Reduce ifnet.if_serializer contention on output path:
[dragonfly.git] / sys / dev / netif / ed / if_ed.c
blob60159a11dbe2fa2c6c215dcf1cb521082f6023f8
1 /*
2 * Copyright (c) 1995, David Greenman
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/ed/if_ed.c,v 1.224 2003/12/08 07:54:12 obrien Exp $
28 * $DragonFly: src/sys/dev/netif/ed/if_ed.c,v 1.35 2008/05/14 11:59:19 sephe Exp $
32 * Device driver for National Semiconductor DS8390/WD83C690 based ethernet
33 * adapters. By David Greenman, 29-April-1993
35 * Currently supports the Western Digital/SMC 8003 and 8013 series,
36 * the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
37 * and a variety of similar clones.
41 #include "opt_ed.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/syslog.h>
50 #include <sys/module.h>
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53 #include <sys/thread2.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/ifq_var.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_mib.h>
61 #include <net/if_media.h>
63 #ifndef ED_NO_MIIBUS
64 #include <dev/netif/mii_layer/mii.h>
65 #include <dev/netif/mii_layer/miivar.h>
66 #endif
68 #include <net/bpf.h>
70 #include <machine/md_var.h>
72 #include "if_edreg.h"
73 #include "if_edvar.h"
75 devclass_t ed_devclass;
77 static void ed_init (void *);
78 static int ed_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
79 static void ed_start (struct ifnet *);
80 static void ed_reset (struct ifnet *);
81 static void ed_watchdog (struct ifnet *);
82 #ifndef ED_NO_MIIBUS
83 static void ed_tick (void *);
84 #endif
86 static void ds_getmcaf (struct ed_softc *, u_int32_t *);
88 static void ed_get_packet (struct ed_softc *, char *, u_short);
90 static __inline void ed_rint (struct ed_softc *);
91 static __inline void ed_xmit (struct ed_softc *);
92 static __inline char * ed_ring_copy (struct ed_softc *, char *, char *,
93 u_short);
94 static void ed_hpp_set_physical_link (struct ed_softc *);
95 static void ed_hpp_readmem (struct ed_softc *, u_short, u_char *, u_short);
96 static void ed_hpp_writemem (struct ed_softc *, u_char *, u_short, u_short);
97 static u_short ed_hpp_write_mbufs (struct ed_softc *, struct mbuf *, int);
99 static u_short ed_pio_write_mbufs (struct ed_softc *, struct mbuf *, int);
101 static void ed_setrcr (struct ed_softc *);
103 static uint32_t ds_mchash (const uint8_t *);
105 DECLARE_DUMMY_MODULE(if_ed);
108 * Interrupt conversion table for WD/SMC ASIC/83C584
110 static u_short ed_intr_val[] = {
122 * Interrupt conversion table for 83C790
124 static u_short ed_790_intr_val[] = {
136 * Interrupt conversion table for the HP PC LAN+
139 static u_short ed_hpp_intr_val[] = {
140 0, /* 0 */
141 0, /* 1 */
142 0, /* 2 */
143 3, /* 3 */
144 4, /* 4 */
145 5, /* 5 */
146 6, /* 6 */
147 7, /* 7 */
148 0, /* 8 */
149 9, /* 9 */
150 10, /* 10 */
151 11, /* 11 */
152 12, /* 12 */
153 0, /* 13 */
154 0, /* 14 */
155 15 /* 15 */
159 * Generic probe routine for testing for the existance of a DS8390.
160 * Must be called after the NIC has just been reset. This routine
161 * works by looking at certain register values that are guaranteed
162 * to be initialized a certain way after power-up or reset. Seems
163 * not to currently work on the 83C690.
165 * Specifically:
167 * Register reset bits set bits
168 * Command Register (CR) TXP, STA RD2, STP
169 * Interrupt Status (ISR) RST
170 * Interrupt Mask (IMR) All bits
171 * Data Control (DCR) LAS
172 * Transmit Config. (TCR) LB1, LB0
174 * We only look at the CR and ISR registers, however, because looking at
175 * the others would require changing register pages (which would be
176 * intrusive if this isn't an 8390).
178 * Return 1 if 8390 was found, 0 if not.
182 ed_probe_generic8390(struct ed_softc *sc)
184 if ((ed_nic_inb(sc, ED_P0_CR) &
185 (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
186 (ED_CR_RD2 | ED_CR_STP))
187 return (0);
188 if ((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
189 return (0);
191 return (1);
195 * Probe and vendor-specific initialization routine for SMC/WD80x3 boards
198 ed_probe_WD80x3_generic(device_t dev, int flags, u_short *intr_vals[])
200 struct ed_softc *sc = device_get_softc(dev);
201 int error;
202 int i;
203 u_int memsize, maddr;
204 u_char iptr, isa16bit, sum, totalsum;
205 u_long conf_maddr, conf_msize, irq, junk;
207 sc->chip_type = ED_CHIP_TYPE_DP8390;
209 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) {
210 totalsum = ED_WD_ROM_CHECKSUM_TOTAL_TOSH_ETHER;
211 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_POW);
212 DELAY(10000);
214 else
215 totalsum = ED_WD_ROM_CHECKSUM_TOTAL;
218 * Attempt to do a checksum over the station address PROM. If it
219 * fails, it's probably not a SMC/WD board. There is a problem with
220 * this, though: some clone WD boards don't pass the checksum test.
221 * Danpex boards for one.
223 for (sum = 0, i = 0; i < 8; ++i)
224 sum += ed_asic_inb(sc, ED_WD_PROM + i);
226 if (sum != totalsum) {
229 * Checksum is invalid. This often happens with cheap WD8003E
230 * clones. In this case, the checksum byte (the eighth byte)
231 * seems to always be zero.
233 if (ed_asic_inb(sc, ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
234 ed_asic_inb(sc, ED_WD_PROM + 7) != 0)
235 return (ENXIO);
237 /* reset card to force it into a known state. */
238 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER)
239 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
240 else
241 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST);
243 DELAY(100);
244 ed_asic_outb(sc, ED_WD_MSR, ed_asic_inb(sc, ED_WD_MSR) & ~ED_WD_MSR_RST);
245 /* wait in the case this card is reading its EEROM */
246 DELAY(5000);
248 sc->vendor = ED_VENDOR_WD_SMC;
249 sc->type = ed_asic_inb(sc, ED_WD_CARD_ID);
252 * Set initial values for width/size.
254 memsize = 8192;
255 isa16bit = 0;
256 switch (sc->type) {
257 case ED_TYPE_WD8003S:
258 sc->type_str = "WD8003S";
259 break;
260 case ED_TYPE_WD8003E:
261 sc->type_str = "WD8003E";
262 break;
263 case ED_TYPE_WD8003EB:
264 sc->type_str = "WD8003EB";
265 break;
266 case ED_TYPE_WD8003W:
267 sc->type_str = "WD8003W";
268 break;
269 case ED_TYPE_WD8013EBT:
270 sc->type_str = "WD8013EBT";
271 memsize = 16384;
272 isa16bit = 1;
273 break;
274 case ED_TYPE_WD8013W:
275 sc->type_str = "WD8013W";
276 memsize = 16384;
277 isa16bit = 1;
278 break;
279 case ED_TYPE_WD8013EP: /* also WD8003EP */
280 if (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) {
281 isa16bit = 1;
282 memsize = 16384;
283 sc->type_str = "WD8013EP";
284 } else {
285 sc->type_str = "WD8003EP";
287 break;
288 case ED_TYPE_WD8013WC:
289 sc->type_str = "WD8013WC";
290 memsize = 16384;
291 isa16bit = 1;
292 break;
293 case ED_TYPE_WD8013EBP:
294 sc->type_str = "WD8013EBP";
295 memsize = 16384;
296 isa16bit = 1;
297 break;
298 case ED_TYPE_WD8013EPC:
299 sc->type_str = "WD8013EPC";
300 memsize = 16384;
301 isa16bit = 1;
302 break;
303 case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */
304 case ED_TYPE_SMC8216T:
305 if (sc->type == ED_TYPE_SMC8216C) {
306 sc->type_str = "SMC8216/SMC8216C";
307 } else {
308 sc->type_str = "SMC8216T";
311 ed_asic_outb(sc, ED_WD790_HWR,
312 ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH);
313 switch (ed_asic_inb(sc, ED_WD790_RAR) & ED_WD790_RAR_SZ64) {
314 case ED_WD790_RAR_SZ64:
315 memsize = 65536;
316 break;
317 case ED_WD790_RAR_SZ32:
318 memsize = 32768;
319 break;
320 case ED_WD790_RAR_SZ16:
321 memsize = 16384;
322 break;
323 case ED_WD790_RAR_SZ8:
324 /* 8216 has 16K shared mem -- 8416 has 8K */
325 if (sc->type == ED_TYPE_SMC8216C) {
326 sc->type_str = "SMC8416C/SMC8416BT";
327 } else {
328 sc->type_str = "SMC8416T";
330 memsize = 8192;
331 break;
333 ed_asic_outb(sc, ED_WD790_HWR,
334 ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
336 isa16bit = 1;
337 sc->chip_type = ED_CHIP_TYPE_WD790;
338 break;
339 case ED_TYPE_TOSHIBA1:
340 sc->type_str = "Toshiba1";
341 memsize = 32768;
342 isa16bit = 1;
343 break;
344 case ED_TYPE_TOSHIBA4:
345 sc->type_str = "Toshiba4";
346 memsize = 32768;
347 isa16bit = 1;
348 break;
349 default:
350 sc->type_str = "";
351 break;
355 * Make some adjustments to initial values depending on what is found
356 * in the ICR.
358 if (isa16bit && (sc->type != ED_TYPE_WD8013EBT)
359 && (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4)
360 && ((ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
361 isa16bit = 0;
362 memsize = 8192;
365 error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
366 &conf_maddr, &conf_msize);
367 if (error)
368 return (error);
370 #if ED_DEBUG
371 kprintf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
372 sc->type, sc->type_str, isa16bit, memsize, conf_msize);
373 for (i = 0; i < 8; i++)
374 kprintf("%x -> %x\n", i, ed_asic_inb(sc, i));
375 #endif
378 * Allow the user to override the autoconfiguration
380 if (conf_msize > 1)
381 memsize = conf_msize;
383 maddr = conf_maddr;
384 if (maddr < 0xa0000 || maddr + memsize > 0x1000000) {
385 device_printf(dev, "Invalid ISA memory address range configured: 0x%x - 0x%x\n",
386 maddr, maddr + memsize);
387 return (ENXIO);
391 * (note that if the user specifies both of the following flags that
392 * '8bit' mode intentionally has precedence)
394 if (flags & ED_FLAGS_FORCE_16BIT_MODE)
395 isa16bit = 1;
396 if (flags & ED_FLAGS_FORCE_8BIT_MODE)
397 isa16bit = 0;
400 * If possible, get the assigned interrupt number from the card and
401 * use it.
403 if ((sc->type & ED_WD_SOFTCONFIG) &&
404 (sc->chip_type != ED_CHIP_TYPE_WD790)) {
407 * Assemble together the encoded interrupt number.
409 iptr = (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_IR2) |
410 ((ed_asic_inb(sc, ED_WD_IRR) &
411 (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
414 * If no interrupt specified (or "?"), use what the board tells us.
416 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
417 &irq, &junk);
418 if (error && intr_vals[0] != NULL) {
419 error = bus_set_resource(dev, SYS_RES_IRQ, 0,
420 intr_vals[0][iptr], 1);
422 if (error)
423 return (error);
426 * Enable the interrupt.
428 ed_asic_outb(sc, ED_WD_IRR,
429 ed_asic_inb(sc, ED_WD_IRR) | ED_WD_IRR_IEN);
431 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
432 ed_asic_outb(sc, ED_WD790_HWR,
433 ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH);
434 iptr = (((ed_asic_inb(sc, ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) |
435 (ed_asic_inb(sc, ED_WD790_GCR) &
436 (ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2);
437 ed_asic_outb(sc, ED_WD790_HWR,
438 ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
441 * If no interrupt specified (or "?"), use what the board tells us.
443 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
444 &irq, &junk);
445 if (error && intr_vals[1] != NULL) {
446 error = bus_set_resource(dev, SYS_RES_IRQ, 0,
447 intr_vals[1][iptr], 1);
449 if (error)
450 return (error);
453 * Enable interrupts.
