Fix "ls: not found" problem during buildworld. mdate.sh script
[dragonfly.git] / sys / kern / kern_clock.c
blobc7144e05db5ca1e9e72761e17c29db37615b4516
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.50 2005/10/24 08:06:16 sephe Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
90 #include <vm/vm.h>
91 #include <sys/lock.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
97 #include <machine/cpu.h>
98 #include <machine/limits.h>
99 #include <machine/smp.h>
101 #ifdef GPROF
102 #include <sys/gmon.h>
103 #endif
105 #ifdef DEVICE_POLLING
106 extern void init_device_poll(void);
107 #endif
109 static void initclocks (void *dummy);
110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cpu_time counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
117 struct kinfo_cputime cputime_percpu[MAXCPU];
118 #ifdef SMP
119 static int
120 sysctl_cputime(SYSCTL_HANDLER_ARGS)
122 int cpu, error = 0;
123 size_t size = sizeof(struct kinfo_cputime);
125 for (cpu = 0; cpu < ncpus; ++cpu) {
126 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
127 break;
130 return (error);
132 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
133 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
134 #else
135 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
136 "CPU time statistics");
137 #endif
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
148 * the real time.
150 struct timespec boottime; /* boot time (realtime) for reference only */
151 time_t time_second; /* read-only 'passive' uptime in seconds */
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
158 * Note that frequency corrections can also be made by adjusting
159 * gd_cpuclock_base.
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
165 #define BASETIME_ARYSIZE 16
166 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167 static struct timespec basetime[BASETIME_ARYSIZE];
168 static volatile int basetime_index;
170 static int
171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
173 struct timespec *bt;
174 int error;
175 int index;
178 * Because basetime data and index may be updated by another cpu,
179 * a load fence is required to ensure that the data we read has
180 * not been speculatively read relative to a possibly updated index.
182 index = basetime_index;
183 cpu_lfence();
184 bt = &basetime[index];
185 error = SYSCTL_OUT(req, bt, sizeof(*bt));
186 return (error);
189 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
190 &boottime, timespec, "System boottime");
191 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
192 sysctl_get_basetime, "S,timespec", "System basetime");
194 static void hardclock(systimer_t info, struct intrframe *frame);
195 static void statclock(systimer_t info, struct intrframe *frame);
196 static void schedclock(systimer_t info, struct intrframe *frame);
197 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
199 int ticks; /* system master ticks at hz */
200 int clocks_running; /* tsleep/timeout clocks operational */
201 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
202 int64_t nsec_acc; /* accumulator */
204 /* NTPD time correction fields */
205 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
206 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
207 int64_t ntp_delta; /* one-time correction in nsec */
208 int64_t ntp_big_delta = 1000000000;
209 int32_t ntp_tick_delta; /* current adjustment rate */
210 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
211 time_t ntp_leap_second; /* time of next leap second */
212 int ntp_leap_insert; /* whether to insert or remove a second */
215 * Finish initializing clock frequencies and start all clocks running.
217 /* ARGSUSED*/
218 static void
219 initclocks(void *dummy)
221 cpu_initclocks();
222 #ifdef DEVICE_POLLING
223 init_device_poll();
224 #endif
225 /*psratio = profhz / stathz;*/
226 initclocks_pcpu();
227 clocks_running = 1;
231 * Called on a per-cpu basis
233 void
234 initclocks_pcpu(void)
236 struct globaldata *gd = mycpu;
238 crit_enter();
239 if (gd->gd_cpuid == 0) {
240 gd->gd_time_seconds = 1;
241 gd->gd_cpuclock_base = sys_cputimer->count();
242 } else {
243 /* XXX */
244 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
245 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
249 * Use a non-queued periodic systimer to prevent multiple ticks from
250 * building up if the sysclock jumps forward (8254 gets reset). The
251 * sysclock will never jump backwards. Our time sync is based on
252 * the actual sysclock, not the ticks count.
