dma: bump man page date
[dragonfly.git] / contrib / gcc-4.4 / gcc / lambda.h
blob94ca90644e43a4a53460e1a7ad5e816abfe53a81
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
25 #include "vec.h"
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
30 integers. */
31 typedef int *lambda_vector;
32 DEF_VEC_P(lambda_vector);
33 DEF_VEC_ALLOC_P(lambda_vector,heap);
34 DEF_VEC_ALLOC_P(lambda_vector,gc);
36 typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
37 DEF_VEC_P (lambda_vector_vec_p);
38 DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
40 /* An integer matrix. A matrix consists of m vectors of length n (IE
41 all vectors are the same length). */
42 typedef lambda_vector *lambda_matrix;
44 DEF_VEC_P (lambda_matrix);
45 DEF_VEC_ALLOC_P (lambda_matrix, heap);
47 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
48 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
49 represents the denominator for every element in the matrix. */
50 typedef struct lambda_trans_matrix_s
52 lambda_matrix matrix;
53 int rowsize;
54 int colsize;
55 int denominator;
56 } *lambda_trans_matrix;
57 #define LTM_MATRIX(T) ((T)->matrix)
58 #define LTM_ROWSIZE(T) ((T)->rowsize)
59 #define LTM_COLSIZE(T) ((T)->colsize)
60 #define LTM_DENOMINATOR(T) ((T)->denominator)
62 /* A vector representing a statement in the body of a loop.
63 The COEFFICIENTS vector contains a coefficient for each induction variable
64 in the loop nest containing the statement.
65 The DENOMINATOR represents the denominator for each coefficient in the
66 COEFFICIENT vector.
68 This structure is used during code generation in order to rewrite the old
69 induction variable uses in a statement in terms of the newly created
70 induction variables. */
71 typedef struct lambda_body_vector_s
73 lambda_vector coefficients;
74 int size;
75 int denominator;
76 } *lambda_body_vector;
77 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
78 #define LBV_SIZE(T) ((T)->size)
79 #define LBV_DENOMINATOR(T) ((T)->denominator)
81 /* Piecewise linear expression.
82 This structure represents a linear expression with terms for the invariants
83 and induction variables of a loop.
84 COEFFICIENTS is a vector of coefficients for the induction variables, one
85 per loop in the loop nest.
86 CONSTANT is the constant portion of the linear expression
87 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
88 one per invariant.
89 DENOMINATOR is the denominator for all of the coefficients and constants in
90 the expression.
91 The linear expressions can be linked together using the NEXT field, in
92 order to represent MAX or MIN of a group of linear expressions. */
93 typedef struct lambda_linear_expression_s
95 lambda_vector coefficients;
96 int constant;
97 lambda_vector invariant_coefficients;
98 int denominator;
99 struct lambda_linear_expression_s *next;
100 } *lambda_linear_expression;
102 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
103 #define LLE_CONSTANT(T) ((T)->constant)
104 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
105 #define LLE_DENOMINATOR(T) ((T)->denominator)
106 #define LLE_NEXT(T) ((T)->next)
108 struct obstack;
110 lambda_linear_expression lambda_linear_expression_new (int, int,
111 struct obstack *);
112 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
113 int, char);
115 /* Loop structure. Our loop structure consists of a constant representing the
116 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
117 of the loop, a set of linear expressions representing the UPPER_BOUND of
118 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
119 the loop. The linear offset is a set of linear expressions that are
120 applied to *both* the lower bound, and the upper bound. */
121 typedef struct lambda_loop_s
123 lambda_linear_expression lower_bound;
124 lambda_linear_expression upper_bound;
125 lambda_linear_expression linear_offset;
126 int step;
127 } *lambda_loop;
129 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
130 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
131 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
132 #define LL_STEP(T) ((T)->step)
134 /* Loop nest structure.