455 ed_asic_outb(sc, ED_WD790_ICR,
456 ed_asic_inb(sc, ED_WD790_ICR) | ED_WD790_ICR_EIL);
458 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
459 &irq, &junk);
460 if (error) {
461 device_printf(dev, "%s cards don't support auto-detected/assigned interrupts.\n",
462 sc->type_str);
463 return (ENXIO);
465 sc->isa16bit = isa16bit;
466 sc->mem_shared = 1;
468 error = ed_alloc_memory(dev, 0, memsize);
469 if (error) {
470 kprintf("*** ed_alloc_memory() failed! (%d)\n", error);
471 return (error);
473 sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
476 * allocate one xmit buffer if < 16k, two buffers otherwise
478 if ((memsize < 16384) ||
479 (flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
480 sc->txb_cnt = 1;
481 } else {
482 sc->txb_cnt = 2;
484 sc->tx_page_start = ED_WD_PAGE_OFFSET;
485 sc->rec_page_start = ED_WD_PAGE_OFFSET + ED_TXBUF_SIZE * sc->txb_cnt;
486 sc->rec_page_stop = ED_WD_PAGE_OFFSET + memsize / ED_PAGE_SIZE;
487 sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * sc->rec_page_start);
488 sc->mem_size = memsize;
489 sc->mem_end = sc->mem_start + memsize;
492 * Get station address from on-board ROM
494 for (i = 0; i < ETHER_ADDR_LEN; ++i)
495 sc->arpcom.ac_enaddr[i] = ed_asic_inb(sc, ED_WD_PROM + i);
498 * Set upper address bits and 8/16 bit access to shared memory.
500 if (isa16bit) {
501 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
502 sc->wd_laar_proto = ed_asic_inb(sc, ED_WD_LAAR);
503 } else {
504 sc->wd_laar_proto = ED_WD_LAAR_L16EN |
505 ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI);
508 * Enable 16bit access
510 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto |
511 ED_WD_LAAR_M16EN);
512 } else {
513 if (((sc->type & ED_WD_SOFTCONFIG) ||
514 (sc->type == ED_TYPE_TOSHIBA1) ||
515 (sc->type == ED_TYPE_TOSHIBA4) ||
516 (sc->type == ED_TYPE_WD8013EBT)) &&
517 (sc->chip_type != ED_CHIP_TYPE_WD790)) {
518 sc->wd_laar_proto = (kvtop(sc->mem_start) >> 19) &
519 ED_WD_LAAR_ADDRHI;
520 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto);
525 * Set address and enable interface shared memory.
527 if (sc->chip_type != ED_CHIP_TYPE_WD790) {
528 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) {
529 ed_asic_outb(sc, ED_WD_MSR + 1,
530 ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
531 ed_asic_outb(sc, ED_WD_MSR + 2,
532 ((kvtop(sc->mem_start) >> 16) & 0x0f));
533 ed_asic_outb(sc, ED_WD_MSR,
534 ED_WD_MSR_MENB | ED_WD_MSR_POW);
535 } else {
536 ed_asic_outb(sc, ED_WD_MSR,
537 ((kvtop(sc->mem_start) >> 13) &
538 ED_WD_MSR_ADDR) | ED_WD_MSR_MENB);
540 sc->cr_proto = ED_CR_RD2;
541 } else {
542 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
543 ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH));
544 ed_asic_outb(sc, ED_WD790_RAR, ((kvtop(sc->mem_start) >> 13) & 0x0f) |
545 ((kvtop(sc->mem_start) >> 11) & 0x40) |
546 (ed_asic_inb(sc, ED_WD790_RAR) & 0xb0));
547 ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH));
548 sc->cr_proto = 0;
551 #if 0
552 kprintf("starting memory performance test at 0x%x, size %d...\n",
553 sc->mem_start, memsize*16384);
554 for (i = 0; i < 16384; i++)
555 bzero(sc->mem_start, memsize);
556 kprintf("***DONE***\n");
557 #endif
560 * Now zero memory and verify that it is clear
562 bzero(sc->mem_start, memsize);
564 for (i = 0; i < memsize; ++i) {
565 if (sc->mem_start[i]) {
566 device_printf(dev, "failed to clear shared memory at %llx - check configuration\n",
567 (long long)kvtop(sc->mem_start + i));
570 * Disable 16 bit access to shared memory
572 if (isa16bit) {
573 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
574 ed_asic_outb(sc, ED_WD_MSR, 0x00);
576 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto &
577 ~ED_WD_LAAR_M16EN);
579 return (ENXIO);
584 * Disable 16bit access to shared memory - we leave it
585 * disabled so that 1) machines reboot properly when the board
586 * is set 16 bit mode and there are conflicting 8bit
587 * devices/ROMS in the same 128k address space as this boards
588 * shared memory. and 2) so that other 8 bit devices with
589 * shared memory can be used in this 128k region, too.
591 if (isa16bit) {
592 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
593 ed_asic_outb(sc, ED_WD_MSR, 0x00);
595 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto &
596 ~ED_WD_LAAR_M16EN);
598 return (0);
602 ed_probe_WD80x3(device_t dev, int port_rid, int flags)
604 struct ed_softc *sc = device_get_softc(dev);
605 int error;
606 static u_short *intr_vals[] = {ed_intr_val, ed_790_intr_val};
608 error = ed_alloc_port(dev, port_rid, ED_WD_IO_PORTS);
609 if (error)
610 return (error);
612 sc->asic_offset = ED_WD_ASIC_OFFSET;
613 sc->nic_offset = ED_WD_NIC_OFFSET;
615 return ed_probe_WD80x3_generic(dev, flags, intr_vals);
619 * Probe and vendor-specific initialization routine for 3Com 3c503 boards
622 ed_probe_3Com(device_t dev, int port_rid, int flags)
624 struct ed_softc *sc = device_get_softc(dev);
625 int error;
626 int i;
627 u_int memsize;
628 u_char isa16bit;
629 u_long conf_maddr, conf_msize, irq, junk;
631 error = ed_alloc_port(dev, 0, ED_3COM_IO_PORTS);
632 if (error)
633 return (error);
635 sc->asic_offset = ED_3COM_ASIC_OFFSET;
636 sc->nic_offset = ED_3COM_NIC_OFFSET;
639 * Verify that the kernel configured I/O address matches the board
640 * configured address
642 switch (ed_asic_inb(sc, ED_3COM_BCFR)) {
643 case ED_3COM_BCFR_300:
644 if (rman_get_start(sc->port_res) != 0x300)
645 return (ENXIO);
646 break;
647 case ED_3COM_BCFR_310:
648 if (rman_get_start(sc->port_res) != 0x310)
649 return (ENXIO);
650 break;
651 case ED_3COM_BCFR_330:
652 if (rman_get_start(sc->port_res) != 0x330)
653 return (ENXIO);
654 break;
655 case ED_3COM_BCFR_350:
656 if (rman_get_start(sc->port_res) != 0x350)
657 return (ENXIO);
658 break;
659 case ED_3COM_BCFR_250:
660 if (rman_get_start(sc->port_res) != 0x250)
661 return (ENXIO);
662 break;
663 case ED_3COM_BCFR_280:
664 if (rman_get_start(sc->port_res) != 0x280)
665 return (ENXIO);
666 break;
667 case ED_3COM_BCFR_2A0:
668 if (rman_get_start(sc->port_res) != 0x2a0)
669 return (ENXIO);
670 break;
671 case ED_3COM_BCFR_2E0:
672 if (rman_get_start(sc->port_res) != 0x2e0)
673 return (ENXIO);
674 break;
675 default:
676 return (ENXIO);
679 error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
680 &conf_maddr, &conf_msize);
681 if (error)
682 return (error);
685 * Verify that the kernel shared memory address matches the board
686 * configured address.
688 switch (ed_asic_inb(sc, ED_3COM_PCFR)) {
689 case ED_3COM_PCFR_DC000:
690 if (conf_maddr != 0xdc000)
691 return (ENXIO);
692 break;
693 case ED_3COM_PCFR_D8000:
694 if (conf_maddr != 0xd8000)
695 return (ENXIO);
696 break;
697 case ED_3COM_PCFR_CC000:
698 if (conf_maddr != 0xcc000)
699 return (ENXIO);
700 break;
701 case ED_3COM_PCFR_C8000:
702 if (conf_maddr != 0xc8000)
703 return (ENXIO);
704 break;
705 default:
706 return (ENXIO);
711 * Reset NIC and ASIC. Enable on-board transceiver throughout reset
712 * sequence because it'll lock up if the cable isn't connected if we
713 * don't.
715 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
718 * Wait for a while, then un-reset it
720 DELAY(50);
723 * The 3Com ASIC defaults to rather strange settings for the CR after
724 * a reset - it's important to set it again after the following outb
725 * (this is done when we map the PROM below).
727 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
730 * Wait a bit for the NIC to recover from the reset
732 DELAY(5000);
734 sc->vendor = ED_VENDOR_3COM;
735 sc->type_str = "3c503";
736 sc->mem_shared = 1;
737 sc->cr_proto = ED_CR_RD2;
740 * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
741 * to it.
743 memsize = 8192;
746 * Get station address from on-board ROM
750 * First, map ethernet address PROM over the top of where the NIC
751 * registers normally appear.
753 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
755 for (i = 0; i < ETHER_ADDR_LEN; ++i)
756 sc->arpcom.ac_enaddr[i] = ed_nic_inb(sc, i);
759 * Unmap PROM - select NIC registers. The proper setting of the
760 * tranceiver is set in ed_init so that the attach code is given a
761 * chance to set the default based on a compile-time config option
763 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
766 * Determine if this is an 8bit or 16bit board
770 * select page 0 registers
772 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
775 * Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit
776 * board.
778 ed_nic_outb(sc, ED_P0_DCR, 0);
781 * select page 2 registers
783 ed_nic_outb(sc, ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
786 * The 3c503 forces the WTS bit to a one if this is a 16bit board
788 if (ed_nic_inb(sc, ED_P2_DCR) & ED_DCR_WTS)
789 isa16bit = 1;
790 else
791 isa16bit = 0;
794 * select page 0 registers
796 ed_nic_outb(sc, ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
798 error = ed_alloc_memory(dev, 0, memsize);
799 if (error)
800 return (error);
802 sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
803 sc->mem_size = memsize;
804 sc->mem_end = sc->mem_start + memsize;
807 * We have an entire 8k window to put the transmit buffers on the
808 * 16bit boards. But since the 16bit 3c503's shared memory is only
809 * fast enough to overlap the loading of one full-size packet, trying
810 * to load more than 2 buffers can actually leave the transmitter idle
811 * during the load. So 2 seems the best value. (Although a mix of
812 * variable-sized packets might change this assumption. Nonetheless,
813 * we optimize for linear transfers of same-size packets.)
815 if (isa16bit) {
816 if (flags & ED_FLAGS_NO_MULTI_BUFFERING)
817 sc->txb_cnt = 1;
818 else
819 sc->txb_cnt = 2;
821 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
822 sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
823 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
824 ED_3COM_RX_PAGE_OFFSET_16BIT;
825 sc->mem_ring = sc->mem_start;
826 } else {
827 sc->txb_cnt = 1;
828 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
829 sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
830 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
831 ED_3COM_TX_PAGE_OFFSET_8BIT;
832 sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
835 sc->isa16bit = isa16bit;
838 * Initialize GA page start/stop registers. Probably only needed if
839 * doing DMA, but what the hell.
841 ed_asic_outb(sc, ED_3COM_PSTR, sc->rec_page_start);
842 ed_asic_outb(sc, ED_3COM_PSPR, sc->rec_page_stop);
845 * Set IRQ. 3c503 only allows a choice of irq 2-5.
847 error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk);
848 if (error)
849 return (error);
851 switch (irq) {
852 case 2:
853 case 9:
854 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
855 break;
856 case 3:
857 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
858 break;
859 case 4:
860 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
861 break;
862 case 5:
863 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
864 break;
865 default:
866 device_printf(dev, "Invalid irq configuration (%ld) must be 3-5,9 for 3c503\n",
867 irq);
868 return (ENXIO);
872 * Initialize GA configuration register. Set bank and enable shared
873 * mem.