254 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
255 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
256 /* XXX correct the frequency for scheduler / estcpu tests */
257 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
258 NULL, ESTCPUFREQ);
259 crit_exit();
263 * This sets the current real time of day. Timespecs are in seconds and
264 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
265 * instead we adjust basetime so basetime + gd_* results in the current
266 * time of day. This way the gd_* fields are guarenteed to represent
267 * a monotonically increasing 'uptime' value.
269 * When set_timeofday() is called from userland, the system call forces it
270 * onto cpu #0 since only cpu #0 can update basetime_index.
272 void
273 set_timeofday(struct timespec *ts)
275 struct timespec *nbt;
276 int ni;
279 * XXX SMP / non-atomic basetime updates
281 crit_enter();
282 ni = (basetime_index + 1) & BASETIME_ARYMASK;
283 nbt = &basetime[ni];
284 nanouptime(nbt);
285 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
286 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
287 if (nbt->tv_nsec < 0) {
288 nbt->tv_nsec += 1000000000;
289 --nbt->tv_sec;
293 * Note that basetime diverges from boottime as the clock drift is
294 * compensated for, so we cannot do away with boottime. When setting
295 * the absolute time of day the drift is 0 (for an instant) and we
296 * can simply assign boottime to basetime.
298 * Note that nanouptime() is based on gd_time_seconds which is drift
299 * compensated up to a point (it is guarenteed to remain monotonically
300 * increasing). gd_time_seconds is thus our best uptime guess and
301 * suitable for use in the boottime calculation. It is already taken
302 * into account in the basetime calculation above.
304 boottime.tv_sec = nbt->tv_sec;
305 ntp_delta = 0;
308 * We now have a new basetime, make sure all other cpus have it,
309 * then update the index.
311 cpu_sfence();
312 basetime_index = ni;
314 crit_exit();
318 * Each cpu has its own hardclock, but we only increments ticks and softticks
319 * on cpu #0.
321 * NOTE! systimer! the MP lock might not be held here. We can only safely
322 * manipulate objects owned by the current cpu.
324 static void
325 hardclock(systimer_t info, struct intrframe *frame)
327 sysclock_t cputicks;
328 struct proc *p;
329 struct pstats *pstats;
330 struct globaldata *gd = mycpu;
333 * Realtime updates are per-cpu. Note that timer corrections as
334 * returned by microtime() and friends make an additional adjustment
335 * using a system-wise 'basetime', but the running time is always
336 * taken from the per-cpu globaldata area. Since the same clock
337 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
338 * stay in synch.
340 * Note that we never allow info->time (aka gd->gd_hardclock.time)
341 * to reverse index gd_cpuclock_base, but that it is possible for
342 * it to temporarily get behind in the seconds if something in the
343 * system locks interrupts for a long period of time. Since periodic
344 * timers count events, though everything should resynch again
345 * immediately.
347 cputicks = info->time - gd->gd_cpuclock_base;
348 if (cputicks >= sys_cputimer->freq) {
349 ++gd->gd_time_seconds;
350 gd->gd_cpuclock_base += sys_cputimer->freq;
354 * The system-wide ticks counter and NTP related timedelta/tickdelta
355 * adjustments only occur on cpu #0. NTP adjustments are accomplished
356 * by updating basetime.
358 if (gd->gd_cpuid == 0) {
359 struct timespec *nbt;
360 struct timespec nts;
361 int leap;
362 int ni;
364 ++ticks;
366 #if 0
367 if (tco->tc_poll_pps)
368 tco->tc_poll_pps(tco);
369 #endif
372 * Calculate the new basetime index. We are in a critical section
373 * on cpu #0 and can safely play with basetime_index. Start
374 * with the current basetime and then make adjustments.
376 ni = (basetime_index + 1) & BASETIME_ARYMASK;
377 nbt = &basetime[ni];
378 *nbt = basetime[basetime_index];
381 * Apply adjtime corrections. (adjtime() API)
383 * adjtime() only runs on cpu #0 so our critical section is
384 * sufficient to access these variables.
