Fix "ls: not found" problem during buildworld. mdate.sh script
[dragonfly.git] / sys / kern / vfs_subr.c
blobff25457c9a589eab4462cfb387bc736b1801cbe1
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.70 2006/03/05 18:38:34 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
89 int numvnodes;
90 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91 int vfs_fastdev = 1;
92 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
94 enum vtype iftovt_tab[16] = {
95 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
98 int vttoif_tab[9] = {
99 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 S_IFSOCK, S_IFIFO, S_IFMT,
103 static int reassignbufcalls;
104 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 &reassignbufcalls, 0, "");
106 static int reassignbufloops;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 &reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 &reassignbufsortgood, 0, "");
112 static int reassignbufsortbad;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 &reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 &reassignbufmethod, 0, "");
119 int nfs_mount_type = -1;
120 static struct lwkt_token spechash_token;
121 struct nfs_public nfs_pub; /* publicly exported FS */
123 int desiredvnodes;
124 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 &desiredvnodes, 0, "Maximum number of vnodes");
127 static void vfs_free_addrlist (struct netexport *nep);
128 static int vfs_free_netcred (struct radix_node *rn, void *w);
129 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 struct export_args *argp);
132 extern int dev_ref_debug;
133 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
136 * Red black tree functions
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, daddr_t, b_lblkno);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, daddr_t, b_lblkno);
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
145 if (b1->b_lblkno < b2->b_lblkno)
146 return(-1);
147 if (b1->b_lblkno > b2->b_lblkno)
148 return(1);
149 return(0);
153 * Return 0 if the vnode is already on the free list or cannot be placed
154 * on the free list. Return 1 if the vnode can be placed on the free list.
156 static __inline int
157 vshouldfree(struct vnode *vp, int usecount)
159 if (vp->v_flag & VFREE)
160 return (0); /* already free */
161 if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
162 return (0); /* other holderse */
163 if (vp->v_object &&
164 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
165 return (0);
167 return (1);
171 * Initialize the vnode management data structures.
173 * Called from vfsinit()
175 void
176 vfs_subr_init(void)
179 * Desired vnodes is a result of the physical page count
180 * and the size of kernel's heap. It scales in proportion
181 * to the amount of available physical memory. This can
182 * cause trouble on 64-bit and large memory platforms.
184 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
185 desiredvnodes =
186 min(maxproc + vmstats.v_page_count /4,
187 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
188 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
190 lwkt_token_init(&spechash_token);
194 * Knob to control the precision of file timestamps:
196 * 0 = seconds only; nanoseconds zeroed.
197 * 1 = seconds and nanoseconds, accurate within 1/HZ.
198 * 2 = seconds and nanoseconds, truncated to microseconds.
199 * >=3 = seconds and nanoseconds, maximum precision.
201 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
203 static int timestamp_precision = TSP_SEC;
204 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
205 &timestamp_precision, 0, "");
208 * Get a current timestamp.
210 void
211 vfs_timestamp(struct timespec *tsp)
213 struct timeval tv;
215 switch (timestamp_precision) {
216 case TSP_SEC:
217 tsp->tv_sec = time_second;
218 tsp->tv_nsec = 0;
219 break;
220 case TSP_HZ:
221 getnanotime(tsp);
222 break;
223 case TSP_USEC:
224 microtime(&tv);
225 TIMEVAL_TO_TIMESPEC(&tv, tsp);
226 break;
227 case TSP_NSEC:
228 default:
229 nanotime(tsp);
230 break;
235 * Set vnode attributes to VNOVAL
237 void
238 vattr_null(struct vattr *vap)
240 vap->va_type = VNON;
241 vap->va_size = VNOVAL;
242 vap->va_bytes = VNOVAL;
243 vap->va_mode = VNOVAL;
244 vap->va_nlink = VNOVAL;
245 vap->va_uid = VNOVAL;
246 vap->va_gid = VNOVAL;
247 vap->va_fsid = VNOVAL;
248 vap->va_fileid = VNOVAL;
249 vap->va_blocksize = VNOVAL;
250 vap->va_rdev = VNOVAL;
251 vap->va_atime.tv_sec = VNOVAL;
252 vap->va_atime.tv_nsec = VNOVAL;
253 vap->va_mtime.tv_sec = VNOVAL;
254 vap->va_mtime.tv_nsec = VNOVAL;
255 vap->va_ctime.tv_sec = VNOVAL;
256 vap->va_ctime.tv_nsec = VNOVAL;
257 vap->va_flags = VNOVAL;
258 vap->va_gen = VNOVAL;
259 vap->va_vaflags = 0;
260 vap->va_fsmid = VNOVAL;
264 * Flush out and invalidate all buffers associated with a vnode.
266 * vp must be locked.
268 static int vinvalbuf_bp(struct buf *bp, void *data);
270 struct vinvalbuf_bp_info {
271 struct vnode *vp;
272 int slptimeo;
273 int lkflags;
274 int flags;
278 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
279 int slpflag, int slptimeo)
281 struct vinvalbuf_bp_info info;
282 int error;
283 vm_object_t object;
286 * If we are being asked to save, call fsync to ensure that the inode
287 * is updated.
289 if (flags & V_SAVE) {
290 crit_enter();
291 while (vp->v_track_write.bk_active) {
292 vp->v_track_write.bk_waitflag = 1;
293 error = tsleep(&vp->v_track_write, slpflag,
294 "vinvlbuf", slptimeo);
295 if (error) {
296 crit_exit();
297 return (error);
300 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
301 crit_exit();
302 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
303 return (error);
304 crit_enter();
305 if (vp->v_track_write.bk_active > 0 ||
306 !RB_EMPTY(&vp->v_rbdirty_tree))
307 panic("vinvalbuf: dirty bufs");
309 crit_exit();
311 crit_enter();
312 info.slptimeo = slptimeo;
313 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
314 if (slpflag & PCATCH)
315 info.lkflags |= LK_PCATCH;
316 info.flags = flags;
317 info.vp = vp;
320 * Flush the buffer cache until nothing is left.