875 ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL |
876 ED_3COM_GACFR_MBS0);
879 * Initialize "Vector Pointer" registers. These gawd-awful things are
880 * compared to 20 bits of the address on ISA, and if they match, the
881 * shared memory is disabled. We set them to 0xffff0...allegedly the
882 * reset vector.
884 ed_asic_outb(sc, ED_3COM_VPTR2, 0xff);
885 ed_asic_outb(sc, ED_3COM_VPTR1, 0xff);
886 ed_asic_outb(sc, ED_3COM_VPTR0, 0x00);
889 * Zero memory and verify that it is clear
891 bzero(sc->mem_start, memsize);
893 for (i = 0; i < memsize; ++i)
894 if (sc->mem_start[i]) {
895 device_printf(dev, "failed to clear shared memory "
896 "at %llx - check configuration\n",
897 (unsigned long long)kvtop(sc->mem_start + i));
898 return (ENXIO);
900 return (0);
904 * Probe and vendor-specific initialization routine for SIC boards
907 ed_probe_SIC(device_t dev, int port_rid, int flags)
909 struct ed_softc *sc = device_get_softc(dev);
910 int error;
911 int i;
912 u_int memsize;
913 u_long conf_maddr, conf_msize;
914 u_char sum;
916 error = ed_alloc_port(dev, 0, ED_SIC_IO_PORTS);
917 if (error)
918 return (error);
920 sc->asic_offset = ED_SIC_ASIC_OFFSET;
921 sc->nic_offset = ED_SIC_NIC_OFFSET;
923 error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
924 &conf_maddr, &conf_msize);
925 if (error)
926 return (error);
928 memsize = 16384;
929 if (conf_msize > 1)
930 memsize = conf_msize;
932 error = ed_alloc_memory(dev, 0, memsize);
933 if (error)
934 return (error);
936 sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
937 sc->mem_size = memsize;
939 /* Reset card to force it into a known state. */
940 ed_asic_outb(sc, 0, 0x00);
941 DELAY(100);
944 * Here we check the card ROM, if the checksum passes, and the
945 * type code and ethernet address check out, then we know we have
946 * an SIC card.
948 ed_asic_outb(sc, 0, 0x81);
949 DELAY(100);
951 sum = sc->mem_start[6];
952 for (i = 0; i < ETHER_ADDR_LEN; i++) {
953 sum ^= (sc->arpcom.ac_enaddr[i] = sc->mem_start[i]);
955 #ifdef ED_DEBUG
956 device_printf(dev, "ed_probe_sic: got address %6D\n",
957 sc->arpcom.ac_enaddr, ":");
958 #endif
959 if (sum != 0) {
960 return (ENXIO);
962 if ((sc->arpcom.ac_enaddr[0] | sc->arpcom.ac_enaddr[1] |
963 sc->arpcom.ac_enaddr[2]) == 0) {
964 return (ENXIO);
967 sc->vendor = ED_VENDOR_SIC;
968 sc->type_str = "SIC";
969 sc->isa16bit = 0;
970 sc->cr_proto = 0;
973 * SIC RAM page 0x0000-0x3fff(or 0x7fff)
975 ed_asic_outb(sc, 0, 0x80);
976 DELAY(100);
979 * Now zero memory and verify that it is clear
981 bzero(sc->mem_start, sc->mem_size);
983 for (i = 0; i < sc->mem_size; i++) {
984 if (sc->mem_start[i]) {
985 device_printf(dev, "failed to clear shared memory "
986 "at %llx - check configuration\n",
987 (long long)kvtop(sc->mem_start + i));
989 return (ENXIO);
993 sc->mem_shared = 1;
994 sc->mem_end = sc->mem_start + sc->mem_size;
997 * allocate one xmit buffer if < 16k, two buffers otherwise
999 if ((sc->mem_size < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
1000 sc->txb_cnt = 1;
1001 } else {
1002 sc->txb_cnt = 2;
1004 sc->tx_page_start = 0;
1006 sc->rec_page_start = sc->tx_page_start + ED_TXBUF_SIZE * sc->txb_cnt;
1007 sc->rec_page_stop = sc->tx_page_start + sc->mem_size / ED_PAGE_SIZE;
1009 sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
1011 return (0);
1015 * Probe and vendor-specific initialization routine for NE1000/2000 boards
1018 ed_probe_Novell_generic(device_t dev, int flags)
1020 struct ed_softc *sc = device_get_softc(dev);
1021 u_int memsize, n;
1022 u_char romdata[16], tmp;
1023 static char test_pattern[32] = "THIS is A memory TEST pattern";
1024 char test_buffer[32];
1026 /* XXX - do Novell-specific probe here */
1028 /* Reset the board */
1029 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) {
1030 ed_asic_outb(sc, ED_NOVELL_RESET, 0);
1031 DELAY(200);
1033 tmp = ed_asic_inb(sc, ED_NOVELL_RESET);
1036 * I don't know if this is necessary; probably cruft leftover from
1037 * Clarkson packet driver code. Doesn't do a thing on the boards I've
1038 * tested. -DG [note that an outb(0x84, 0) seems to work here, and is
1039 * non-invasive...but some boards don't seem to reset and I don't have
1040 * complete documentation on what the 'right' thing to do is...so we
1041 * do the invasive thing for now. Yuck.]
1043 ed_asic_outb(sc, ED_NOVELL_RESET, tmp);
1044 DELAY(5000);
1047 * This is needed because some NE clones apparently don't reset the
1048 * NIC properly (or the NIC chip doesn't reset fully on power-up) XXX
1049 * - this makes the probe invasive! ...Done against my better
1050 * judgement. -DLG
1052 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
1054 DELAY(5000);
1056 /* Make sure that we really have an 8390 based board */
1057 if (!ed_probe_generic8390(sc))
1058 return (ENXIO);
1060 sc->vendor = ED_VENDOR_NOVELL;
1061 sc->mem_shared = 0;
1062 sc->cr_proto = ED_CR_RD2;
1065 * Test the ability to read and write to the NIC memory. This has the
1066 * side affect of determining if this is an NE1000 or an NE2000.
1070 * This prevents packets from being stored in the NIC memory when the
1071 * readmem routine turns on the start bit in the CR.
1073 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON);
1075 /* Temporarily initialize DCR for byte operations */
1076 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
1078 ed_nic_outb(sc, ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
1079 ed_nic_outb(sc, ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
1081 sc->isa16bit = 0;
1084 * Write a test pattern in byte mode. If this fails, then there
1085 * probably isn't any memory at 8k - which likely means that the board
1086 * is an NE2000.
1088 ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
1089 ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
1091 if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) {
1092 sc->type = ED_TYPE_NE1000;
1093 sc->type_str = "NE1000";
1094 } else {
1096 /* neither an NE1000 nor a Linksys - try NE2000 */
1097 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
1098 ed_nic_outb(sc, ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
1099 ed_nic_outb(sc, ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
1101 sc->isa16bit = 1;
1104 * Write a test pattern in word mode. If this also fails, then
1105 * we don't know what this board is.
1107 ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
1108 ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
1109 if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) {
1110 sc->type = ED_TYPE_NE2000;
1111 sc->type_str = "NE2000";
1112 } else {
1113 return (ENXIO);
1118 /* 8k of memory plus an additional 8k if 16bit */
1119 memsize = 8192 + sc->isa16bit * 8192;
1121 #if 0 /* probably not useful - NE boards only come two ways */
1122 /* allow kernel config file overrides */
1123 if (isa_dev->id_msize)
1124 memsize = isa_dev->id_msize;
1125 #endif
1127 sc->mem_size = memsize;
1129 /* NIC memory doesn't start at zero on an NE board */
1130 /* The start address is tied to the bus width */
1131 sc->mem_start = (char *) 8192 + sc->isa16bit * 8192;
1132 sc->mem_end = sc->mem_start + memsize;
1133 sc->tx_page_start = memsize / ED_PAGE_SIZE;
1135 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) {
1136 int x, i, mstart = 0, msize = 0;
1137 char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
1139 for (i = 0; i < ED_PAGE_SIZE; i++)
1140 pbuf0[i] = 0;
1142 /* Clear all the memory. */
1143 for (x = 1; x < 256; x++)
1144 ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE);
1146 /* Search for the start of RAM. */
1147 for (x = 1; x < 256; x++) {
1148 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1149 if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
1150 for (i = 0; i < ED_PAGE_SIZE; i++)
1151 pbuf[i] = 255 - x;
1152 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
1153 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1154 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) {
1155 mstart = x * ED_PAGE_SIZE;
1156 msize = ED_PAGE_SIZE;
1157 break;
1162 if (mstart == 0) {
1163 device_printf(dev, "Cannot find start of RAM.\n");
1164 return (ENXIO);
1166 /* Search for the start of RAM. */
1167 for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) {
1168 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1169 if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
1170 for (i = 0; i < ED_PAGE_SIZE; i++)
1171 pbuf[i] = 255 - x;
1172 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
1173 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1174 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0)
1175 msize += ED_PAGE_SIZE;
1176 else {
1177 break;
1179 } else {
1180 break;
1184 if (msize == 0) {
1185 device_printf(dev, "Cannot find any RAM, start : %d, x = %d.\n", mstart, x);
1186 return (ENXIO);
1188 device_printf(dev, "RAM start at %d, size : %d.\n", mstart, msize);
1190 sc->mem_size = msize;
1191 sc->mem_start = (caddr_t) mstart;
1192 sc->mem_end = (caddr_t) (msize + mstart);
1193 sc->tx_page_start = mstart / ED_PAGE_SIZE;
1197 * Use one xmit buffer if < 16k, two buffers otherwise (if not told
1198 * otherwise).
1200 if ((memsize < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING))
1201 sc->txb_cnt = 1;
1202 else
1203 sc->txb_cnt = 2;
1205 sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
1206 sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
1208 sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
1210 ed_pio_readmem(sc, 0, romdata, 16);
1211 for (n = 0; n < ETHER_ADDR_LEN; n++)
1212 sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)];
1214 if ((ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) &&
1215 (sc->arpcom.ac_enaddr[2] == 0x86)) {
1216 sc->type_str = "Gateway AT";
1219 /* clear any pending interrupts that might have occurred above */
1220 ed_nic_outb(sc, ED_P0_ISR, 0xff);
1222 return (0);
1226 ed_probe_Novell(device_t dev, int port_rid, int flags)
1228 struct ed_softc *sc = device_get_softc(dev);
1229 int error;
1231 error = ed_alloc_port(dev, port_rid, ED_NOVELL_IO_PORTS);
1232 if (error)
1233 return (error);
1235 sc->asic_offset = ED_NOVELL_ASIC_OFFSET;
1236 sc->nic_offset = ED_NOVELL_NIC_OFFSET;
1238 return ed_probe_Novell_generic(dev, flags);
1241 #define ED_HPP_TEST_SIZE 16
1244 * Probe and vendor specific initialization for the HP PC Lan+ Cards.
1245 * (HP Part nos: 27247B and 27252A).
1247 * The card has an asic wrapper around a DS8390 core. The asic handles
1248 * host accesses and offers both standard register IO and memory mapped
1249 * IO. Memory mapped I/O allows better performance at the expense of greater
1250 * chance of an incompatibility with existing ISA cards.
1252 * The card has a few caveats: it isn't tolerant of byte wide accesses, only
1253 * short (16 bit) or word (32 bit) accesses are allowed. Some card revisions
1254 * don't allow 32 bit accesses; these are indicated by a bit in the software
1255 * ID register (see if_edreg.h).
1257 * Other caveats are: we should read the MAC address only when the card
1258 * is inactive.
1260 * For more information; please consult the CRYNWR packet driver.
1262 * The AUI port is turned on using the "link2" option on the ifconfig
1263 * command line.