386 if (ntp_delta != 0) {
387 nbt->tv_nsec += ntp_tick_delta;
388 ntp_delta -= ntp_tick_delta;
389 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
390 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
391 ntp_tick_delta = ntp_delta;
396 * Apply permanent frequency corrections. (sysctl API)
398 if (ntp_tick_permanent != 0) {
399 ntp_tick_acc += ntp_tick_permanent;
400 if (ntp_tick_acc >= (1LL << 32)) {
401 nbt->tv_nsec += ntp_tick_acc >> 32;
402 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
403 } else if (ntp_tick_acc <= -(1LL << 32)) {
404 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
405 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
406 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
410 if (nbt->tv_nsec >= 1000000000) {
411 nbt->tv_sec++;
412 nbt->tv_nsec -= 1000000000;
413 } else if (nbt->tv_nsec < 0) {
414 nbt->tv_sec--;
415 nbt->tv_nsec += 1000000000;
419 * Another per-tick compensation. (for ntp_adjtime() API)
421 if (nsec_adj != 0) {
422 nsec_acc += nsec_adj;
423 if (nsec_acc >= 0x100000000LL) {
424 nbt->tv_nsec += nsec_acc >> 32;
425 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
426 } else if (nsec_acc <= -0x100000000LL) {
427 nbt->tv_nsec -= -nsec_acc >> 32;
428 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
430 if (nbt->tv_nsec >= 1000000000) {
431 nbt->tv_nsec -= 1000000000;
432 ++nbt->tv_sec;
433 } else if (nbt->tv_nsec < 0) {
434 nbt->tv_nsec += 1000000000;
435 --nbt->tv_sec;
439 /************************************************************
440 * LEAP SECOND CORRECTION *
441 ************************************************************
443 * Taking into account all the corrections made above, figure
444 * out the new real time. If the seconds field has changed
445 * then apply any pending leap-second corrections.
447 getnanotime_nbt(nbt, &nts);
449 if (time_second != nts.tv_sec) {
451 * Apply leap second (sysctl API). Adjust nts for changes
452 * so we do not have to call getnanotime_nbt again.
454 if (ntp_leap_second) {
455 if (ntp_leap_second == nts.tv_sec) {
456 if (ntp_leap_insert) {
457 nbt->tv_sec++;
458 nts.tv_sec++;
459 } else {
460 nbt->tv_sec--;
461 nts.tv_sec--;
463 ntp_leap_second--;
468 * Apply leap second (ntp_adjtime() API), calculate a new
469 * nsec_adj field. ntp_update_second() returns nsec_adj
470 * as a per-second value but we need it as a per-tick value.
472 leap = ntp_update_second(time_second, &nsec_adj);
473 nsec_adj /= hz;
474 nbt->tv_sec += leap;
475 nts.tv_sec += leap;
478 * Update the time_second 'approximate time' global.
480 time_second = nts.tv_sec;
484 * Finally, our new basetime is ready to go live!
486 cpu_sfence();
487 basetime_index = ni;
491 * softticks are handled for all cpus
493 hardclock_softtick(gd);
496 * ITimer handling is per-tick, per-cpu. I don't think psignal()
497 * is mpsafe on curproc, so XXX get the mplock.
499 if ((p = curproc) != NULL && try_mplock()) {
500 pstats = p->p_stats;
501 if (frame && CLKF_USERMODE(frame) &&
502 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
503 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
504 psignal(p, SIGVTALRM);
505 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
506 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
507 psignal(p, SIGPROF);
508 rel_mplock();
510 setdelayed();
514 * The statistics clock typically runs at a 125Hz rate, and is intended
515 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
517 * NOTE! systimer! the MP lock might not be held here. We can only safely
518 * manipulate objects owned by the current cpu.
520 * The stats clock is responsible for grabbing a profiling sample.
521 * Most of the statistics are only used by user-level statistics programs.
522 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
523 * p->p_estcpu.
