueuebits;
158 static u_int32_t bsd4_idqueuebits;
159 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */
160 static cpumask_t bsd4_rdyprocmask; /* ready to accept a user process */
161 static int bsd4_runqcount;
162 static volatile int bsd4_scancpu;
163 static struct spinlock bsd4_spin;
164 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
165 static struct sysctl_ctx_list usched_bsd4_sysctl_ctx;
166 static struct sysctl_oid *usched_bsd4_sysctl_tree;
168 /* Debug info exposed through debug.* sysctl */
170 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD,
171 &bsd4_runqcount, 0,
172 "Number of run queues");
174 static int usched_bsd4_debug = -1;
175 SYSCTL_INT(_debug, OID_AUTO, bsd4_scdebug, CTLFLAG_RW,
176 &usched_bsd4_debug, 0,
177 "Print debug information for this pid");
179 static int usched_bsd4_pid_debug = -1;
180 SYSCTL_INT(_debug, OID_AUTO, bsd4_pid_debug, CTLFLAG_RW,
181 &usched_bsd4_pid_debug, 0,
182 "Print KTR debug information for this pid");
184 /* Tunning usched_bsd4 - configurable through kern.usched_bsd4.* */
185 static int usched_bsd4_smt = 0;
186 static int usched_bsd4_cache_coherent = 0;
187 static int usched_bsd4_upri_affinity = 16; /* 32 queues - half-way */
188 static int usched_bsd4_queue_checks = 5;
189 static int usched_bsd4_stick_to_level = 0;
190 static long usched_bsd4_kicks;
191 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
192 static int usched_bsd4_decay = 8;
193 static int usched_bsd4_batch_time = 10;
195 /* KTR debug printings */
197 KTR_INFO_MASTER_EXTERN(usched);
199 #if !defined(KTR_USCHED_BSD4)
200 #define KTR_USCHED_BSD4 KTR_ALL
201 #endif
203 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_urw, 0,
204 "USCHED_BSD4(bsd4_acquire_curproc in user_reseched_wanted "
205 "after release: pid %d, cpuid %d, curr_cpuid %d)",
206 pid_t pid, int cpuid, int curr);
207 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_before_loop, 0,
208 "USCHED_BSD4(bsd4_acquire_curproc before loop: pid %d, cpuid %d, "
209 "curr_cpuid %d)",
210 pid_t pid, int cpuid, int curr);
211 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_not, 0,
212 "USCHED_BSD4(bsd4_acquire_curproc couldn't acquire after "
213 "bsd4_setrunqueue: pid %d, cpuid %d, curr_lp pid %d, curr_cpuid %d)",
214 pid_t pid, int cpuid, pid_t curr_pid, int curr_cpuid);
215 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_switch, 0,
216 "USCHED_BSD4(bsd4_acquire_curproc after lwkt_switch: pid %d, "
217 "cpuid %d, curr_cpuid %d)",
218 pid_t pid, int cpuid, int curr);
220 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_release_curproc, 0,
221 "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
222 "cpuid %d, curr_cpuid %d)",
223 pid_t pid, int cpuid, int curr);
225 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_select_curproc, 0,
226 "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
227 "cpuid %d, old_pid %d, old_cpuid %d, curr_cpuid %d)",
228 pid_t pid, int cpuid, pid_t old_pid, int old_cpuid, int curr);
230 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_false, 0,
231 "USCHED_BSD4(batchy_looser_pri_test false: pid %d, "
232 "cpuid %d, verify_mask %lu)",
233 pid_t pid, int cpuid, cpumask_t mask);
234 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_true, 0,
235 "USCHED_BSD4(batchy_looser_pri_test true: pid %d, "
236 "cpuid %d, verify_mask %lu)",
237 pid_t pid, int cpuid, cpumask_t mask);
239 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_smt, 0,
240 "USCHED_BSD4(bsd4_setrunqueue free cpus smt: pid %d, cpuid %d, "
241 "mask %lu, curr_cpuid %d)",
242 pid_t pid, int cpuid, cpumask_t mask, int curr);
243 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_non_smt, 0,
244 "USCHED_BSD4(bsd4_setrunqueue free cpus check non_smt: pid %d, "
245 "cpuid %d, mask %lu, curr_cpuid %d)",
246 pid_t pid, int cpuid, cpumask_t mask, int curr);
247 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_rc, 0,
248 "USCHED_BSD4(bsd4_setrunqueue running cpus check: pid %d, "
249 "cpuid %d, mask %lu, curr_cpuid %d)",
250 pid_t pid, int cpuid, cpumask_t mask, int curr);
251 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found, 0,
252 "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
253 "mask %lu, found_cpuid %d, curr_cpuid %d)",
254 pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
255 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_not_found, 0,
256 "USCHED_BSD4(bsd4_setrunqueue not found cpu: pid %d, cpuid %d, "
257 "try_cpuid %d, curr_cpuid %d)",
258 pid_t pid, int cpuid, int try_cpuid, int curr);
259 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found_best_cpuid, 0,
260 "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
261 "mask %lu, found_cpuid %d, curr_cpuid %d)",
262 pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
264 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc, 0,
265 "USCHED_BSD4(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
266 pid_t pid, int old_cpuid, int curr);
267 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc, 0,
268 "USCHED_BSD4(chooseproc_cc: pid %d, old_cpuid %d, curr_cpuid %d)",
269 pid_t pid, int old_cpuid, int curr);
270 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_not_good, 0,
271 "USCHED_BSD4(chooseproc_cc not good: pid %d, old_cpumask %lu, "
272 "sibling_mask %lu, curr_cpumask %lu)",
273 pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
274 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_elected, 0,
275 "USCHED_BSD4(chooseproc_cc elected: pid %d, old_cpumask %lu, "
276 "sibling_mask %lu, curr_cpumask: %lu)",
277 pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
279 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process, 0,
280 "USCHED_BSD4(sched_thread %d no process scheduled: pid %d, old_cpuid %d)",
281 int id, pid_t pid, int cpuid);
282 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_process, 0,
283 "USCHED_BSD4(sched_thread %d process scheduled: pid %d, old_cpuid %d)",
284 int id, pid_t pid, int cpuid);
285 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process_found, 0,
286 "USCHED_BSD4(sched_thread %d no process found; tmpmask %lu)",
287 int id, cpumask_t tmpmask);
290 * Initialize the run queues at boot time.
292 static void
293 bsd4_rqinit(void *dummy)
295 int i;
297 spin_init(&bsd4_spin);
298 for (i = 0; i < NQS; i++) {
299 TAILQ_INIT(&bsd4_queues[i]);
300 TAILQ_INIT(&bsd4_rtqueues[i]);
301 TAILQ_INIT(&bsd4_idqueues[i]);
303 atomic_clear_cpumask(&bsd4_curprocmask, 1);
305 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, bsd4_rqinit, NULL)
308 * BSD4_ACQUIRE_CURPROC
310 * This function is called when the kernel intends to return to userland.
311 * It is responsible for making the thread the current designated userland
312 * thread for this cpu, blocking if necessary.
314 * The kernel will not depress our LWKT priority until after we return,
315 * in case we have to shove over to another cpu.
317 * We must determine our thread's disposition before we switch away. This
318 * is very sensitive code.
320 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
321 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will
322 * occur, this function is called only under very controlled circumstances.