1266 ed_probe_HP_pclanp(device_t dev, int port_rid, int flags)
1268 struct ed_softc *sc = device_get_softc(dev);
1269 int error;
1270 int n; /* temp var */
1271 int memsize; /* mem on board */
1272 u_char checksum; /* checksum of board address */
1273 u_char irq; /* board configured IRQ */
1274 char test_pattern[ED_HPP_TEST_SIZE]; /* read/write areas for */
1275 char test_buffer[ED_HPP_TEST_SIZE]; /* probing card */
1276 u_long conf_maddr, conf_msize, conf_irq, junk;
1278 error = ed_alloc_port(dev, 0, ED_HPP_IO_PORTS);
1279 if (error)
1280 return (error);
1282 /* Fill in basic information */
1283 sc->asic_offset = ED_HPP_ASIC_OFFSET;
1284 sc->nic_offset = ED_HPP_NIC_OFFSET;
1286 sc->chip_type = ED_CHIP_TYPE_DP8390;
1287 sc->isa16bit = 0; /* the 8390 core needs to be in byte mode */
1290 * Look for the HP PCLAN+ signature: "0x50,0x48,0x00,0x53"
1293 if ((ed_asic_inb(sc, ED_HPP_ID) != 0x50) ||
1294 (ed_asic_inb(sc, ED_HPP_ID + 1) != 0x48) ||
1295 ((ed_asic_inb(sc, ED_HPP_ID + 2) & 0xF0) != 0) ||
1296 (ed_asic_inb(sc, ED_HPP_ID + 3) != 0x53))
1297 return ENXIO;
1300 * Read the MAC address and verify checksum on the address.
1303 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_MAC);
1304 for (n = 0, checksum = 0; n < ETHER_ADDR_LEN; n++)
1305 checksum += (sc->arpcom.ac_enaddr[n] =
1306 ed_asic_inb(sc, ED_HPP_MAC_ADDR + n));
1308 checksum += ed_asic_inb(sc, ED_HPP_MAC_ADDR + ETHER_ADDR_LEN);
1310 if (checksum != 0xFF)
1311 return ENXIO;
1314 * Verify that the software model number is 0.
1317 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_ID);
1318 if (((sc->hpp_id = ed_asic_inw(sc, ED_HPP_PAGE_4)) &
1319 ED_HPP_ID_SOFT_MODEL_MASK) != 0x0000)
1320 return ENXIO;
1323 * Read in and save the current options configured on card.
1326 sc->hpp_options = ed_asic_inw(sc, ED_HPP_OPTION);
1328 sc->hpp_options |= (ED_HPP_OPTION_NIC_RESET |
1329 ED_HPP_OPTION_CHIP_RESET |
1330 ED_HPP_OPTION_ENABLE_IRQ);
1333 * Reset the chip. This requires writing to the option register
1334 * so take care to preserve the other bits.
1337 ed_asic_outw(sc, ED_HPP_OPTION,
1338 (sc->hpp_options & ~(ED_HPP_OPTION_NIC_RESET |
1339 ED_HPP_OPTION_CHIP_RESET)));
1341 DELAY(5000); /* wait for chip reset to complete */
1343 ed_asic_outw(sc, ED_HPP_OPTION,
1344 (sc->hpp_options | (ED_HPP_OPTION_NIC_RESET |
1345 ED_HPP_OPTION_CHIP_RESET |
1346 ED_HPP_OPTION_ENABLE_IRQ)));
1348 DELAY(5000);
1350 if (!(ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST))
1351 return ENXIO; /* reset did not complete */
1354 * Read out configuration information.
1357 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
1359 irq = ed_asic_inb(sc, ED_HPP_HW_IRQ);
1362 * Check for impossible IRQ.
1365 if (irq >= (sizeof(ed_hpp_intr_val) / sizeof(ed_hpp_intr_val[0])))
1366 return ENXIO;
1369 * If the kernel IRQ was specified with a '?' use the cards idea
1370 * of the IRQ. If the kernel IRQ was explicitly specified, it
1371 * should match that of the hardware.
1373 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
1374 &conf_irq, &junk);
1375 if (error) {
1376 bus_set_resource(dev, SYS_RES_IRQ, 0,
1377 ed_hpp_intr_val[irq], 1);
1378 } else {
1379 if (conf_irq != ed_hpp_intr_val[irq])
1380 return (ENXIO);
1384 * Fill in softconfig info.
1387 sc->vendor = ED_VENDOR_HP;
1388 sc->type = ED_TYPE_HP_PCLANPLUS;
1389 sc->type_str = "HP-PCLAN+";
1391 sc->mem_shared = 0; /* we DON'T have dual ported RAM */
1392 sc->mem_start = 0; /* we use offsets inside the card RAM */
1394 sc->hpp_mem_start = NULL;/* no memory mapped I/O by default */
1397 * The board has 32KB of memory. Is there a way to determine
1398 * this programmatically?
1401 memsize = 32768;
1404 * Check if memory mapping of the I/O registers possible.
1407 if (sc->hpp_options & ED_HPP_OPTION_MEM_ENABLE)
1409 u_long mem_addr;
1412 * determine the memory address from the board.
1415 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
1416 mem_addr = (ed_asic_inw(sc, ED_HPP_HW_MEM_MAP) << 8);
1419 * Check that the kernel specified start of memory and
1420 * hardware's idea of it match.
1422 error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
1423 &conf_maddr, &conf_msize);
1424 if (error)
1425 return (error);
1427 if (mem_addr != conf_maddr)
1428 return ENXIO;
1430 error = ed_alloc_memory(dev, 0, memsize);
1431 if (error)
1432 return (error);
1434 sc->hpp_mem_start = rman_get_virtual(sc->mem_res);
1438 * Fill in the rest of the soft config structure.
1442 * The transmit page index.
1445 sc->tx_page_start = ED_HPP_TX_PAGE_OFFSET;
1447 if (device_get_flags(dev) & ED_FLAGS_NO_MULTI_BUFFERING)
1448 sc->txb_cnt = 1;
1449 else
1450 sc->txb_cnt = 2;
1453 * Memory description
1456 sc->mem_size = memsize;
1457 sc->mem_ring = sc->mem_start +
1458 (sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE);
1459 sc->mem_end = sc->mem_start + sc->mem_size;
1462 * Receive area starts after the transmit area and
1463 * continues till the end of memory.
1466 sc->rec_page_start = sc->tx_page_start +
1467 (sc->txb_cnt * ED_TXBUF_SIZE);
1468 sc->rec_page_stop = (sc->mem_size / ED_PAGE_SIZE);
1471 sc->cr_proto = 0; /* value works */
1474 * Set the wrap registers for string I/O reads.
1477 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
1478 ed_asic_outw(sc, ED_HPP_HW_WRAP,
1479 ((sc->rec_page_start / ED_PAGE_SIZE) |
1480 (((sc->rec_page_stop / ED_PAGE_SIZE) - 1) << 8)));
1483 * Reset the register page to normal operation.
1486 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF);
1489 * Verify that we can read/write from adapter memory.
1490 * Create test pattern.
1493 for (n = 0; n < ED_HPP_TEST_SIZE; n++)
1495 test_pattern[n] = (n*n) ^ ~n;
1498 #undef ED_HPP_TEST_SIZE
1501 * Check that the memory is accessible thru the I/O ports.
1502 * Write out the contents of "test_pattern", read back
1503 * into "test_buffer" and compare the two for any
1504 * mismatch.
1507 for (n = 0; n < (32768 / ED_PAGE_SIZE); n ++) {
1509 ed_hpp_writemem(sc, test_pattern, (n * ED_PAGE_SIZE),
1510 sizeof(test_pattern));
1511 ed_hpp_readmem(sc, (n * ED_PAGE_SIZE),
1512 test_buffer, sizeof(test_pattern));
1514 if (bcmp(test_pattern, test_buffer,
1515 sizeof(test_pattern)))
1516 return ENXIO;
1519 return (0);
1524 * HP PC Lan+ : Set the physical link to use AUI or TP/TL.
1527 static void
1528 ed_hpp_set_physical_link(struct ed_softc *sc)
1530 struct ifnet *ifp = &sc->arpcom.ac_if;
1531 int lan_page;
1533 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1534 lan_page = ed_asic_inw(sc, ED_HPP_PAGE_0);
1536 if (ifp->if_flags & IFF_ALTPHYS) {
1539 * Use the AUI port.
1542 lan_page |= ED_HPP_LAN_AUI;
1544 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1545 ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page);
1548 } else {
1551 * Use the ThinLan interface
1554 lan_page &= ~ED_HPP_LAN_AUI;
1556 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1557 ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page);
1562 * Wait for the lan card to re-initialize itself
1565 DELAY(150000); /* wait 150 ms */
1568 * Restore normal pages.
1571 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF);
1576 * Allocate a port resource with the given resource id.
1579 ed_alloc_port(device_t dev, int rid, int size)
1581 struct ed_softc *sc = device_get_softc(dev);
1582 struct resource *res;
1584 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1585 0ul, ~0ul, size, RF_ACTIVE);
1586 if (res) {
1587 sc->port_rid = rid;
1588 sc->port_res = res;
1589 sc->port_used = size;
1590 return (0);
1591 } else {
1592 return (ENOENT);
1597 * Allocate a memory resource with the given resource id.
1600 ed_alloc_memory(device_t dev, int rid, int size)
1602 struct ed_softc *sc = device_get_softc(dev);
1603 struct resource *res;
1605 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1606 0ul, ~0ul, size, RF_ACTIVE);
1607 if (res) {
1608 sc->mem_rid = rid;
1609 sc->mem_res = res;
1610 sc->mem_used = size;
1611 return (0);
1612 } else {
1613 return (ENOENT);
1618 * Allocate an irq resource with the given resource id.
1621 ed_alloc_irq(device_t dev, int rid, int flags)
1623 struct ed_softc *sc = device_get_softc(dev);
1624 struct resource *res;
1626 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1627 (RF_ACTIVE | flags));
1628 if (res) {
1629 sc->irq_rid = rid;
1630 sc->irq_res = res;
1631 return (0);
1632 } else {
1633 return (ENOENT);
1638 * Release all resources
1640 void
1641 ed_release_resources(device_t dev)
1643 struct ed_softc *sc = device_get_softc(dev);
1645 if (sc->port_res) {
1646 bus_deactivate_resource(dev, SYS_RES_IOPORT,
1647 sc->port_rid, sc->port_res);
1648 bus_release_resource(dev, SYS_RES_IOPORT,
1649 sc->port_rid, sc->port_res);
1650 sc->port_res = 0;
1652 if (sc->mem_res) {
1653 bus_deactivate_resource(dev, SYS_RES_MEMORY,
1654 sc->mem_rid, sc->mem_res);
1655 bus_release_resource(dev, SYS_RES_MEMORY,
1656 sc->mem_rid, sc->mem_res);
1657 sc->mem_res = 0;
1659 if (sc->irq_res) {
1660 bus_deactivate_resource(dev, SYS_RES_IRQ,
1661 sc->irq_rid, sc->irq_res);
1662 bus_release_resource(dev, SYS_RES_IRQ,
1663 sc->irq_rid, sc->irq_res);
1664 sc->irq_res = 0;
1669 * Install interface into kernel networking data structures
1672 ed_attach(device_t dev)
1674 struct ed_softc *sc = device_get_softc(dev);
1675 struct ifnet *ifp = &sc->arpcom.ac_if;
1677 callout_init(&sc->ed_timer);
1679 * Set interface to stopped condition (reset)
1681 ed_stop(sc);
1684 * Initialize ifnet structure
1686 ifp->if_softc = sc;
1687 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1688 ifp->if_mtu = ETHERMTU;
1689 ifp->if_start = ed_start;
1690 ifp->if_ioctl = ed_ioctl;
1691 ifp->if_watchdog = ed_watchdog;
1692 ifp->if_init = ed_init;
1693 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
1694 ifq_set_ready(&ifp->if_snd);
1695 ifp->if_linkmib = &sc->mibdata;
1696 ifp->if_linkmiblen = sizeof sc->mibdata;
1697 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1699 * XXX - should do a better job.
1701 if (sc->chip_type == ED_CHIP_TYPE_WD790)
1702 sc->mibdata.dot3StatsEtherChipSet =
1703 DOT3CHIPSET(dot3VendorWesternDigital,
1704 dot3ChipSetWesternDigital83C790);
1705 else
1706 sc->mibdata.dot3StatsEtherChipSet =
1707 DOT3CHIPSET(dot3VendorNational,
1708 dot3ChipSetNational8390);
1709 sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
1712 * Set default state for ALTPHYS flag (used to disable the
1713 * tranceiver for AUI operation), based on compile-time
1714 * config option.