525 * Like the other clocks, the stat clock is called from what is effectively
526 * a fast interrupt, so the context should be the thread/process that got
527 * interrupted.
529 static void
530 statclock(systimer_t info, struct intrframe *frame)
532 #ifdef GPROF
533 struct gmonparam *g;
534 int i;
535 #endif
536 thread_t td;
537 struct proc *p;
538 int bump;
539 struct timeval tv;
540 struct timeval *stv;
543 * How big was our timeslice relative to the last time?
545 microuptime(&tv); /* mpsafe */
546 stv = &mycpu->gd_stattv;
547 if (stv->tv_sec == 0) {
548 bump = 1;
549 } else {
550 bump = tv.tv_usec - stv->tv_usec +
551 (tv.tv_sec - stv->tv_sec) * 1000000;
552 if (bump < 0)
553 bump = 0;
554 if (bump > 1000000)
555 bump = 1000000;
557 *stv = tv;
559 td = curthread;
560 p = td->td_proc;
562 if (frame && CLKF_USERMODE(frame)) {
564 * Came from userland, handle user time and deal with
565 * possible process.
567 if (p && (p->p_flag & P_PROFIL))
568 addupc_intr(p, CLKF_PC(frame), 1);
569 td->td_uticks += bump;
572 * Charge the time as appropriate
574 if (p && p->p_nice > NZERO)
575 cpu_time.cp_nice += bump;
576 else
577 cpu_time.cp_user += bump;
578 } else {
579 #ifdef GPROF
581 * Kernel statistics are just like addupc_intr, only easier.
583 g = &_gmonparam;
584 if (g->state == GMON_PROF_ON && frame) {
585 i = CLKF_PC(frame) - g->lowpc;
586 if (i < g->textsize) {
587 i /= HISTFRACTION * sizeof(*g->kcount);
588 g->kcount[i]++;
591 #endif
593 * Came from kernel mode, so we were:
594 * - handling an interrupt,
595 * - doing syscall or trap work on behalf of the current
596 * user process, or
597 * - spinning in the idle loop.
598 * Whichever it is, charge the time as appropriate.
599 * Note that we charge interrupts to the current process,
600 * regardless of whether they are ``for'' that process,
601 * so that we know how much of its real time was spent
602 * in ``non-process'' (i.e., interrupt) work.
604 * XXX assume system if frame is NULL. A NULL frame
605 * can occur if ipi processing is done from a crit_exit().
607 if (frame && CLKF_INTR(frame))
608 td->td_iticks += bump;
609 else
610 td->td_sticks += bump;
612 if (frame && CLKF_INTR(frame)) {
613 cpu_time.cp_intr += bump;
614 } else {
615 if (td == &mycpu->gd_idlethread)
616 cpu_time.cp_idle += bump;
617 else
618 cpu_time.cp_sys += bump;
624 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
625 * the MP lock might not be held. We can safely manipulate parts of curproc
626 * but that's about it.
628 * Each cpu has its own scheduler clock.
630 static void
631 schedclock(systimer_t info, struct intrframe *frame)
633 struct lwp *lp;
634 struct pstats *pstats;
635 struct rusage *ru;
636 struct vmspace *vm;
637 long rss;
639 if ((lp = lwkt_preempted_proc()) != NULL) {
641 * Account for cpu time used and hit the scheduler. Note
642 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
643 * HERE.
645 ++lp->lwp_cpticks;
647 * XXX I think accessing lwp_proc's p_usched is
648 * reasonably MP safe. This needs to be revisited
649 * when we have pluggable schedulers.
651 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, info->time);
653 if ((lp = curthread->td_lwp) != NULL) {
655 * Update resource usage integrals and maximums.