324 * MPSAFE
326 static void
327 bsd4_acquire_curproc(struct lwp *lp)
329 globaldata_t gd;
330 bsd4_pcpu_t dd;
331 thread_t td;
332 #if 0
333 struct lwp *olp;
334 #endif
337 * Make sure we aren't sitting on a tsleep queue.
339 td = lp->lwp_thread;
340 crit_enter_quick(td);
341 if (td->td_flags & TDF_TSLEEPQ)
342 tsleep_remove(td);
343 bsd4_recalculate_estcpu(lp);
346 * If a reschedule was requested give another thread the
347 * driver's seat.
349 if (user_resched_wanted()) {
350 clear_user_resched();
351 bsd4_release_curproc(lp);
353 KTR_COND_LOG(usched_bsd4_acquire_curproc_urw,
354 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
355 lp->lwp_proc->p_pid,
356 lp->lwp_thread->td_gd->gd_cpuid,
357 mycpu->gd_cpuid);
361 * Loop until we are the current user thread
363 gd = mycpu;
364 dd = &bsd4_pcpu[gd->gd_cpuid];
366 KTR_COND_LOG(usched_bsd4_acquire_curproc_before_loop,
367 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
368 lp->lwp_proc->p_pid,
369 lp->lwp_thread->td_gd->gd_cpuid,
370 gd->gd_cpuid);
372 do {
374 * Process any pending events and higher priority threads.
376 lwkt_yield();
379 * Become the currently scheduled user thread for this cpu
380 * if we can do so trivially.
382 * We can steal another thread's current thread designation
383 * on this cpu since if we are running that other thread
384 * must not be, so we can safely deschedule it.
386 if (dd->uschedcp == lp) {
388 * We are already the current lwp (hot path).
390 dd->upri = lp->lwp_priority;
391 } else if (dd->uschedcp == NULL) {
393 * We can trivially become the current lwp.
395 atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
396 dd->uschedcp = lp;
397 dd->upri = lp->lwp_priority;
398 } else if (dd->upri > lp->lwp_priority) {
400 * We can steal the current cpu's lwp designation
401 * away simply by replacing it. The other thread
402 * will stall when it tries to return to userland.
404 dd->uschedcp = lp;
405 dd->upri = lp->lwp_priority;
407 lwkt_deschedule(olp->lwp_thread);
408 bsd4_setrunqueue(olp);
410 } else {
412 * We cannot become the current lwp, place the lp
413 * on the bsd4 run-queue and deschedule ourselves.
415 * When we are reactivated we will have another
416 * chance.
418 lwkt_deschedule(lp->lwp_thread);
420 bsd4_setrunqueue(lp);
422 KTR_COND_LOG(usched_bsd4_acquire_curproc_not,
423 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
424 lp->lwp_proc->p_pid,
425 lp->lwp_thread->td_gd->gd_cpuid,
426 dd->uschedcp->lwp_proc->p_pid,
427 gd->gd_cpuid);
430 lwkt_switch();
433 * Reload after a switch or setrunqueue/switch possibly
434 * moved us to another cpu.
436 gd = mycpu;
437 dd = &bsd4_pcpu[gd->gd_cpuid];
439 KTR_COND_LOG(usched_bsd4_acquire_curproc_switch,
440 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
441 lp->lwp_proc->p_pid,
442 lp->lwp_thread->td_gd->gd_cpuid,
443 gd->gd_cpuid);
445 } while (dd->uschedcp != lp);
447 crit_exit_quick(td);
448 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
452 * BSD4_RELEASE_CURPROC
454 * This routine detaches the current thread from the userland scheduler,
455 * usually because the thread needs to run or block in the kernel (at
456 * kernel priority) for a while.
458 * This routine is also responsible for selecting a new thread to
459 * make the current thread.
461 * NOTE: This implementation differs from the dummy example in that
462 * bsd4_select_curproc() is able to select the current process, whereas
463 * dummy_select_curproc() is not able to select the current process.
464 * This means we have to NULL out uschedcp.
466 * Additionally, note that we may already be on a run queue if releasing
467 * via the lwkt_switch() in bsd4_setrunqueue().
469 * MPSAFE
472 static void
473 bsd4_release_curproc(struct lwp *lp)
475 globaldata_t gd = mycpu;
476 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
478 if (dd->uschedcp == lp) {
479 crit_enter();
480 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
482 KTR_COND_LOG(usched_bsd4_release_curproc,
483 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
484 lp->lwp_proc->p_pid,
485 lp->lwp_thread->td_gd->gd_cpuid,
486 gd->gd_cpuid);
488 dd->uschedcp = NULL; /* don't let lp be selected */
489 dd->upri = PRIBASE_NULL;
490 atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
491 dd->old_uschedcp = lp; /* used only for KTR debug prints */
492 bsd4_select_curproc(gd);
493 crit_exit();
498 * BSD4_SELECT_CURPROC
500 * Select a new current process for this cpu and clear any pending user
501 * reschedule request. The cpu currently has no current process.
503 * This routine is also responsible for equal-priority round-robining,
504 * typically triggered from bsd4_schedulerclock(). In our dummy example
505 * all the 'user' threads are LWKT scheduled all at once and we just
506 * call lwkt_switch().
508 * The calling process is not on the queue and cannot be selected.
510 * MPSAFE
512 static
513 void
514 bsd4_select_curproc(globaldata_t gd)
516 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
517 struct lwp *nlp;
518 int cpuid = gd->gd_cpuid;
520 crit_enter_gd(gd);
522 spin_lock(&bsd4_spin);
523 if(usched_bsd4_cache_coherent)
524 nlp = bsd4_chooseproc_locked_cache_coherent(dd->uschedcp);
525 else
526 nlp = bsd4_chooseproc_locked(dd->uschedcp);
528 if (nlp) {
530 KTR_COND_LOG(usched_bsd4_select_curproc,
531 nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
532 nlp->lwp_proc->p_pid,
533 nlp->lwp_thread->td_gd->gd_cpuid,
534 dd->old_uschedcp->lwp_proc->p_pid,
535 dd->old_uschedcp->lwp_thread->td_gd->gd_cpuid,
536 gd->gd_cpuid);
538 atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
539 dd->upri = nlp->lwp_priority;
540 dd->uschedcp = nlp;
541 dd->rrcount = 0; /* reset round robin */
542 spin_unlock(&bsd4_spin);
543 lwkt_acquire(nlp->lwp_thread);
544 lwkt_schedule(nlp->lwp_thread);
545 } else {
546 spin_unlock(&bsd4_spin);
549 #if 0
550 } else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
551 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
552 spin_unlock(&bsd4_spin);
553 lwkt_schedule(&dd->helper_thread);
554 } else {
555 spin_unlock(&bsd4_spin);
557 #endif
558 crit_exit_gd(gd);
562 * batchy_looser_pri_test() - determine if a process is batchy or not
563 * relative to the other processes running in the system
565 static int
566 bsd4_batchy_looser_pri_test(struct lwp* lp)
568 cpumask_t mask;
569 bsd4_pcpu_t other_dd;
570 int cpu;
572 /* Current running processes */
573 mask = bsd4_curprocmask & smp_active_mask
574 & usched_global_cpumask;
576 while(mask) {
577 cpu = BSFCPUMASK(mask);
578 other_dd = &bsd4_pcpu[cpu];
579 if (other_dd->upri - lp->lwp_priority > usched_bsd4_upri_affinity * PPQ) {
581 KTR_COND_LOG(usched_batchy_test_false,
582 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
583 lp->lwp_proc->p_pid,
584 lp->lwp_thread->td_gd->gd_cpuid,
585 (unsigned long)mask);
587 return 0;
589 mask &= ~CPUMASK(cpu);
592 KTR_COND_LOG(usched_batchy_test_true,
593 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
594 lp->lwp_proc->p_pid,
595 lp->lwp_thread->td_gd->gd_cpuid,
596 (unsigned long)mask);
598 return 1;
603 * BSD4_SETRUNQUEUE
605 * Place the specified lwp on the user scheduler's run queue. This routine
606 * must be called with the thread descheduled. The lwp must be runnable.