1716 if (device_get_flags(dev) & ED_FLAGS_DISABLE_TRANCEIVER)
1717 ifp->if_flags |= IFF_ALTPHYS;
1720 * Attach the interface
1722 ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
1724 /* device attach does transition from UNCONFIGURED to IDLE state */
1726 if (sc->type_str && (*sc->type_str != 0))
1727 kprintf("type %s ", sc->type_str);
1728 else
1729 kprintf("type unknown (0x%x) ", sc->type);
1731 if (sc->vendor == ED_VENDOR_HP)
1732 kprintf("(%s %s IO)", (sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ?
1733 "16-bit" : "32-bit",
1734 sc->hpp_mem_start ? "memory mapped" : "regular");
1735 else
1736 kprintf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)");
1738 kprintf("%s\n", (((sc->vendor == ED_VENDOR_3COM) ||
1739 (sc->vendor == ED_VENDOR_HP)) &&
1740 (ifp->if_flags & IFF_ALTPHYS)) ? " transceiver disabled" : "");
1742 return (0);
1746 * Reset interface.
1748 static void
1749 ed_reset(struct ifnet *ifp)
1751 struct ed_softc *sc = ifp->if_softc;
1753 crit_enter();
1755 if (sc->gone) {
1756 crit_exit();
1757 return;
1761 * Stop interface and re-initialize.
1763 ed_stop(sc);
1764 ed_init(sc);
1766 crit_exit();
1770 * Take interface offline.
1772 void
1773 ed_stop(struct ed_softc *sc)
1775 int n = 5000;
1777 #ifndef ED_NO_MIIBUS
1778 callout_stop(&sc->ed_timer);
1779 #endif
1780 if (sc->gone)
1781 return;
1783 * Stop everything on the interface, and select page 0 registers.
1785 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
1788 * Wait for interface to enter stopped state, but limit # of checks to
1789 * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
1790 * just in case it's an old one.
1792 if (sc->chip_type != ED_CHIP_TYPE_AX88190)
1793 while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
1797 * Device timeout/watchdog routine. Entered if the device neglects to
1798 * generate an interrupt after a transmit has been started on it.
1800 static void
1801 ed_watchdog(struct ifnet *ifp)
1803 struct ed_softc *sc = ifp->if_softc;
1805 if (sc->gone)
1806 return;
1807 log(LOG_ERR, "%s: device timeout\n", ifp->if_xname);
1808 ifp->if_oerrors++;
1810 ed_reset(ifp);
1813 #ifndef ED_NO_MIIBUS
1814 static void
1815 ed_tick(void *arg)
1817 struct ed_softc *sc = arg;
1818 struct mii_data *mii;
1819 struct ifnet *ifp;
1821 ifp = &sc->arpcom.ac_if;
1822 lwkt_serialize_enter(ifp->if_serializer);
1824 if (sc->gone) {
1825 crit_exit();
1826 return;
1829 if (sc->miibus != NULL) {
1830 mii = device_get_softc(sc->miibus);
1831 mii_tick(mii);
1834 callout_reset(&sc->ed_timer, hz, ed_tick, sc);
1835 lwkt_serialize_exit(ifp->if_serializer);
1837 #endif
1840 * Initialize device.
1842 static void
1843 ed_init(void *xsc)
1845 struct ed_softc *sc = xsc;
1846 struct ifnet *ifp = &sc->arpcom.ac_if;
1847 int i;
1849 crit_enter();
1851 if (sc->gone) {
1852 crit_exit();
1853 return;
1857 * Initialize the NIC in the exact order outlined in the NS manual.
1858 * This init procedure is "mandatory"...don't change what or when
1859 * things happen.
1862 /* reset transmitter flags */
1863 sc->xmit_busy = 0;
1864 ifp->if_timer = 0;
1866 sc->txb_inuse = 0;
1867 sc->txb_new = 0;
1868 sc->txb_next_tx = 0;
1870 /* This variable is used below - don't move this assignment */
1871 sc->next_packet = sc->rec_page_start + 1;
1874 * Set interface for page 0, Remote DMA complete, Stopped
1876 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
1878 if (sc->isa16bit) {
1881 * Set FIFO threshold to 8, No auto-init Remote DMA, byte
1882 * order=80x86, word-wide DMA xfers,
1884 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
1885 } else {
1888 * Same as above, but byte-wide DMA xfers
1890 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
1894 * Clear Remote Byte Count Registers
1896 ed_nic_outb(sc, ED_P0_RBCR0, 0);
1897 ed_nic_outb(sc, ED_P0_RBCR1, 0);
1900 * For the moment, don't store incoming packets in memory.
1902 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON);
1905 * Place NIC in internal loopback mode
1907 ed_nic_outb(sc, ED_P0_TCR, ED_TCR_LB0);
1910 * Initialize transmit/receive (ring-buffer) Page Start
1912 ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start);
1913 ed_nic_outb(sc, ED_P0_PSTART, sc->rec_page_start);
1914 /* Set lower bits of byte addressable framing to 0 */
1915 if (sc->chip_type == ED_CHIP_TYPE_WD790)
1916 ed_nic_outb(sc, 0x09, 0);
1919 * Initialize Receiver (ring-buffer) Page Stop and Boundry
1921 ed_nic_outb(sc, ED_P0_PSTOP, sc->rec_page_stop);
1922 ed_nic_outb(sc, ED_P0_BNRY, sc->rec_page_start);
1925 * Clear all interrupts. A '1' in each bit position clears the
1926 * corresponding flag.
1928 ed_nic_outb(sc, ED_P0_ISR, 0xff);
1931 * Enable the following interrupts: receive/transmit complete,
1932 * receive/transmit error, and Receiver OverWrite.
1934 * Counter overflow and Remote DMA complete are *not* enabled.
1936 ed_nic_outb(sc, ED_P0_IMR,
1937 ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
1940 * Program Command Register for page 1
1942 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
1945 * Copy out our station address
1947 for (i = 0; i < ETHER_ADDR_LEN; ++i)
1948 ed_nic_outb(sc, ED_P1_PAR(i), sc->arpcom.ac_enaddr[i]);
1951 * Set Current Page pointer to next_packet (initialized above)
1953 ed_nic_outb(sc, ED_P1_CURR, sc->next_packet);
1956 * Program Receiver Configuration Register and multicast filter. CR is
1957 * set to page 0 on return.
1959 ed_setrcr(sc);
1962 * Take interface out of loopback
1964 ed_nic_outb(sc, ED_P0_TCR, 0);
1967 * If this is a 3Com board, the tranceiver must be software enabled
1968 * (there is no settable hardware default).
1970 if (sc->vendor == ED_VENDOR_3COM) {
1971 if (ifp->if_flags & IFF_ALTPHYS) {
1972 ed_asic_outb(sc, ED_3COM_CR, 0);
1973 } else {
1974 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
1978 #ifndef ED_NO_MIIBUS
1979 if (sc->miibus != NULL) {
1980 struct mii_data *mii;
1981 mii = device_get_softc(sc->miibus);
1982 mii_mediachg(mii);
1984 #endif
1986 * Set 'running' flag, and clear output active flag.
1988 ifp->if_flags |= IFF_RUNNING;
1989 ifp->if_flags &= ~IFF_OACTIVE;
1992 * ...and attempt to start output
1994 if_devstart(ifp);
1996 #ifndef ED_NO_MIIBUS
1997 callout_reset(&sc->ed_timer, hz, ed_tick, sc);
1998 #endif
2000 crit_exit();
2004 * This routine actually starts the transmission on the interface
2006 static __inline void
2007 ed_xmit(struct ed_softc *sc)
2009 struct ifnet *ifp = (struct ifnet *)sc;
2010 u_short len;
2012 if (sc->gone)
2013 return;
2014 len = sc->txb_len[sc->txb_next_tx];
2017 * Set NIC for page 0 register access
2019 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
2022 * Set TX buffer start page
2024 ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start +
2025 sc->txb_next_tx * ED_TXBUF_SIZE);
2028 * Set TX length
2030 ed_nic_outb(sc, ED_P0_TBCR0, len);
2031 ed_nic_outb(sc, ED_P0_TBCR1, len >> 8);
2034 * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
2036 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
2037 sc->xmit_busy = 1;
2040 * Point to next transmit buffer slot and wrap if necessary.
2042 sc->txb_next_tx++;
2043 if (sc->txb_next_tx == sc->txb_cnt)
2044 sc->txb_next_tx = 0;
2047 * Set a timer just in case we never hear from the board again
2049 ifp->if_timer = 2;
2053 * Start output on interface.
2054 * We make two assumptions here:
2055 * 1) that the current priority is set to splimp _before_ this code
2056 * is called *and* is returned to the appropriate priority after
2057 * return
2058 * 2) that the IFF_OACTIVE flag is checked before this code is called
2059 * (i.e. that the output part of the interface is idle)
2061 static void
2062 ed_start(struct ifnet *ifp)
2064 struct ed_softc *sc = ifp->if_softc;
2065 struct mbuf *m0, *m;
2066 caddr_t buffer;
2067 int len;
2069 if (sc->gone) {
2070 kprintf("ed_start(%p) GONE\n",ifp);
2071 ifq_purge(&ifp->if_snd);
2072 return;
2074 outloop:
2077 * First, see if there are buffered packets and an idle transmitter -
2078 * should never happen at this point.
2080 if (sc->txb_inuse && (sc->xmit_busy == 0)) {
2081 kprintf("ed: packets buffered, but transmitter idle\n");
2082 ed_xmit(sc);
2086 * See if there is room to put another packet in the buffer.
2088 if (sc->txb_inuse == sc->txb_cnt) {
2091 * No room. Indicate this to the outside world and exit.
2093 ifp->if_flags |= IFF_OACTIVE;
2094 return;
2096 m = ifq_dequeue(&ifp->if_snd, NULL);
2097 if (m == 0) {
2100 * We are using the !OACTIVE flag to indicate to the outside
2101 * world that we can accept an additional packet rather than
2102 * that the transmitter is _actually_ active. Indeed, the
2103 * transmitter may be active, but if we haven't filled all the
2104 * buffers with data then we still want to accept more.
2106 ifp->if_flags &= ~IFF_OACTIVE;
2107 return;
2111 * Copy the mbuf chain into the transmit buffer
2114 m0 = m;
2116 /* txb_new points to next open buffer slot */
2117 buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
2119 if (sc->mem_shared) {
2122 * Special case setup for 16 bit boards...
2124 if (sc->isa16bit) {
2125 switch (sc->vendor) {
2128 * For 16bit 3Com boards (which have 16k of
2129 * memory), we have the xmit buffers in a
2130 * different page of memory ('page 0') - so
2131 * change pages.
2133 case ED_VENDOR_3COM:
2134 ed_asic_outb(sc, ED_3COM_GACFR,
2135 ED_3COM_GACFR_RSEL);
2136 break;
2139 * Enable 16bit access to shared memory on
2140 * WD/SMC boards.
2142 case ED_VENDOR_WD_SMC:
2143 ed_asic_outb(sc, ED_WD_LAAR,
2144 sc->wd_laar_proto | ED_WD_LAAR_M16EN);
2145 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
2146 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
2148 break;
2151 for (len = 0; m != 0; m = m->m_next) {
2152 bcopy(mtod(m, caddr_t), buffer, m->m_len);
2153 buffer += m->m_len;
2154 len += m->m_len;
2158 * Restore previous shared memory access
2160 if (sc->isa16bit) {
2161 switch (sc->vendor) {
2162 case ED_VENDOR_3COM:
2163 ed_asic_outb(sc, ED_3COM_GACFR,
2164 ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
2165 break;
2166 case ED_VENDOR_WD_SMC:
2167 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
2168 ed_asic_outb(sc, ED_WD_MSR, 0x00);
2170 ed_asic_outb(sc, ED_WD_LAAR,
2171 sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
2172 break;
2175 } else {
2176 len = ed_pio_write_mbufs(sc, m, (int)buffer);
2177 if (len == 0) {
2178 m_freem(m0);
2179 goto outloop;
2183 sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN));
2185 sc->txb_inuse++;
2188 * Point to next buffer slot and wrap if necessary.
