2 * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2002, 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68 * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
71 #include "opt_ipfw.h" /* for ipfw_fwd */
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 #include "opt_tcp_input.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
83 #include <sys/proc.h> /* for proc0 declaration */
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/syslog.h>
88 #include <sys/in_cksum.h>
90 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
91 #include <machine/stdarg.h>
94 #include <net/route.h>
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
100 #include <netinet/in_var.h>
101 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
119 #include <netinet/tcp_debug.h>
121 u_char tcp_saveipgen
[40]; /* the size must be of max ip header, now IPv6 */
122 struct tcphdr tcp_savetcp
;
126 #include <netproto/ipsec/ipsec.h>
127 #include <netproto/ipsec/ipsec6.h>
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netproto/key/key.h>
136 MALLOC_DEFINE(M_TSEGQ
, "tseg_qent", "TCP segment queue entry");
139 static int log_in_vain
= 0;
140 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
,
141 &log_in_vain
, 0, "Log all incoming TCP connections");
143 static int blackhole
= 0;
144 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, blackhole
, CTLFLAG_RW
,
145 &blackhole
, 0, "Do not send RST when dropping refused connections");
147 int tcp_delack_enabled
= 1;
148 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, delayed_ack
, CTLFLAG_RW
,
149 &tcp_delack_enabled
, 0,
150 "Delay ACK to try and piggyback it onto a data packet");
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin
= 0;
154 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, drop_synfin
, CTLFLAG_RW
,
155 &drop_synfin
, 0, "Drop TCP packets with SYN+FIN set");
158 static int tcp_do_limitedtransmit
= 1;
159 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, limitedtransmit
, CTLFLAG_RW
,
160 &tcp_do_limitedtransmit
, 0, "Enable RFC 3042 (Limited Transmit)");
162 static int tcp_do_early_retransmit
= 1;
163 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, earlyretransmit
, CTLFLAG_RW
,
164 &tcp_do_early_retransmit
, 0, "Early retransmit");
166 int tcp_aggregate_acks
= 1;
167 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, aggregate_acks
, CTLFLAG_RW
,
168 &tcp_aggregate_acks
, 0, "Aggregate built-up acks into one ack");
170 int tcp_do_rfc3390
= 1;
171 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, rfc3390
, CTLFLAG_RW
,
173 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
175 static int tcp_do_eifel_detect
= 1;
176 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, eifel
, CTLFLAG_RW
,
177 &tcp_do_eifel_detect
, 0, "Eifel detection algorithm (RFC 3522)");
179 static int tcp_do_abc
= 1;
180 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, abc
, CTLFLAG_RW
,
182 "TCP Appropriate Byte Counting (RFC 3465)");
185 * Define as tunable for easy testing with SACK on and off.
186 * Warning: do not change setting in the middle of an existing active TCP flow,
187 * else strange things might happen to that flow.
190 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack
, CTLFLAG_RW
,
191 &tcp_do_sack
, 0, "Enable SACK Algorithms");
193 int tcp_do_smartsack
= 1;
194 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, smartsack
, CTLFLAG_RW
,
195 &tcp_do_smartsack
, 0, "Enable Smart SACK Algorithms");
197 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, reass
, CTLFLAG_RW
, 0,
198 "TCP Segment Reassembly Queue");
200 int tcp_reass_maxseg
= 0;
201 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, maxsegments
, CTLFLAG_RD
,
202 &tcp_reass_maxseg
, 0,
203 "Global maximum number of TCP Segments in Reassembly Queue");
205 int tcp_reass_qsize
= 0;
206 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, cursegments
, CTLFLAG_RD
,
208 "Global number of TCP Segments currently in Reassembly Queue");
210 static int tcp_reass_overflows
= 0;
211 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, overflows
, CTLFLAG_RD
,
212 &tcp_reass_overflows
, 0,
213 "Global number of TCP Segment Reassembly Queue Overflows");
215 int tcp_do_autorcvbuf
= 1;
216 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_auto
, CTLFLAG_RW
,
217 &tcp_do_autorcvbuf
, 0, "Enable automatic receive buffer sizing");
219 int tcp_autorcvbuf_inc
= 16*1024;
220 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_inc
, CTLFLAG_RW
,
221 &tcp_autorcvbuf_inc
, 0,
222 "Incrementor step size of automatic receive buffer");
224 int tcp_autorcvbuf_max
= 2*1024*1024;
225 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_max
, CTLFLAG_RW
,
226 &tcp_autorcvbuf_max
, 0, "Max size of automatic receive buffer");
229 static void tcp_dooptions(struct tcpopt
*, u_char
*, int, boolean_t
);
230 static void tcp_pulloutofband(struct socket
*,
231 struct tcphdr
*, struct mbuf
*, int);
232 static int tcp_reass(struct tcpcb
*, struct tcphdr
*, int *,
234 static void tcp_xmit_timer(struct tcpcb
*, int);
235 static void tcp_newreno_partial_ack(struct tcpcb
*, struct tcphdr
*, int);
236 static void tcp_sack_rexmt(struct tcpcb
*, struct tcphdr
*);
238 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
240 #define ND6_HINT(tp) \
242 if ((tp) && (tp)->t_inpcb && \
243 ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
244 (tp)->t_inpcb->in6p_route.ro_rt) \
245 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
252 * Indicate whether this ack should be delayed. We can delay the ack if
253 * - delayed acks are enabled and
254 * - there is no delayed ack timer in progress and
255 * - our last ack wasn't a 0-sized window. We never want to delay
256 * the ack that opens up a 0-sized window.
