Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / kern / uipc_usrreq.c
blob4cc1ec08d60d8e8e229ab9f82194f9d0f213c3dd
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/domain.h>
41 #include <sys/fcntl.h>
42 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
43 #include <sys/proc.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/mbuf.h>
47 #include <sys/nlookup.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/resourcevar.h>
52 #include <sys/stat.h>
53 #include <sys/mount.h>
54 #include <sys/sysctl.h>
55 #include <sys/un.h>
56 #include <sys/unpcb.h>
57 #include <sys/vnode.h>
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/socketvar2.h>
62 #include <sys/msgport2.h>
64 typedef struct unp_defdiscard {
65 struct unp_defdiscard *next;
66 struct file *fp;
67 } *unp_defdiscard_t;
69 static MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
70 static unp_gen_t unp_gencnt;
71 static u_int unp_count;
73 static struct unp_head unp_shead, unp_dhead;
75 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
76 static int unp_defdiscard_nest;
77 static unp_defdiscard_t unp_defdiscard_base;
80 * Unix communications domain.
82 * TODO:
83 * RDM
84 * rethink name space problems
85 * need a proper out-of-band
86 * lock pushdown
88 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
89 static ino_t unp_ino = 1; /* prototype for fake inode numbers */
90 static struct spinlock unp_ino_spin = SPINLOCK_INITIALIZER(&unp_ino_spin);
92 static int unp_attach (struct socket *, struct pru_attach_info *);
93 static void unp_detach (struct unpcb *);
94 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
95 static int unp_connect (struct socket *,struct sockaddr *,
96 struct thread *);
97 static void unp_disconnect (struct unpcb *);
98 static void unp_shutdown (struct unpcb *);
99 static void unp_drop (struct unpcb *, int);
100 static void unp_gc (void);
101 static int unp_gc_clearmarks(struct file *, void *);
102 static int unp_gc_checkmarks(struct file *, void *);
103 static int unp_gc_checkrefs(struct file *, void *);
104 static int unp_revoke_gc_check(struct file *, void *);
105 static void unp_scan (struct mbuf *, void (*)(struct file *, void *),
106 void *data);
107 static void unp_mark (struct file *, void *data);
108 static void unp_discard (struct file *, void *);
109 static int unp_internalize (struct mbuf *, struct thread *);
110 static int unp_listen (struct unpcb *, struct thread *);
111 static void unp_fp_externalize(struct lwp *lp, struct file *fp, int fd);
114 * SMP Considerations:
116 * Since unp_token will be automaticly released upon execution of
117 * blocking code, we need to reference unp_conn before any possible
118 * blocking code to prevent it from being ripped behind our back.
120 * Any adjustment to unp->unp_conn requires both the global unp_token
121 * AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
123 * Any access to so_pcb to obtain unp requires the pool token for
124 * unp to be held.
127 /* NOTE: unp_token MUST be held */
128 static __inline void
129 unp_reference(struct unpcb *unp)
131 atomic_add_int(&unp->unp_refcnt, 1);
134 /* NOTE: unp_token MUST be held */
135 static __inline void
136 unp_free(struct unpcb *unp)
138 KKASSERT(unp->unp_refcnt > 0);
139 if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
140 unp_detach(unp);
144 * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
145 * will sofree() it when we return.
147 static void
148 uipc_abort(netmsg_t msg)
150 struct unpcb *unp;
151 int error;
153 lwkt_gettoken(&unp_token);
154 unp = msg->base.nm_so->so_pcb;
155 if (unp) {
156 unp_drop(unp, ECONNABORTED);
157 unp_free(unp);
158 error = 0;
159 } else {
160 error = EINVAL;
162 lwkt_reltoken(&unp_token);
164 lwkt_replymsg(&msg->lmsg, error);
167 static void
168 uipc_accept(netmsg_t msg)
170 struct unpcb *unp;
171 int error;
173 lwkt_gettoken(&unp_token);
174 unp = msg->base.nm_so->so_pcb;
175 if (unp == NULL) {
176 error = EINVAL;
177 } else {
178 struct unpcb *unp2 = unp->unp_conn;
181 * Pass back name of connected socket,
182 * if it was bound and we are still connected
183 * (our peer may have closed already!).
185 if (unp2 && unp2->unp_addr) {
186 unp_reference(unp2);
187 *msg->accept.nm_nam = dup_sockaddr(
188 (struct sockaddr *)unp2->unp_addr);
189 unp_free(unp2);
190 } else {
191 *msg->accept.nm_nam = dup_sockaddr(&sun_noname);
193 error = 0;
195 lwkt_reltoken(&unp_token);
196 lwkt_replymsg(&msg->lmsg, error);
199 static void
200 uipc_attach(netmsg_t msg)
202 struct unpcb *unp;
203 int error;
205 lwkt_gettoken(&unp_token);
206 unp = msg->base.nm_so->so_pcb;
207 if (unp)
208 error = EISCONN;
209 else
210 error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
211 lwkt_reltoken(&unp_token);
212 lwkt_replymsg(&msg->lmsg, error);
215 static void
216 uipc_bind(netmsg_t msg)
218 struct unpcb *unp;
219 int error;
221 lwkt_gettoken(&unp_token);
222 unp = msg->base.nm_so->so_pcb;
223 if (unp)
224 error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
225 else
226 error = EINVAL;
227 lwkt_reltoken(&unp_token);
228 lwkt_replymsg(&msg->lmsg, error);
231 static void
232 uipc_connect(netmsg_t msg)
234 struct unpcb *unp;
235 int error;
237 unp = msg->base.nm_so->so_pcb;
238 if (unp) {
239 error = unp_connect(msg->base.nm_so,
240 msg->connect.nm_nam,
241 msg->connect.nm_td);
242 } else {
243 error = EINVAL;
245 lwkt_replymsg(&msg->lmsg, error);
248 static void
249 uipc_connect2(netmsg_t msg)
251 struct unpcb *unp;
252 int error;
254 unp = msg->connect2.nm_so1->so_pcb;
255 if (unp) {
256 error = unp_connect2(msg->connect2.nm_so1,
257 msg->connect2.nm_so2);
258 } else {
259 error = EINVAL;
261 lwkt_replymsg(&msg->lmsg, error);
264 /* control is EOPNOTSUPP */
266 static void
267 uipc_detach(netmsg_t msg)
269 struct unpcb *unp;
270 int error;
272 lwkt_gettoken(&unp_token);
273 unp = msg->base.nm_so->so_pcb;
274 if (unp) {
275 unp_free(unp);
276 error = 0;
277 } else {
278 error = EINVAL;
280 lwkt_reltoken(&unp_token);
281 lwkt_replymsg(&msg->lmsg, error);
284 static void
285 uipc_disconnect(netmsg_t msg)
287 struct unpcb *unp;
288 int error;
290 lwkt_gettoken(&unp_token);
291 unp = msg->base.nm_so->so_pcb;
292 if (unp) {
293 unp_disconnect(unp);
294 error = 0;
295 } else {
296 error = EINVAL;
298 lwkt_reltoken(&unp_token);
299 lwkt_replymsg(&msg->lmsg, error);
302 static void
303 uipc_listen(netmsg_t msg)
305 struct unpcb *unp;
306 int error;
308 lwkt_gettoken(&unp_token);
309 unp = msg->base.nm_so->so_pcb;
310 if (unp == NULL || unp->unp_vnode == NULL)
311 error = EINVAL;
312 else
313 error = unp_listen(unp, msg->listen.nm_td);
314 lwkt_reltoken(&unp_token);
315 lwkt_replymsg(&msg->lmsg, error);
318 static void
319 uipc_peeraddr(netmsg_t msg)
321 struct unpcb *unp;
322 int error;
324 lwkt_gettoken(&unp_token);
325 unp = msg->base.nm_so->so_pcb;
326 if (unp == NULL) {
327 error = EINVAL;
328 } else if (unp->unp_conn && unp->unp_conn->unp_addr) {
329 struct unpcb *unp2 = unp->unp_conn;
331 unp_reference(unp2);
332 *msg->peeraddr.nm_nam = dup_sockaddr(
333 (struct sockaddr *)unp2->unp_addr);
334 unp_free(unp2);
335 error = 0;
336 } else {
338 * XXX: It seems that this test always fails even when
339 * connection is established. So, this else clause is
340 * added as workaround to return PF_LOCAL sockaddr.