657 if ((pstats = lp->lwp_stats) != NULL &&
658 (ru = &pstats->p_ru) != NULL &&
659 (vm = lp->lwp_proc->p_vmspace) != NULL) {
660 ru->ru_ixrss += pgtok(vm->vm_tsize);
661 ru->ru_idrss += pgtok(vm->vm_dsize);
662 ru->ru_isrss += pgtok(vm->vm_ssize);
663 rss = pgtok(vmspace_resident_count(vm));
664 if (ru->ru_maxrss < rss)
665 ru->ru_maxrss = rss;
671 * Compute number of ticks for the specified amount of time. The
672 * return value is intended to be used in a clock interrupt timed
673 * operation and guarenteed to meet or exceed the requested time.
674 * If the representation overflows, return INT_MAX. The minimum return
675 * value is 1 ticks and the function will average the calculation up.
676 * If any value greater then 0 microseconds is supplied, a value
677 * of at least 2 will be returned to ensure that a near-term clock
678 * interrupt does not cause the timeout to occur (degenerately) early.
680 * Note that limit checks must take into account microseconds, which is
681 * done simply by using the smaller signed long maximum instead of
682 * the unsigned long maximum.
684 * If ints have 32 bits, then the maximum value for any timeout in
685 * 10ms ticks is 248 days.
688 tvtohz_high(struct timeval *tv)
690 int ticks;
691 long sec, usec;
693 sec = tv->tv_sec;
694 usec = tv->tv_usec;
695 if (usec < 0) {
696 sec--;
697 usec += 1000000;
699 if (sec < 0) {
700 #ifdef DIAGNOSTIC
701 if (usec > 0) {
702 sec++;
703 usec -= 1000000;
705 printf("tvotohz: negative time difference %ld sec %ld usec\n",
706 sec, usec);
707 #endif
708 ticks = 1;
709 } else if (sec <= INT_MAX / hz) {
710 ticks = (int)(sec * hz +
711 ((u_long)usec + (tick - 1)) / tick) + 1;
712 } else {
713 ticks = INT_MAX;
715 return (ticks);
719 * Compute number of ticks for the specified amount of time, erroring on
720 * the side of it being too low to ensure that sleeping the returned number
721 * of ticks will not result in a late return.
723 * The supplied timeval may not be negative and should be normalized. A
724 * return value of 0 is possible if the timeval converts to less then
725 * 1 tick.
727 * If ints have 32 bits, then the maximum value for any timeout in
728 * 10ms ticks is 248 days.
731 tvtohz_low(struct timeval *tv)
733 int ticks;
734 long sec;
736 sec = tv->tv_sec;
737 if (sec <= INT_MAX / hz)
738 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
739 else
740 ticks = INT_MAX;
741 return (ticks);
746 * Start profiling on a process.
748 * Kernel profiling passes proc0 which never exits and hence
749 * keeps the profile clock running constantly.
751 void
752 startprofclock(struct proc *p)
754 if ((p->p_flag & P_PROFIL) == 0) {
755 p->p_flag |= P_PROFIL;
756 #if 0 /* XXX */
757 if (++profprocs == 1 && stathz != 0) {
758 crit_enter();
759 psdiv = psratio;
760 setstatclockrate(profhz);
761 crit_exit();
763 #endif
768 * Stop profiling on a process.
770 void
771 stopprofclock(struct proc *p)
773 if (p->p_flag & P_PROFIL) {
774 p->p_flag &= ~P_PROFIL;
775 #if 0 /* XXX */
776 if (--profprocs == 0 && stathz != 0) {
777 crit_enter();
778 psdiv = 1;
779 setstatclockrate(stathz);
780 crit_exit();
782 #endif
787 * Return information about system clocks.
789 static int
790 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
792 struct kinfo_clockinfo clkinfo;
794 * Construct clockinfo structure.
796 clkinfo.ci_hz = hz;
797 clkinfo.ci_tick = tick;
798 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
799 clkinfo.ci_profhz = profhz;
800 clkinfo.ci_stathz = stathz ? stathz : hz;
801 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
804 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
805 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
808 * We have eight functions for looking at the clock, four for
809 * microseconds and four for nanoseconds. For each there is fast
810 * but less precise version "get{nano|micro}[up]time" which will
811 * return a time which is up to 1/HZ previous to the call, whereas
812 * the raw version "{nano|micro}[up]time" will return a timestamp
813 * which is as precise as possible. The "up" variants return the
814 * time relative to system boot, these are well suited for time
815 * interval measurements.
