2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.50 2005/10/24 08:06:16 sephe Exp $
77 #include "opt_polling.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
93 #include <vm/vm_map.h>
94 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
97 #include <machine/cpu.h>
98 #include <machine/limits.h>
99 #include <machine/smp.h>
102 #include <sys/gmon.h>
105 #ifdef DEVICE_POLLING
106 extern void init_device_poll(void);
109 static void initclocks (void *dummy
);
110 SYSINIT(clocks
, SI_SUB_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cpu_time counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
117 struct kinfo_cputime cputime_percpu
[MAXCPU
];
120 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
123 size_t size
= sizeof(struct kinfo_cputime
);
125 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
126 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
132 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
133 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
135 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
136 "CPU time statistics");
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
150 struct timespec boottime
; /* boot time (realtime) for reference only */
151 time_t time_second
; /* read-only 'passive' uptime in seconds */
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
158 * Note that frequency corrections can also be made by adjusting
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
165 #define BASETIME_ARYSIZE 16
166 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167 static struct timespec basetime
[BASETIME_ARYSIZE
];
168 static volatile int basetime_index
;
171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
178 * Because basetime data and index may be updated by another cpu,
179 * a load fence is required to ensure that the data we read has
180 * not been speculatively read relative to a possibly updated index.
182 index
= basetime_index
;
184 bt
= &basetime
[index
];
185 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
189 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
190 &boottime
, timespec
, "System boottime");
191 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
192 sysctl_get_basetime
, "S,timespec", "System basetime");
194 static void hardclock(systimer_t info
, struct intrframe
*frame
);
195 static void statclock(systimer_t info
, struct intrframe
*frame
);
196 static void schedclock(systimer_t info
, struct intrframe
*frame
);
197 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
199 int ticks
; /* system master ticks at hz */
200 int clocks_running
; /* tsleep/timeout clocks operational */
201 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
202 int64_t nsec_acc
; /* accumulator */
204 /* NTPD time correction fields */
205 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
206 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
207 int64_t ntp_delta
; /* one-time correction in nsec */
208 int64_t ntp_big_delta
= 1000000000;
209 int32_t ntp_tick_delta
; /* current adjustment rate */
210 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
211 time_t ntp_leap_second
; /* time of next leap second */
212 int ntp_leap_insert
; /* whether to insert or remove a second */
215 * Finish initializing clock frequencies and start all clocks running.
219 initclocks(void *dummy
)
222 #ifdef DEVICE_POLLING
225 /*psratio = profhz / stathz;*/
231 * Called on a per-cpu basis
234 initclocks_pcpu(void)
236 struct globaldata
*gd
= mycpu
;
239 if (gd
->gd_cpuid
== 0) {
240 gd
->gd_time_seconds
= 1;
241 gd
->gd_cpuclock_base
= sys_cputimer
->count();
244 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
245 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
249 * Use a non-queued periodic systimer to prevent multiple ticks from
250 * building up if the sysclock jumps forward (8254 gets reset). The
251 * sysclock will never jump backwards. Our time sync is based on
252 * the actual sysclock, not the ticks count.
254 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
255 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
256 /* XXX correct the frequency for scheduler / estcpu tests */
257 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
263 * This sets the current real time of day. Timespecs are in seconds and
264 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
265 * instead we adjust basetime so basetime + gd_* results in the current
266 * time of day. This way the gd_* fields are guarenteed to represent
267 * a monotonically increasing 'uptime' value.
269 * When set_timeofday() is called from userland, the system call forces it
270 * onto cpu #0 since only cpu #0 can update basetime_index.
273 set_timeofday(struct timespec
*ts
)
275 struct timespec
*nbt
;
279 * XXX SMP / non-atomic basetime updates
282 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
285 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
286 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
287 if (nbt
->tv_nsec
< 0) {
288 nbt
->tv_nsec
+= 1000000000;
293 * Note that basetime diverges from boottime as the clock drift is
294 * compensated for, so we cannot do away with boottime. When setting
295 * the absolute time of day the drift is 0 (for an instant) and we
296 * can simply assign boottime to basetime.