342 *msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
343 error = 0;
345 lwkt_reltoken(&unp_token);
346 lwkt_replymsg(&msg->lmsg, error);
349 static void
350 uipc_rcvd(netmsg_t msg)
352 struct unpcb *unp, *unp2;
353 struct socket *so;
354 struct socket *so2;
355 int error;
358 * so_pcb is only modified with both the global and the unp
359 * pool token held. The unp pointer is invalid until we verify
360 * that it is good by re-checking so_pcb AFTER obtaining the token.
362 so = msg->base.nm_so;
363 while ((unp = so->so_pcb) != NULL) {
364 lwkt_getpooltoken(unp);
365 if (unp == so->so_pcb)
366 break;
367 lwkt_relpooltoken(unp);
369 if (unp == NULL) {
370 error = EINVAL;
371 goto done;
373 /* pool token held */
375 switch (so->so_type) {
376 case SOCK_DGRAM:
377 panic("uipc_rcvd DGRAM?");
378 /*NOTREACHED*/
379 case SOCK_STREAM:
380 case SOCK_SEQPACKET:
381 if (unp->unp_conn == NULL)
382 break;
383 unp2 = unp->unp_conn; /* protected by pool token */
386 * Because we are transfering mbufs directly to the
387 * peer socket we have to use SSB_STOP on the sender
388 * to prevent it from building up infinite mbufs.
390 * As in several places in this module w ehave to ref unp2
391 * to ensure that it does not get ripped out from under us
392 * if we block on the so2 token or in sowwakeup().
394 so2 = unp2->unp_socket;
395 unp_reference(unp2);
396 lwkt_gettoken(&so2->so_rcv.ssb_token);
397 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
398 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
400 atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
402 sowwakeup(so2);
404 lwkt_reltoken(&so2->so_rcv.ssb_token);
405 unp_free(unp2);
406 break;
407 default:
408 panic("uipc_rcvd unknown socktype");
409 /*NOTREACHED*/
411 error = 0;
412 lwkt_relpooltoken(unp);
413 done:
414 lwkt_replymsg(&msg->lmsg, error);
417 /* pru_rcvoob is EOPNOTSUPP */
419 static void
420 uipc_send(netmsg_t msg)
422 struct unpcb *unp, *unp2;
423 struct socket *so;
424 struct socket *so2;
425 struct mbuf *control;
426 struct mbuf *m;
427 int error = 0;
429 so = msg->base.nm_so;
430 control = msg->send.nm_control;
431 m = msg->send.nm_m;
434 * so_pcb is only modified with both the global and the unp
435 * pool token held. The unp pointer is invalid until we verify
436 * that it is good by re-checking so_pcb AFTER obtaining the token.
438 so = msg->base.nm_so;
439 while ((unp = so->so_pcb) != NULL) {
440 lwkt_getpooltoken(unp);
441 if (unp == so->so_pcb)
442 break;
443 lwkt_relpooltoken(unp);
445 if (unp == NULL) {
446 error = EINVAL;
447 goto done;
449 /* pool token held */
451 if (msg->send.nm_flags & PRUS_OOB) {
452 error = EOPNOTSUPP;
453 goto release;
456 wakeup_start_delayed();
458 if (control && (error = unp_internalize(control, msg->send.nm_td)))
459 goto release;
461 switch (so->so_type) {
462 case SOCK_DGRAM:
464 struct sockaddr *from;
466 if (msg->send.nm_addr) {
467 if (unp->unp_conn) {
468 error = EISCONN;
469 break;
471 error = unp_connect(so,
472 msg->send.nm_addr,
473 msg->send.nm_td);
474 if (error)
475 break;
476 } else {
477 if (unp->unp_conn == NULL) {
478 error = ENOTCONN;
479 break;
482 unp2 = unp->unp_conn;
483 so2 = unp2->unp_socket;
484 if (unp->unp_addr)
485 from = (struct sockaddr *)unp->unp_addr;
486 else
487 from = &sun_noname;
489 unp_reference(unp2);
491 lwkt_gettoken(&so2->so_rcv.ssb_token);
492 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
493 sorwakeup(so2);
494 m = NULL;
495 control = NULL;
496 } else {
497 error = ENOBUFS;
499 if (msg->send.nm_addr)
500 unp_disconnect(unp);
501 lwkt_reltoken(&so2->so_rcv.ssb_token);
503 unp_free(unp2);
504 break;
507 case SOCK_STREAM:
508 case SOCK_SEQPACKET:
509 /* Connect if not connected yet. */
511 * Note: A better implementation would complain
512 * if not equal to the peer's address.
514 if (!(so->so_state & SS_ISCONNECTED)) {
515 if (msg->send.nm_addr) {
516 error = unp_connect(so,
517 msg->send.nm_addr,
518 msg->send.nm_td);
519 if (error)
520 break; /* XXX */
521 } else {
522 error = ENOTCONN;
523 break;
527 if (so->so_state & SS_CANTSENDMORE) {
528 error = EPIPE;
529 break;
531 if (unp->unp_conn == NULL)
532 panic("uipc_send connected but no connection?");
533 unp2 = unp->unp_conn;
534 so2 = unp2->unp_socket;
536 unp_reference(unp2);
539 * Send to paired receive port, and then reduce
540 * send buffer hiwater marks to maintain backpressure.
541 * Wake up readers.