135 The loop nest structure consists of a set of loop structures (defined
136 above) in LOOPS, along with an integer representing the DEPTH of the loop,
137 and an integer representing the number of INVARIANTS in the loop. Both of
138 these integers are used to size the associated coefficient vectors in the
139 linear expression structures. */
140 typedef struct lambda_loopnest_s
142 lambda_loop *loops;
143 int depth;
144 int invariants;
145 } *lambda_loopnest;
147 #define LN_LOOPS(T) ((T)->loops)
148 #define LN_DEPTH(T) ((T)->depth)
149 #define LN_INVARIANTS(T) ((T)->invariants)
151 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
152 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
153 lambda_trans_matrix,
154 struct obstack *);
155 struct loop;
156 bool perfect_nest_p (struct loop *);
157 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
159 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
161 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
163 lambda_matrix lambda_matrix_new (int, int);
165 void lambda_matrix_id (lambda_matrix, int);
166 bool lambda_matrix_id_p (lambda_matrix, int);
167 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
168 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
169 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
170 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
171 int);
172 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
173 lambda_matrix, int, int);
174 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
175 int, int, int);
176 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
177 void lambda_matrix_row_exchange (lambda_matrix, int, int);
178 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
179 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
180 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
181 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
182 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
183 void lambda_matrix_col_negate (lambda_matrix, int, int);
184 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
185 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
186 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
187 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
188 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
189 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
190 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
191 lambda_vector);
192 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
194 lambda_trans_matrix lambda_trans_matrix_new (int, int);
195 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
196 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
197 int lambda_trans_matrix_rank (lambda_trans_matrix);
198 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
199 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
200 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
201 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
202 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
203 lambda_vector);
204 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
206 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
207 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
208 lambda_body_vector,
209 struct obstack *);
210 void print_lambda_body_vector (FILE *, lambda_body_vector);
211 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
212 VEC(tree,heap) **,
213 VEC(tree,heap) **,
214 struct obstack *);
215 void lambda_loopnest_to_gcc_loopnest (struct loop *,
216 VEC(tree,heap) *, VEC(tree,heap) *,
217 VEC(gimple,heap) **,
218 lambda_loopnest, lambda_trans_matrix,
219 struct obstack *);
220 void remove_iv (gimple);
221 tree find_induction_var_from_exit_cond (struct loop *);
223 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
224 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
225 static inline void lambda_vector_add (lambda_vector, lambda_vector,
226 lambda_vector, int);
227 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
228 lambda_vector, int);
229 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
230 static inline bool lambda_vector_zerop (lambda_vector, int);
231 static inline void lambda_vector_clear (lambda_vector, int);
232 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
233 static inline int lambda_vector_min_nz (lambda_vector, int, int);
234 static inline int lambda_vector_first_nz (lambda_vector, int, int);
235 static inline void print_lambda_vector (FILE *, lambda_vector, int);
237 /* Allocate a new vector of given SIZE. */
239 static inline lambda_vector
240 lambda_vector_new (int size)
242 return GGC_CNEWVEC (int, size);
247 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
248 and store the result in VEC2. */
250 static inline void
251 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
252 int size, int const1)
254 int i;
256 if (const1 == 0)
257 lambda_vector_clear (vec2, size);
258 else
259 for (i = 0; i < size; i++)
260 vec2[i] = const1 * vec1[i];
263 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
265 static inline void
266 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
267 int size)
269 lambda_vector_mult_const (vec1, vec2, size, -1);
272 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
274 static inline void
275 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
276 lambda_vector vec3, int size)
278 int i;
279 for (i = 0; i < size; i++)
280 vec3[i] = vec1[i] + vec2[i];
283 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
285 static inline void
286 lambda_vector_add_mc (lambda_vector vec1, int const1,
287 lambda_vector vec2, int const2,
288 lambda_vector vec3, int size)
290 int i;
291 for (i = 0; i < size; i++)
292 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
295 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
297 static inline void
298 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
299 int size)
301 memcpy (vec2, vec1, size * sizeof (*vec1));
304 /* Return true if vector VEC1 of length SIZE is the zero vector. */
306 static inline bool
307 lambda_vector_zerop (lambda_vector vec1, int size)
309 int i;
310 for (i = 0; i < size; i++)
311 if (vec1[i] != 0)
312 return false;
313 return true;
316 /* Clear out vector VEC1 of length SIZE. */
318 static inline void
319 lambda_vector_clear (lambda_vector vec1, int size)
321 memset (vec1, 0, size * sizeof (*vec1));
324 /* Return true if two vectors are equal. */
326 static inline bool
327 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
329 int i;
330 for (i = 0; i < size; i++)
331 if (vec1[i] != vec2[i])
332 return false;
333 return true;
336 /* Return the minimum nonzero element in vector VEC1 between START and N.