258 #define DELAY_ACK(tp) \
259 (tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
260 !(tp->t_flags & TF_RXWIN0SENT))
262 #define acceptable_window_update(tp, th, tiwin) \
263 (SEQ_LT(tp->snd_wl1, th->th_seq) || \
264 (tp->snd_wl1 == th->th_seq && \
265 (SEQ_LT(tp->snd_wl2, th->th_ack) || \
266 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
269 tcp_reass(struct tcpcb
*tp
, struct tcphdr
*th
, int *tlenp
, struct mbuf
*m
)
272 struct tseg_qent
*p
= NULL
;
273 struct tseg_qent
*te
;
274 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
278 * Call with th == NULL after become established to
279 * force pre-ESTABLISHED data up to user socket.
285 * Limit the number of segments in the reassembly queue to prevent
286 * holding on to too many segments (and thus running out of mbufs).
287 * Make sure to let the missing segment through which caused this
288 * queue. Always keep one global queue entry spare to be able to
289 * process the missing segment.
291 if (th
->th_seq
!= tp
->rcv_nxt
&&
292 tcp_reass_qsize
+ 1 >= tcp_reass_maxseg
) {
293 tcp_reass_overflows
++;
294 tcpstat
.tcps_rcvmemdrop
++;
296 /* no SACK block to report */
297 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
301 /* Allocate a new queue entry. */
302 MALLOC(te
, struct tseg_qent
*, sizeof(struct tseg_qent
), M_TSEGQ
,
303 M_INTWAIT
| M_NULLOK
);
305 tcpstat
.tcps_rcvmemdrop
++;
307 /* no SACK block to report */
308 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
314 * Find a segment which begins after this one does.
316 LIST_FOREACH(q
, &tp
->t_segq
, tqe_q
) {
317 if (SEQ_GT(q
->tqe_th
->th_seq
, th
->th_seq
))
323 * If there is a preceding segment, it may provide some of
324 * our data already. If so, drop the data from the incoming
325 * segment. If it provides all of our data, drop us.
330 /* conversion to int (in i) handles seq wraparound */
331 i
= p
->tqe_th
->th_seq
+ p
->tqe_len
- th
->th_seq
;
332 if (i
> 0) { /* overlaps preceding segment */
333 tp
->t_flags
|= (TF_DUPSEG
| TF_ENCLOSESEG
);
334 /* enclosing block starts w/ preceding segment */
335 tp
->encloseblk
.rblk_start
= p
->tqe_th
->th_seq
;
337 /* preceding encloses incoming segment */
338 tp
->encloseblk
.rblk_end
= p
->tqe_th
->th_seq
+
340 tcpstat
.tcps_rcvduppack
++;
341 tcpstat
.tcps_rcvdupbyte
+= *tlenp
;
346 * Try to present any queued data
347 * at the left window edge to the user.
348 * This is needed after the 3-WHS
351 goto present
; /* ??? */
356 /* incoming segment end is enclosing block end */
357 tp
->encloseblk
.rblk_end
= th
->th_seq
+ *tlenp
+
358 ((th
->th_flags
& TH_FIN
) != 0);
359 /* trim end of reported D-SACK block */
360 tp
->reportblk
.rblk_end
= th
->th_seq
;
363 tcpstat
.tcps_rcvoopack
++;
364 tcpstat
.tcps_rcvoobyte
+= *tlenp
;
367 * While we overlap succeeding segments trim them or,
368 * if they are completely covered, dequeue them.