298 * Note that nanouptime() is based on gd_time_seconds which is drift
299 * compensated up to a point (it is guarenteed to remain monotonically
300 * increasing). gd_time_seconds is thus our best uptime guess and
301 * suitable for use in the boottime calculation. It is already taken
302 * into account in the basetime calculation above.
304 boottime
.tv_sec
= nbt
->tv_sec
;
308 * We now have a new basetime, make sure all other cpus have it,
309 * then update the index.
318 * Each cpu has its own hardclock, but we only increments ticks and softticks
321 * NOTE! systimer! the MP lock might not be held here. We can only safely
322 * manipulate objects owned by the current cpu.
325 hardclock(systimer_t info
, struct intrframe
*frame
)
329 struct pstats
*pstats
;
330 struct globaldata
*gd
= mycpu
;
333 * Realtime updates are per-cpu. Note that timer corrections as
334 * returned by microtime() and friends make an additional adjustment
335 * using a system-wise 'basetime', but the running time is always
336 * taken from the per-cpu globaldata area. Since the same clock
337 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
340 * Note that we never allow info->time (aka gd->gd_hardclock.time)
341 * to reverse index gd_cpuclock_base, but that it is possible for
342 * it to temporarily get behind in the seconds if something in the
343 * system locks interrupts for a long period of time. Since periodic
344 * timers count events, though everything should resynch again
347 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
348 if (cputicks
>= sys_cputimer
->freq
) {
349 ++gd
->gd_time_seconds
;
350 gd
->gd_cpuclock_base
+= sys_cputimer
->freq
;
354 * The system-wide ticks counter and NTP related timedelta/tickdelta
355 * adjustments only occur on cpu #0. NTP adjustments are accomplished
356 * by updating basetime.
358 if (gd
->gd_cpuid
== 0) {
359 struct timespec
*nbt
;
367 if (tco
->tc_poll_pps
)
368 tco
->tc_poll_pps(tco
);
372 * Calculate the new basetime index. We are in a critical section
373 * on cpu #0 and can safely play with basetime_index. Start
374 * with the current basetime and then make adjustments.
376 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
378 *nbt
= basetime
[basetime_index
];
381 * Apply adjtime corrections. (adjtime() API)
383 * adjtime() only runs on cpu #0 so our critical section is
384 * sufficient to access these variables.
386 if (ntp_delta
!= 0) {
387 nbt
->tv_nsec
+= ntp_tick_delta
;
388 ntp_delta
-= ntp_tick_delta
;
389 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
390 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
391 ntp_tick_delta
= ntp_delta
;
396 * Apply permanent frequency corrections. (sysctl API)
398 if (ntp_tick_permanent
!= 0) {
399 ntp_tick_acc
+= ntp_tick_permanent
;
400 if (ntp_tick_acc
>= (1LL << 32)) {
401 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
402 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
403 } else if (ntp_tick_acc
<= -(1LL << 32)) {
404 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
405 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
406 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
410 if (nbt
->tv_nsec
>= 1000000000) {
412 nbt
->tv_nsec
-= 1000000000;
413 } else if (nbt
->tv_nsec
< 0) {
415 nbt
->tv_nsec
+= 1000000000;
419 * Another per-tick compensation. (for ntp_adjtime() API)
422 nsec_acc
+= nsec_adj
;
423 if (nsec_acc
>= 0x100000000LL
) {
424 nbt
->tv_nsec
+= nsec_acc
>> 32;
425 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
426 } else if (nsec_acc
<= -0x100000000LL
) {
427 nbt
->tv_nsec
-= -nsec_acc
>> 32;
428 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
430 if (nbt
->tv_nsec
>= 1000000000) {
431 nbt
->tv_nsec
-= 1000000000;
433 } else if (nbt
->tv_nsec
< 0) {
434 nbt
->tv_nsec
+= 1000000000;
439 /************************************************************
440 * LEAP SECOND CORRECTION *
441 ************************************************************
443 * Taking into account all the corrections made above, figure
444 * out the new real time. If the seconds field has changed
445 * then apply any pending leap-second corrections.
447 getnanotime_nbt(nbt
, &nts
);
449 if (time_second
!= nts
.tv_sec
) {
451 * Apply leap second (sysctl API). Adjust nts for changes
452 * so we do not have to call getnanotime_nbt again.