608 * The thread may be the current thread as a special case.
610 * MPSAFE
612 static void
613 bsd4_setrunqueue(struct lwp *lp)
615 globaldata_t gd;
616 bsd4_pcpu_t dd;
617 int cpuid;
618 cpumask_t mask;
619 cpumask_t tmpmask;
622 * First validate the process state relative to the current cpu.
623 * We don't need the spinlock for this, just a critical section.
624 * We are in control of the process.
626 crit_enter();
627 KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
628 KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
629 ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
630 lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
631 KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
634 * Note: gd and dd are relative to the target thread's last cpu,
635 * NOT our current cpu.
637 gd = lp->lwp_thread->td_gd;
638 dd = &bsd4_pcpu[gd->gd_cpuid];
641 * This process is not supposed to be scheduled anywhere or assigned
642 * as the current process anywhere. Assert the condition.
644 KKASSERT(dd->uschedcp != lp);
647 * XXX fixme. Could be part of a remrunqueue/setrunqueue
648 * operation when the priority is recalculated, so TDF_MIGRATING
649 * may already be set.
651 if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
652 lwkt_giveaway(lp->lwp_thread);
655 * We lose control of lp the moment we release the spinlock after
656 * having placed lp on the queue. i.e. another cpu could pick it
657 * up and it could exit, or its priority could be further adjusted,
658 * or something like that.
660 spin_lock(&bsd4_spin);
661 bsd4_setrunqueue_locked(lp);
662 lp->lwp_rebal_ticks = sched_ticks;
665 * Kick the scheduler helper on one of the other cpu's
666 * and request a reschedule if appropriate.
668 * NOTE: We check all cpus whos rdyprocmask is set. First we
669 * look for cpus without designated lps, then we look for
670 * cpus with designated lps with a worse priority than our
671 * process.
673 ++bsd4_scancpu;
675 if (usched_bsd4_smt) {
678 * SMT heuristic - Try to schedule on a free physical core.
679 * If no physical core found than choose the one that has
680 * an interactive thread.
683 int best_cpuid = -1;
684 int min_prio = MAXPRI * MAXPRI;
685 int sibling;
687 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
688 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
689 smp_active_mask & usched_global_cpumask;
691 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_smt,
692 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
693 lp->lwp_proc->p_pid,
694 lp->lwp_thread->td_gd->gd_cpuid,
695 (unsigned long)mask,
696 mycpu->gd_cpuid);
698 while (mask) {
699 tmpmask = ~(CPUMASK(cpuid) - 1);
700 if (mask & tmpmask)
701 cpuid = BSFCPUMASK(mask & tmpmask);
702 else
703 cpuid = BSFCPUMASK(mask);
704 gd = globaldata_find(cpuid);
705 dd = &bsd4_pcpu[cpuid];
707 if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
708 if (dd->cpunode->parent_node->members & ~dd->cpunode->members & mask) {
710 KTR_COND_LOG(usched_bsd4_setrunqueue_found,
711 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
712 lp->lwp_proc->p_pid,
713 lp->lwp_thread->td_gd->gd_cpuid,
714 (unsigned long)mask,
715 cpuid,
716 mycpu->gd_cpuid);
718 goto found;
719 } else {
720 sibling = BSFCPUMASK(dd->cpunode->parent_node->members &
721 ~dd->cpunode->members);
722 if (min_prio > bsd4_pcpu[sibling].upri) {
723 min_prio = bsd4_pcpu[sibling].upri;
724 best_cpuid = cpuid;
728 mask &= ~CPUMASK(cpuid);
731 if (best_cpuid != -1) {
732 cpuid = best_cpuid;
733 gd = globaldata_find(cpuid);
734 dd = &bsd4_pcpu[cpuid];
736 KTR_COND_LOG(usched_bsd4_setrunqueue_found_best_cpuid,
737 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
738 lp->lwp_proc->p_pid,
739 lp->lwp_thread->td_gd->gd_cpuid,
740 (unsigned long)mask,
741 cpuid,
742 mycpu->gd_cpuid);
744 goto found;
746 } else {
747 /* Fallback to the original heuristic */
748 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
749 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
750 smp_active_mask & usched_global_cpumask;
752 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_non_smt,
753 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
754 lp->lwp_proc->p_pid,
755 lp->lwp_thread->td_gd->gd_cpuid,
756 (unsigned long)mask,
757 mycpu->gd_cpuid);
759 while (mask) {
760 tmpmask = ~(CPUMASK(cpuid) - 1);
761 if (mask & tmpmask)
762 cpuid = BSFCPUMASK(mask & tmpmask);
763 else
764 cpuid = BSFCPUMASK(mask);
765 gd = globaldata_find(cpuid);
766 dd = &bsd4_pcpu[cpuid];
768 if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
770 KTR_COND_LOG(usched_bsd4_setrunqueue_found,
771 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
772 lp->lwp_proc->p_pid,
773 lp->lwp_thread->td_gd->gd_cpuid,
774 (unsigned long)mask,
775 cpuid,
776 mycpu->gd_cpuid);
778 goto found;
780 mask &= ~CPUMASK(cpuid);
785 * Then cpus which might have a currently running lp
787 mask = bsd4_curprocmask & bsd4_rdyprocmask &
788 lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
790 KTR_COND_LOG(usched_bsd4_setrunqueue_rc,
791 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
792 lp->lwp_proc->p_pid,
793 lp->lwp_thread->td_gd->gd_cpuid,
794 (unsigned long)mask,
795 mycpu->gd_cpuid);
797 while (mask) {
798 tmpmask = ~(CPUMASK(cpuid) - 1);
799 if (mask & tmpmask)
800 cpuid = BSFCPUMASK(mask & tmpmask);
801 else
802 cpuid = BSFCPUMASK(mask);
803 gd = globaldata_find(cpuid);
804 dd = &bsd4_pcpu[cpuid];
806 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
808 KTR_COND_LOG(usched_bsd4_setrunqueue_found,
809 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
810 lp->lwp_proc->p_pid,
811 lp->lwp_thread->td_gd->gd_cpuid,
812 (unsigned long)mask,
813 cpuid,
814 mycpu->gd_cpuid);
816 goto found;
818 mask &= ~CPUMASK(cpuid);
822 * If we cannot find a suitable cpu we reload from bsd4_scancpu
823 * and round-robin. Other cpus will pickup as they release their
824 * current lwps or become ready.
826 * Avoid a degenerate system lockup case if usched_global_cpumask
827 * is set to 0 or otherwise does not cover lwp_cpumask.