322 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
323 !RB_EMPTY(&vp->v_rbdirty_tree)) {
324 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
325 vinvalbuf_bp, &info);
326 if (error == 0) {
327 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
328 vinvalbuf_bp, &info);
333 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
334 * have write I/O in-progress but if there is a VM object then the
335 * VM object can also have read-I/O in-progress.
337 do {
338 while (vp->v_track_write.bk_active > 0) {
339 vp->v_track_write.bk_waitflag = 1;
340 tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
342 if (VOP_GETVOBJECT(vp, &object) == 0) {
343 while (object->paging_in_progress)
344 vm_object_pip_sleep(object, "vnvlbx");
346 } while (vp->v_track_write.bk_active > 0);
348 crit_exit();
351 * Destroy the copy in the VM cache, too.
353 if (VOP_GETVOBJECT(vp, &object) == 0) {
354 vm_object_page_remove(object, 0, 0,
355 (flags & V_SAVE) ? TRUE : FALSE);
358 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
359 panic("vinvalbuf: flush failed");
360 if (!RB_EMPTY(&vp->v_rbhash_tree))
361 panic("vinvalbuf: flush failed, buffers still present");
362 return (0);
365 static int
366 vinvalbuf_bp(struct buf *bp, void *data)
368 struct vinvalbuf_bp_info *info = data;
369 int error;
371 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
372 error = BUF_TIMELOCK(bp, info->lkflags,
373 "vinvalbuf", info->slptimeo);
374 if (error == 0) {
375 BUF_UNLOCK(bp);
376 error = ENOLCK;
378 if (error == ENOLCK)
379 return(0);
380 return (-error);
383 KKASSERT(bp->b_vp == info->vp);
386 * XXX Since there are no node locks for NFS, I
387 * believe there is a slight chance that a delayed
388 * write will occur while sleeping just above, so
389 * check for it. Note that vfs_bio_awrite expects
390 * buffers to reside on a queue, while VOP_BWRITE and
391 * brelse do not.
393 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
394 (info->flags & V_SAVE)) {
395 if (bp->b_vp == info->vp) {
396 if (bp->b_flags & B_CLUSTEROK) {
397 vfs_bio_awrite(bp);
398 } else {
399 bremfree(bp);
400 bp->b_flags |= B_ASYNC;
401 VOP_BWRITE(bp->b_vp, bp);
403 } else {
404 bremfree(bp);
405 VOP_BWRITE(bp->b_vp, bp);
407 } else {
408 bremfree(bp);
409 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
410 bp->b_flags &= ~B_ASYNC;
411 brelse(bp);
413 return(0);
417 * Truncate a file's buffer and pages to a specified length. This
418 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
419 * sync activity.
421 * The vnode must be locked.
423 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
424 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
425 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
426 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
429 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
431 daddr_t trunclbn;
432 int count;
435 * Round up to the *next* lbn, then destroy the buffers in question.
436 * Since we are only removing some of the buffers we must rely on the
437 * scan count to determine whether a loop is necessary.
439 trunclbn = (length + blksize - 1) / blksize;
441 crit_enter();
442 do {
443 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
444 vtruncbuf_bp_trunc_cmp,
445 vtruncbuf_bp_trunc, &trunclbn);
446 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
447 vtruncbuf_bp_trunc_cmp,
448 vtruncbuf_bp_trunc, &trunclbn);
449 } while(count);
452 * For safety, fsync any remaining metadata if the file is not being
453 * truncated to 0. Since the metadata does not represent the entire
454 * dirty list we have to rely on the hit count to ensure that we get
455 * all of it.
457 if (length > 0) {
458 do {
459 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
460 vtruncbuf_bp_metasync_cmp,
461 vtruncbuf_bp_metasync, vp);
462 } while (count);
466 * Wait for any in-progress I/O to complete before returning (why?)
468 while (vp->v_track_write.bk_active > 0) {
469 vp->v_track_write.bk_waitflag = 1;
470 tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
473 crit_exit();
475 vnode_pager_setsize(vp, length);
477 return (0);
481 * The callback buffer is beyond the new file EOF and must be destroyed.
482 * Note that the compare function must conform to the RB_SCAN's requirements.
484 static
486 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
488 if (bp->b_lblkno >= *(daddr_t *)data)
489 return(0);
490 return(-1);
493 static
494 int
495 vtruncbuf_bp_trunc(struct buf *bp, void *data)
498 * Do not try to use a buffer we cannot immediately lock, but sleep
499 * anyway to prevent a livelock. The code will loop until all buffers
500 * can be acted upon.
502 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
503 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
504 BUF_UNLOCK(bp);
505 } else {
506 bremfree(bp);
507 bp->b_flags |= (B_INVAL | B_RELBUF);
508 bp->b_flags &= ~B_ASYNC;
509 brelse(bp);
511 return(1);
515 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
516 * blocks (with a negative lblkno) are scanned.
517 * Note that the compare function must conform to the RB_SCAN's requirements.
519 static int
520 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
522 if (bp->b_lblkno < 0)
523 return(0);
524 return(1);
527 static int
528 vtruncbuf_bp_metasync(struct buf *bp, void *data)
530 struct vnode *vp = data;
532 if (bp->b_flags & B_DELWRI) {
534 * Do not try to use a buffer we cannot immediately lock,
535 * but sleep anyway to prevent a livelock. The code will
536 * loop until all buffers can be acted upon.
538 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
539 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
540 BUF_UNLOCK(bp);
541 } else {
542 bremfree(bp);
543 if (bp->b_vp == vp) {
544 bp->b_flags |= B_ASYNC;
545 } else {
546 bp->b_flags &= ~B_ASYNC;
548 VOP_BWRITE(bp->b_vp, bp);
550 return(1);
551 } else {
552 return(0);
557 * vfsync - implements a multipass fsync on a file which understands
558 * dependancies and meta-data. The passed vnode must be locked. The
559 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
561 * When fsyncing data asynchronously just do one consolidated pass starting
562 * with the most negative block number. This may not get all the data due
563 * to dependancies.
565 * When fsyncing data synchronously do a data pass, then a metadata pass,
566 * then do additional data+metadata passes to try to get all the data out.