371 tcp_seq_diff_t i
= (th
->th_seq
+ *tlenp
) - q
->tqe_th
->th_seq
;
372 tcp_seq qend
= q
->tqe_th
->th_seq
+ q
->tqe_len
;
373 struct tseg_qent
*nq
;
377 if (!(tp
->t_flags
& TF_DUPSEG
)) { /* first time through */
378 tp
->t_flags
|= (TF_DUPSEG
| TF_ENCLOSESEG
);
379 tp
->encloseblk
= tp
->reportblk
;
380 /* report trailing duplicate D-SACK segment */
381 tp
->reportblk
.rblk_start
= q
->tqe_th
->th_seq
;
383 if ((tp
->t_flags
& TF_ENCLOSESEG
) &&
384 SEQ_GT(qend
, tp
->encloseblk
.rblk_end
)) {
385 /* extend enclosing block if one exists */
386 tp
->encloseblk
.rblk_end
= qend
;
388 if (i
< q
->tqe_len
) {
389 q
->tqe_th
->th_seq
+= i
;
395 nq
= LIST_NEXT(q
, tqe_q
);
396 LIST_REMOVE(q
, tqe_q
);
403 /* Insert the new segment queue entry into place. */
406 te
->tqe_len
= *tlenp
;
408 /* check if can coalesce with following segment */
409 if (q
!= NULL
&& (th
->th_seq
+ *tlenp
== q
->tqe_th
->th_seq
)) {
410 tcp_seq tend
= te
->tqe_th
->th_seq
+ te
->tqe_len
;
412 te
->tqe_len
+= q
->tqe_len
;
413 if (q
->tqe_th
->th_flags
& TH_FIN
)
414 te
->tqe_th
->th_flags
|= TH_FIN
;
415 m_cat(te
->tqe_m
, q
->tqe_m
);
416 tp
->encloseblk
.rblk_end
= tend
;
418 * When not reporting a duplicate segment, use
419 * the larger enclosing block as the SACK block.
421 if (!(tp
->t_flags
& TF_DUPSEG
))
422 tp
->reportblk
.rblk_end
= tend
;
423 LIST_REMOVE(q
, tqe_q
);
429 LIST_INSERT_HEAD(&tp
->t_segq
, te
, tqe_q
);
431 /* check if can coalesce with preceding segment */
432 if (p
->tqe_th
->th_seq
+ p
->tqe_len
== th
->th_seq
) {
433 p
->tqe_len
+= te
->tqe_len
;
434 m_cat(p
->tqe_m
, te
->tqe_m
);
435 tp
->encloseblk
.rblk_start
= p
->tqe_th
->th_seq
;
437 * When not reporting a duplicate segment, use
438 * the larger enclosing block as the SACK block.
440 if (!(tp
->t_flags
& TF_DUPSEG
))
441 tp
->reportblk
.rblk_start
= p
->tqe_th
->th_seq
;
445 LIST_INSERT_AFTER(p
, te
, tqe_q
);
450 * Present data to user, advancing rcv_nxt through
451 * completed sequence space.
453 if (!TCPS_HAVEESTABLISHED(tp
->t_state
))
455 q
= LIST_FIRST(&tp
->t_segq
);
456 if (q
== NULL
|| q
->tqe_th
->th_seq
!= tp
->rcv_nxt
)
458 tp
->rcv_nxt
+= q
->tqe_len
;
459 if (!(tp
->t_flags
& TF_DUPSEG
)) {
460 /* no SACK block to report since ACK advanced */
461 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
463 /* no enclosing block to report since ACK advanced */
464 tp
->t_flags
&= ~TF_ENCLOSESEG
;
465 flags
= q
->tqe_th
->th_flags
& TH_FIN
;
466 LIST_REMOVE(q
, tqe_q
);
467 KASSERT(LIST_EMPTY(&tp
->t_segq
) ||
468 LIST_FIRST(&tp
->t_segq
)->tqe_th
->th_seq
!= tp
->rcv_nxt
,
469 ("segment not coalesced"));
470 if (so
->so_state
& SS_CANTRCVMORE
)
473 ssb_appendstream(&so
->so_rcv
, q
->tqe_m
);
482 * TCP input routine, follows pages 65-76 of the
483 * protocol specification dated September, 1981 very closely.