829 * We only kick the target helper thread in this case, we do not
830 * set the user resched flag because
832 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
833 if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) {
834 cpuid = 0;
836 gd = globaldata_find(cpuid);
837 dd = &bsd4_pcpu[cpuid];
839 KTR_COND_LOG(usched_bsd4_setrunqueue_not_found,
840 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
841 lp->lwp_proc->p_pid,
842 lp->lwp_thread->td_gd->gd_cpuid,
843 cpuid,
844 mycpu->gd_cpuid);
846 found:
847 if (gd == mycpu) {
848 spin_unlock(&bsd4_spin);
849 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
850 if (dd->uschedcp == NULL) {
851 wakeup_mycpu(&dd->helper_thread);
852 } else {
853 need_user_resched();
856 } else {
857 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
858 spin_unlock(&bsd4_spin);
859 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
860 lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
861 else
862 wakeup(&dd->helper_thread);
864 crit_exit();
868 * This routine is called from a systimer IPI. It MUST be MP-safe and
869 * the BGL IS NOT HELD ON ENTRY. This routine is called at ESTCPUFREQ on
870 * each cpu.
872 * This routine is called on every sched tick. If the currently running
873 * thread belongs to this scheduler it will be called with a non-NULL lp,
874 * otherwise it will be called with a NULL lp.
876 * MPSAFE
878 static
879 void
880 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
882 globaldata_t gd = mycpu;
883 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
886 * No impl if no lp running.
888 if (lp == NULL)
889 return;
892 * Do we need to round-robin? We round-robin 10 times a second.
893 * This should only occur for cpu-bound batch processes.
895 if (++dd->rrcount >= usched_bsd4_rrinterval) {
896 dd->rrcount = 0;
897 need_user_resched();
901 * Adjust estcpu upward using a real time equivalent calculation.
903 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
906 * Spinlocks also hold a critical section so there should not be
907 * any active.
909 KKASSERT(gd->gd_spinlocks == 0);
911 bsd4_resetpriority(lp);
915 * Called from acquire and from kern_synch's one-second timer (one of the
916 * callout helper threads) with a critical section held.
918 * Decay p_estcpu based on the number of ticks we haven't been running
919 * and our p_nice. As the load increases each process observes a larger
920 * number of idle ticks (because other processes are running in them).
921 * This observation leads to a larger correction which tends to make the
922 * system more 'batchy'.
924 * Note that no recalculation occurs for a process which sleeps and wakes
925 * up in the same tick. That is, a system doing thousands of context
926 * switches per second will still only do serious estcpu calculations
927 * ESTCPUFREQ times per second.
929 * MPSAFE
931 static
932 void
933 bsd4_recalculate_estcpu(struct lwp *lp)
935 globaldata_t gd = mycpu;
936 sysclock_t cpbase;
937 sysclock_t ttlticks;
938 int estcpu;
939 int decay_factor;
942 * We have to subtract periodic to get the last schedclock
943 * timeout time, otherwise we would get the upcoming timeout.
944 * Keep in mind that a process can migrate between cpus and
945 * while the scheduler clock should be very close, boundary
946 * conditions could lead to a small negative delta.
948 cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
950 if (lp->lwp_slptime > 1) {
952 * Too much time has passed, do a coarse correction.
954 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
955 bsd4_resetpriority(lp);
956 lp->lwp_cpbase = cpbase;
957 lp->lwp_cpticks = 0;
958 lp->lwp_batch -= ESTCPUFREQ;
959 if (lp->lwp_batch < 0)
960 lp->lwp_batch = 0;
961 } else if (lp->lwp_cpbase != cpbase) {
963 * Adjust estcpu if we are in a different tick. Don't waste
964 * time if we are in the same tick.
966 * First calculate the number of ticks in the measurement
967 * interval. The ttlticks calculation can wind up 0 due to
968 * a bug in the handling of lwp_slptime (as yet not found),
969 * so make sure we do not get a divide by 0 panic.
971 ttlticks = (cpbase - lp->lwp_cpbase) /
972 gd->gd_schedclock.periodic;
973 if ((ssysclock_t)ttlticks < 0) {
974 ttlticks = 0;
975 lp->lwp_cpbase = cpbase;
977 if (ttlticks == 0)
978 return;
979 updatepcpu(lp, lp->lwp_cpticks, ttlticks);
982 * Calculate the percentage of one cpu used factoring in ncpus
983 * and the load and adjust estcpu. Handle degenerate cases
984 * by adding 1 to bsd4_runqcount.
986 * estcpu is scaled by ESTCPUMAX.
988 * bsd4_runqcount is the excess number of user processes
989 * that cannot be immediately scheduled to cpus. We want
990 * to count these as running to avoid range compression
991 * in the base calculation (which is the actual percentage
992 * of one cpu used).
994 estcpu = (lp->lwp_cpticks * ESTCPUMAX) *
995 (bsd4_runqcount + ncpus) / (ncpus * ttlticks);
998 * If estcpu is > 50% we become more batch-like
999 * If estcpu is <= 50% we become less batch-like
1001 * It takes 30 cpu seconds to traverse the entire range.
1003 if (estcpu > ESTCPUMAX / 2) {
1004 lp->lwp_batch += ttlticks;
1005 if (lp->lwp_batch > BATCHMAX)
1006 lp->lwp_batch = BATCHMAX;
1007 } else {
1008 lp->lwp_batch -= ttlticks;
1009 if (lp->lwp_batch < 0)
1010 lp->lwp_batch = 0;
1013 if (usched_bsd4_debug == lp->lwp_proc->p_pid) {
1014 kprintf("pid %d lwp %p estcpu %3d %3d bat %d cp %d/%d",
1015 lp->lwp_proc->p_pid, lp,
1016 estcpu, lp->lwp_estcpu,
1017 lp->lwp_batch,
1018 lp->lwp_cpticks, ttlticks);
1022 * Adjust lp->lwp_esetcpu. The decay factor determines how
1023 * quickly lwp_estcpu collapses to its realtime calculation.
1024 * A slower collapse gives us a more accurate number but
1025 * can cause a cpu hog to eat too much cpu before the
1026 * scheduler decides to downgrade it.
1028 * NOTE: p_nice is accounted for in bsd4_resetpriority(),
1029 * and not here, but we must still ensure that a
1030 * cpu-bound nice -20 process does not completely
1031 * override a cpu-bound nice +20 process.
1033 * NOTE: We must use ESTCPULIM() here to deal with any
1034 * overshoot.
1036 decay_factor = usched_bsd4_decay;
1037 if (decay_factor < 1)
1038 decay_factor = 1;
1039 if (decay_factor > 1024)
1040 decay_factor = 1024;
1042 lp->lwp_estcpu = ESTCPULIM(
1043 (lp->lwp_estcpu * decay_factor + estcpu) /
1044 (decay_factor + 1));
1046 if (usched_bsd4_debug == lp->lwp_proc->p_pid)
1047 kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
1048 bsd4_resetpriority(lp);
1049 lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1050 lp->lwp_cpticks = 0;
1055 * Compute the priority of a process when running in user mode.
1056 * Arrange to reschedule if the resulting priority is better
1057 * than that of the current process.
1059 * This routine may be called with any process.
1061 * This routine is called by fork1() for initial setup with the process
1062 * of the run queue, and also may be called normally with the process on or
1063 * off the run queue.