543 lwkt_gettoken(&so2->so_rcv.ssb_token);
544 if (control) {
545 if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
546 control = NULL;
547 m = NULL;
549 } else if (so->so_type == SOCK_SEQPACKET) {
550 sbappendrecord(&so2->so_rcv.sb, m);
551 m = NULL;
552 } else {
553 sbappend(&so2->so_rcv.sb, m);
554 m = NULL;
558 * Because we are transfering mbufs directly to the
559 * peer socket we have to use SSB_STOP on the sender
560 * to prevent it from building up infinite mbufs.
562 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
563 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
565 atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
567 lwkt_reltoken(&so2->so_rcv.ssb_token);
568 sorwakeup(so2);
570 unp_free(unp2);
571 break;
573 default:
574 panic("uipc_send unknown socktype");
578 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
580 if (msg->send.nm_flags & PRUS_EOF) {
581 socantsendmore(so);
582 unp_shutdown(unp);
585 if (control && error != 0)
586 unp_dispose(control);
587 release:
588 lwkt_relpooltoken(unp);
589 wakeup_end_delayed();
590 done:
592 if (control)
593 m_freem(control);
594 if (m)
595 m_freem(m);
596 lwkt_replymsg(&msg->lmsg, error);
600 * MPSAFE
602 static void
603 uipc_sense(netmsg_t msg)
605 struct unpcb *unp;
606 struct socket *so;
607 struct stat *sb;
608 int error;
610 so = msg->base.nm_so;
611 sb = msg->sense.nm_stat;
614 * so_pcb is only modified with both the global and the unp
615 * pool token held. The unp pointer is invalid until we verify
616 * that it is good by re-checking so_pcb AFTER obtaining the token.
618 while ((unp = so->so_pcb) != NULL) {
619 lwkt_getpooltoken(unp);
620 if (unp == so->so_pcb)
621 break;
622 lwkt_relpooltoken(unp);
624 if (unp == NULL) {
625 error = EINVAL;
626 goto done;
628 /* pool token held */
630 sb->st_blksize = so->so_snd.ssb_hiwat;
631 sb->st_dev = NOUDEV;
632 if (unp->unp_ino == 0) { /* make up a non-zero inode number */
633 spin_lock(&unp_ino_spin);
634 unp->unp_ino = unp_ino++;
635 spin_unlock(&unp_ino_spin);
637 sb->st_ino = unp->unp_ino;
638 error = 0;
639 lwkt_relpooltoken(unp);
640 done:
641 lwkt_replymsg(&msg->lmsg, error);
644 static void
645 uipc_shutdown(netmsg_t msg)
647 struct socket *so;
648 struct unpcb *unp;
649 int error;
652 * so_pcb is only modified with both the global and the unp
653 * pool token held. The unp pointer is invalid until we verify
654 * that it is good by re-checking so_pcb AFTER obtaining the token.
656 so = msg->base.nm_so;
657 while ((unp = so->so_pcb) != NULL) {
658 lwkt_getpooltoken(unp);
659 if (unp == so->so_pcb)
660 break;
661 lwkt_relpooltoken(unp);
663 if (unp) {
664 /* pool token held */
665 socantsendmore(so);
666 unp_shutdown(unp);
667 lwkt_relpooltoken(unp);
668 error = 0;
669 } else {
670 error = EINVAL;
672 lwkt_replymsg(&msg->lmsg, error);
675 static void
676 uipc_sockaddr(netmsg_t msg)
678 struct socket *so;
679 struct unpcb *unp;
680 int error;
683 * so_pcb is only modified with both the global and the unp
684 * pool token held. The unp pointer is invalid until we verify
685 * that it is good by re-checking so_pcb AFTER obtaining the token.
687 so = msg->base.nm_so;
688 while ((unp = so->so_pcb) != NULL) {
689 lwkt_getpooltoken(unp);
690 if (unp == so->so_pcb)
691 break;
692 lwkt_relpooltoken(unp);
694 if (unp) {
695 /* pool token held */
696 if (unp->unp_addr) {
697 *msg->sockaddr.nm_nam =
698 dup_sockaddr((struct sockaddr *)unp->unp_addr);
700 lwkt_relpooltoken(unp);
701 error = 0;
702 } else {
703 error = EINVAL;
705 lwkt_replymsg(&msg->lmsg, error);
708 struct pr_usrreqs uipc_usrreqs = {
709 .pru_abort = uipc_abort,
710 .pru_accept = uipc_accept,
711 .pru_attach = uipc_attach,
712 .pru_bind = uipc_bind,
713 .pru_connect = uipc_connect,
714 .pru_connect2 = uipc_connect2,
715 .pru_control = pr_generic_notsupp,
716 .pru_detach = uipc_detach,
717 .pru_disconnect = uipc_disconnect,
718 .pru_listen = uipc_listen,
719 .pru_peeraddr = uipc_peeraddr,
720 .pru_rcvd = uipc_rcvd,
721 .pru_rcvoob = pr_generic_notsupp,
722 .pru_send = uipc_send,
723 .pru_sense = uipc_sense,
724 .pru_shutdown = uipc_shutdown,
725 .pru_sockaddr = uipc_sockaddr,
726 .pru_sosend = sosend,
727 .pru_soreceive = soreceive
730 void
731 uipc_ctloutput(netmsg_t msg)
733 struct socket *so;
734 struct sockopt *sopt;
735 struct unpcb *unp;
736 int error = 0;
738 lwkt_gettoken(&unp_token);
739 so = msg->base.nm_so;
740 sopt = msg->ctloutput.nm_sopt;
741 unp = so->so_pcb;
743 switch (sopt->sopt_dir) {
744 case SOPT_GET:
745 switch (sopt->sopt_name) {
746 case LOCAL_PEERCRED:
747 if (unp->unp_flags & UNP_HAVEPC)
748 soopt_from_kbuf(sopt, &unp->unp_peercred,
749 sizeof(unp->unp_peercred));
750 else {
751 if (so->so_type == SOCK_STREAM)
752 error = ENOTCONN;
753 else if (so->so_type == SOCK_SEQPACKET)
754 error = ENOTCONN;
755 else
756 error = EINVAL;
758 break;
759 default:
760 error = EOPNOTSUPP;
761 break;
763 break;
764 case SOPT_SET:
765 default:
766 error = EOPNOTSUPP;
767 break;
769 lwkt_reltoken(&unp_token);
770 lwkt_replymsg(&msg->lmsg, error);
774 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
775 * for stream sockets, although the total for sender and receiver is
776 * actually only PIPSIZ.
778 * Datagram sockets really use the sendspace as the maximum datagram size,
779 * and don't really want to reserve the sendspace. Their recvspace should
780 * be large enough for at least one max-size datagram plus address.
782 * We want the local send/recv space to be significant larger then lo0's
783 * mtu of 16384.