487 tcp6_input(struct mbuf
**mp
, int *offp
, int proto
)
489 struct mbuf
*m
= *mp
;
490 struct in6_ifaddr
*ia6
;
492 IP6_EXTHDR_CHECK(m
, *offp
, sizeof(struct tcphdr
), IPPROTO_DONE
);
495 * draft-itojun-ipv6-tcp-to-anycast
496 * better place to put this in?
498 ia6
= ip6_getdstifaddr(m
);
499 if (ia6
&& (ia6
->ia6_flags
& IN6_IFF_ANYCAST
)) {
502 ip6
= mtod(m
, struct ip6_hdr
*);
503 icmp6_error(m
, ICMP6_DST_UNREACH
, ICMP6_DST_UNREACH_ADDR
,
504 offsetof(struct ip6_hdr
, ip6_dst
));
505 return (IPPROTO_DONE
);
508 tcp_input(m
, *offp
, proto
);
509 return (IPPROTO_DONE
);
514 tcp_input(struct mbuf
*m
, ...)
519 struct ip
*ip
= NULL
;
521 struct inpcb
*inp
= NULL
;
526 struct tcpcb
*tp
= NULL
;
528 struct socket
*so
= 0;
530 boolean_t ourfinisacked
, needoutput
= FALSE
;
533 struct tcpopt to
; /* options in this segment */
534 struct rmxp_tao
*taop
; /* pointer to our TAO cache entry */
535 struct rmxp_tao tao_noncached
; /* in case there's no cached entry */
536 struct sockaddr_in
*next_hop
= NULL
;
537 int rstreason
; /* For badport_bandlim accounting purposes */
539 struct ip6_hdr
*ip6
= NULL
;
543 const boolean_t isipv6
= FALSE
;
550 off0
= __va_arg(ap
, int);
551 proto
= __va_arg(ap
, int);
554 tcpstat
.tcps_rcvtotal
++;
556 if (m
->m_pkthdr
.fw_flags
& IPFORWARD_MBUF_TAGGED
) {
559 mtag
= m_tag_find(m
, PACKET_TAG_IPFORWARD
, NULL
);
560 KKASSERT(mtag
!= NULL
);
561 next_hop
= m_tag_data(mtag
);
565 isipv6
= (mtod(m
, struct ip
*)->ip_v
== 6) ? TRUE
: FALSE
;
569 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
570 ip6
= mtod(m
, struct ip6_hdr
*);
571 tlen
= (sizeof *ip6
) + ntohs(ip6
->ip6_plen
) - off0
;
572 if (in6_cksum(m
, IPPROTO_TCP
, off0
, tlen
)) {
573 tcpstat
.tcps_rcvbadsum
++;
576 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
579 * Be proactive about unspecified IPv6 address in source.
580 * As we use all-zero to indicate unbounded/unconnected pcb,
581 * unspecified IPv6 address can be used to confuse us.
583 * Note that packets with unspecified IPv6 destination is
584 * already dropped in ip6_input.
586 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
)) {
592 * Get IP and TCP header together in first mbuf.
593 * Note: IP leaves IP header in first mbuf.
595 if (off0
> sizeof(struct ip
)) {
597 off0
= sizeof(struct ip
);
599 /* already checked and pulled up in ip_demux() */
600 KASSERT(m
->m_len
>= sizeof(struct tcpiphdr
),
601 ("TCP header not in one mbuf: m->m_len %d", m
->m_len
));
602 ip
= mtod(m
, struct ip
*);
603 ipov
= (struct ipovly
*)ip
;
604 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
607 if (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) {
608 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
)
609 th
->th_sum
= m
->m_pkthdr
.csum_data
;
611 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
,
613 htonl(m
->m_pkthdr
.csum_data
+
616 th
->th_sum
^= 0xffff;
619 * Checksum extended TCP header and data.