454 if (ntp_leap_second
) {
455 if (ntp_leap_second
== nts
.tv_sec
) {
456 if (ntp_leap_insert
) {
468 * Apply leap second (ntp_adjtime() API), calculate a new
469 * nsec_adj field. ntp_update_second() returns nsec_adj
470 * as a per-second value but we need it as a per-tick value.
472 leap
= ntp_update_second(time_second
, &nsec_adj
);
478 * Update the time_second 'approximate time' global.
480 time_second
= nts
.tv_sec
;
484 * Finally, our new basetime is ready to go live!
491 * softticks are handled for all cpus
493 hardclock_softtick(gd
);
496 * ITimer handling is per-tick, per-cpu. I don't think psignal()
497 * is mpsafe on curproc, so XXX get the mplock.
499 if ((p
= curproc
) != NULL
&& try_mplock()) {
501 if (frame
&& CLKF_USERMODE(frame
) &&
502 timevalisset(&p
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
503 itimerdecr(&p
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
504 psignal(p
, SIGVTALRM
);
505 if (timevalisset(&p
->p_timer
[ITIMER_PROF
].it_value
) &&
506 itimerdecr(&p
->p_timer
[ITIMER_PROF
], tick
) == 0)
514 * The statistics clock typically runs at a 125Hz rate, and is intended
515 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
517 * NOTE! systimer! the MP lock might not be held here. We can only safely
518 * manipulate objects owned by the current cpu.
520 * The stats clock is responsible for grabbing a profiling sample.
521 * Most of the statistics are only used by user-level statistics programs.
522 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
525 * Like the other clocks, the stat clock is called from what is effectively
526 * a fast interrupt, so the context should be the thread/process that got
530 statclock(systimer_t info
, struct intrframe
*frame
)
543 * How big was our timeslice relative to the last time?
545 microuptime(&tv
); /* mpsafe */
546 stv
= &mycpu
->gd_stattv
;
547 if (stv
->tv_sec
== 0) {
550 bump
= tv
.tv_usec
- stv
->tv_usec
+
551 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
562 if (frame
&& CLKF_USERMODE(frame
)) {
564 * Came from userland, handle user time and deal with
567 if (p
&& (p
->p_flag
& P_PROFIL
))
568 addupc_intr(p
, CLKF_PC(frame
), 1);
569 td
->td_uticks
+= bump
;
572 * Charge the time as appropriate
574 if (p
&& p
->p_nice
> NZERO
)
575 cpu_time
.cp_nice
+= bump
;
577 cpu_time
.cp_user
+= bump
;
581 * Kernel statistics are just like addupc_intr, only easier.
584 if (g
->state
== GMON_PROF_ON
&& frame
) {
585 i
= CLKF_PC(frame
) - g
->lowpc
;
586 if (i
< g
->textsize
) {
587 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
593 * Came from kernel mode, so we were:
594 * - handling an interrupt,
595 * - doing syscall or trap work on behalf of the current
597 * - spinning in the idle loop.
598 * Whichever it is, charge the time as appropriate.
599 * Note that we charge interrupts to the current process,
600 * regardless of whether they are ``for'' that process,
601 * so that we know how much of its real time was spent
602 * in ``non-process'' (i.e., interrupt) work.
604 * XXX assume system if frame is NULL. A NULL frame
605 * can occur if ipi processing is done from a crit_exit().
607 if (frame
&& CLKF_INTR(frame
))
608 td
->td_iticks
+= bump
;
610 td
->td_sticks
+= bump
;
612 if (frame
&& CLKF_INTR(frame
)) {
613 cpu_time
.cp_intr
+= bump
;
615 if (td
== &mycpu
->gd_idlethread
)
616 cpu_time
.cp_idle
+= bump
;
618 cpu_time
.cp_sys
+= bump
;
624 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
625 * the MP lock might not be held. We can safely manipulate parts of curproc
626 * but that's about it.
628 * Each cpu has its own scheduler clock.
631 schedclock(systimer_t info
, struct intrframe
*frame
)
634 struct pstats
*pstats
;
639 if ((lp
= lwkt_preempted_proc()) != NULL
) {
641 * Account for cpu time used and hit the scheduler. Note
642 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
647 * XXX I think accessing lwp_proc's p_usched is
648 * reasonably MP safe. This needs to be revisited
649 * when we have pluggable schedulers.