1065 * MPSAFE
1067 static void
1068 bsd4_resetpriority(struct lwp *lp)
1070 bsd4_pcpu_t dd;
1071 int newpriority;
1072 u_short newrqtype;
1073 int reschedcpu;
1074 int checkpri;
1075 int estcpu;
1078 * Calculate the new priority and queue type
1080 crit_enter();
1081 spin_lock(&bsd4_spin);
1083 newrqtype = lp->lwp_rtprio.type;
1085 switch(newrqtype) {
1086 case RTP_PRIO_REALTIME:
1087 case RTP_PRIO_FIFO:
1088 newpriority = PRIBASE_REALTIME +
1089 (lp->lwp_rtprio.prio & PRIMASK);
1090 break;
1091 case RTP_PRIO_NORMAL:
1093 * Detune estcpu based on batchiness. lwp_batch ranges
1094 * from 0 to BATCHMAX. Limit estcpu for the sake of
1095 * the priority calculation to between 50% and 100%.
1097 estcpu = lp->lwp_estcpu * (lp->lwp_batch + BATCHMAX) /
1098 (BATCHMAX * 2);
1101 * p_nice piece Adds (0-40) * 2 0-80
1102 * estcpu Adds 16384 * 4 / 512 0-128
1104 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1105 newpriority += estcpu * PPQ / ESTCPUPPQ;
1106 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1107 NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1108 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1109 break;
1110 case RTP_PRIO_IDLE:
1111 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1112 break;
1113 case RTP_PRIO_THREAD:
1114 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1115 break;
1116 default:
1117 panic("Bad RTP_PRIO %d", newrqtype);
1118 /* NOT REACHED */
1122 * The newpriority incorporates the queue type so do a simple masked
1123 * check to determine if the process has moved to another queue. If
1124 * it has, and it is currently on a run queue, then move it.
1126 * td_upri has normal sense (higher values are more desireable), so
1127 * negate it.
1129 lp->lwp_thread->td_upri = -(newpriority & ~PPQMASK);
1130 if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1131 lp->lwp_priority = newpriority;
1132 if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1133 bsd4_remrunqueue_locked(lp);
1134 lp->lwp_rqtype = newrqtype;
1135 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1136 bsd4_setrunqueue_locked(lp);
1137 checkpri = 1;
1138 } else {
1139 lp->lwp_rqtype = newrqtype;
1140 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1141 checkpri = 0;
1143 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
1144 } else {
1145 lp->lwp_priority = newpriority;
1146 reschedcpu = -1;
1147 checkpri = 1;
1151 * Determine if we need to reschedule the target cpu. This only
1152 * occurs if the LWP is already on a scheduler queue, which means
1153 * that idle cpu notification has already occured. At most we
1154 * need only issue a need_user_resched() on the appropriate cpu.
1156 * The LWP may be owned by a CPU different from the current one,
1157 * in which case dd->uschedcp may be modified without an MP lock
1158 * or a spinlock held. The worst that happens is that the code
1159 * below causes a spurious need_user_resched() on the target CPU
1160 * and dd->pri to be wrong for a short period of time, both of
1161 * which are harmless.
1163 * If checkpri is 0 we are adjusting the priority of the current
1164 * process, possibly higher (less desireable), so ignore the upri
1165 * check which will fail in that case.
1167 if (reschedcpu >= 0) {
1168 dd = &bsd4_pcpu[reschedcpu];
1169 if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
1170 (checkpri == 0 ||
1171 (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK))) {
1172 if (reschedcpu == mycpu->gd_cpuid) {
1173 spin_unlock(&bsd4_spin);
1174 need_user_resched();
1175 } else {
1176 spin_unlock(&bsd4_spin);
1177 atomic_clear_cpumask(&bsd4_rdyprocmask,
1178 CPUMASK(reschedcpu));
1179 lwkt_send_ipiq(lp->lwp_thread->td_gd,
1180 bsd4_need_user_resched_remote,
1181 NULL);
1183 } else {
1184 spin_unlock(&bsd4_spin);
1186 } else {
1187 spin_unlock(&bsd4_spin);
1189 crit_exit();
1193 * MPSAFE
1195 static
1196 void
1197 bsd4_yield(struct lwp *lp)
1199 #if 0
1200 /* FUTURE (or something similar) */
1201 switch(lp->lwp_rqtype) {
1202 case RTP_PRIO_NORMAL:
1203 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1204 break;
1205 default:
1206 break;
1208 #endif
1209 need_user_resched();
1213 * Called from fork1() when a new child process is being created.
1215 * Give the child process an initial estcpu that is more batch then
1216 * its parent and dock the parent for the fork (but do not
1217 * reschedule the parent). This comprises the main part of our batch
1218 * detection heuristic for both parallel forking and sequential execs.
1220 * XXX lwp should be "spawning" instead of "forking"
1222 * MPSAFE
1224 static void
1225 bsd4_forking(struct lwp *plp, struct lwp *lp)
1228 * Put the child 4 queue slots (out of 32) higher than the parent
1229 * (less desireable than the parent).
1231 lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1234 * The batch status of children always starts out centerline
1235 * and will inch-up or inch-down as appropriate. It takes roughly
1236 * ~15 seconds of >50% cpu to hit the limit.
1238 lp->lwp_batch = BATCHMAX / 2;
1241 * Dock the parent a cost for the fork, protecting us from fork
1242 * bombs. If the parent is forking quickly make the child more
1243 * batchy.
1245 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1249 * Called when a lwp is being removed from this scheduler, typically
1250 * during lwp_exit().
1252 static void
1253 bsd4_exiting(struct lwp *lp, struct proc *child_proc)
1257 static void
1258 bsd4_uload_update(struct lwp *lp)
1263 * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1264 * it selects a user process and returns it. If chklp is non-NULL and chklp
1265 * has a better or equal priority then the process that would otherwise be
1266 * chosen, NULL is returned.
1268 * Until we fix the RUNQ code the chklp test has to be strict or we may
1269 * bounce between processes trying to acquire the current process designation.
1271 * MPSAFE - must be called with bsd4_spin exclusive held. The spinlock is
1272 * left intact through the entire routine.
1274 static
1275 struct lwp *
1276 bsd4_chooseproc_locked(struct lwp *chklp)
1278 struct lwp *lp;
1279 struct rq *q;
1280 u_int32_t *which, *which2;
1281 u_int32_t pri;
1282 u_int32_t rtqbits;
1283 u_int32_t tsqbits;
1284 u_int32_t idqbits;
1285 cpumask_t cpumask;
1287 rtqbits = bsd4_rtqueuebits;
1288 tsqbits = bsd4_queuebits;
1289 idqbits = bsd4_idqueuebits;
1290 cpumask = mycpu->gd_cpumask;
1293 again:
1294 if (rtqbits) {
1295 pri = bsfl(rtqbits);
1296 q = &bsd4_rtqueues[pri];
1297 which = &bsd4_rtqueuebits;
1298 which2 = &rtqbits;
1299 } else if (tsqbits) {
1300 pri = bsfl(tsqbits);
1301 q = &bsd4_queues[pri];
1302 which = &bsd4_queuebits;
1303 which2 = &tsqbits;
1304 } else if (idqbits) {
1305 pri = bsfl(idqbits);
1306 q = &bsd4_idqueues[pri];
1307 which = &bsd4_idqueuebits;
1308 which2 = &idqbits;
1309 } else {
1310 return NULL;
1312 lp = TAILQ_FIRST(q);
1313 KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1315 while ((lp->lwp_cpumask & cpumask) == 0) {
1316 lp = TAILQ_NEXT(lp, lwp_procq);
1317 if (lp == NULL) {
1318 *which2 &= ~(1 << pri);
1319 goto again;
1324 * If the passed lwp <chklp> is reasonably close to the selected
1325 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1327 * Note that we must error on the side of <chklp> to avoid bouncing
1328 * between threads in the acquire code.