785 #ifndef PIPSIZ
786 #define PIPSIZ 57344
787 #endif
788 static u_long unpst_sendspace = PIPSIZ;
789 static u_long unpst_recvspace = PIPSIZ;
790 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
791 static u_long unpdg_recvspace = 4*1024;
793 static int unp_rights; /* file descriptors in flight */
794 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
796 SYSCTL_DECL(_net_local_seqpacket);
797 SYSCTL_DECL(_net_local_stream);
798 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
799 &unpst_sendspace, 0, "Size of stream socket send buffer");
800 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
801 &unpst_recvspace, 0, "Size of stream socket receive buffer");
803 SYSCTL_DECL(_net_local_dgram);
804 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
805 &unpdg_sendspace, 0, "Max datagram socket size");
806 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
807 &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
809 SYSCTL_DECL(_net_local);
810 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
811 "File descriptors in flight");
813 static int
814 unp_attach(struct socket *so, struct pru_attach_info *ai)
816 struct unpcb *unp;
817 int error;
819 lwkt_gettoken(&unp_token);
821 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
822 switch (so->so_type) {
824 case SOCK_STREAM:
825 case SOCK_SEQPACKET:
826 error = soreserve(so, unpst_sendspace, unpst_recvspace,
827 ai->sb_rlimit);
828 break;
830 case SOCK_DGRAM:
831 error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
832 ai->sb_rlimit);
833 break;
835 default:
836 panic("unp_attach");
838 if (error)
839 goto failed;
841 unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
842 if (unp == NULL) {
843 error = ENOBUFS;
844 goto failed;
846 unp->unp_refcnt = 1;
847 unp->unp_gencnt = ++unp_gencnt;
848 unp_count++;
849 LIST_INIT(&unp->unp_refs);
850 unp->unp_socket = so;
851 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */
852 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
853 : &unp_shead, unp, unp_link);
854 so->so_pcb = (caddr_t)unp;
855 soreference(so);
856 error = 0;
857 failed:
858 lwkt_reltoken(&unp_token);
859 return error;
862 static void
863 unp_detach(struct unpcb *unp)
865 struct socket *so;
867 lwkt_gettoken(&unp_token);
868 lwkt_getpooltoken(unp);
870 LIST_REMOVE(unp, unp_link); /* both tokens required */
871 unp->unp_gencnt = ++unp_gencnt;
872 --unp_count;
873 if (unp->unp_vnode) {
874 unp->unp_vnode->v_socket = NULL;
875 vrele(unp->unp_vnode);
876 unp->unp_vnode = NULL;
878 if (unp->unp_conn)
879 unp_disconnect(unp);
880 while (!LIST_EMPTY(&unp->unp_refs))
881 unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
882 soisdisconnected(unp->unp_socket);
883 so = unp->unp_socket;
884 soreference(so); /* for delayed sorflush */
885 KKASSERT(so->so_pcb == unp);
886 so->so_pcb = NULL; /* both tokens required */
887 unp->unp_socket = NULL;
888 sofree(so); /* remove pcb ref */
890 if (unp_rights) {
892 * Normally the receive buffer is flushed later,
893 * in sofree, but if our receive buffer holds references
894 * to descriptors that are now garbage, we will dispose
895 * of those descriptor references after the garbage collector
896 * gets them (resulting in a "panic: closef: count < 0").
898 sorflush(so);
899 unp_gc();
901 sofree(so);
902 lwkt_relpooltoken(unp);
903 lwkt_reltoken(&unp_token);
905 if (unp->unp_addr)
906 kfree(unp->unp_addr, M_SONAME);
907 kfree(unp, M_UNPCB);
910 static int
911 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
913 struct proc *p = td->td_proc;
914 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
915 struct vnode *vp;
916 struct vattr vattr;
917 int error, namelen;
918 struct nlookupdata nd;
919 char buf[SOCK_MAXADDRLEN];
921 lwkt_gettoken(&unp_token);
922 if (unp->unp_vnode != NULL) {
923 error = EINVAL;
924 goto failed;
926 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
927 if (namelen <= 0) {
928 error = EINVAL;
929 goto failed;
931 strncpy(buf, soun->sun_path, namelen);
932 buf[namelen] = 0; /* null-terminate the string */
933 error = nlookup_init(&nd, buf, UIO_SYSSPACE,
934 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
935 if (error == 0)
936 error = nlookup(&nd);
937 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
938 error = EADDRINUSE;
939 if (error)
940 goto done;
942 VATTR_NULL(&vattr);
943 vattr.va_type = VSOCK;
944 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
945 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
946 if (error == 0) {
947 if (unp->unp_vnode == NULL) {
948 vp->v_socket = unp->unp_socket;
949 unp->unp_vnode = vp;
950 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
951 vn_unlock(vp);
952 } else {
953 vput(vp); /* late race */
954 error = EINVAL;
957 done:
958 nlookup_done(&nd);
959 failed:
960 lwkt_reltoken(&unp_token);
961 return (error);
964 static int
965 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
967 struct proc *p = td->td_proc;
968 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
969 struct vnode *vp;
970 struct socket *so2, *so3;
971 struct unpcb *unp, *unp2, *unp3;
972 int error, len;
973 struct nlookupdata nd;
974 char buf[SOCK_MAXADDRLEN];
976 lwkt_gettoken(&unp_token);
978 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
979 if (len <= 0) {
980 error = EINVAL;
981 goto failed;
983 strncpy(buf, soun->sun_path, len);
984 buf[len] = 0;
986 vp = NULL;
987 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
988 if (error == 0)
989 error = nlookup(&nd);
990 if (error == 0)
991 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
992 nlookup_done(&nd);
993 if (error)
994 goto failed;
996 if (vp->v_type != VSOCK) {
997 error = ENOTSOCK;
998 goto bad;
1000 error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
1001 if (error)
1002 goto bad;
1003 so2 = vp->v_socket;
1004 if (so2 == NULL) {
1005 error = ECONNREFUSED;
1006 goto bad;
1008 if (so->so_type != so2->so_type) {
1009 error = EPROTOTYPE;
1010 goto bad;
1012 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1013 if (!(so2->so_options & SO_ACCEPTCONN) ||
1014 (so3 = sonewconn(so2, 0)) == NULL) {
1015 error = ECONNREFUSED;
1016 goto bad;
1018 unp = so->so_pcb;
1019 if (unp->unp_conn) { /* race, already connected! */
1020 error = EISCONN;
1021 sofree(so3);
1022 goto bad;
1024 unp2 = so2->so_pcb;
1025 unp3 = so3->so_pcb;
1026 if (unp2->unp_addr)
1027 unp3->unp_addr = (struct sockaddr_un *)
1028 dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1031 * unp_peercred management:
1033 * The connecter's (client's) credentials are copied
1034 * from its process structure at the time of connect()
1035 * (which is now).
1037 cru2x(p->p_ucred, &unp3->unp_peercred);
1038 unp3->unp_flags |= UNP_HAVEPC;
1040 * The receiver's (server's) credentials are copied
1041 * from the unp_peercred member of socket on which the
1042 * former called listen(); unp_listen() cached that
1043 * process's credentials at that time so we can use
1044 * them now.