568 static int vfsync_wait_output(struct vnode *vp,
569 int (*waitoutput)(struct vnode *, struct thread *));
570 static int vfsync_data_only_cmp(struct buf *bp, void *data);
571 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
572 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
573 static int vfsync_bp(struct buf *bp, void *data);
575 struct vfsync_info {
576 struct vnode *vp;
577 int synchronous;
578 int syncdeps;
579 int lazycount;
580 int lazylimit;
581 daddr_t lbn;
582 int (*checkdef)(struct buf *);
586 vfsync(struct vnode *vp, int waitfor, int passes, daddr_t lbn,
587 int (*checkdef)(struct buf *),
588 int (*waitoutput)(struct vnode *, struct thread *))
590 struct vfsync_info info;
591 int error;
593 bzero(&info, sizeof(info));
594 info.vp = vp;
595 info.lbn = lbn;
596 if ((info.checkdef = checkdef) == NULL)
597 info.syncdeps = 1;
599 crit_enter();
601 switch(waitfor) {
602 case MNT_LAZY:
604 * Lazy (filesystem syncer typ) Asynchronous plus limit the
605 * number of data (not meta) pages we try to flush to 1MB.
606 * A non-zero return means that lazy limit was reached.
608 info.lazylimit = 1024 * 1024;
609 info.syncdeps = 1;
610 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
611 vfsync_lazy_range_cmp, vfsync_bp, &info);
612 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
613 vfsync_meta_only_cmp, vfsync_bp, &info);
614 if (error == 0)
615 vp->v_lazyw = 0;
616 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
617 vn_syncer_add_to_worklist(vp, 1);
618 error = 0;
619 break;
620 case MNT_NOWAIT:
622 * Asynchronous. Do a data-only pass and a meta-only pass.
624 info.syncdeps = 1;
625 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
626 vfsync_bp, &info);
627 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
628 vfsync_bp, &info);
629 error = 0;
630 break;
631 default:
633 * Synchronous. Do a data-only pass, then a meta-data+data
634 * pass, then additional integrated passes to try to get
635 * all the dependancies flushed.
637 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
638 vfsync_bp, &info);
639 error = vfsync_wait_output(vp, waitoutput);
640 if (error == 0) {
641 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
642 vfsync_bp, &info);
643 error = vfsync_wait_output(vp, waitoutput);
645 while (error == 0 && passes > 0 &&
646 !RB_EMPTY(&vp->v_rbdirty_tree)) {
647 if (--passes == 0) {
648 info.synchronous = 1;
649 info.syncdeps = 1;
651 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
652 vfsync_bp, &info);
653 if (error < 0)
654 error = -error;
655 info.syncdeps = 1;
656 if (error == 0)
657 error = vfsync_wait_output(vp, waitoutput);
659 break;
661 crit_exit();
662 return(error);
665 static int
666 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
668 int error = 0;
670 while (vp->v_track_write.bk_active) {
671 vp->v_track_write.bk_waitflag = 1;
672 tsleep(&vp->v_track_write, 0, "fsfsn", 0);
674 if (waitoutput)
675 error = waitoutput(vp, curthread);
676 return(error);
679 static int
680 vfsync_data_only_cmp(struct buf *bp, void *data)
682 if (bp->b_lblkno < 0)
683 return(-1);
684 return(0);
687 static int
688 vfsync_meta_only_cmp(struct buf *bp, void *data)
690 if (bp->b_lblkno < 0)
691 return(0);
692 return(1);
695 static int
696 vfsync_lazy_range_cmp(struct buf *bp, void *data)
698 struct vfsync_info *info = data;
699 if (bp->b_lblkno < info->vp->v_lazyw)
700 return(-1);
701 return(0);
704 static int
705 vfsync_bp(struct buf *bp, void *data)
707 struct vfsync_info *info = data;
708 struct vnode *vp = info->vp;
709 int error;
712 * if syncdeps is not set we do not try to write buffers which have
713 * dependancies.
715 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
716 return(0);
719 * Ignore buffers that we cannot immediately lock. XXX
721 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
722 return(0);
723 if ((bp->b_flags & B_DELWRI) == 0)
724 panic("vfsync_bp: buffer not dirty");
725 if (vp != bp->b_vp)
726 panic("vfsync_bp: buffer vp mismatch");
729 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
730 * has been written but an additional handshake with the device
731 * is required before we can dispose of the buffer. We have no idea
732 * how to do this so we have to skip these buffers.
734 if (bp->b_flags & B_NEEDCOMMIT) {
735 BUF_UNLOCK(bp);
736 return(0);
740 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
741 * buffers beyond the file EOF.
743 if (info->lbn != (daddr_t)-1 && vp->v_type == VREG &&
744 bp->b_lblkno >= info->lbn) {
745 bremfree(bp);
746 bp->b_flags |= B_INVAL | B_NOCACHE;
747 crit_exit();
748 brelse(bp);
749 crit_enter();
752 if (info->synchronous) {
754 * Synchronous flushing. An error may be returned.
756 bremfree(bp);
757 crit_exit();
758 error = bwrite(bp);
759 crit_enter();
760 } else {
762 * Asynchronous flushing. A negative return value simply
763 * stops the scan and is not considered an error. We use
764 * this to support limited MNT_LAZY flushes.
766 vp->v_lazyw = bp->b_lblkno;
767 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
768 info->lazycount += vfs_bio_awrite(bp);
769 } else {
770 info->lazycount += bp->b_bufsize;
771 bremfree(bp);
772 crit_exit();
773 bawrite(bp);
774 crit_enter();
776 if (info->lazylimit && info->lazycount >= info->lazylimit)
777 error = 1;
778 else
779 error = 0;
781 return(-error);
785 * Associate a buffer with a vnode.
787 void
788 bgetvp(struct vnode *vp, struct buf *bp)
790 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
791 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI)) == 0);
792 KKASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0);
794 vhold(vp);
796 * Insert onto list for new vnode.
798 crit_enter();
799 bp->b_vp = vp;
800 bp->b_flags |= B_HASHED;
801 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
802 panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
804 bp->b_xflags |= BX_VNCLEAN;
805 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
806 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
807 crit_exit();
811 * Disassociate a buffer from a vnode.