1330 if (chklp) {
1331 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1332 return(NULL);
1336 * If the chosen lwp does not reside on this cpu spend a few
1337 * cycles looking for a better candidate at the same priority level.
1338 * This is a fallback check, setrunqueue() tries to wakeup the
1339 * correct cpu and is our front-line affinity.
1341 if (lp->lwp_thread->td_gd != mycpu &&
1342 (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
1344 if (chklp->lwp_thread->td_gd == mycpu) {
1345 lp = chklp;
1349 KTR_COND_LOG(usched_chooseproc,
1350 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1351 lp->lwp_proc->p_pid,
1352 lp->lwp_thread->td_gd->gd_cpuid,
1353 mycpu->gd_cpuid);
1355 TAILQ_REMOVE(q, lp, lwp_procq);
1356 --bsd4_runqcount;
1357 if (TAILQ_EMPTY(q))
1358 *which &= ~(1 << pri);
1359 KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1360 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1362 return lp;
1366 * chooseproc() - with a cache coherence heuristic. Try to pull a process that
1367 * has its home on the current CPU> If the process doesn't have its home here
1368 * and is a batchy one (see batcy_looser_pri_test), we can wait for a
1369 * sched_tick, may be its home will become free and pull it in. Anyway,
1370 * we can't wait more than one tick. If that tick expired, we pull in that
1371 * process, no matter what.
1373 static
1374 struct lwp *
1375 bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp)
1377 struct lwp *lp;
1378 struct rq *q;
1379 u_int32_t *which, *which2;
1380 u_int32_t pri;
1381 u_int32_t checks;
1382 u_int32_t rtqbits;
1383 u_int32_t tsqbits;
1384 u_int32_t idqbits;
1385 cpumask_t cpumask;
1387 struct lwp * min_level_lwp = NULL;
1388 struct rq *min_q = NULL;
1389 cpumask_t siblings;
1390 cpu_node_t* cpunode = NULL;
1391 u_int32_t min_level = MAXCPU; /* number of levels < MAXCPU */
1392 u_int32_t *min_which = NULL;
1393 u_int32_t min_pri = 0;
1394 u_int32_t level = 0;
1396 rtqbits = bsd4_rtqueuebits;
1397 tsqbits = bsd4_queuebits;
1398 idqbits = bsd4_idqueuebits;
1399 cpumask = mycpu->gd_cpumask;
1401 /* Get the mask coresponding to the sysctl configured level */
1402 cpunode = bsd4_pcpu[mycpu->gd_cpuid].cpunode;
1403 level = usched_bsd4_stick_to_level;
1404 while (level) {
1405 cpunode = cpunode->parent_node;
1406 level--;
1408 /* The cpus which can ellect a process */
1409 siblings = cpunode->members;
1410 checks = 0;
1412 again:
1413 if (rtqbits) {
1414 pri = bsfl(rtqbits);
1415 q = &bsd4_rtqueues[pri];
1416 which = &bsd4_rtqueuebits;
1417 which2 = &rtqbits;
1418 } else if (tsqbits) {
1419 pri = bsfl(tsqbits);
1420 q = &bsd4_queues[pri];
1421 which = &bsd4_queuebits;
1422 which2 = &tsqbits;
1423 } else if (idqbits) {
1424 pri = bsfl(idqbits);
1425 q = &bsd4_idqueues[pri];
1426 which = &bsd4_idqueuebits;
1427 which2 = &idqbits;
1428 } else {
1430 * No more left and we didn't reach the checks limit.
1432 bsd4_kick_helper(min_level_lwp);
1433 return NULL;
1435 lp = TAILQ_FIRST(q);
1436 KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1439 * Limit the number of checks/queue to a configurable value to
1440 * minimize the contention (we are in a locked region
1442 while (checks < usched_bsd4_queue_checks) {
1443 if ((lp->lwp_cpumask & cpumask) == 0 ||
1444 ((siblings & lp->lwp_thread->td_gd->gd_cpumask) == 0 &&
1445 (lp->lwp_rebal_ticks == sched_ticks ||
1446 lp->lwp_rebal_ticks == (int)(sched_ticks - 1)) &&
1447 bsd4_batchy_looser_pri_test(lp))) {
1449 KTR_COND_LOG(usched_chooseproc_cc_not_good,
1450 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1451 lp->lwp_proc->p_pid,
1452 (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1453 (unsigned long)siblings,
1454 (unsigned long)cpumask);
1456 cpunode = bsd4_pcpu[lp->lwp_thread->td_gd->gd_cpuid].cpunode;
1457 level = 0;
1458 while (cpunode) {
1459 if (cpunode->members & cpumask)
1460 break;
1461 cpunode = cpunode->parent_node;
1462 level++;
1464 if (level < min_level ||
1465 (level == min_level && min_level_lwp &&
1466 lp->lwp_priority < min_level_lwp->lwp_priority)) {
1467 bsd4_kick_helper(min_level_lwp);
1468 min_level_lwp = lp;
1469 min_level = level;
1470 min_q = q;
1471 min_which = which;
1472 min_pri = pri;
1473 } else {
1474 bsd4_kick_helper(lp);
1476 lp = TAILQ_NEXT(lp, lwp_procq);
1477 if (lp == NULL) {
1478 *which2 &= ~(1 << pri);
1479 goto again;
1481 } else {
1482 KTR_COND_LOG(usched_chooseproc_cc_elected,
1483 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1484 lp->lwp_proc->p_pid,
1485 (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1486 (unsigned long)siblings,
1487 (unsigned long)cpumask);
1489 goto found;
1491 ++checks;
1495 * Checks exhausted, we tried to defer too many threads, so schedule
1496 * the best of the worst.
1498 lp = min_level_lwp;
1499 q = min_q;
1500 which = min_which;
1501 pri = min_pri;
1502 KASSERT(lp, ("chooseproc: at least the first lp was good"));
1504 found:
1507 * If the passed lwp <chklp> is reasonably close to the selected
1508 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1510 * Note that we must error on the side of <chklp> to avoid bouncing
1511 * between threads in the acquire code.
1513 if (chklp) {
1514 if (chklp->lwp_priority < lp->lwp_priority + PPQ) {
1515 bsd4_kick_helper(lp);
1516 return(NULL);
1520 KTR_COND_LOG(usched_chooseproc_cc,
1521 lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1522 lp->lwp_proc->p_pid,
1523 lp->lwp_thread->td_gd->gd_cpuid,
1524 mycpu->gd_cpuid);
1526 TAILQ_REMOVE(q, lp, lwp_procq);
1527 --bsd4_runqcount;
1528 if (TAILQ_EMPTY(q))
1529 *which &= ~(1 << pri);
1530 KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1531 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1533 return lp;
1537 * If we aren't willing to schedule a ready process on our cpu, give it's
1538 * target cpu a kick rather than wait for the next tick.
1540 * Called with bsd4_spin held.