1046 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1047 ("unp_connect: listener without cached peercred"));
1048 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1049 sizeof(unp->unp_peercred));
1050 unp->unp_flags |= UNP_HAVEPC;
1052 so2 = so3;
1054 error = unp_connect2(so, so2);
1055 bad:
1056 vput(vp);
1057 failed:
1058 lwkt_reltoken(&unp_token);
1059 return (error);
1063 * Connect two unix domain sockets together.
1065 * NOTE: Semantics for any change to unp_conn requires that the per-unp
1066 * pool token also be held.
1069 unp_connect2(struct socket *so, struct socket *so2)
1071 struct unpcb *unp;
1072 struct unpcb *unp2;
1074 lwkt_gettoken(&unp_token);
1075 unp = so->so_pcb;
1076 if (so2->so_type != so->so_type) {
1077 lwkt_reltoken(&unp_token);
1078 return (EPROTOTYPE);
1080 unp2 = so2->so_pcb;
1081 lwkt_getpooltoken(unp);
1082 lwkt_getpooltoken(unp2);
1084 unp->unp_conn = unp2;
1086 switch (so->so_type) {
1087 case SOCK_DGRAM:
1088 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1089 soisconnected(so);
1090 break;
1092 case SOCK_STREAM:
1093 case SOCK_SEQPACKET:
1094 unp2->unp_conn = unp;
1095 soisconnected(so);
1096 soisconnected(so2);
1097 break;
1099 default:
1100 panic("unp_connect2");
1102 lwkt_relpooltoken(unp2);
1103 lwkt_relpooltoken(unp);
1104 lwkt_reltoken(&unp_token);
1105 return (0);
1109 * Disconnect a unix domain socket pair.
1111 * NOTE: Semantics for any change to unp_conn requires that the per-unp
1112 * pool token also be held.
1114 static void
1115 unp_disconnect(struct unpcb *unp)
1117 struct unpcb *unp2;
1119 lwkt_gettoken(&unp_token);
1120 lwkt_getpooltoken(unp);
1122 while ((unp2 = unp->unp_conn) != NULL) {
1123 lwkt_getpooltoken(unp2);
1124 if (unp2 == unp->unp_conn)
1125 break;
1126 lwkt_relpooltoken(unp2);
1128 if (unp2 == NULL)
1129 goto done;
1131 unp->unp_conn = NULL;
1133 switch (unp->unp_socket->so_type) {
1134 case SOCK_DGRAM:
1135 LIST_REMOVE(unp, unp_reflink);
1136 soclrstate(unp->unp_socket, SS_ISCONNECTED);
1137 break;
1139 case SOCK_STREAM:
1140 case SOCK_SEQPACKET:
1141 unp_reference(unp2);
1142 unp2->unp_conn = NULL;
1144 soisdisconnected(unp->unp_socket);
1145 soisdisconnected(unp2->unp_socket);
1147 unp_free(unp2);
1148 break;
1150 lwkt_relpooltoken(unp2);
1151 done:
1152 lwkt_relpooltoken(unp);
1153 lwkt_reltoken(&unp_token);
1156 #ifdef notdef
1157 void
1158 unp_abort(struct unpcb *unp)
1160 lwkt_gettoken(&unp_token);
1161 unp_free(unp);
1162 lwkt_reltoken(&unp_token);
1164 #endif
1166 static int
1167 prison_unpcb(struct thread *td, struct unpcb *unp)
1169 struct proc *p;
1171 if (td == NULL)
1172 return (0);
1173 if ((p = td->td_proc) == NULL)
1174 return (0);
1175 if (!p->p_ucred->cr_prison)
1176 return (0);
1177 if (p->p_fd->fd_rdir == unp->unp_rvnode)
1178 return (0);
1179 return (1);
1182 static int
1183 unp_pcblist(SYSCTL_HANDLER_ARGS)
1185 int error, i, n;
1186 struct unpcb *unp, **unp_list;
1187 unp_gen_t gencnt;
1188 struct unp_head *head;
1190 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1192 KKASSERT(curproc != NULL);
1195 * The process of preparing the PCB list is too time-consuming and
1196 * resource-intensive to repeat twice on every request.
1198 if (req->oldptr == NULL) {
1199 n = unp_count;
1200 req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1201 return 0;
1204 if (req->newptr != NULL)
1205 return EPERM;
1207 lwkt_gettoken(&unp_token);
1210 * OK, now we're committed to doing something.
1212 gencnt = unp_gencnt;
1213 n = unp_count;
1215 unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1217 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1218 unp = LIST_NEXT(unp, unp_link)) {
1219 if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
1220 unp_list[i++] = unp;
1222 n = i; /* in case we lost some during malloc */
1224 error = 0;
1225 for (i = 0; i < n; i++) {
1226 unp = unp_list[i];
1227 if (unp->unp_gencnt <= gencnt) {
1228 struct xunpcb xu;
1229 xu.xu_len = sizeof xu;
1230 xu.xu_unpp = unp;
1232 * XXX - need more locking here to protect against
1233 * connect/disconnect races for SMP.
1235 if (unp->unp_addr)
1236 bcopy(unp->unp_addr, &xu.xu_addr,
1237 unp->unp_addr->sun_len);
1238 if (unp->unp_conn && unp->unp_conn->unp_addr)
1239 bcopy(unp->unp_conn->unp_addr,
1240 &xu.xu_caddr,
1241 unp->unp_conn->unp_addr->sun_len);
1242 bcopy(unp, &xu.xu_unp, sizeof *unp);
1243 sotoxsocket(unp->unp_socket, &xu.xu_socket);
1244 error = SYSCTL_OUT(req, &xu, sizeof xu);
1247 lwkt_reltoken(&unp_token);
1248 kfree(unp_list, M_TEMP);
1250 return error;
1253 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1254 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1255 "List of active local datagram sockets");
1256 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1257 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1258 "List of active local stream sockets");
1259 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1260 (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1261 "List of active local seqpacket stream sockets");
1263 static void
1264 unp_shutdown(struct unpcb *unp)
1266 struct socket *so;
1268 if ((unp->unp_socket->so_type == SOCK_STREAM ||
1269 unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1270 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1271 socantrcvmore(so);
1275 static void
1276 unp_drop(struct unpcb *unp, int err)
1278 struct socket *so = unp->unp_socket;
1280 so->so_error = err;
1281 unp_disconnect(unp);
1284 #ifdef notdef
1285 void
1286 unp_drain(void)
1288 lwkt_gettoken(&unp_token);
1289 lwkt_reltoken(&unp_token);
1291 #endif
1294 unp_externalize(struct mbuf *rights)
1296 struct thread *td = curthread;
1297 struct proc *p = td->td_proc; /* XXX */
1298 struct lwp *lp = td->td_lwp;
1299 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1300 int *fdp;
1301 int i;
1302 struct file **rp;
1303 struct file *fp;
1304 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1305 / sizeof (struct file *);
1306 int f;
1308 lwkt_gettoken(&unp_token);
1311 * if the new FD's will not fit, then we free them all
1313 if (!fdavail(p, newfds)) {
1314 rp = (struct file **)CMSG_DATA(cm);
1315 for (i = 0; i < newfds; i++) {
1316 fp = *rp;
1318 * zero the pointer before calling unp_discard,
1319 * since it may end up in unp_gc()..