813 void
814 brelvp(struct buf *bp)
816 struct vnode *vp;
818 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
821 * Delete from old vnode list, if on one.
823 vp = bp->b_vp;
824 crit_enter();
825 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
826 if (bp->b_xflags & BX_VNDIRTY)
827 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
828 else
829 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
830 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
832 if (bp->b_flags & B_HASHED) {
833 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
834 bp->b_flags &= ~B_HASHED;
836 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
837 vp->v_flag &= ~VONWORKLST;
838 LIST_REMOVE(vp, v_synclist);
840 crit_exit();
841 bp->b_vp = NULL;
842 vdrop(vp);
846 * Associate a p-buffer with a vnode.
848 * Also sets B_PAGING flag to indicate that vnode is not fully associated
849 * with the buffer. i.e. the bp has not been linked into the vnode or
850 * ref-counted.
852 void
853 pbgetvp(struct vnode *vp, struct buf *bp)
855 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
856 KKASSERT((bp->b_flags & B_HASHED) == 0);
858 bp->b_vp = vp;
859 bp->b_flags |= B_PAGING;
863 * Disassociate a p-buffer from a vnode.
865 void
866 pbrelvp(struct buf *bp)
868 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
869 KKASSERT((bp->b_flags & B_HASHED) == 0);
871 bp->b_vp = NULL;
872 bp->b_flags &= ~B_PAGING;
876 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
877 * This routine is called when the state of the B_DELWRI bit is changed.
879 void
880 reassignbuf(struct buf *bp)
882 struct vnode *vp = bp->b_vp;
883 int delay;
885 KKASSERT(vp != NULL);
886 ++reassignbufcalls;
889 * B_PAGING flagged buffers cannot be reassigned because their vp
890 * is not fully linked in.
892 if (bp->b_flags & B_PAGING)
893 panic("cannot reassign paging buffer");
895 crit_enter();
896 if (bp->b_flags & B_DELWRI) {
898 * Move to the dirty list, add the vnode to the worklist
900 if (bp->b_xflags & BX_VNCLEAN) {
901 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
902 bp->b_xflags &= ~BX_VNCLEAN;
904 if ((bp->b_xflags & BX_VNDIRTY) == 0) {
905 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
906 panic("reassignbuf: dup lblk vp %p bp %p",
907 vp, bp);
909 bp->b_xflags |= BX_VNDIRTY;
911 if ((vp->v_flag & VONWORKLST) == 0) {
912 switch (vp->v_type) {
913 case VDIR:
914 delay = dirdelay;
915 break;
916 case VCHR:
917 case VBLK:
918 if (vp->v_rdev &&
919 vp->v_rdev->si_mountpoint != NULL) {
920 delay = metadelay;
921 break;
923 /* fall through */
924 default:
925 delay = filedelay;
927 vn_syncer_add_to_worklist(vp, delay);
929 } else {
931 * Move to the clean list, remove the vnode from the worklist
932 * if no dirty blocks remain.
934 if (bp->b_xflags & BX_VNDIRTY) {
935 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
936 bp->b_xflags &= ~BX_VNDIRTY;
938 if ((bp->b_xflags & BX_VNCLEAN) == 0) {
939 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
940 panic("reassignbuf: dup lblk vp %p bp %p",
941 vp, bp);
943 bp->b_xflags |= BX_VNCLEAN;
945 if ((vp->v_flag & VONWORKLST) &&
946 RB_EMPTY(&vp->v_rbdirty_tree)) {
947 vp->v_flag &= ~VONWORKLST;
948 LIST_REMOVE(vp, v_synclist);
951 crit_exit();
955 * Create a vnode for a block device.
956 * Used for mounting the root file system.
959 bdevvp(dev_t dev, struct vnode **vpp)
961 struct vnode *vp;
962 struct vnode *nvp;
963 int error;
965 if (dev == NODEV) {
966 *vpp = NULLVP;
967 return (ENXIO);
969 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
970 if (error) {
971 *vpp = NULLVP;
972 return (error);
974 vp = nvp;
975 vp->v_type = VCHR;
976 vp->v_udev = dev->si_udev;
977 vx_unlock(vp);
978 *vpp = vp;
979 return (0);
983 v_associate_rdev(struct vnode *vp, dev_t dev)
985 lwkt_tokref ilock;
987 if (dev == NULL || dev == NODEV)
988 return(ENXIO);
989 if (dev_is_good(dev) == 0)
990 return(ENXIO);
991 KKASSERT(vp->v_rdev == NULL);
992 if (dev_ref_debug)
993 printf("Z1");
994 vp->v_rdev = reference_dev(dev);
995 lwkt_gettoken(&ilock, &spechash_token);
996 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
997 lwkt_reltoken(&ilock);
998 return(0);
1001 void
1002 v_release_rdev(struct vnode *vp)
1004 lwkt_tokref ilock;
1005 dev_t dev;
1007 if ((dev = vp->v_rdev) != NULL) {
1008 lwkt_gettoken(&ilock, &spechash_token);
1009 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1010 if (dev_ref_debug && vp->v_opencount != 0) {
1011 printf("releasing rdev with non-0 "
1012 "v_opencount(%d) (revoked?)\n",
1013 vp->v_opencount);
1015 vp->v_rdev = NULL;
1016 vp->v_opencount = 0;
1017 release_dev(dev);
1018 lwkt_reltoken(&ilock);
1023 * Add a vnode to the alias list hung off the dev_t. We only associate
1024 * the device number with the vnode. The actual device is not associated
1025 * until the vnode is opened (usually in spec_open()), and will be
1026 * disassociated on last close.
1028 void
1029 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1031 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1032 panic("addaliasu on non-special vnode");
1033 nvp->v_udev = nvp_udev;
1037 * Disassociate a vnode from its underlying filesystem.
1039 * The vnode must be VX locked and refd
1041 * If there are v_usecount references to the vnode other then ours we have
1042 * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1044 void
1045 vclean(struct vnode *vp, int flags, struct thread *td)
1047 int active;
1048 int retflags = 0;
1051 * If the vnode has already been reclaimed we have nothing to do.