651 lp
->lwp_proc
->p_usched
->schedulerclock(lp
, info
->periodic
, info
->time
);
653 if ((lp
= curthread
->td_lwp
) != NULL
) {
655 * Update resource usage integrals and maximums.
657 if ((pstats
= lp
->lwp_stats
) != NULL
&&
658 (ru
= &pstats
->p_ru
) != NULL
&&
659 (vm
= lp
->lwp_proc
->p_vmspace
) != NULL
) {
660 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
661 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
662 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
663 rss
= pgtok(vmspace_resident_count(vm
));
664 if (ru
->ru_maxrss
< rss
)
671 * Compute number of ticks for the specified amount of time. The
672 * return value is intended to be used in a clock interrupt timed
673 * operation and guarenteed to meet or exceed the requested time.
674 * If the representation overflows, return INT_MAX. The minimum return
675 * value is 1 ticks and the function will average the calculation up.
676 * If any value greater then 0 microseconds is supplied, a value
677 * of at least 2 will be returned to ensure that a near-term clock
678 * interrupt does not cause the timeout to occur (degenerately) early.
680 * Note that limit checks must take into account microseconds, which is
681 * done simply by using the smaller signed long maximum instead of
682 * the unsigned long maximum.
684 * If ints have 32 bits, then the maximum value for any timeout in
685 * 10ms ticks is 248 days.
688 tvtohz_high(struct timeval
*tv
)
705 printf("tvotohz: negative time difference %ld sec %ld usec\n",
709 } else if (sec
<= INT_MAX
/ hz
) {
710 ticks
= (int)(sec
* hz
+
711 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
719 * Compute number of ticks for the specified amount of time, erroring on
720 * the side of it being too low to ensure that sleeping the returned number
721 * of ticks will not result in a late return.
723 * The supplied timeval may not be negative and should be normalized. A
724 * return value of 0 is possible if the timeval converts to less then
727 * If ints have 32 bits, then the maximum value for any timeout in
728 * 10ms ticks is 248 days.
731 tvtohz_low(struct timeval
*tv
)
737 if (sec
<= INT_MAX
/ hz
)
738 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
746 * Start profiling on a process.
748 * Kernel profiling passes proc0 which never exits and hence
749 * keeps the profile clock running constantly.
752 startprofclock(struct proc
*p
)
754 if ((p
->p_flag
& P_PROFIL
) == 0) {
755 p
->p_flag
|= P_PROFIL
;
757 if (++profprocs
== 1 && stathz
!= 0) {
760 setstatclockrate(profhz
);
768 * Stop profiling on a process.
771 stopprofclock(struct proc
*p
)
773 if (p
->p_flag
& P_PROFIL
) {
774 p
->p_flag
&= ~P_PROFIL
;
776 if (--profprocs
== 0 && stathz
!= 0) {
779 setstatclockrate(stathz
);
787 * Return information about system clocks.
790 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
792 struct kinfo_clockinfo clkinfo
;
794 * Construct clockinfo structure.
797 clkinfo
.ci_tick
= tick
;
798 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
799 clkinfo
.ci_profhz
= profhz
;
800 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
801 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
804 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
805 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
808 * We have eight functions for looking at the clock, four for
809 * microseconds and four for nanoseconds. For each there is fast
810 * but less precise version "get{nano|micro}[up]time" which will
811 * return a time which is up to 1/HZ previous to the call, whereas
812 * the raw version "{nano|micro}[up]time" will return a timestamp
813 * which is as precise as possible. The "up" variants return the
814 * time relative to system boot, these are well suited for time
815 * interval measurements.
817 * Each cpu independantly maintains the current time of day, so all
818 * we need to do to protect ourselves from changes is to do a loop
819 * check on the seconds field changing out from under us.
821 * The system timer maintains a 32 bit count and due to various issues
822 * it is possible for the calculated delta to occassionally exceed
823 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
824 * multiplication can easily overflow, so we deal with the case. For
825 * uniformity we deal with the case in the usec case too.