621 len
= sizeof(struct ip
) + tlen
;
622 bzero(ipov
->ih_x1
, sizeof ipov
->ih_x1
);
623 ipov
->ih_len
= (u_short
)tlen
;
624 ipov
->ih_len
= htons(ipov
->ih_len
);
625 th
->th_sum
= in_cksum(m
, len
);
628 tcpstat
.tcps_rcvbadsum
++;
632 /* Re-initialization for later version check */
633 ip
->ip_v
= IPVERSION
;
638 * Check that TCP offset makes sense,
639 * pull out TCP options and adjust length. XXX
641 off
= th
->th_off
<< 2;
642 /* already checked and pulled up in ip_demux() */
643 KASSERT(off
>= sizeof(struct tcphdr
) && off
<= tlen
,
644 ("bad TCP data offset %d (tlen %d)", off
, tlen
));
645 tlen
-= off
; /* tlen is used instead of ti->ti_len */
646 if (off
> sizeof(struct tcphdr
)) {
648 IP6_EXTHDR_CHECK(m
, off0
, off
, );
649 ip6
= mtod(m
, struct ip6_hdr
*);
650 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
652 /* already pulled up in ip_demux() */
653 KASSERT(m
->m_len
>= sizeof(struct ip
) + off
,
654 ("TCP header and options not in one mbuf: "
655 "m_len %d, off %d", m
->m_len
, off
));
657 optlen
= off
- sizeof(struct tcphdr
);
658 optp
= (u_char
*)(th
+ 1);
660 thflags
= th
->th_flags
;
662 #ifdef TCP_DROP_SYNFIN
664 * If the drop_synfin option is enabled, drop all packets with
665 * both the SYN and FIN bits set. This prevents e.g. nmap from
666 * identifying the TCP/IP stack.
668 * This is a violation of the TCP specification.
670 if (drop_synfin
&& (thflags
& (TH_SYN
| TH_FIN
)) == (TH_SYN
| TH_FIN
))
675 * Convert TCP protocol specific fields to host format.
677 th
->th_seq
= ntohl(th
->th_seq
);
678 th
->th_ack
= ntohl(th
->th_ack
);
679 th
->th_win
= ntohs(th
->th_win
);
680 th
->th_urp
= ntohs(th
->th_urp
);
683 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
684 * until after ip6_savecontrol() is called and before other functions
685 * which don't want those proto headers.
686 * Because ip6_savecontrol() is going to parse the mbuf to
687 * search for data to be passed up to user-land, it wants mbuf
688 * parameters to be unchanged.
689 * XXX: the call of ip6_savecontrol() has been obsoleted based on
690 * latest version of the advanced API (20020110).
692 drop_hdrlen
= off0
+ off
;
695 * Locate pcb for segment.
698 /* IPFIREWALL_FORWARD section */
699 if (next_hop
!= NULL
&& !isipv6
) { /* IPv6 support is not there yet */
701 * Transparently forwarded. Pretend to be the destination.
702 * already got one like this?
704 cpu
= mycpu
->gd_cpuid
;
705 inp
= in_pcblookup_hash(&tcbinfo
[cpu
],
706 ip
->ip_src
, th
->th_sport
,
707 ip
->ip_dst
, th
->th_dport
,
708 0, m
->m_pkthdr
.rcvif
);
711 * It's new. Try to find the ambushing socket.
715 * The rest of the ipfw code stores the port in
717 * (The IP address is still in network order.)
719 in_port_t dport
= next_hop
->sin_port
?
720 htons(next_hop
->sin_port
) :
723 cpu
= tcp_addrcpu(ip
->ip_src
.s_addr
, th
->th_sport
,
724 next_hop
->sin_addr
.s_addr
, dport
);
725 inp
= in_pcblookup_hash(&tcbinfo
[cpu
],
726 ip
->ip_src
, th
->th_sport
,
727 next_hop
->sin_addr
, dport
,
728 1, m
->m_pkthdr
.rcvif
);
732 inp
= in6_pcblookup_hash(&tcbinfo
[0],
733 &ip6
->ip6_src
, th
->th_sport
,
734 &ip6
->ip6_dst
, th
->th_dport
,
735 1, m
->m_pkthdr
.rcvif
);
737 cpu
= mycpu
->gd_cpuid
;
738 inp
= in_pcblookup_hash(&tcbinfo
[cpu
],
739 ip
->ip_src
, th
->th_sport
,
740 ip
->ip_dst
, th
->th_dport
,
741 1, m
->m_pkthdr
.rcvif
);
746 * If the state is CLOSED (i.e., TCB does not exist) then
747 * all data in the incoming segment is discarded.
748 * If the TCB exists but is in CLOSED state, it is embryonic,
749 * but should either do a listen or a connect soon.