2190 sc->txb_new++;
2191 if (sc->txb_new == sc->txb_cnt)
2192 sc->txb_new = 0;
2194 if (sc->xmit_busy == 0)
2195 ed_xmit(sc);
2197 BPF_MTAP(ifp, m0);
2199 m_freem(m0);
2202 * Loop back to the top to possibly buffer more packets
2204 goto outloop;
2208 * Ethernet interface receiver interrupt.
2210 static __inline void
2211 ed_rint(struct ed_softc *sc)
2213 struct ifnet *ifp = &sc->arpcom.ac_if;
2214 u_char boundry;
2215 u_short len;
2216 struct ed_ring packet_hdr;
2217 char *packet_ptr;
2219 if (sc->gone)
2220 return;
2223 * Set NIC to page 1 registers to get 'current' pointer
2225 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
2228 * 'sc->next_packet' is the logical beginning of the ring-buffer -
2229 * i.e. it points to where new data has been buffered. The 'CURR'
2230 * (current) register points to the logical end of the ring-buffer -
2231 * i.e. it points to where additional new data will be added. We loop
2232 * here until the logical beginning equals the logical end (or in
2233 * other words, until the ring-buffer is empty).
2235 while (sc->next_packet != ed_nic_inb(sc, ED_P1_CURR)) {
2237 /* get pointer to this buffer's header structure */
2238 packet_ptr = sc->mem_ring +
2239 (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
2242 * The byte count includes a 4 byte header that was added by
2243 * the NIC.
2245 if (sc->mem_shared)
2246 packet_hdr = *(struct ed_ring *) packet_ptr;
2247 else
2248 ed_pio_readmem(sc, (int)packet_ptr, (char *) &packet_hdr,
2249 sizeof(packet_hdr));
2250 len = packet_hdr.count;
2251 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) ||
2252 len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) {
2254 * Length is a wild value. There's a good chance that
2255 * this was caused by the NIC being old and buggy.
2256 * The bug is that the length low byte is duplicated in
2257 * the high byte. Try to recalculate the length based on
2258 * the pointer to the next packet.
2261 * NOTE: sc->next_packet is pointing at the current packet.
2263 len &= ED_PAGE_SIZE - 1; /* preserve offset into page */
2264 if (packet_hdr.next_packet >= sc->next_packet) {
2265 len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE;
2266 } else {
2267 len += ((packet_hdr.next_packet - sc->rec_page_start) +
2268 (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
2271 * because buffers are aligned on 256-byte boundary,
2272 * the length computed above is off by 256 in almost
2273 * all cases. Fix it...
2275 if (len & 0xff)
2276 len -= 256 ;
2277 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN
2278 + sizeof(struct ed_ring)))
2279 sc->mibdata.dot3StatsFrameTooLongs++;
2282 * Be fairly liberal about what we allow as a "reasonable" length
2283 * so that a [crufty] packet will make it to BPF (and can thus
2284 * be analyzed). Note that all that is really important is that
2285 * we have a length that will fit into one mbuf cluster or less;
2286 * the upper layer protocols can then figure out the length from
2287 * their own length field(s).
2288 * But make sure that we have at least a full ethernet header
2289 * or we would be unable to call ether_input() later.
2291 if ((len >= sizeof(struct ed_ring) + ETHER_HDR_LEN) &&
2292 (len <= MCLBYTES) &&
2293 (packet_hdr.next_packet >= sc->rec_page_start) &&
2294 (packet_hdr.next_packet < sc->rec_page_stop)) {
2296 * Go get packet.
2298 ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
2299 len - sizeof(struct ed_ring));
2300 ifp->if_ipackets++;
2301 } else {
2303 * Really BAD. The ring pointers are corrupted.
2305 log(LOG_ERR,
2306 "%s: NIC memory corrupt - invalid packet length %d\n",
2307 ifp->if_xname, len);
2308 ifp->if_ierrors++;
2309 ed_reset(ifp);
2310 return;
2314 * Update next packet pointer
2316 sc->next_packet = packet_hdr.next_packet;
2319 * Update NIC boundry pointer - being careful to keep it one
2320 * buffer behind. (as recommended by NS databook)
2322 boundry = sc->next_packet - 1;
2323 if (boundry < sc->rec_page_start)
2324 boundry = sc->rec_page_stop - 1;
2327 * Set NIC to page 0 registers to update boundry register
2329 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
2331 ed_nic_outb(sc, ED_P0_BNRY, boundry);
2334 * Set NIC to page 1 registers before looping to top (prepare
2335 * to get 'CURR' current pointer)
2337 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
2342 * Ethernet interface interrupt processor
2344 void
2345 edintr(void *arg)
2347 struct ed_softc *sc = (struct ed_softc*) arg;
2348 struct ifnet *ifp = (struct ifnet *)sc;
2349 u_char isr;
2350 int count;
2352 if (sc->gone)
2353 return;
2355 * Set NIC to page 0 registers
2357 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
2360 * loop until there are no more new interrupts. When the card
2361 * goes away, the hardware will read back 0xff. Looking at
2362 * the interrupts, it would appear that 0xff is impossible,
2363 * or at least extremely unlikely.
2365 while ((isr = ed_nic_inb(sc, ED_P0_ISR)) != 0 && isr != 0xff) {
2368 * reset all the bits that we are 'acknowledging' by writing a
2369 * '1' to each bit position that was set (writing a '1'
2370 * *clears* the bit)
2372 ed_nic_outb(sc, ED_P0_ISR, isr);
2375 * XXX workaround for AX88190
2376 * We limit this to 5000 iterations. At 1us per inb/outb,
2377 * this translates to about 15ms, which should be plenty
2378 * of time, and also gives protection in the card eject
2379 * case.
2381 if (sc->chip_type == ED_CHIP_TYPE_AX88190) {
2382 count = 5000; /* 15ms */
2383 while (count-- && (ed_nic_inb(sc, ED_P0_ISR) & isr)) {
2384 ed_nic_outb(sc, ED_P0_ISR,0);
2385 ed_nic_outb(sc, ED_P0_ISR,isr);
2387 if (count == 0)
2388 break;
2392 * Handle transmitter interrupts. Handle these first because
2393 * the receiver will reset the board under some conditions.
2395 if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
2396 u_char collisions = ed_nic_inb(sc, ED_P0_NCR) & 0x0f;
2399 * Check for transmit error. If a TX completed with an
2400 * error, we end up throwing the packet away. Really
2401 * the only error that is possible is excessive
2402 * collisions, and in this case it is best to allow
2403 * the automatic mechanisms of TCP to backoff the
2404 * flow. Of course, with UDP we're screwed, but this
2405 * is expected when a network is heavily loaded.
2407 ed_nic_inb(sc, ED_P0_TSR);
2408 if (isr & ED_ISR_TXE) {
2409 u_char tsr;
2412 * Excessive collisions (16)
2414 tsr = ed_nic_inb(sc, ED_P0_TSR);
2415 if ((tsr & ED_TSR_ABT)
2416 && (collisions == 0)) {
2419 * When collisions total 16, the
2420 * P0_NCR will indicate 0, and the
2421 * TSR_ABT is set.
2423 collisions = 16;
2424 sc->mibdata.dot3StatsExcessiveCollisions++;
2425 sc->mibdata.dot3StatsCollFrequencies[15]++;
2427 if (tsr & ED_TSR_OWC)
2428 sc->mibdata.dot3StatsLateCollisions++;
2429 if (tsr & ED_TSR_CDH)
2430 sc->mibdata.dot3StatsSQETestErrors++;
2431 if (tsr & ED_TSR_CRS)
2432 sc->mibdata.dot3StatsCarrierSenseErrors++;
2433 if (tsr & ED_TSR_FU)
2434 sc->mibdata.dot3StatsInternalMacTransmitErrors++;
2437 * update output errors counter
2439 ifp->if_oerrors++;
2440 } else {
2443 * Update total number of successfully
2444 * transmitted packets.
2446 ifp->if_opackets++;
2450 * reset tx busy and output active flags
2452 sc->xmit_busy = 0;
2453 ifp->if_flags &= ~IFF_OACTIVE;
2456 * clear watchdog timer
2458 ifp->if_timer = 0;
2461 * Add in total number of collisions on last
2462 * transmission.
2464 ifp->if_collisions += collisions;
2465 switch(collisions) {
2466 case 0:
2467 case 16:
2468 break;
2469 case 1:
2470 sc->mibdata.dot3StatsSingleCollisionFrames++;
2471 sc->mibdata.dot3StatsCollFrequencies[0]++;
2472 break;
2473 default:
2474 sc->mibdata.dot3StatsMultipleCollisionFrames++;
2475 sc->mibdata.
2476 dot3StatsCollFrequencies[collisions-1]
2478 break;
2482 * Decrement buffer in-use count if not zero (can only
2483 * be zero if a transmitter interrupt occured while
2484 * not actually transmitting). If data is ready to
2485 * transmit, start it transmitting, otherwise defer
2486 * until after handling receiver
2488 if (sc->txb_inuse && --sc->txb_inuse)
2489 ed_xmit(sc);
2493 * Handle receiver interrupts
2495 if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
2498 * Overwrite warning. In order to make sure that a
2499 * lockup of the local DMA hasn't occurred, we reset
2500 * and re-init the NIC. The NSC manual suggests only a
2501 * partial reset/re-init is necessary - but some chips
2502 * seem to want more. The DMA lockup has been seen
2503 * only with early rev chips - Methinks this bug was
2504 * fixed in later revs. -DG
2506 if (isr & ED_ISR_OVW) {
2507 ifp->if_ierrors++;
2508 #ifdef DIAGNOSTIC
2509 log(LOG_WARNING,
2510 "%s: warning - receiver ring buffer overrun\n",
2511 ifp->if_xname);
2512 #endif
2515 * Stop/reset/re-init NIC
2517 ed_reset(ifp);
2518 } else {
2521 * Receiver Error. One or more of: CRC error,
2522 * frame alignment error FIFO overrun, or
2523 * missed packet.
2525 if (isr & ED_ISR_RXE) {
2526 u_char rsr;
2527 rsr = ed_nic_inb(sc, ED_P0_RSR);
2528 if (rsr & ED_RSR_CRC)
2529 sc->mibdata.dot3StatsFCSErrors++;
2530 if (rsr & ED_RSR_FAE)
2531 sc->mibdata.dot3StatsAlignmentErrors++;
2532 if (rsr & ED_RSR_FO)
2533 sc->mibdata.dot3StatsInternalMacReceiveErrors++;
2534 ifp->if_ierrors++;
2535 #ifdef ED_DEBUG
2536 if_printf("receive error %x\n",
2537 ed_nic_inb(sc, ED_P0_RSR));
2538 #endif
2542 * Go get the packet(s) XXX - Doing this on an
2543 * error is dubious because there shouldn't be
2544 * any data to get (we've configured the
2545 * interface to not accept packets with
2546 * errors).
2550 * Enable 16bit access to shared memory first
2551 * on WD/SMC boards.
2553 if (sc->isa16bit &&
2554 (sc->vendor == ED_VENDOR_WD_SMC)) {
2556 ed_asic_outb(sc, ED_WD_LAAR,
2557 sc->wd_laar_proto | ED_WD_LAAR_M16EN);
2558 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
2559 ed_asic_outb(sc, ED_WD_MSR,
2560 ED_WD_MSR_MENB);
2563 ed_rint(sc);
2565 /* disable 16bit access */
2566 if (sc->isa16bit &&
2567 (sc->vendor == ED_VENDOR_WD_SMC)) {
2569 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
2570 ed_asic_outb(sc, ED_WD_MSR, 0x00);
2572 ed_asic_outb(sc, ED_WD_LAAR,
2573 sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
2579 * If it looks like the transmitter can take more data,
2580 * attempt to start output on the interface. This is done
2581 * after handling the receiver to give the receiver priority.
2583 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2584 if_devstart(ifp);
2587 * return NIC CR to standard state: page 0, remote DMA
2588 * complete, start (toggling the TXP bit off, even if was just
2589 * set in the transmit routine, is *okay* - it is 'edge'
2590 * triggered from low to high)
2592 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
2595 * If the Network Talley Counters overflow, read them to reset
2596 * them. It appears that old 8390's won't clear the ISR flag
2597 * otherwise - resulting in an infinite loop.