817 * Each cpu independantly maintains the current time of day, so all
818 * we need to do to protect ourselves from changes is to do a loop
819 * check on the seconds field changing out from under us.
821 * The system timer maintains a 32 bit count and due to various issues
822 * it is possible for the calculated delta to occassionally exceed
823 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
824 * multiplication can easily overflow, so we deal with the case. For
825 * uniformity we deal with the case in the usec case too.
827 void
828 getmicrouptime(struct timeval *tvp)
830 struct globaldata *gd = mycpu;
831 sysclock_t delta;
833 do {
834 tvp->tv_sec = gd->gd_time_seconds;
835 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
836 } while (tvp->tv_sec != gd->gd_time_seconds);
838 if (delta >= sys_cputimer->freq) {
839 tvp->tv_sec += delta / sys_cputimer->freq;
840 delta %= sys_cputimer->freq;
842 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
843 if (tvp->tv_usec >= 1000000) {
844 tvp->tv_usec -= 1000000;
845 ++tvp->tv_sec;
849 void
850 getnanouptime(struct timespec *tsp)
852 struct globaldata *gd = mycpu;
853 sysclock_t delta;
855 do {
856 tsp->tv_sec = gd->gd_time_seconds;
857 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
858 } while (tsp->tv_sec != gd->gd_time_seconds);
860 if (delta >= sys_cputimer->freq) {
861 tsp->tv_sec += delta / sys_cputimer->freq;
862 delta %= sys_cputimer->freq;
864 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
867 void
868 microuptime(struct timeval *tvp)
870 struct globaldata *gd = mycpu;
871 sysclock_t delta;
873 do {
874 tvp->tv_sec = gd->gd_time_seconds;
875 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
876 } while (tvp->tv_sec != gd->gd_time_seconds);
878 if (delta >= sys_cputimer->freq) {
879 tvp->tv_sec += delta / sys_cputimer->freq;
880 delta %= sys_cputimer->freq;
882 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
885 void
886 nanouptime(struct timespec *tsp)
888 struct globaldata *gd = mycpu;
889 sysclock_t delta;
891 do {
892 tsp->tv_sec = gd->gd_time_seconds;
893 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
894 } while (tsp->tv_sec != gd->gd_time_seconds);
896 if (delta >= sys_cputimer->freq) {
897 tsp->tv_sec += delta / sys_cputimer->freq;
898 delta %= sys_cputimer->freq;
900 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
904 * realtime routines
907 void
908 getmicrotime(struct timeval *tvp)
910 struct globaldata *gd = mycpu;
911 struct timespec *bt;
912 sysclock_t delta;
914 do {
915 tvp->tv_sec = gd->gd_time_seconds;
916 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
917 } while (tvp->tv_sec != gd->gd_time_seconds);
919 if (delta >= sys_cputimer->freq) {
920 tvp->tv_sec += delta / sys_cputimer->freq;
921 delta %= sys_cputimer->freq;
923 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
925 bt = &basetime[basetime_index];
926 tvp->tv_sec += bt->tv_sec;
927 tvp->tv_usec += bt->tv_nsec / 1000;
928 while (tvp->tv_usec >= 1000000) {
929 tvp->tv_usec -= 1000000;
930 ++tvp->tv_sec;
934 void
935 getnanotime(struct timespec *tsp)
937 struct globaldata *gd = mycpu;
938 struct timespec *bt;
939 sysclock_t delta;
941 do {
942 tsp->tv_sec = gd->gd_time_seconds;
943 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
944 } while (tsp->tv_sec != gd->gd_time_seconds);