1053 if (vp->v_flag & VRECLAIMED)
1054 return;
1055 vp->v_flag |= VRECLAIMED;
1058 * Scrap the vfs cache
1060 while (cache_inval_vp(vp, 0, &retflags) != 0) {
1061 printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1062 tsleep(vp, 0, "vclninv", 2);
1066 * Check to see if the vnode is in use. If so we have to reference it
1067 * before we clean it out so that its count cannot fall to zero and
1068 * generate a race against ourselves to recycle it.
1070 active = (vp->v_usecount > 1);
1073 * Clean out any buffers associated with the vnode and destroy its
1074 * object, if it has one.
1076 vinvalbuf(vp, V_SAVE, td, 0, 0);
1077 VOP_DESTROYVOBJECT(vp);
1080 * If purging an active vnode, it must be closed and
1081 * deactivated before being reclaimed. XXX
1083 * Note that neither of these routines unlocks the vnode.
1085 if (active) {
1086 if (flags & DOCLOSE)
1087 VOP_CLOSE(vp, FNONBLOCK, td);
1091 * If the vnode has not be deactivated, deactivated it.
1093 if ((vp->v_flag & VINACTIVE) == 0) {
1094 vp->v_flag |= VINACTIVE;
1095 VOP_INACTIVE(vp, td);
1099 * Reclaim the vnode.
1101 if (VOP_RECLAIM(vp, retflags, td))
1102 panic("vclean: cannot reclaim");
1105 * Done with purge, notify sleepers of the grim news.
1107 vp->v_ops = &dead_vnode_vops;
1108 vn_pollgone(vp);
1109 vp->v_tag = VT_NON;
1113 * Eliminate all activity associated with the requested vnode
1114 * and with all vnodes aliased to the requested vnode.
1116 * The vnode must be referenced and vx_lock()'d
1118 * revoke { struct vnode *a_vp, int a_flags }
1121 vop_stdrevoke(struct vop_revoke_args *ap)
1123 struct vnode *vp, *vq;
1124 lwkt_tokref ilock;
1125 dev_t dev;
1127 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1129 vp = ap->a_vp;
1132 * If the vnode is already dead don't try to revoke it
1134 if (vp->v_flag & VRECLAIMED)
1135 return (0);
1138 * If the vnode has a device association, scrap all vnodes associated
1139 * with the device. Don't let the device disappear on us while we
1140 * are scrapping the vnodes.
1142 * The passed vp will probably show up in the list, do not VX lock
1143 * it twice!
1145 if (vp->v_type != VCHR && vp->v_type != VBLK)
1146 return(0);
1147 if ((dev = vp->v_rdev) == NULL) {
1148 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1149 return(0);
1151 reference_dev(dev);
1152 lwkt_gettoken(&ilock, &spechash_token);
1153 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1154 if (vp == vq || vx_get(vq) == 0) {
1155 if (vq == SLIST_FIRST(&dev->si_hlist))
1156 vgone(vq);
1157 if (vp != vq)
1158 vx_put(vq);
1161 lwkt_reltoken(&ilock);
1162 release_dev(dev);
1163 return (0);
1167 * Recycle an unused vnode to the front of the free list.
1169 * Returns 1 if we were successfully able to recycle the vnode,
1170 * 0 otherwise.
1173 vrecycle(struct vnode *vp, struct thread *td)
1175 if (vp->v_usecount == 1) {
1176 vgone(vp);
1177 return (1);
1179 return (0);
1183 * Eliminate all activity associated with a vnode in preparation for reuse.
1185 * The vnode must be VX locked and refd and will remain VX locked and refd
1186 * on return. This routine may be called with the vnode in any state, as
1187 * long as it is VX locked. The vnode will be cleaned out and marked
1188 * VRECLAIMED but will not actually be reused until all existing refs and
1189 * holds go away.
1191 * NOTE: This routine may be called on a vnode which has not yet been
1192 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1193 * already been reclaimed.
1195 * This routine is not responsible for placing us back on the freelist.
1196 * Instead, it happens automatically when the caller releases the VX lock
1197 * (assuming there aren't any other references).
1199 void
1200 vgone(struct vnode *vp)
1203 * assert that the VX lock is held. This is an absolute requirement
1204 * now for vgone() to be called.
1206 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1209 * Clean out the filesystem specific data and set the VRECLAIMED
1210 * bit. Also deactivate the vnode if necessary.
1212 vclean(vp, DOCLOSE, curthread);
1215 * Delete from old mount point vnode list, if on one.
1217 if (vp->v_mount != NULL)
1218 insmntque(vp, NULL);
1221 * If special device, remove it from special device alias list
1222 * if it is on one. This should normally only occur if a vnode is
1223 * being revoked as the device should otherwise have been released
1224 * naturally.
1226 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1227 v_release_rdev(vp);
1231 * Set us to VBAD
1233 vp->v_type = VBAD;
1237 * Lookup a vnode by device number.
1240 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1242 lwkt_tokref ilock;
1243 struct vnode *vp;
1245 lwkt_gettoken(&ilock, &spechash_token);
1246 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1247 if (type == vp->v_type) {
1248 *vpp = vp;
1249 lwkt_reltoken(&ilock);
1250 return (1);
1253 lwkt_reltoken(&ilock);
1254 return (0);
1258 * Calculate the total number of references to a special device. This
1259 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1260 * an overloaded field. Since udev2dev can now return NODEV, we have
1261 * to check for a NULL v_rdev.
1264 count_dev(dev_t dev)
1266 lwkt_tokref ilock;
1267 struct vnode *vp;
1268 int count = 0;
1270 if (SLIST_FIRST(&dev->si_hlist)) {
1271 lwkt_gettoken(&ilock, &spechash_token);
1272 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1273 count += vp->v_usecount;
1275 lwkt_reltoken(&ilock);
1277 return(count);
1281 count_udev(udev_t udev)
1283 dev_t dev;
1285 if ((dev = udev2dev(udev, 0)) == NODEV)
1286 return(0);
1287 return(count_dev(dev));
1291 vcount(struct vnode *vp)
1293 if (vp->v_rdev == NULL)
1294 return(0);
1295 return(count_dev(vp->v_rdev));
1299 * Print out a description of a vnode.