1542 static
1543 void
1544 bsd4_kick_helper(struct lwp *lp)
1546 globaldata_t gd;
1547 bsd4_pcpu_t dd;
1549 if (lp == NULL)
1550 return;
1551 gd = lp->lwp_thread->td_gd;
1552 dd = &bsd4_pcpu[gd->gd_cpuid];
1553 if ((smp_active_mask & usched_global_cpumask &
1554 bsd4_rdyprocmask & gd->gd_cpumask) == 0) {
1555 return;
1557 ++usched_bsd4_kicks;
1558 atomic_clear_cpumask(&bsd4_rdyprocmask, gd->gd_cpumask);
1559 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
1560 lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
1561 } else {
1562 wakeup(&dd->helper_thread);
1566 static
1567 void
1568 bsd4_need_user_resched_remote(void *dummy)
1570 globaldata_t gd = mycpu;
1571 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
1573 need_user_resched();
1575 /* Call wakeup_mycpu to avoid sending IPIs to other CPUs */
1576 wakeup_mycpu(&dd->helper_thread);
1580 * bsd4_remrunqueue_locked() removes a given process from the run queue
1581 * that it is on, clearing the queue busy bit if it becomes empty.
1583 * Note that user process scheduler is different from the LWKT schedule.
1584 * The user process scheduler only manages user processes but it uses LWKT
1585 * underneath, and a user process operating in the kernel will often be
1586 * 'released' from our management.
1588 * MPSAFE - bsd4_spin must be held exclusively on call
1590 static void
1591 bsd4_remrunqueue_locked(struct lwp *lp)
1593 struct rq *q;
1594 u_int32_t *which;
1595 u_int8_t pri;
1597 KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1598 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1599 --bsd4_runqcount;
1600 KKASSERT(bsd4_runqcount >= 0);
1602 pri = lp->lwp_rqindex;
1603 switch(lp->lwp_rqtype) {
1604 case RTP_PRIO_NORMAL:
1605 q = &bsd4_queues[pri];
1606 which = &bsd4_queuebits;
1607 break;
1608 case RTP_PRIO_REALTIME:
1609 case RTP_PRIO_FIFO:
1610 q = &bsd4_rtqueues[pri];
1611 which = &bsd4_rtqueuebits;
1612 break;
1613 case RTP_PRIO_IDLE:
1614 q = &bsd4_idqueues[pri];
1615 which = &bsd4_idqueuebits;
1616 break;
1617 default:
1618 panic("remrunqueue: invalid rtprio type");
1619 /* NOT REACHED */
1621 TAILQ_REMOVE(q, lp, lwp_procq);
1622 if (TAILQ_EMPTY(q)) {
1623 KASSERT((*which & (1 << pri)) != 0,
1624 ("remrunqueue: remove from empty queue"));
1625 *which &= ~(1 << pri);
1630 * bsd4_setrunqueue_locked()
1632 * Add a process whos rqtype and rqindex had previously been calculated
1633 * onto the appropriate run queue. Determine if the addition requires
1634 * a reschedule on a cpu and return the cpuid or -1.
1636 * NOTE: Lower priorities are better priorities.
1638 * MPSAFE - bsd4_spin must be held exclusively on call
1640 static void
1641 bsd4_setrunqueue_locked(struct lwp *lp)
1643 struct rq *q;
1644 u_int32_t *which;
1645 int pri;
1647 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1648 atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1649 ++bsd4_runqcount;
1651 pri = lp->lwp_rqindex;
1653 switch(lp->lwp_rqtype) {
1654 case RTP_PRIO_NORMAL:
1655 q = &bsd4_queues[pri];
1656 which = &bsd4_queuebits;
1657 break;
1658 case RTP_PRIO_REALTIME:
1659 case RTP_PRIO_FIFO:
1660 q = &bsd4_rtqueues[pri];
1661 which = &bsd4_rtqueuebits;
1662 break;
1663 case RTP_PRIO_IDLE:
1664 q = &bsd4_idqueues[pri];
1665 which = &bsd4_idqueuebits;
1666 break;
1667 default:
1668 panic("remrunqueue: invalid rtprio type");
1669 /* NOT REACHED */
1673 * Add to the correct queue and set the appropriate bit. If no
1674 * lower priority (i.e. better) processes are in the queue then
1675 * we want a reschedule, calculate the best cpu for the job.
1677 * Always run reschedules on the LWPs original cpu.
1679 TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1680 *which |= 1 << pri;
1684 * For SMP systems a user scheduler helper thread is created for each
1685 * cpu and is used to allow one cpu to wakeup another for the purposes of
1686 * scheduling userland threads from setrunqueue().
1688 * UP systems do not need the helper since there is only one cpu.
1690 * We can't use the idle thread for this because we might block.
1691 * Additionally, doing things this way allows us to HLT idle cpus
1692 * on MP systems.
1694 * MPSAFE
1696 static void
1697 sched_thread(void *dummy)
1699 globaldata_t gd;
1700 bsd4_pcpu_t dd;
1701 bsd4_pcpu_t tmpdd;
1702 struct lwp *nlp;
1703 cpumask_t mask;
1704 int cpuid;
1705 cpumask_t tmpmask;
1706 int tmpid;
1708 gd = mycpu;
1709 cpuid = gd->gd_cpuid; /* doesn't change */
1710 mask = gd->gd_cpumask; /* doesn't change */
1711 dd = &bsd4_pcpu[cpuid];
1714 * Since we are woken up only when no user processes are scheduled
1715 * on a cpu, we can run at an ultra low priority.
1717 lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1719 tsleep(&dd->helper_thread, 0, "sched_thread_sleep", 0);
1721 for (;;) {
1723 * We use the LWKT deschedule-interlock trick to avoid racing
1724 * bsd4_rdyprocmask. This means we cannot block through to the
1725 * manual lwkt_switch() call we make below.
1727 crit_enter_gd(gd);
1728 tsleep_interlock(&dd->helper_thread, 0);
1729 spin_lock(&bsd4_spin);
1730 atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1732 clear_user_resched(); /* This satisfied the reschedule request */
1733 dd->rrcount = 0; /* Reset the round-robin counter */
1735 if ((bsd4_curprocmask & mask) == 0) {
1737 * No thread is currently scheduled.
1739 KKASSERT(dd->uschedcp == NULL);
1740 if ((nlp = bsd4_chooseproc_locked(NULL)) != NULL) {
1741 KTR_COND_LOG(usched_sched_thread_no_process,
1742 nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1743 gd->gd_cpuid,
1744 nlp->lwp_proc->p_pid,
1745 nlp->lwp_thread->td_gd->gd_cpuid);
1747 atomic_set_cpumask(&bsd4_curprocmask, mask);
1748 dd->upri = nlp->lwp_priority;
1749 dd->uschedcp = nlp;
1750 dd->rrcount = 0; /* reset round robin */
1751 spin_unlock(&bsd4_spin);
1752 lwkt_acquire(nlp->lwp_thread);
1753 lwkt_schedule(nlp->lwp_thread);
1754 } else {
1755 spin_unlock(&bsd4_spin);
1757 } else if (bsd4_runqcount) {
1758 if ((nlp = bsd4_chooseproc_locked(dd->uschedcp)) != NULL) {
1759 KTR_COND_LOG(usched_sched_thread_process,
1760 nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1761 gd->gd_cpuid,
1762 nlp->lwp_proc->p_pid,
1763 nlp->lwp_thread->td_gd->gd_cpuid);
1765 dd->upri = nlp->lwp_priority;
1766 dd->uschedcp = nlp;
1767 dd->rrcount = 0; /* reset round robin */
1768 spin_unlock(&bsd4_spin);
1769 lwkt_acquire(nlp->lwp_thread);
1770 lwkt_schedule(nlp->lwp_thread);
1771 } else {
1773 * CHAINING CONDITION TRAIN
1775 * We could not deal with the scheduler wakeup
1776 * request on this cpu, locate a ready scheduler
1777 * with no current lp assignment and chain to it.