946 if (delta >= sys_cputimer->freq) {
947 tsp->tv_sec += delta / sys_cputimer->freq;
948 delta %= sys_cputimer->freq;
950 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
952 bt = &basetime[basetime_index];
953 tsp->tv_sec += bt->tv_sec;
954 tsp->tv_nsec += bt->tv_nsec;
955 while (tsp->tv_nsec >= 1000000000) {
956 tsp->tv_nsec -= 1000000000;
957 ++tsp->tv_sec;
961 static void
962 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
964 struct globaldata *gd = mycpu;
965 sysclock_t delta;
967 do {
968 tsp->tv_sec = gd->gd_time_seconds;
969 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
970 } while (tsp->tv_sec != gd->gd_time_seconds);
972 if (delta >= sys_cputimer->freq) {
973 tsp->tv_sec += delta / sys_cputimer->freq;
974 delta %= sys_cputimer->freq;
976 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
978 tsp->tv_sec += nbt->tv_sec;
979 tsp->tv_nsec += nbt->tv_nsec;
980 while (tsp->tv_nsec >= 1000000000) {
981 tsp->tv_nsec -= 1000000000;
982 ++tsp->tv_sec;
987 void
988 microtime(struct timeval *tvp)
990 struct globaldata *gd = mycpu;
991 struct timespec *bt;
992 sysclock_t delta;
994 do {
995 tvp->tv_sec = gd->gd_time_seconds;
996 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
997 } while (tvp->tv_sec != gd->gd_time_seconds);
999 if (delta >= sys_cputimer->freq) {
1000 tvp->tv_sec += delta / sys_cputimer->freq;
1001 delta %= sys_cputimer->freq;
1003 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1005 bt = &basetime[basetime_index];
1006 tvp->tv_sec += bt->tv_sec;
1007 tvp->tv_usec += bt->tv_nsec / 1000;
1008 while (tvp->tv_usec >= 1000000) {
1009 tvp->tv_usec -= 1000000;
1010 ++tvp->tv_sec;
1014 void
1015 nanotime(struct timespec *tsp)
1017 struct globaldata *gd = mycpu;
1018 struct timespec *bt;
1019 sysclock_t delta;
1021 do {
1022 tsp->tv_sec = gd->gd_time_seconds;
1023 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1024 } while (tsp->tv_sec != gd->gd_time_seconds);
1026 if (delta >= sys_cputimer->freq) {
1027 tsp->tv_sec += delta / sys_cputimer->freq;
1028 delta %= sys_cputimer->freq;
1030 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1032 bt = &basetime[basetime_index];
1033 tsp->tv_sec += bt->tv_sec;
1034 tsp->tv_nsec += bt->tv_nsec;
1035 while (tsp->tv_nsec >= 1000000000) {
1036 tsp->tv_nsec -= 1000000000;
1037 ++tsp->tv_sec;
1042 * note: this is not exactly synchronized with real time. To do that we
1043 * would have to do what microtime does and check for a nanoseconds overflow.
1045 time_t
1046 get_approximate_time_t(void)
1048 struct globaldata *gd = mycpu;
1049 struct timespec *bt;
1051 bt = &basetime[basetime_index];
1052 return(gd->gd_time_seconds + bt->tv_sec);
1056 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1058 pps_params_t *app;
1059 struct pps_fetch_args *fapi;
1060 #ifdef PPS_SYNC
1061 struct pps_kcbind_args *kapi;
1062 #endif
1064 switch (cmd) {
1065 case PPS_IOC_CREATE:
1066 return (0);
1067 case PPS_IOC_DESTROY:
1068 return (0);
1069 case PPS_IOC_SETPARAMS:
1070 app = (pps_params_t *)data;
1071 if (app->mode & ~pps->ppscap)
1072 return (EINVAL);
1073 pps->ppsparam = *app;
1074 return (0);
1075 case PPS_IOC_GETPARAMS:
1076 app = (pps_params_t *)data;
1077 *app = pps->ppsparam;
1078 app->api_version = PPS_API_VERS_1;
1079 return (0);
1080 case PPS_IOC_GETCAP:
1081 *(int*)data = pps->ppscap;