337 We must have START <= N. */
339 static inline int
340 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
342 int j;
343 int min = -1;
345 gcc_assert (start <= n);
346 for (j = start; j < n; j++)
348 if (vec1[j])
349 if (min < 0 || vec1[j] < vec1[min])
350 min = j;
352 gcc_assert (min >= 0);
354 return min;
357 /* Return the first nonzero element of vector VEC1 between START and N.
358 We must have START <= N. Returns N if VEC1 is the zero vector. */
360 static inline int
361 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
363 int j = start;
364 while (j < n && vec1[j] == 0)
365 j++;
366 return j;
370 /* Multiply a vector by a matrix. */
372 static inline void
373 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
374 int n, lambda_vector dest)
376 int i, j;
377 lambda_vector_clear (dest, n);
378 for (i = 0; i < n; i++)
379 for (j = 0; j < m; j++)
380 dest[i] += mat[j][i] * vect[j];
383 /* Compare two vectors returning an integer less than, equal to, or
384 greater than zero if the first argument is considered to be respectively
385 less than, equal to, or greater than the second.
386 We use the lexicographic order. */
388 static inline int
389 lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
390 int length2)
392 int min_length;
393 int i;
395 if (length1 < length2)
396 min_length = length1;
397 else
398 min_length = length2;
400 for (i = 0; i < min_length; i++)
401 if (vec1[i] < vec2[i])
402 return -1;
403 else if (vec1[i] > vec2[i])
404 return 1;
405 else
406 continue;
408 return length1 - length2;
411 /* Print out a vector VEC of length N to OUTFILE. */
413 static inline void
414 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
416 int i;
418 for (i = 0; i < n; i++)
419 fprintf (outfile, "%3d ", vector[i]);
420 fprintf (outfile, "\n");
423 /* Compute the greatest common divisor of two numbers using
424 Euclid's algorithm. */
426 static inline int
427 gcd (int a, int b)
429 int x, y, z;
431 x = abs (a);
432 y = abs (b);
434 while (x > 0)
436 z = y % x;
437 y = x;
438 x = z;
441 return y;
444 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
446 static inline int
447 lambda_vector_gcd (lambda_vector vector, int size)
449 int i;
450 int gcd1 = 0;
452 if (size > 0)
454 gcd1 = vector[0];
455 for (i = 1; i < size; i++)
456 gcd1 = gcd (gcd1, vector[i]);
458 return gcd1;
461 /* Returns true when the vector V is lexicographically positive, in
462 other words, when the first nonzero element is positive. */
464 static inline bool
465 lambda_vector_lexico_pos (lambda_vector v,
466 unsigned n)
468 unsigned i;
469 for (i = 0; i < n; i++)
471 if (v[i] == 0)
472 continue;
473 if (v[i] < 0)
474 return false;
475 if (v[i] > 0)
476 return true;
478 return true;
481 /* Given a vector of induction variables IVS, and a vector of
482 coefficients COEFS, build a tree that is a linear combination of
483 the induction variables. */
485 static inline tree
486 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
488 unsigned i;
489 tree iv;
490 tree expr = fold_convert (type, integer_zero_node);
492 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
494 int k = coefs[i];
496 if (k == 1)
497 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
499 else if (k != 0)
500 expr = fold_build2 (PLUS_EXPR, type, expr,
501 fold_build2 (MULT_EXPR, type, iv,
502 build_int_cst (type, k)));
505 return expr;
508 /* Returns the dependence level for a vector DIST of size LENGTH.
509 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
510 to the sequence of statements, not carried by any loop. */
513 static inline unsigned
514 dependence_level (lambda_vector dist_vect, int length)
516 int i;
518 for (i = 0; i < length; i++)
519 if (dist_vect[i] != 0)
520 return i + 1;
522 return 0;
525 #endif /* LAMBDA_H */