1779 * This ensures that a wakeup race which fails due
1780 * to priority test does not leave other unscheduled
1781 * cpus idle when the runqueue is not empty.
1783 tmpmask = ~bsd4_curprocmask &
1784 bsd4_rdyprocmask & smp_active_mask;
1785 if (tmpmask) {
1786 tmpid = BSFCPUMASK(tmpmask);
1787 tmpdd = &bsd4_pcpu[tmpid];
1788 atomic_clear_cpumask(&bsd4_rdyprocmask,
1789 CPUMASK(tmpid));
1790 spin_unlock(&bsd4_spin);
1791 wakeup(&tmpdd->helper_thread);
1792 } else {
1793 spin_unlock(&bsd4_spin);
1796 KTR_LOG(usched_sched_thread_no_process_found,
1797 gd->gd_cpuid, (unsigned long)tmpmask);
1799 } else {
1801 * The runq is empty.
1803 spin_unlock(&bsd4_spin);
1807 * We're descheduled unless someone scheduled us. Switch away.
1808 * Exiting the critical section will cause splz() to be called
1809 * for us if interrupts and such are pending.
1811 crit_exit_gd(gd);
1812 tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
1816 /* sysctl stick_to_level parameter */
1817 static int
1818 sysctl_usched_bsd4_stick_to_level(SYSCTL_HANDLER_ARGS)
1820 int error, new_val;
1822 new_val = usched_bsd4_stick_to_level;
1824 error = sysctl_handle_int(oidp, &new_val, 0, req);
1825 if (error != 0 || req->newptr == NULL)
1826 return (error);
1827 if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
1828 return (EINVAL);
1829 usched_bsd4_stick_to_level = new_val;
1830 return (0);
1834 * Setup our scheduler helpers. Note that curprocmask bit 0 has already
1835 * been cleared by rqinit() and we should not mess with it further.
1837 static void
1838 sched_thread_cpu_init(void)
1840 int i;
1841 int cpuid;
1842 int smt_not_supported = 0;
1843 int cache_coherent_not_supported = 0;
1845 if (bootverbose)
1846 kprintf("Start scheduler helpers on cpus:\n");
1848 sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
1849 usched_bsd4_sysctl_tree =
1850 SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
1851 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
1852 "usched_bsd4", CTLFLAG_RD, 0, "");
1854 for (i = 0; i < ncpus; ++i) {
1855 bsd4_pcpu_t dd = &bsd4_pcpu[i];
1856 cpumask_t mask = CPUMASK(i);
1858 if ((mask & smp_active_mask) == 0)
1859 continue;
1861 dd->cpunode = get_cpu_node_by_cpuid(i);
1863 if (dd->cpunode == NULL) {
1864 smt_not_supported = 1;
1865 cache_coherent_not_supported = 1;
1866 if (bootverbose)
1867 kprintf ("\tcpu%d - WARNING: No CPU NODE "
1868 "found for cpu\n", i);
1869 } else {
1870 switch (dd->cpunode->type) {
1871 case THREAD_LEVEL:
1872 if (bootverbose)
1873 kprintf ("\tcpu%d - HyperThreading "
1874 "available. Core siblings: ",
1876 break;
1877 case CORE_LEVEL:
1878 smt_not_supported = 1;
1880 if (bootverbose)
1881 kprintf ("\tcpu%d - No HT available, "
1882 "multi-core/physical "
1883 "cpu. Physical siblings: ",
1885 break;
1886 case CHIP_LEVEL:
1887 smt_not_supported = 1;
1889 if (bootverbose)
1890 kprintf ("\tcpu%d - No HT available, "
1891 "single-core/physical cpu. "
1892 "Package Siblings: ",
1894 break;
1895 default:
1896 /* Let's go for safe defaults here */
1897 smt_not_supported = 1;
1898 cache_coherent_not_supported = 1;
1899 if (bootverbose)
1900 kprintf ("\tcpu%d - Unknown cpunode->"
1901 "type=%u. Siblings: ",
1903 (u_int)dd->cpunode->type);
1904 break;
1907 if (bootverbose) {
1908 if (dd->cpunode->parent_node != NULL) {
1909 CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
1910 kprintf("cpu%d ", cpuid);
1911 kprintf("\n");
1912 } else {
1913 kprintf(" no siblings\n");
1918 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1919 0, i, "usched %d", i);
1922 * Allow user scheduling on the target cpu. cpu #0 has already
1923 * been enabled in rqinit().
1925 if (i)
1926 atomic_clear_cpumask(&bsd4_curprocmask, mask);
1927 atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1928 dd->upri = PRIBASE_NULL;
1932 /* usched_bsd4 sysctl configurable parameters */
1934 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1935 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1936 OID_AUTO, "rrinterval", CTLFLAG_RW,
1937 &usched_bsd4_rrinterval, 0, "");
1938 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1939 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1940 OID_AUTO, "decay", CTLFLAG_RW,
1941 &usched_bsd4_decay, 0, "Extra decay when not running");
1942 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1943 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1944 OID_AUTO, "batch_time", CTLFLAG_RW,
1945 &usched_bsd4_batch_time, 0, "Min batch counter value");
1946 SYSCTL_ADD_LONG(&usched_bsd4_sysctl_ctx,
1947 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1948 OID_AUTO, "kicks", CTLFLAG_RW,
1949 &usched_bsd4_kicks, "Number of kickstarts");
1951 /* Add enable/disable option for SMT scheduling if supported */
1952 if (smt_not_supported) {
1953 usched_bsd4_smt = 0;
1954 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
1955 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1956 OID_AUTO, "smt", CTLFLAG_RD,
1957 "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
1958 } else {
1959 usched_bsd4_smt = 1;
1960 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1961 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1962 OID_AUTO, "smt", CTLFLAG_RW,
1963 &usched_bsd4_smt, 0, "Enable SMT scheduling");
1967 * Add enable/disable option for cache coherent scheduling
1968 * if supported
1970 if (cache_coherent_not_supported) {
1971 usched_bsd4_cache_coherent = 0;
1972 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
1973 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1974 OID_AUTO, "cache_coherent", CTLFLAG_RD,
1975 "NOT SUPPORTED", 0,
1976 "Cache coherence NOT SUPPORTED");
1977 } else {
1978 usched_bsd4_cache_coherent = 1;
1979 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1980 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1981 OID_AUTO, "cache_coherent", CTLFLAG_RW,
1982 &usched_bsd4_cache_coherent, 0,
1983 "Enable/Disable cache coherent scheduling");
1985 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1986 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1987 OID_AUTO, "upri_affinity", CTLFLAG_RW,
1988 &usched_bsd4_upri_affinity, 1,
1989 "Number of PPQs in user priority check");
1991 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1992 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1993 OID_AUTO, "queue_checks", CTLFLAG_RW,
1994 &usched_bsd4_queue_checks, 5,
1995 "LWPs to check from a queue before giving up");
1997 SYSCTL_ADD_PROC(&usched_bsd4_sysctl_ctx,
1998 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1999 OID_AUTO, "stick_to_level",
2000 CTLTYPE_INT | CTLFLAG_RW,
2001 NULL, sizeof usched_bsd4_stick_to_level,
2002 sysctl_usched_bsd4_stick_to_level, "I",
2003 "Stick a process to this level. See sysctl"
2004 "paremter hw.cpu_topology.level_description");
2007 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2008 sched_thread_cpu_init, NULL)