828 getmicrouptime(struct timeval
*tvp
)
830 struct globaldata
*gd
= mycpu
;
834 tvp
->tv_sec
= gd
->gd_time_seconds
;
835 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
836 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
838 if (delta
>= sys_cputimer
->freq
) {
839 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
840 delta
%= sys_cputimer
->freq
;
842 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
843 if (tvp
->tv_usec
>= 1000000) {
844 tvp
->tv_usec
-= 1000000;
850 getnanouptime(struct timespec
*tsp
)
852 struct globaldata
*gd
= mycpu
;
856 tsp
->tv_sec
= gd
->gd_time_seconds
;
857 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
858 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
860 if (delta
>= sys_cputimer
->freq
) {
861 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
862 delta
%= sys_cputimer
->freq
;
864 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
868 microuptime(struct timeval
*tvp
)
870 struct globaldata
*gd
= mycpu
;
874 tvp
->tv_sec
= gd
->gd_time_seconds
;
875 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
876 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
878 if (delta
>= sys_cputimer
->freq
) {
879 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
880 delta
%= sys_cputimer
->freq
;
882 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
886 nanouptime(struct timespec
*tsp
)
888 struct globaldata
*gd
= mycpu
;
892 tsp
->tv_sec
= gd
->gd_time_seconds
;
893 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
894 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
896 if (delta
>= sys_cputimer
->freq
) {
897 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
898 delta
%= sys_cputimer
->freq
;
900 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
908 getmicrotime(struct timeval
*tvp
)
910 struct globaldata
*gd
= mycpu
;
915 tvp
->tv_sec
= gd
->gd_time_seconds
;
916 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
917 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
919 if (delta
>= sys_cputimer
->freq
) {
920 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
921 delta
%= sys_cputimer
->freq
;
923 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
925 bt
= &basetime
[basetime_index
];
926 tvp
->tv_sec
+= bt
->tv_sec
;
927 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
928 while (tvp
->tv_usec
>= 1000000) {
929 tvp
->tv_usec
-= 1000000;
935 getnanotime(struct timespec
*tsp
)
937 struct globaldata
*gd
= mycpu
;
942 tsp
->tv_sec
= gd
->gd_time_seconds
;
943 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
944 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
946 if (delta
>= sys_cputimer
->freq
) {
947 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
948 delta
%= sys_cputimer
->freq
;
950 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
952 bt
= &basetime
[basetime_index
];
953 tsp
->tv_sec
+= bt
->tv_sec
;
954 tsp
->tv_nsec
+= bt
->tv_nsec
;
955 while (tsp
->tv_nsec
>= 1000000000) {
956 tsp
->tv_nsec
-= 1000000000;
962 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
964 struct globaldata
*gd
= mycpu
;
968 tsp
->tv_sec
= gd
->gd_time_seconds
;
969 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
970 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
972 if (delta
>= sys_cputimer
->freq
) {
973 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
974 delta
%= sys_cputimer
->freq
;
976 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
978 tsp
->tv_sec
+= nbt
->tv_sec
;
979 tsp
->tv_nsec
+= nbt
->tv_nsec
;
980 while (tsp
->tv_nsec
>= 1000000000) {
981 tsp
->tv_nsec
-= 1000000000;
988 microtime(struct timeval
*tvp
)
990 struct globaldata
*gd
= mycpu
;
995 tvp
->tv_sec
= gd
->gd_time_seconds
;
996 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
997 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
999 if (delta
>= sys_cputimer
->freq
) {
1000 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1001 delta
%= sys_cputimer
->freq
;
1003 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1005 bt
= &basetime
[basetime_index
];
1006 tvp
->tv_sec
+= bt
->tv_sec
;
1007 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1008 while (tvp
->tv_usec
>= 1000000) {
1009 tvp
->tv_usec
-= 1000000;
1015 nanotime(struct timespec
*tsp
)
1017 struct globaldata
*gd
= mycpu
;
1018 struct timespec
*bt
;
1022 tsp
->tv_sec
= gd
->gd_time_seconds
;
1023 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1024 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1026 if (delta
>= sys_cputimer
->freq
) {
1027 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1028 delta
%= sys_cputimer
->freq
;
1030 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1032 bt
= &basetime
[basetime_index
];
1033 tsp
->tv_sec
+= bt
->tv_sec
;
1034 tsp
->tv_nsec
+= bt
->tv_nsec
;
1035 while (tsp
->tv_nsec
>= 1000000000) {
1036 tsp
->tv_nsec
-= 1000000000;
1042 * note: this is not exactly synchronized with real time. To do that we
1043 * would have to do what microtime does and check for a nanoseconds overflow.