1321 *rp++ = NULL;
1322 unp_discard(fp, NULL);
1324 lwkt_reltoken(&unp_token);
1325 return (EMSGSIZE);
1329 * now change each pointer to an fd in the global table to
1330 * an integer that is the index to the local fd table entry
1331 * that we set up to point to the global one we are transferring.
1332 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1333 * then do it in forward order. In that case, an integer will
1334 * always come in the same place or before its corresponding
1335 * struct file pointer.
1336 * If sizeof (struct file *) is smaller than sizeof int, then
1337 * do it in reverse order.
1339 if (sizeof (struct file *) >= sizeof (int)) {
1340 fdp = (int *)CMSG_DATA(cm);
1341 rp = (struct file **)CMSG_DATA(cm);
1342 for (i = 0; i < newfds; i++) {
1343 if (fdalloc(p, 0, &f))
1344 panic("unp_externalize");
1345 fp = *rp++;
1346 unp_fp_externalize(lp, fp, f);
1347 *fdp++ = f;
1349 } else {
1350 fdp = (int *)CMSG_DATA(cm) + newfds - 1;
1351 rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1352 for (i = 0; i < newfds; i++) {
1353 if (fdalloc(p, 0, &f))
1354 panic("unp_externalize");
1355 fp = *rp--;
1356 unp_fp_externalize(lp, fp, f);
1357 *fdp-- = f;
1362 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1363 * differs.
1365 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1366 rights->m_len = cm->cmsg_len;
1368 lwkt_reltoken(&unp_token);
1369 return (0);
1372 static void
1373 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd)
1375 struct file *fx;
1376 int error;
1378 lwkt_gettoken(&unp_token);
1380 if (lp) {
1381 KKASSERT(fd >= 0);
1382 if (fp->f_flag & FREVOKED) {
1383 kprintf("Warning: revoked fp exiting unix socket\n");
1384 fx = NULL;
1385 error = falloc(lp, &fx, NULL);
1386 if (error == 0)
1387 fsetfd(lp->lwp_proc->p_fd, fx, fd);
1388 else
1389 fsetfd(lp->lwp_proc->p_fd, NULL, fd);
1390 fdrop(fx);
1391 } else {
1392 fsetfd(lp->lwp_proc->p_fd, fp, fd);
1395 spin_lock(&unp_spin);
1396 fp->f_msgcount--;
1397 unp_rights--;
1398 spin_unlock(&unp_spin);
1399 fdrop(fp);
1401 lwkt_reltoken(&unp_token);
1405 void
1406 unp_init(void)
1408 LIST_INIT(&unp_dhead);
1409 LIST_INIT(&unp_shead);
1410 spin_init(&unp_spin);
1413 static int
1414 unp_internalize(struct mbuf *control, struct thread *td)
1416 struct proc *p = td->td_proc;
1417 struct filedesc *fdescp;
1418 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1419 struct file **rp;
1420 struct file *fp;
1421 int i, fd, *fdp;
1422 struct cmsgcred *cmcred;
1423 int oldfds;
1424 u_int newlen;
1425 int error;
1427 KKASSERT(p);
1428 lwkt_gettoken(&unp_token);
1430 fdescp = p->p_fd;
1431 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1432 cm->cmsg_level != SOL_SOCKET ||
1433 CMSG_ALIGN(cm->cmsg_len) != control->m_len) {
1434 error = EINVAL;
1435 goto done;
1439 * Fill in credential information.
1441 if (cm->cmsg_type == SCM_CREDS) {
1442 cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1443 cmcred->cmcred_pid = p->p_pid;
1444 cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1445 cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1446 cmcred->cmcred_euid = p->p_ucred->cr_uid;
1447 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1448 CMGROUP_MAX);
1449 for (i = 0; i < cmcred->cmcred_ngroups; i++)
1450 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1451 error = 0;
1452 goto done;
1456 * cmsghdr may not be aligned, do not allow calculation(s) to
1457 * go negative.
1459 if (cm->cmsg_len < CMSG_LEN(0)) {
1460 error = EINVAL;
1461 goto done;
1464 oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof (int);
1467 * check that all the FDs passed in refer to legal OPEN files
1468 * If not, reject the entire operation.
1470 fdp = (int *)CMSG_DATA(cm);
1471 for (i = 0; i < oldfds; i++) {
1472 fd = *fdp++;
1473 if ((unsigned)fd >= fdescp->fd_nfiles ||
1474 fdescp->fd_files[fd].fp == NULL) {
1475 error = EBADF;
1476 goto done;
1478 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1479 error = EOPNOTSUPP;
1480 goto done;
1484 * Now replace the integer FDs with pointers to
1485 * the associated global file table entry..
1486 * Allocate a bigger buffer as necessary. But if an cluster is not
1487 * enough, return E2BIG.
1489 newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1490 if (newlen > MCLBYTES) {
1491 error = E2BIG;
1492 goto done;
1494 if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1495 if (control->m_flags & M_EXT) {
1496 error = E2BIG;
1497 goto done;
1499 MCLGET(control, MB_WAIT);
1500 if (!(control->m_flags & M_EXT)) {
1501 error = ENOBUFS;
1502 goto done;
1505 /* copy the data to the cluster */
1506 memcpy(mtod(control, char *), cm, cm->cmsg_len);
1507 cm = mtod(control, struct cmsghdr *);
1511 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1512 * differs.
1514 cm->cmsg_len = newlen;
1515 control->m_len = CMSG_ALIGN(newlen);
1518 * Transform the file descriptors into struct file pointers.
1519 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1520 * then do it in reverse order so that the int won't get until
1521 * we're done.
1522 * If sizeof (struct file *) is smaller than sizeof int, then
1523 * do it in forward order.
1525 if (sizeof (struct file *) >= sizeof (int)) {
1526 fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1527 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1528 for (i = 0; i < oldfds; i++) {
1529 fp = fdescp->fd_files[*fdp--].fp;
1530 *rp-- = fp;
1531 fhold(fp);
1532 spin_lock(&unp_spin);
1533 fp->f_msgcount++;
1534 unp_rights++;
1535 spin_unlock(&unp_spin);
1537 } else {
1538 fdp = (int *)CMSG_DATA(cm);
1539 rp = (struct file **)CMSG_DATA(cm);
1540 for (i = 0; i < oldfds; i++) {
1541 fp = fdescp->fd_files[*fdp++].fp;
1542 *rp++ = fp;
1543 fhold(fp);
1544 spin_lock(&unp_spin);
1545 fp->f_msgcount++;
1546 unp_rights++;
1547 spin_unlock(&unp_spin);
1550 error = 0;
1551 done:
1552 lwkt_reltoken(&unp_token);
1553 return error;
1557 * Garbage collect in-transit file descriptors that get lost due to
1558 * loops (i.e. when a socket is sent to another process over itself,
1559 * and more complex situations).