1082 return (0);
1083 case PPS_IOC_FETCH:
1084 fapi = (struct pps_fetch_args *)data;
1085 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1086 return (EINVAL);
1087 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1088 return (EOPNOTSUPP);
1089 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1090 fapi->pps_info_buf = pps->ppsinfo;
1091 return (0);
1092 case PPS_IOC_KCBIND:
1093 #ifdef PPS_SYNC
1094 kapi = (struct pps_kcbind_args *)data;
1095 /* XXX Only root should be able to do this */
1096 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1097 return (EINVAL);
1098 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1099 return (EINVAL);
1100 if (kapi->edge & ~pps->ppscap)
1101 return (EINVAL);
1102 pps->kcmode = kapi->edge;
1103 return (0);
1104 #else
1105 return (EOPNOTSUPP);
1106 #endif
1107 default:
1108 return (ENOTTY);
1112 void
1113 pps_init(struct pps_state *pps)
1115 pps->ppscap |= PPS_TSFMT_TSPEC;
1116 if (pps->ppscap & PPS_CAPTUREASSERT)
1117 pps->ppscap |= PPS_OFFSETASSERT;
1118 if (pps->ppscap & PPS_CAPTURECLEAR)
1119 pps->ppscap |= PPS_OFFSETCLEAR;
1122 void
1123 pps_event(struct pps_state *pps, sysclock_t count, int event)
1125 struct globaldata *gd;
1126 struct timespec *tsp;
1127 struct timespec *osp;
1128 struct timespec *bt;
1129 struct timespec ts;
1130 sysclock_t *pcount;
1131 #ifdef PPS_SYNC
1132 sysclock_t tcount;
1133 #endif
1134 sysclock_t delta;
1135 pps_seq_t *pseq;
1136 int foff;
1137 int fhard;
1139 gd = mycpu;
1141 /* Things would be easier with arrays... */
1142 if (event == PPS_CAPTUREASSERT) {
1143 tsp = &pps->ppsinfo.assert_timestamp;
1144 osp = &pps->ppsparam.assert_offset;
1145 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1146 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1147 pcount = &pps->ppscount[0];
1148 pseq = &pps->ppsinfo.assert_sequence;
1149 } else {
1150 tsp = &pps->ppsinfo.clear_timestamp;
1151 osp = &pps->ppsparam.clear_offset;
1152 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1153 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1154 pcount = &pps->ppscount[1];
1155 pseq = &pps->ppsinfo.clear_sequence;
1158 /* Nothing really happened */
1159 if (*pcount == count)
1160 return;
1162 *pcount = count;
1164 do {
1165 ts.tv_sec = gd->gd_time_seconds;
1166 delta = count - gd->gd_cpuclock_base;
1167 } while (ts.tv_sec != gd->gd_time_seconds);
1169 if (delta >= sys_cputimer->freq) {
1170 ts.tv_sec += delta / sys_cputimer->freq;
1171 delta %= sys_cputimer->freq;
1173 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1174 bt = &basetime[basetime_index];
1175 ts.tv_sec += bt->tv_sec;
1176 ts.tv_nsec += bt->tv_nsec;
1177 while (ts.tv_nsec >= 1000000000) {
1178 ts.tv_nsec -= 1000000000;
1179 ++ts.tv_sec;
1182 (*pseq)++;
1183 *tsp = ts;
1185 if (foff) {
1186 timespecadd(tsp, osp);
1187 if (tsp->tv_nsec < 0) {
1188 tsp->tv_nsec += 1000000000;
1189 tsp->tv_sec -= 1;
1192 #ifdef PPS_SYNC
1193 if (fhard) {
1194 /* magic, at its best... */
1195 tcount = count - pps->ppscount[2];
1196 pps->ppscount[2] = count;
1197 if (tcount >= sys_cputimer->freq) {
1198 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1199 sys_cputimer->freq64_nsec *
1200 (tcount % sys_cputimer->freq)) >> 32;
1201 } else {
1202 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1204 hardpps(tsp, delta);
1206 #endif