2599 if (isr & ED_ISR_CNT) {
2600 ed_nic_inb(sc, ED_P0_CNTR0);
2601 ed_nic_inb(sc, ED_P0_CNTR1);
2602 ed_nic_inb(sc, ED_P0_CNTR2);
2608 * Process an ioctl request. This code needs some work - it looks
2609 * pretty ugly.
2611 static int
2612 ed_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2614 struct ed_softc *sc = ifp->if_softc;
2615 #ifndef ED_NO_MIIBUS
2616 struct ifreq *ifr = (struct ifreq *)data;
2617 struct mii_data *mii;
2618 #endif
2619 int error = 0;
2621 crit_enter();
2623 if (sc == NULL || sc->gone) {
2624 ifp->if_flags &= ~IFF_RUNNING;
2625 crit_exit();
2626 return ENXIO;
2629 switch (command) {
2630 case SIOCSIFFLAGS:
2633 * If the interface is marked up and stopped, then start it.
2634 * If it is marked down and running, then stop it.
2636 if (ifp->if_flags & IFF_UP) {
2637 if ((ifp->if_flags & IFF_RUNNING) == 0)
2638 ed_init(sc);
2639 } else {
2640 if (ifp->if_flags & IFF_RUNNING) {
2641 ed_stop(sc);
2642 ifp->if_flags &= ~IFF_RUNNING;
2647 * Promiscuous flag may have changed, so reprogram the RCR.
2649 ed_setrcr(sc);
2652 * An unfortunate hack to provide the (required) software
2653 * control of the tranceiver for 3Com boards. The ALTPHYS flag
2654 * disables the tranceiver if set.
2656 if (sc->vendor == ED_VENDOR_3COM) {
2657 if (ifp->if_flags & IFF_ALTPHYS) {
2658 ed_asic_outb(sc, ED_3COM_CR, 0);
2659 } else {
2660 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
2662 } else if (sc->vendor == ED_VENDOR_HP)
2663 ed_hpp_set_physical_link(sc);
2664 break;
2666 case SIOCADDMULTI:
2667 case SIOCDELMULTI:
2669 * Multicast list has changed; set the hardware filter
2670 * accordingly.
2672 ed_setrcr(sc);
2673 error = 0;
2674 break;
2676 #ifndef ED_NO_MIIBUS
2677 case SIOCGIFMEDIA:
2678 case SIOCSIFMEDIA:
2679 if (sc->miibus == NULL) {
2680 error = EINVAL;
2681 break;
2683 mii = device_get_softc(sc->miibus);
2684 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2685 break;
2686 #endif
2688 default:
2689 error = ether_ioctl(ifp, command, data);
2690 break;
2693 crit_exit();
2695 return (error);
2699 * Given a source and destination address, copy 'amount' of a packet from
2700 * the ring buffer into a linear destination buffer. Takes into account
2701 * ring-wrap.
2703 static __inline char *
2704 ed_ring_copy(struct ed_softc *sc, char *src, char *dst, u_short amount)
2706 u_short tmp_amount;
2708 /* does copy wrap to lower addr in ring buffer? */
2709 if (src + amount > sc->mem_end) {
2710 tmp_amount = sc->mem_end - src;
2712 /* copy amount up to end of NIC memory */
2713 if (sc->mem_shared)
2714 bcopy(src, dst, tmp_amount);
2715 else
2716 ed_pio_readmem(sc, (int)src, dst, tmp_amount);
2718 amount -= tmp_amount;
2719 src = sc->mem_ring;
2720 dst += tmp_amount;
2722 if (sc->mem_shared)
2723 bcopy(src, dst, amount);
2724 else
2725 ed_pio_readmem(sc, (int)src, dst, amount);
2727 return (src + amount);
2731 * Retreive packet from shared memory and send to the next level up via
2732 * ether_input().
2734 static void
2735 ed_get_packet(struct ed_softc *sc, char *buf, u_short len)
2737 struct ifnet *ifp = &sc->arpcom.ac_if;
2738 struct ether_header *eh;
2739 struct mbuf *m;
2742 * Allocate a header mbuf.
2743 * We always put the received packet in a single buffer -
2744 * either with just an mbuf header or in a cluster attached
2745 * to the header. The +2 is to compensate for the alignment
2746 * fixup below.
2748 m = m_getl(len + 2, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
2749 if (m == NULL)
2750 return;
2751 m->m_pkthdr.rcvif = ifp;
2752 m->m_pkthdr.len = m->m_len = len;
2755 * The +2 is to longword align the start of the real packet.
2756 * This is important for NFS.
2758 m->m_data += 2;
2759 eh = mtod(m, struct ether_header *);
2762 * Get packet, including link layer address, from interface.
2764 ed_ring_copy(sc, buf, (char *)eh, len);
2766 m->m_pkthdr.len = m->m_len = len;
2768 ifp->if_input(ifp, m);
2772 * Supporting routines
2776 * Given a NIC memory source address and a host memory destination
2777 * address, copy 'amount' from NIC to host using Programmed I/O.
2778 * The 'amount' is rounded up to a word - okay as long as mbufs
2779 * are word sized.
2780 * This routine is currently Novell-specific.
2782 void
2783 ed_pio_readmem(struct ed_softc *sc, int src, u_char *dst, u_short amount)
2785 /* HP PC Lan+ cards need special handling */
2786 if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) {
2787 ed_hpp_readmem(sc, src, dst, amount);
2788 return;
2791 /* Regular Novell cards */
2792 /* select page 0 registers */
2793 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2795 /* round up to a word */
2796 if (amount & 1)
2797 ++amount;
2799 /* set up DMA byte count */
2800 ed_nic_outb(sc, ED_P0_RBCR0, amount);
2801 ed_nic_outb(sc, ED_P0_RBCR1, amount >> 8);
2803 /* set up source address in NIC mem */
2804 ed_nic_outb(sc, ED_P0_RSAR0, src);
2805 ed_nic_outb(sc, ED_P0_RSAR1, src >> 8);
2807 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
2809 if (sc->isa16bit) {
2810 ed_asic_insw(sc, ED_NOVELL_DATA, dst, amount / 2);
2811 } else {
2812 ed_asic_insb(sc, ED_NOVELL_DATA, dst, amount);
2817 * Stripped down routine for writing a linear buffer to NIC memory.
2818 * Only used in the probe routine to test the memory. 'len' must
2819 * be even.
2821 void
2822 ed_pio_writemem(struct ed_softc *sc, char *src, u_short dst, u_short len)
2824 int maxwait = 200; /* about 240us */
2826 /* select page 0 registers */
2827 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2829 /* reset remote DMA complete flag */
2830 ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
2832 /* set up DMA byte count */
2833 ed_nic_outb(sc, ED_P0_RBCR0, len);
2834 ed_nic_outb(sc, ED_P0_RBCR1, len >> 8);
2836 /* set up destination address in NIC mem */
2837 ed_nic_outb(sc, ED_P0_RSAR0, dst);
2838 ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
2840 /* set remote DMA write */
2841 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
2843 if (sc->isa16bit) {
2844 ed_asic_outsw(sc, ED_NOVELL_DATA, src, len / 2);
2845 } else {
2846 ed_asic_outsb(sc, ED_NOVELL_DATA, src, len);
2850 * Wait for remote DMA complete. This is necessary because on the
2851 * transmit side, data is handled internally by the NIC in bursts and
2852 * we can't start another remote DMA until this one completes. Not
2853 * waiting causes really bad things to happen - like the NIC
2854 * irrecoverably jamming the ISA bus.
2856 while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
2860 * Write an mbuf chain to the destination NIC memory address using
2861 * programmed I/O.
2863 static u_short
2864 ed_pio_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst)
2866 struct ifnet *ifp = (struct ifnet *)sc;
2867 u_short total_len, dma_len;
2868 struct mbuf *mp;
2869 int maxwait = 200; /* about 240us */
2871 /* HP PC Lan+ cards need special handling */
2872 if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) {
2873 return ed_hpp_write_mbufs(sc, m, dst);
2876 /* Regular Novell cards */
2877 /* First, count up the total number of bytes to copy */
2878 for (total_len = 0, mp = m; mp; mp = mp->m_next)
2879 total_len += mp->m_len;
2881 dma_len = total_len;
2882 if (sc->isa16bit && (dma_len & 1))
2883 dma_len++;
2885 /* select page 0 registers */
2886 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2888 /* reset remote DMA complete flag */
2889 ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
2891 /* set up DMA byte count */
2892 ed_nic_outb(sc, ED_P0_RBCR0, dma_len);
2893 ed_nic_outb(sc, ED_P0_RBCR1, dma_len >> 8);
2895 /* set up destination address in NIC mem */
2896 ed_nic_outb(sc, ED_P0_RSAR0, dst);
2897 ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
2899 /* set remote DMA write */
2900 ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
2903 * Transfer the mbuf chain to the NIC memory.
2904 * 16-bit cards require that data be transferred as words, and only words.
2905 * So that case requires some extra code to patch over odd-length mbufs.
2908 if (!sc->isa16bit) {
2909 /* NE1000s are easy */
2910 while (m) {
2911 if (m->m_len) {
2912 ed_asic_outsb(sc, ED_NOVELL_DATA,
2913 m->m_data, m->m_len);
2915 m = m->m_next;
2917 } else {
2918 /* NE2000s are a pain */
2919 u_char *data;
2920 int len, wantbyte;
2921 u_char savebyte[2];
2923 wantbyte = 0;
2925 while (m) {
2926 len = m->m_len;
2927 if (len) {
2928 data = mtod(m, caddr_t);
2929 /* finish the last word */
2930 if (wantbyte) {
2931 savebyte[1] = *data;
2932 ed_asic_outw(sc, ED_NOVELL_DATA,
2933 *(u_short *)savebyte);
2934 data++;
2935 len--;
2936 wantbyte = 0;
2938 /* output contiguous words */
2939 if (len > 1) {
2940 ed_asic_outsw(sc, ED_NOVELL_DATA,
2941 data, len >> 1);
2942 data += len & ~1;
2943 len &= 1;
2945 /* save last byte, if necessary */
2946 if (len == 1) {
2947 savebyte[0] = *data;
2948 wantbyte = 1;
2951 m = m->m_next;
2953 /* spit last byte */
2954 if (wantbyte) {
2955 ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte);
2960 * Wait for remote DMA complete. This is necessary because on the
2961 * transmit side, data is handled internally by the NIC in bursts and
2962 * we can't start another remote DMA until this one completes. Not
2963 * waiting causes really bad things to happen - like the NIC
2964 * irrecoverably jamming the ISA bus.
2966 while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
2968 if (!maxwait) {
2969 log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n",
2970 ifp->if_xname);
2971 ed_reset(ifp);
2972 return(0);
2974 return (total_len);
2978 * Support routines to handle the HP PC Lan+ card.
2982 * HP PC Lan+: Read from NIC memory, using either PIO or memory mapped
2983 * IO.
2986 static void
2987 ed_hpp_readmem(struct ed_softc *sc, u_short src, u_char *dst, u_short amount)
2990 int use_32bit_access = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
2993 /* Program the source address in RAM */
2994 ed_asic_outw(sc, ED_HPP_PAGE_2, src);
2997 * The HP PC Lan+ card supports word reads as well as
2998 * a memory mapped i/o port that is aliased to every
2999 * even address on the board.
3002 if (sc->hpp_mem_start) {
3004 /* Enable memory mapped access. */
3005 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options &
3006 ~(ED_HPP_OPTION_MEM_DISABLE |
3007 ED_HPP_OPTION_BOOT_ROM_ENB));
3009 if (use_32bit_access && (amount > 3)) {
3010 u_int32_t *dl = (u_int32_t *) dst;
3011 volatile u_int32_t *const sl =
3012 (u_int32_t *) sc->hpp_mem_start;
3013 u_int32_t *const fence = dl + (amount >> 2);
3015 /* Copy out NIC data. We could probably write this
3016 as a `movsl'. The currently generated code is lousy.