1561 * NOT MPSAFE - TODO socket flush code and maybe closef. Rest is MPSAFE.
1564 struct unp_gc_info {
1565 struct file **extra_ref;
1566 struct file *locked_fp;
1567 int defer;
1568 int index;
1569 int maxindex;
1572 static void
1573 unp_gc(void)
1575 struct unp_gc_info info;
1576 static boolean_t unp_gcing;
1577 struct file **fpp;
1578 int i;
1581 * Only one gc can be in-progress at any given moment
1583 spin_lock(&unp_spin);
1584 if (unp_gcing) {
1585 spin_unlock(&unp_spin);
1586 return;
1588 unp_gcing = TRUE;
1589 spin_unlock(&unp_spin);
1591 lwkt_gettoken(&unp_token);
1594 * Before going through all this, set all FDs to be NOT defered
1595 * and NOT externally accessible (not marked). During the scan
1596 * a fd can be marked externally accessible but we may or may not
1597 * be able to immediately process it (controlled by FDEFER).
1599 * If we loop sleep a bit. The complexity of the topology can cause
1600 * multiple loops. Also failure to acquire the socket's so_rcv
1601 * token can cause us to loop.
1603 allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1604 do {
1605 info.defer = 0;
1606 allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1607 if (info.defer)
1608 tsleep(&info, 0, "gcagain", 1);
1609 } while (info.defer);
1612 * We grab an extra reference to each of the file table entries
1613 * that are not otherwise accessible and then free the rights
1614 * that are stored in messages on them.
1616 * The bug in the orginal code is a little tricky, so I'll describe
1617 * what's wrong with it here.
1619 * It is incorrect to simply unp_discard each entry for f_msgcount
1620 * times -- consider the case of sockets A and B that contain
1621 * references to each other. On a last close of some other socket,
1622 * we trigger a gc since the number of outstanding rights (unp_rights)
1623 * is non-zero. If during the sweep phase the gc code un_discards,
1624 * we end up doing a (full) closef on the descriptor. A closef on A
1625 * results in the following chain. Closef calls soo_close, which
1626 * calls soclose. Soclose calls first (through the switch
1627 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1628 * returns because the previous instance had set unp_gcing, and
1629 * we return all the way back to soclose, which marks the socket
1630 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1631 * to free up the rights that are queued in messages on the socket A,
1632 * i.e., the reference on B. The sorflush calls via the dom_dispose
1633 * switch unp_dispose, which unp_scans with unp_discard. This second
1634 * instance of unp_discard just calls closef on B.
1636 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1637 * which results in another closef on A. Unfortunately, A is already
1638 * being closed, and the descriptor has already been marked with
1639 * SS_NOFDREF, and soclose panics at this point.
1641 * Here, we first take an extra reference to each inaccessible
1642 * descriptor. Then, we call sorflush ourself, since we know
1643 * it is a Unix domain socket anyhow. After we destroy all the
1644 * rights carried in messages, we do a last closef to get rid
1645 * of our extra reference. This is the last close, and the
1646 * unp_detach etc will shut down the socket.
1648 * 91/09/19, bsy@cs.cmu.edu
1650 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1651 info.maxindex = 256;
1653 do {
1655 * Look for matches
1657 info.index = 0;
1658 allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1661 * For each FD on our hit list, do the following two things
1663 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1664 struct file *tfp = *fpp;
1665 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1666 sorflush((struct socket *)(tfp->f_data));
1668 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1669 closef(*fpp, NULL);
1670 } while (info.index == info.maxindex);
1672 lwkt_reltoken(&unp_token);
1674 kfree((caddr_t)info.extra_ref, M_FILE);
1675 unp_gcing = FALSE;
1679 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1681 static int
1682 unp_gc_checkrefs(struct file *fp, void *data)
1684 struct unp_gc_info *info = data;
1686 if (fp->f_count == 0)
1687 return(0);
1688 if (info->index == info->maxindex)
1689 return(-1);
1692 * If all refs are from msgs, and it's not marked accessible
1693 * then it must be referenced from some unreachable cycle
1694 * of (shut-down) FDs, so include it in our
1695 * list of FDs to remove
1697 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1698 info->extra_ref[info->index++] = fp;
1699 fhold(fp);
1701 return(0);
1705 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1707 static int
1708 unp_gc_clearmarks(struct file *fp, void *data __unused)
1710 atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1711 return(0);
1715 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1717 static int
1718 unp_gc_checkmarks(struct file *fp, void *data)
1720 struct unp_gc_info *info = data;
1721 struct socket *so;
1724 * If the file is not open, skip it. Make sure it isn't marked
1725 * defered or we could loop forever, in case we somehow race
1726 * something.
1728 if (fp->f_count == 0) {
1729 if (fp->f_flag & FDEFER)
1730 atomic_clear_int(&fp->f_flag, FDEFER);
1731 return(0);
1734 * If we already marked it as 'defer' in a
1735 * previous pass, then try process it this time
1736 * and un-mark it
1738 if (fp->f_flag & FDEFER) {
1739 atomic_clear_int(&fp->f_flag, FDEFER);
1740 } else {
1742 * if it's not defered, then check if it's
1743 * already marked.. if so skip it
1745 if (fp->f_flag & FMARK)
1746 return(0);
1748 * If all references are from messages
1749 * in transit, then skip it. it's not
1750 * externally accessible.
1752 if (fp->f_count == fp->f_msgcount)
1753 return(0);
1755 * If it got this far then it must be
1756 * externally accessible.
1758 atomic_set_int(&fp->f_flag, FMARK);
1762 * either it was defered, or it is externally
1763 * accessible and not already marked so.
1764 * Now check if it is possibly one of OUR sockets.
1766 if (fp->f_type != DTYPE_SOCKET ||
1767 (so = (struct socket *)fp->f_data) == NULL) {
1768 return(0);
1770 if (so->so_proto->pr_domain != &localdomain ||
1771 !(so->so_proto->pr_flags & PR_RIGHTS)) {
1772 return(0);
1776 * So, Ok, it's one of our sockets and it IS externally accessible
1777 * (or was defered). Now we look to see if we hold any file
1778 * descriptors in its message buffers. Follow those links and mark
1779 * them as accessible too.
1781 * We are holding multiple spinlocks here, if we cannot get the
1782 * token non-blocking defer until the next loop.