1046 get_approximate_time_t(void)
1048 struct globaldata
*gd
= mycpu
;
1049 struct timespec
*bt
;
1051 bt
= &basetime
[basetime_index
];
1052 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1056 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1059 struct pps_fetch_args
*fapi
;
1061 struct pps_kcbind_args
*kapi
;
1065 case PPS_IOC_CREATE
:
1067 case PPS_IOC_DESTROY
:
1069 case PPS_IOC_SETPARAMS
:
1070 app
= (pps_params_t
*)data
;
1071 if (app
->mode
& ~pps
->ppscap
)
1073 pps
->ppsparam
= *app
;
1075 case PPS_IOC_GETPARAMS
:
1076 app
= (pps_params_t
*)data
;
1077 *app
= pps
->ppsparam
;
1078 app
->api_version
= PPS_API_VERS_1
;
1080 case PPS_IOC_GETCAP
:
1081 *(int*)data
= pps
->ppscap
;
1084 fapi
= (struct pps_fetch_args
*)data
;
1085 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1087 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1088 return (EOPNOTSUPP
);
1089 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1090 fapi
->pps_info_buf
= pps
->ppsinfo
;
1092 case PPS_IOC_KCBIND
:
1094 kapi
= (struct pps_kcbind_args
*)data
;
1095 /* XXX Only root should be able to do this */
1096 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1098 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1100 if (kapi
->edge
& ~pps
->ppscap
)
1102 pps
->kcmode
= kapi
->edge
;
1105 return (EOPNOTSUPP
);
1113 pps_init(struct pps_state
*pps
)
1115 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1116 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1117 pps
->ppscap
|= PPS_OFFSETASSERT
;
1118 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1119 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1123 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1125 struct globaldata
*gd
;
1126 struct timespec
*tsp
;
1127 struct timespec
*osp
;
1128 struct timespec
*bt
;
1141 /* Things would be easier with arrays... */
1142 if (event
== PPS_CAPTUREASSERT
) {
1143 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1144 osp
= &pps
->ppsparam
.assert_offset
;
1145 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1146 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1147 pcount
= &pps
->ppscount
[0];
1148 pseq
= &pps
->ppsinfo
.assert_sequence
;
1150 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1151 osp
= &pps
->ppsparam
.clear_offset
;
1152 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1153 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1154 pcount
= &pps
->ppscount
[1];
1155 pseq
= &pps
->ppsinfo
.clear_sequence
;
1158 /* Nothing really happened */
1159 if (*pcount
== count
)
1165 ts
.tv_sec
= gd
->gd_time_seconds
;
1166 delta
= count
- gd
->gd_cpuclock_base
;
1167 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1169 if (delta
>= sys_cputimer
->freq
) {
1170 ts
.tv_sec
+= delta
/ sys_cputimer
->freq
;
1171 delta
%= sys_cputimer
->freq
;
1173 ts
.tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1174 bt
= &basetime
[basetime_index
];
1175 ts
.tv_sec
+= bt
->tv_sec
;
1176 ts
.tv_nsec
+= bt
->tv_nsec
;
1177 while (ts
.tv_nsec
>= 1000000000) {
1178 ts
.tv_nsec
-= 1000000000;
1186 timespecadd(tsp
, osp
);
1187 if (tsp
->tv_nsec
< 0) {
1188 tsp
->tv_nsec
+= 1000000000;
1194 /* magic, at its best... */
1195 tcount
= count
- pps
->ppscount
[2];
1196 pps
->ppscount
[2] = count
;
1197 if (tcount
>= sys_cputimer
->freq
) {
1198 delta
= (1000000000 * (tcount
/ sys_cputimer
->freq
) +
1199 sys_cputimer
->freq64_nsec
*
1200 (tcount
% sys_cputimer
->freq
)) >> 32;
1202 delta
= (sys_cputimer
->freq64_nsec
* tcount
) >> 32;
1204 hardpps(tsp
, delta
);