1301 static char *typename[] =
1302 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1304 void
1305 vprint(char *label, struct vnode *vp)
1307 char buf[96];
1309 if (label != NULL)
1310 printf("%s: %p: ", label, (void *)vp);
1311 else
1312 printf("%p: ", (void *)vp);
1313 printf("type %s, usecount %d, writecount %d, refcount %d,",
1314 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1315 vp->v_holdcnt);
1316 buf[0] = '\0';
1317 if (vp->v_flag & VROOT)
1318 strcat(buf, "|VROOT");
1319 if (vp->v_flag & VTEXT)
1320 strcat(buf, "|VTEXT");
1321 if (vp->v_flag & VSYSTEM)
1322 strcat(buf, "|VSYSTEM");
1323 if (vp->v_flag & VFREE)
1324 strcat(buf, "|VFREE");
1325 if (vp->v_flag & VOBJBUF)
1326 strcat(buf, "|VOBJBUF");
1327 if (buf[0] != '\0')
1328 printf(" flags (%s)", &buf[1]);
1329 if (vp->v_data == NULL) {
1330 printf("\n");
1331 } else {
1332 printf("\n\t");
1333 VOP_PRINT(vp);
1337 #ifdef DDB
1338 #include <ddb/ddb.h>
1340 static int db_show_locked_vnodes(struct mount *mp, void *data);
1343 * List all of the locked vnodes in the system.
1344 * Called when debugging the kernel.
1346 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1348 printf("Locked vnodes\n");
1349 mountlist_scan(db_show_locked_vnodes, NULL,
1350 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1353 static int
1354 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1356 struct vnode *vp;
1358 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1359 if (VOP_ISLOCKED(vp, NULL))
1360 vprint((char *)0, vp);
1362 return(0);
1364 #endif
1367 * Top level filesystem related information gathering.
1369 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1371 static int
1372 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1374 int *name = (int *)arg1 - 1; /* XXX */
1375 u_int namelen = arg2 + 1; /* XXX */
1376 struct vfsconf *vfsp;
1378 #if 1 || defined(COMPAT_PRELITE2)
1379 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1380 if (namelen == 1)
1381 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1382 #endif
1384 #ifdef notyet
1385 /* all sysctl names at this level are at least name and field */
1386 if (namelen < 2)
1387 return (ENOTDIR); /* overloaded */
1388 if (name[0] != VFS_GENERIC) {
1389 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1390 if (vfsp->vfc_typenum == name[0])
1391 break;
1392 if (vfsp == NULL)
1393 return (EOPNOTSUPP);
1394 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1395 oldp, oldlenp, newp, newlen, p));
1397 #endif
1398 switch (name[1]) {
1399 case VFS_MAXTYPENUM:
1400 if (namelen != 2)
1401 return (ENOTDIR);
1402 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1403 case VFS_CONF:
1404 if (namelen != 3)
1405 return (ENOTDIR); /* overloaded */
1406 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1407 if (vfsp->vfc_typenum == name[2])
1408 break;
1409 if (vfsp == NULL)
1410 return (EOPNOTSUPP);
1411 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1413 return (EOPNOTSUPP);
1416 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1417 "Generic filesystem");
1419 #if 1 || defined(COMPAT_PRELITE2)
1421 static int
1422 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1424 int error;
1425 struct vfsconf *vfsp;
1426 struct ovfsconf ovfs;
1428 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1429 bzero(&ovfs, sizeof(ovfs));
1430 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1431 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1432 ovfs.vfc_index = vfsp->vfc_typenum;
1433 ovfs.vfc_refcount = vfsp->vfc_refcount;
1434 ovfs.vfc_flags = vfsp->vfc_flags;
1435 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1436 if (error)
1437 return error;
1439 return 0;
1442 #endif /* 1 || COMPAT_PRELITE2 */
1445 * Check to see if a filesystem is mounted on a block device.
1448 vfs_mountedon(struct vnode *vp)
1450 dev_t dev;
1452 if ((dev = vp->v_rdev) == NULL)
1453 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1454 if (dev != NODEV && dev->si_mountpoint)
1455 return (EBUSY);
1456 return (0);
1460 * Unmount all filesystems. The list is traversed in reverse order
1461 * of mounting to avoid dependencies.
1464 static int vfs_umountall_callback(struct mount *mp, void *data);
1466 void
1467 vfs_unmountall(void)
1469 struct thread *td = curthread;
1470 int count;
1472 if (td->td_proc == NULL)
1473 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
1475 do {
1476 count = mountlist_scan(vfs_umountall_callback,
1477 &td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1478 } while (count);
1481 static
1483 vfs_umountall_callback(struct mount *mp, void *data)
1485 struct thread *td = *(struct thread **)data;
1486 int error;
1488 error = dounmount(mp, MNT_FORCE, td);
1489 if (error) {
1490 mountlist_remove(mp);
1491 printf("unmount of filesystem mounted from %s failed (",
1492 mp->mnt_stat.f_mntfromname);
1493 if (error == EBUSY)
1494 printf("BUSY)\n");
1495 else
1496 printf("%d)\n", error);
1498 return(1);
1502 * Build hash lists of net addresses and hang them off the mount point.
1503 * Called by ufs_mount() to set up the lists of export addresses.