1784 info->locked_fp = fp;
1785 if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1786 unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1787 lwkt_reltoken(&so->so_rcv.ssb_token);
1788 } else {
1789 atomic_set_int(&fp->f_flag, FDEFER);
1790 ++info->defer;
1792 return (0);
1796 * Scan all unix domain sockets and replace any revoked file pointers
1797 * found with the dummy file pointer fx. We don't worry about races
1798 * against file pointers being read out as those are handled in the
1799 * externalize code.
1802 #define REVOKE_GC_MAXFILES 32
1804 struct unp_revoke_gc_info {
1805 struct file *fx;
1806 struct file *fary[REVOKE_GC_MAXFILES];
1807 int fcount;
1810 void
1811 unp_revoke_gc(struct file *fx)
1813 struct unp_revoke_gc_info info;
1814 int i;
1816 lwkt_gettoken(&unp_token);
1817 info.fx = fx;
1818 do {
1819 info.fcount = 0;
1820 allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1821 for (i = 0; i < info.fcount; ++i)
1822 unp_fp_externalize(NULL, info.fary[i], -1);
1823 } while (info.fcount == REVOKE_GC_MAXFILES);
1824 lwkt_reltoken(&unp_token);
1828 * Check for and replace revoked descriptors.
1830 * WARNING: This routine is not allowed to block.
1832 static int
1833 unp_revoke_gc_check(struct file *fps, void *vinfo)
1835 struct unp_revoke_gc_info *info = vinfo;
1836 struct file *fp;
1837 struct socket *so;
1838 struct mbuf *m0;
1839 struct mbuf *m;
1840 struct file **rp;
1841 struct cmsghdr *cm;
1842 int i;
1843 int qfds;
1846 * Is this a unix domain socket with rights-passing abilities?
1848 if (fps->f_type != DTYPE_SOCKET)
1849 return (0);
1850 if ((so = (struct socket *)fps->f_data) == NULL)
1851 return(0);
1852 if (so->so_proto->pr_domain != &localdomain)
1853 return(0);
1854 if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1855 return(0);
1858 * Scan the mbufs for control messages and replace any revoked
1859 * descriptors we find.
1861 lwkt_gettoken(&so->so_rcv.ssb_token);
1862 m0 = so->so_rcv.ssb_mb;
1863 while (m0) {
1864 for (m = m0; m; m = m->m_next) {
1865 if (m->m_type != MT_CONTROL)
1866 continue;
1867 if (m->m_len < sizeof(*cm))
1868 continue;
1869 cm = mtod(m, struct cmsghdr *);
1870 if (cm->cmsg_level != SOL_SOCKET ||
1871 cm->cmsg_type != SCM_RIGHTS) {
1872 continue;
1874 qfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(void *);
1875 rp = (struct file **)CMSG_DATA(cm);
1876 for (i = 0; i < qfds; i++) {
1877 fp = rp[i];
1878 if (fp->f_flag & FREVOKED) {
1879 kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1880 fhold(info->fx);
1881 info->fx->f_msgcount++;
1882 unp_rights++;
1883 rp[i] = info->fx;
1884 info->fary[info->fcount++] = fp;
1886 if (info->fcount == REVOKE_GC_MAXFILES)
1887 break;
1889 if (info->fcount == REVOKE_GC_MAXFILES)
1890 break;
1892 m0 = m0->m_nextpkt;
1893 if (info->fcount == REVOKE_GC_MAXFILES)
1894 break;
1896 lwkt_reltoken(&so->so_rcv.ssb_token);
1899 * Stop the scan if we filled up our array.
1901 if (info->fcount == REVOKE_GC_MAXFILES)
1902 return(-1);
1903 return(0);
1907 * Dispose of the fp's stored in a mbuf.
1909 * The dds loop can cause additional fps to be entered onto the
1910 * list while it is running, flattening out the operation and avoiding
1911 * a deep kernel stack recursion.
1913 void
1914 unp_dispose(struct mbuf *m)
1916 unp_defdiscard_t dds;
1918 lwkt_gettoken(&unp_token);
1919 ++unp_defdiscard_nest;
1920 if (m) {
1921 unp_scan(m, unp_discard, NULL);
1923 if (unp_defdiscard_nest == 1) {
1924 while ((dds = unp_defdiscard_base) != NULL) {
1925 unp_defdiscard_base = dds->next;
1926 closef(dds->fp, NULL);
1927 kfree(dds, M_UNPCB);
1930 --unp_defdiscard_nest;
1931 lwkt_reltoken(&unp_token);
1934 static int
1935 unp_listen(struct unpcb *unp, struct thread *td)
1937 struct proc *p = td->td_proc;
1939 KKASSERT(p);
1940 lwkt_gettoken(&unp_token);
1941 cru2x(p->p_ucred, &unp->unp_peercred);
1942 unp->unp_flags |= UNP_HAVEPCCACHED;
1943 lwkt_reltoken(&unp_token);
1944 return (0);
1947 static void
1948 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1950 struct mbuf *m;
1951 struct file **rp;
1952 struct cmsghdr *cm;
1953 int i;
1954 int qfds;
1956 while (m0) {
1957 for (m = m0; m; m = m->m_next) {
1958 if (m->m_type == MT_CONTROL &&
1959 m->m_len >= sizeof(*cm)) {
1960 cm = mtod(m, struct cmsghdr *);
1961 if (cm->cmsg_level != SOL_SOCKET ||
1962 cm->cmsg_type != SCM_RIGHTS)
1963 continue;
1964 qfds = (cm->cmsg_len - CMSG_LEN(0)) /
1965 sizeof(void *);
1966 rp = (struct file **)CMSG_DATA(cm);
1967 for (i = 0; i < qfds; i++)
1968 (*op)(*rp++, data);
1969 break; /* XXX, but saves time */
1972 m0 = m0->m_nextpkt;
1977 * Mark visibility. info->defer is recalculated on every pass.
1979 static void
1980 unp_mark(struct file *fp, void *data)
1982 struct unp_gc_info *info = data;
1984 if ((fp->f_flag & FMARK) == 0) {
1985 ++info->defer;
1986 atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1987 } else if (fp->f_flag & FDEFER) {
1988 ++info->defer;
1993 * Discard a fp previously held in a unix domain socket mbuf. To
1994 * avoid blowing out the kernel stack due to contrived chain-reactions
1995 * we may have to defer the operation to a higher procedural level.
1997 * Caller holds unp_token
1999 static void
2000 unp_discard(struct file *fp, void *data __unused)
2002 unp_defdiscard_t dds;
2004 spin_lock(&unp_spin);
2005 fp->f_msgcount--;
2006 unp_rights--;
2007 spin_unlock(&unp_spin);
2009 if (unp_defdiscard_nest) {
2010 dds = kmalloc(sizeof(*dds), M_UNPCB, M_WAITOK|M_ZERO);
2011 dds->fp = fp;
2012 dds->next = unp_defdiscard_base;
2013 unp_defdiscard_base = dds;
2014 } else {
2015 closef(fp, NULL);