3019 while (dl < fence)
3020 *dl++ = *sl;
3022 dst += (amount & ~3);
3023 amount &= 3;
3027 /* Finish off any words left, as a series of short reads */
3028 if (amount > 1) {
3029 u_short *d = (u_short *) dst;
3030 volatile u_short *const s =
3031 (u_short *) sc->hpp_mem_start;
3032 u_short *const fence = d + (amount >> 1);
3034 /* Copy out NIC data. */
3036 while (d < fence)
3037 *d++ = *s;
3039 dst += (amount & ~1);
3040 amount &= 1;
3044 * read in a byte; however we need to always read 16 bits
3045 * at a time or the hardware gets into a funny state
3048 if (amount == 1) {
3049 /* need to read in a short and copy LSB */
3050 volatile u_short *const s =
3051 (volatile u_short *) sc->hpp_mem_start;
3053 *dst = (*s) & 0xFF;
3056 /* Restore Boot ROM access. */
3058 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
3061 } else {
3062 /* Read in data using the I/O port */
3063 if (use_32bit_access && (amount > 3)) {
3064 ed_asic_insl(sc, ED_HPP_PAGE_4, dst, amount >> 2);
3065 dst += (amount & ~3);
3066 amount &= 3;
3068 if (amount > 1) {
3069 ed_asic_insw(sc, ED_HPP_PAGE_4, dst, amount >> 1);
3070 dst += (amount & ~1);
3071 amount &= 1;
3073 if (amount == 1) { /* read in a short and keep the LSB */
3074 *dst = ed_asic_inw(sc, ED_HPP_PAGE_4) & 0xFF;
3080 * HP PC Lan+: Write to NIC memory, using either PIO or memory mapped
3081 * IO.
3082 * Only used in the probe routine to test the memory. 'len' must
3083 * be even.
3085 static void
3086 ed_hpp_writemem(struct ed_softc *sc, u_char *src, u_short dst, u_short len)
3088 /* reset remote DMA complete flag */
3089 ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
3091 /* program the write address in RAM */
3092 ed_asic_outw(sc, ED_HPP_PAGE_0, dst);
3094 if (sc->hpp_mem_start) {
3095 u_short *s = (u_short *) src;
3096 volatile u_short *d = (u_short *) sc->hpp_mem_start;
3097 u_short *const fence = s + (len >> 1);
3100 * Enable memory mapped access.
3103 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options &
3104 ~(ED_HPP_OPTION_MEM_DISABLE |
3105 ED_HPP_OPTION_BOOT_ROM_ENB));
3108 * Copy to NIC memory.
3111 while (s < fence)
3112 *d = *s++;
3115 * Restore Boot ROM access.
3118 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
3120 } else {
3121 /* write data using I/O writes */
3122 ed_asic_outsw(sc, ED_HPP_PAGE_4, src, len / 2);
3127 * Write to HP PC Lan+ NIC memory. Access to the NIC can be by using
3128 * outsw() or via the memory mapped interface to the same register.
3129 * Writes have to be in word units; byte accesses won't work and may cause
3130 * the NIC to behave weirdly. Long word accesses are permitted if the ASIC
3131 * allows it.
3134 static u_short
3135 ed_hpp_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst)
3137 int len, wantbyte;
3138 u_short total_len;
3139 u_char savebyte[2];
3140 volatile u_short * const d =
3141 (volatile u_short *) sc->hpp_mem_start;
3142 int use_32bit_accesses = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
3144 /* select page 0 registers */
3145 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
3147 /* reset remote DMA complete flag */
3148 ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
3150 /* program the write address in RAM */
3151 ed_asic_outw(sc, ED_HPP_PAGE_0, dst);
3153 if (sc->hpp_mem_start) /* enable memory mapped I/O */
3154 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options &
3155 ~(ED_HPP_OPTION_MEM_DISABLE |
3156 ED_HPP_OPTION_BOOT_ROM_ENB));
3158 wantbyte = 0;
3159 total_len = 0;
3161 if (sc->hpp_mem_start) { /* Memory mapped I/O port */
3162 while (m) {
3163 total_len += (len = m->m_len);
3164 if (len) {
3165 caddr_t data = mtod(m, caddr_t);
3166 /* finish the last word of the previous mbuf */
3167 if (wantbyte) {
3168 savebyte[1] = *data;
3169 *d = *((u_short *) savebyte);
3170 data++; len--; wantbyte = 0;
3172 /* output contiguous words */
3173 if ((len > 3) && (use_32bit_accesses)) {
3174 volatile u_int32_t *const dl =
3175 (volatile u_int32_t *) d;
3176 u_int32_t *sl = (u_int32_t *) data;
3177 u_int32_t *fence = sl + (len >> 2);
3179 while (sl < fence)
3180 *dl = *sl++;
3182 data += (len & ~3);
3183 len &= 3;
3185 /* finish off remain 16 bit writes */
3186 if (len > 1) {
3187 u_short *s = (u_short *) data;
3188 u_short *fence = s + (len >> 1);
3190 while (s < fence)
3191 *d = *s++;
3193 data += (len & ~1);
3194 len &= 1;
3196 /* save last byte if needed */
3197 if ((wantbyte = (len == 1)) != 0)
3198 savebyte[0] = *data;
3200 m = m->m_next; /* to next mbuf */
3202 if (wantbyte) /* write last byte */
3203 *d = *((u_short *) savebyte);
3204 } else {
3205 /* use programmed I/O */
3206 while (m) {
3207 total_len += (len = m->m_len);
3208 if (len) {
3209 caddr_t data = mtod(m, caddr_t);
3210 /* finish the last word of the previous mbuf */
3211 if (wantbyte) {
3212 savebyte[1] = *data;
3213 ed_asic_outw(sc, ED_HPP_PAGE_4,
3214 *((u_short *)savebyte));
3215 data++;
3216 len--;
3217 wantbyte = 0;
3219 /* output contiguous words */
3220 if ((len > 3) && use_32bit_accesses) {
3221 ed_asic_outsl(sc, ED_HPP_PAGE_4,
3222 data, len >> 2);
3223 data += (len & ~3);
3224 len &= 3;
3226 /* finish off remaining 16 bit accesses */
3227 if (len > 1) {
3228 ed_asic_outsw(sc, ED_HPP_PAGE_4,
3229 data, len >> 1);
3230 data += (len & ~1);
3231 len &= 1;
3233 if ((wantbyte = (len == 1)) != 0)
3234 savebyte[0] = *data;
3236 } /* if len != 0 */
3237 m = m->m_next;
3239 if (wantbyte) /* spit last byte */
3240 ed_asic_outw(sc, ED_HPP_PAGE_4, *(u_short *)savebyte);
3244 if (sc->hpp_mem_start) /* turn off memory mapped i/o */
3245 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
3247 return (total_len);
3250 #ifndef ED_NO_MIIBUS
3252 * MII bus support routines.
3255 ed_miibus_readreg(device_t dev, int phy, int reg)
3257 struct ed_softc *sc = device_get_softc(dev);
3258 int failed, val;
3260 crit_enter();
3262 if (sc->gone) {
3263 crit_exit();
3264 return (0);
3267 (*sc->mii_writebits)(sc, 0xffffffff, 32);
3268 (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS);
3269 (*sc->mii_writebits)(sc, ED_MII_READOP, ED_MII_OP_BITS);
3270 (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS);
3271 (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS);
3273 failed = (*sc->mii_readbits)(sc, ED_MII_ACK_BITS);
3274 val = (*sc->mii_readbits)(sc, ED_MII_DATA_BITS);
3275 (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS);
3277 crit_exit();
3279 return (failed ? 0 : val);
3282 void
3283 ed_miibus_writereg(device_t dev, int phy, int reg, int data)
3285 struct ed_softc *sc = device_get_softc(dev);
3287 crit_enter();
3289 if (sc->gone) {
3290 crit_exit();
3291 return;
3294 (*sc->mii_writebits)(sc, 0xffffffff, 32);
3295 (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS);
3296 (*sc->mii_writebits)(sc, ED_MII_WRITEOP, ED_MII_OP_BITS);
3297 (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS);
3298 (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS);
3299 (*sc->mii_writebits)(sc, ED_MII_TURNAROUND, ED_MII_TURNAROUND_BITS);
3300 (*sc->mii_writebits)(sc, data, ED_MII_DATA_BITS);
3301 (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS);
3303 crit_exit();
3307 ed_ifmedia_upd(struct ifnet *ifp)
3309 struct ed_softc *sc;
3310 struct mii_data *mii;
3312 sc = ifp->if_softc;
3313 if (sc->gone || sc->miibus == NULL)
3314 return (ENXIO);
3316 mii = device_get_softc(sc->miibus);
3317 return mii_mediachg(mii);
3320 void
3321 ed_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3323 struct ed_softc *sc;
3324 struct mii_data *mii;
3326 sc = ifp->if_softc;
3327 if (sc->gone || sc->miibus == NULL)
3328 return;
3330 mii = device_get_softc(sc->miibus);
3331 mii_pollstat(mii);
3332 ifmr->ifm_active = mii->mii_media_active;
3333 ifmr->ifm_status = mii->mii_media_status;
3336 void
3337 ed_child_detached(device_t dev, device_t child)
3339 struct ed_softc *sc;
3341 sc = device_get_softc(dev);
3342 if (child == sc->miibus)
3343 sc->miibus = NULL;
3345 #endif
3347 static void
3348 ed_setrcr(struct ed_softc *sc)
3350 struct ifnet *ifp = (struct ifnet *)sc;
3351 int i;
3352 u_char reg1;
3354 /* Bit 6 in AX88190 RCR register must be set. */
3355 if (sc->chip_type == ED_CHIP_TYPE_AX88190)
3356 reg1 = ED_RCR_INTT;
3357 else
3358 reg1 = 0x00;
3360 /* set page 1 registers */
3361 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
3363 if (ifp->if_flags & IFF_PROMISC) {
3366 * Reconfigure the multicast filter.
3368 for (i = 0; i < 8; i++)
3369 ed_nic_outb(sc, ED_P1_MAR(i), 0xff);
3372 * And turn on promiscuous mode. Also enable reception of
3373 * runts and packets with CRC & alignment errors.
3375 /* Set page 0 registers */
3376 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
3378 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
3379 ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP | reg1);
3380 } else {
3381 /* set up multicast addresses and filter modes */
3382 if (ifp->if_flags & IFF_MULTICAST) {
3383 u_int32_t mcaf[2];
3385 if (ifp->if_flags & IFF_ALLMULTI) {
3386 mcaf[0] = 0xffffffff;
3387 mcaf[1] = 0xffffffff;
3388 } else
3389 ds_getmcaf(sc, mcaf);
3392 * Set multicast filter on chip.
3394 for (i = 0; i < 8; i++)
3395 ed_nic_outb(sc, ED_P1_MAR(i), ((u_char *) mcaf)[i]);
3397 /* Set page 0 registers */
3398 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
3400 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AM | ED_RCR_AB | reg1);
3401 } else {
3404 * Initialize multicast address hashing registers to
3405 * not accept multicasts.
3407 for (i = 0; i < 8; ++i)
3408 ed_nic_outb(sc, ED_P1_MAR(i), 0x00);
3410 /* Set page 0 registers */
3411 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
3413 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AB | reg1);
3418 * Start interface.
3420 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
3424 * Compute crc for ethernet address
3426 static uint32_t
3427 ds_mchash(const uint8_t *addr)
3429 #define ED_POLYNOMIAL 0x04c11db6
3430 uint32_t crc = 0xffffffff;
3431 int carry, idx, bit;
3432 uint8_t data;
3434 for (idx = 6; --idx >= 0;) {
3435 for (data = *addr++, bit = 8; --bit >= 0; data >>=1 ) {
3436 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
3437 crc <<= 1;
3438 if (carry)
3439 crc = (crc ^ ED_POLYNOMIAL) | carry;
3442 return crc;
3443 #undef POLYNOMIAL
3447 * Compute the multicast address filter from the
3448 * list of multicast addresses we need to listen to.
3450 static void
3451 ds_getmcaf(struct ed_softc *sc, u_int32_t *mcaf)
3453 u_int32_t index;
3454 u_char *af = (u_char *) mcaf;
3455 struct ifmultiaddr *ifma;
3457 mcaf[0] = 0;
3458 mcaf[1] = 0;
3460 LIST_FOREACH(ifma, &sc->arpcom.ac_if.if_multiaddrs, ifma_link) {
3461 if (ifma->ifma_addr->sa_family != AF_LINK)
3462 continue;
3463 index = ds_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr))
3464 >> 26;
3465 af[index >> 3] |= 1 << (index & 7);