1505 static int
1506 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1507 struct export_args *argp)
1509 struct netcred *np;
1510 struct radix_node_head *rnh;
1511 int i;
1512 struct radix_node *rn;
1513 struct sockaddr *saddr, *smask = 0;
1514 struct domain *dom;
1515 int error;
1517 if (argp->ex_addrlen == 0) {
1518 if (mp->mnt_flag & MNT_DEFEXPORTED)
1519 return (EPERM);
1520 np = &nep->ne_defexported;
1521 np->netc_exflags = argp->ex_flags;
1522 np->netc_anon = argp->ex_anon;
1523 np->netc_anon.cr_ref = 1;
1524 mp->mnt_flag |= MNT_DEFEXPORTED;
1525 return (0);
1528 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1529 return (EINVAL);
1530 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1531 return (EINVAL);
1533 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1534 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1535 bzero((caddr_t) np, i);
1536 saddr = (struct sockaddr *) (np + 1);
1537 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1538 goto out;
1539 if (saddr->sa_len > argp->ex_addrlen)
1540 saddr->sa_len = argp->ex_addrlen;
1541 if (argp->ex_masklen) {
1542 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1543 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1544 if (error)
1545 goto out;
1546 if (smask->sa_len > argp->ex_masklen)
1547 smask->sa_len = argp->ex_masklen;
1549 i = saddr->sa_family;
1550 if ((rnh = nep->ne_rtable[i]) == 0) {
1552 * Seems silly to initialize every AF when most are not used,
1553 * do so on demand here
1555 SLIST_FOREACH(dom, &domains, dom_next)
1556 if (dom->dom_family == i && dom->dom_rtattach) {
1557 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1558 dom->dom_rtoffset);
1559 break;
1561 if ((rnh = nep->ne_rtable[i]) == 0) {
1562 error = ENOBUFS;
1563 goto out;
1566 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1567 np->netc_rnodes);
1568 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1569 error = EPERM;
1570 goto out;
1572 np->netc_exflags = argp->ex_flags;
1573 np->netc_anon = argp->ex_anon;
1574 np->netc_anon.cr_ref = 1;
1575 return (0);
1576 out:
1577 free(np, M_NETADDR);
1578 return (error);
1581 /* ARGSUSED */
1582 static int
1583 vfs_free_netcred(struct radix_node *rn, void *w)
1585 struct radix_node_head *rnh = (struct radix_node_head *) w;
1587 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1588 free((caddr_t) rn, M_NETADDR);
1589 return (0);
1593 * Free the net address hash lists that are hanging off the mount points.
1595 static void
1596 vfs_free_addrlist(struct netexport *nep)
1598 int i;
1599 struct radix_node_head *rnh;
1601 for (i = 0; i <= AF_MAX; i++)
1602 if ((rnh = nep->ne_rtable[i])) {
1603 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1604 (caddr_t) rnh);
1605 free((caddr_t) rnh, M_RTABLE);
1606 nep->ne_rtable[i] = 0;
1611 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1613 int error;
1615 if (argp->ex_flags & MNT_DELEXPORT) {
1616 if (mp->mnt_flag & MNT_EXPUBLIC) {
1617 vfs_setpublicfs(NULL, NULL, NULL);
1618 mp->mnt_flag &= ~MNT_EXPUBLIC;
1620 vfs_free_addrlist(nep);
1621 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1623 if (argp->ex_flags & MNT_EXPORTED) {
1624 if (argp->ex_flags & MNT_EXPUBLIC) {
1625 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1626 return (error);
1627 mp->mnt_flag |= MNT_EXPUBLIC;
1629 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1630 return (error);
1631 mp->mnt_flag |= MNT_EXPORTED;
1633 return (0);
1638 * Set the publicly exported filesystem (WebNFS). Currently, only
1639 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1642 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1643 struct export_args *argp)
1645 int error;
1646 struct vnode *rvp;
1647 char *cp;
1650 * mp == NULL -> invalidate the current info, the FS is
1651 * no longer exported. May be called from either vfs_export
1652 * or unmount, so check if it hasn't already been done.
1654 if (mp == NULL) {
1655 if (nfs_pub.np_valid) {
1656 nfs_pub.np_valid = 0;
1657 if (nfs_pub.np_index != NULL) {
1658 FREE(nfs_pub.np_index, M_TEMP);
1659 nfs_pub.np_index = NULL;
1662 return (0);
1666 * Only one allowed at a time.
1668 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1669 return (EBUSY);
1672 * Get real filehandle for root of exported FS.
1674 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1675 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1677 if ((error = VFS_ROOT(mp, &rvp)))
1678 return (error);
1680 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1681 return (error);
1683 vput(rvp);
1686 * If an indexfile was specified, pull it in.
1688 if (argp->ex_indexfile != NULL) {
1689 int namelen;
1691 error = vn_get_namelen(rvp, &namelen);
1692 if (error)
1693 return (error);
1694 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1695 M_WAITOK);
1696 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1697 namelen, (size_t *)0);
1698 if (!error) {
1700 * Check for illegal filenames.
1702 for (cp = nfs_pub.np_index; *cp; cp++) {
1703 if (*cp == '/') {
1704 error = EINVAL;
1705 break;
1709 if (error) {
1710 FREE(nfs_pub.np_index, M_TEMP);
1711 return (error);
1715 nfs_pub.np_mount = mp;
1716 nfs_pub.np_valid = 1;
1717 return (0);
1720 struct netcred *
1721 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1722 struct sockaddr *nam)
1724 struct netcred *np;
1725 struct radix_node_head *rnh;
1726 struct sockaddr *saddr;
1728 np = NULL;
1729 if (mp->mnt_flag & MNT_EXPORTED) {
1731 * Lookup in the export list first.
1733 if (nam != NULL) {
1734 saddr = nam;
1735 rnh = nep->ne_rtable[saddr->sa_family];
1736 if (rnh != NULL) {
1737 np = (struct netcred *)
1738 (*rnh->rnh_matchaddr)((char *)saddr,
1739 rnh);
1740 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1741 np = NULL;
1745 * If no address match, use the default if it exists.
1747 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1748 np = &nep->ne_defexported;
1750 return (np);
1754 * perform msync on all vnodes under a mount point. The mount point must
1755 * be locked. This code is also responsible for lazy-freeing unreferenced
1756 * vnodes whos VM objects no longer contain pages.
1758 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1760 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1761 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
1762 * way up in this high level function.
1764 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1765 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1767 void
1768 vfs_msync(struct mount *mp, int flags)
1770 int vmsc_flags;
1772 vmsc_flags = VMSC_GETVP;
1773 if (flags != MNT_WAIT)
1774 vmsc_flags |= VMSC_NOWAIT;
1775 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1776 (void *)flags);
1780 * scan1 is a fast pre-check. There could be hundreds of thousands of
1781 * vnodes, we cannot afford to do anything heavy weight until we have a
1782 * fairly good indication that there is work to do.
1784 static
1786 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1788 int flags = (int)data;
1790 if ((vp->v_flag & VRECLAIMED) == 0) {
1791 if (vshouldfree(vp, 0))
1792 return(0); /* call scan2 */
1793 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1794 (vp->v_flag & VOBJDIRTY) &&
1795 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1796 return(0); /* call scan2 */
1801 * do not call scan2, continue the loop
1803 return(-1);
1807 * This callback is handed a locked vnode.
1809 static
1811 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1813 vm_object_t obj;
1814 int flags = (int)data;
1816 if (vp->v_flag & VRECLAIMED)
1817 return(0);
1819 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1820 (vp->v_flag & VOBJDIRTY)) {
1821 if (VOP_GETVOBJECT(vp, &obj) == 0) {
1822 vm_object_page_clean(obj, 0, 0,
1823 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1826 return(0);
1830 * Create the VM object needed for VMIO and mmap support. This
1831 * is done for all VREG files in the system. Some filesystems might
1832 * afford the additional metadata buffering capability of the
1833 * VMIO code by making the device node be VMIO mode also.
1835 * vp must be locked when vfs_object_create is called.
1838 vfs_object_create(struct vnode *vp, struct thread *td)
1840 return (VOP_CREATEVOBJECT(vp, td));
1844 * Record a process's interest in events which might happen to
1845 * a vnode. Because poll uses the historic select-style interface
1846 * internally, this routine serves as both the ``check for any
1847 * pending events'' and the ``record my interest in future events''
1848 * functions. (These are done together, while the lock is held,
1849 * to avoid race conditions.)
1852 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1854 lwkt_tokref ilock;
1856 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1857 if (vp->v_pollinfo.vpi_revents & events) {
1859 * This leaves events we are not interested
1860 * in available for the other process which
1861 * which presumably had requested them
1862 * (otherwise they would never have been
1863 * recorded).
1865 events &= vp->v_pollinfo.vpi_revents;
1866 vp->v_pollinfo.vpi_revents &= ~events;
1868 lwkt_reltoken(&ilock);
1869 return events;
1871 vp->v_pollinfo.vpi_events |= events;
1872 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1873 lwkt_reltoken(&ilock);
1874 return 0;
1878 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
1879 * it is possible for us to miss an event due to race conditions, but
1880 * that condition is expected to be rare, so for the moment it is the
1881 * preferred interface.
1883 void
1884 vn_pollevent(struct vnode *vp, int events)
1886 lwkt_tokref ilock;
1888 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1889 if (vp->v_pollinfo.vpi_events & events) {
1891 * We clear vpi_events so that we don't
1892 * call selwakeup() twice if two events are
1893 * posted before the polling process(es) is
1894 * awakened. This also ensures that we take at
1895 * most one selwakeup() if the polling process
1896 * is no longer interested. However, it does
1897 * mean that only one event can be noticed at
1898 * a time. (Perhaps we should only clear those
1899 * event bits which we note?) XXX
1901 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
1902 vp->v_pollinfo.vpi_revents |= events;
1903 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1905 lwkt_reltoken(&ilock);
1909 * Wake up anyone polling on vp because it is being revoked.
1910 * This depends on dead_poll() returning POLLHUP for correct
1911 * behavior.
1913 void
1914 vn_pollgone(struct vnode *vp)
1916 lwkt_tokref ilock;
1918 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1919 if (vp->v_pollinfo.vpi_events) {
1920 vp->v_pollinfo.vpi_events = 0;
1921 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1923 lwkt_reltoken(&ilock);
1927 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
1928 * (or v_rdev might be NULL).
1930 dev_t
1931 vn_todev(struct vnode *vp)
1933 if (vp->v_type != VBLK && vp->v_type != VCHR)
1934 return (NODEV);
1935 KKASSERT(vp->v_rdev != NULL);
1936 return (vp->v_rdev);
1940 * Check if vnode represents a disk device. The vnode does not need to be
1941 * opened.
1944 vn_isdisk(struct vnode *vp, int *errp)
1946 dev_t dev;
1948 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1949 if (errp != NULL)
1950 *errp = ENOTBLK;
1951 return (0);
1954 if ((dev = vp->v_rdev) == NULL)
1955 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1956 if (dev == NULL || dev == NODEV) {
1957 if (errp != NULL)
1958 *errp = ENXIO;
1959 return (0);
1961 if (dev_is_good(dev) == 0) {
1962 if (errp != NULL)
1963 *errp = ENXIO;
1964 return (0);
1966 if ((dev_dflags(dev) & D_DISK) == 0) {
1967 if (errp != NULL)
1968 *errp = ENOTBLK;
1969 return (0);
1971 if (errp != NULL)
1972 *errp = 0;
1973 return (1);
1976 #ifdef DEBUG_VFS_LOCKS
1978 void
1979 assert_vop_locked(struct vnode *vp, const char *str)
1981 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
1982 panic("%s: %p is not locked shared but should be", str, vp);
1986 void
1987 assert_vop_unlocked(struct vnode *vp, const char *str)
1989 if (vp && IS_LOCKING_VFS(vp)) {
1990 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
1991 panic("%s: %p is locked but should not be", str, vp);
1996 #endif
1999 vn_get_namelen(struct vnode *vp, int *namelen)
2001 int error, retval[2];
2003 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2004 if (error)
2005 return (error);
2006 *namelen = *retval;
2007 return (0);
2011 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2012 uint16_t d_namlen, const char *d_name)
2014 struct dirent *dp;
2015 size_t len;
2017 len = _DIRENT_RECLEN(d_namlen);
2018 if (len > uio->uio_resid)
2019 return(1);
2021 dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2023 dp->d_ino = d_ino;
2024 dp->d_namlen = d_namlen;
2025 dp->d_type = d_type;
2026 bcopy(d_name, dp->d_name, d_namlen);
2028 *error = uiomove((caddr_t)dp, len, uio);
2030 free(dp, M_TEMP);
2032 return(0);