754 char dbuf
[INET6_ADDRSTRLEN
+2], sbuf
[INET6_ADDRSTRLEN
+2];
756 char dbuf
[sizeof "aaa.bbb.ccc.ddd"];
757 char sbuf
[sizeof "aaa.bbb.ccc.ddd"];
761 strcat(dbuf
, ip6_sprintf(&ip6
->ip6_dst
));
764 strcat(sbuf
, ip6_sprintf(&ip6
->ip6_src
));
767 strcpy(dbuf
, inet_ntoa(ip
->ip_dst
));
768 strcpy(sbuf
, inet_ntoa(ip
->ip_src
));
770 switch (log_in_vain
) {
772 if (!(thflags
& TH_SYN
))
776 "Connection attempt to TCP %s:%d "
777 "from %s:%d flags:0x%02x\n",
778 dbuf
, ntohs(th
->th_dport
), sbuf
,
779 ntohs(th
->th_sport
), thflags
);
788 if (thflags
& TH_SYN
)
797 rstreason
= BANDLIM_RST_CLOSEDPORT
;
803 if (ipsec6_in_reject_so(m
, inp
->inp_socket
)) {
804 ipsec6stat
.in_polvio
++;
808 if (ipsec4_in_reject_so(m
, inp
->inp_socket
)) {
809 ipsecstat
.in_polvio
++;
816 if (ipsec6_in_reject(m
, inp
))
819 if (ipsec4_in_reject(m
, inp
))
823 /* Check the minimum TTL for socket. */
825 if ((isipv6
? ip6
->ip6_hlim
: ip
->ip_ttl
) < inp
->inp_ip_minttl
)
831 rstreason
= BANDLIM_RST_CLOSEDPORT
;
834 if (tp
->t_state
<= TCPS_CLOSED
)
837 /* Unscale the window into a 32-bit value. */
838 if (!(thflags
& TH_SYN
))
839 tiwin
= th
->th_win
<< tp
->snd_scale
;
843 so
= inp
->inp_socket
;
846 if (so
->so_options
& SO_DEBUG
) {
847 ostate
= tp
->t_state
;
849 bcopy(ip6
, tcp_saveipgen
, sizeof(*ip6
));
851 bcopy(ip
, tcp_saveipgen
, sizeof(*ip
));
856 bzero(&to
, sizeof to
);
858 if (so
->so_options
& SO_ACCEPTCONN
) {
859 struct in_conninfo inc
;
862 inc
.inc_isipv6
= (isipv6
== TRUE
);
865 inc
.inc6_faddr
= ip6
->ip6_src
;
866 inc
.inc6_laddr
= ip6
->ip6_dst
;
867 inc
.inc6_route
.ro_rt
= NULL
; /* XXX */
869 inc
.inc_faddr
= ip
->ip_src
;
870 inc
.inc_laddr
= ip
->ip_dst
;
871 inc
.inc_route
.ro_rt
= NULL
; /* XXX */
873 inc
.inc_fport
= th
->th_sport
;
874 inc
.inc_lport
= th
->th_dport
;
877 * If the state is LISTEN then ignore segment if it contains
878 * a RST. If the segment contains an ACK then it is bad and
879 * send a RST. If it does not contain a SYN then it is not
880 * interesting; drop it.
882 * If the state is SYN_RECEIVED (syncache) and seg contains
883 * an ACK, but not for our SYN/ACK, send a RST. If the seg
884 * contains a RST, check the sequence number to see if it
885 * is a valid reset segment.
887 if ((thflags
& (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
) {
888 if ((thflags
& (TH_RST
| TH_ACK
| TH_SYN
)) == TH_ACK
) {
889 if (!syncache_expand(&inc
, th
, &so
, m
)) {
891 * No syncache entry, or ACK was not
892 * for our SYN/ACK. Send a RST.
894 tcpstat
.tcps_badsyn
++;
895 rstreason
= BANDLIM_RST_OPENPORT
;
900 * Could not complete 3-way handshake,
901 * connection is being closed down, and
902 * syncache will free mbuf.
906 * Socket is created in state SYN_RECEIVED.
907 * Continue processing segment.
912 * This is what would have happened in
913 * tcp_output() when the SYN,ACK was sent.
915 tp
->snd_up
= tp
->snd_una
;
916 tp
->snd_max
= tp
->snd_nxt
= tp
->iss
+ 1;
917 tp
->last_ack_sent
= tp
->rcv_nxt
;
919 * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
920 * until the _second_ ACK is received:
921 * rcv SYN (set wscale opts) --> send SYN/ACK, set snd_wnd = window.
922 * rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
923 * move to ESTAB, set snd_wnd to tiwin.
925 tp
->snd_wnd
= tiwin
; /* unscaled */
928 if (thflags
& TH_RST
) {
929 syncache_chkrst(&inc
, th
);
932 if (thflags
& TH_ACK
) {
933 syncache_badack(&inc
);
934 tcpstat
.tcps_badsyn
++;
935 rstreason
= BANDLIM_RST_OPENPORT
;
942 * Segment's flags are (SYN) or (SYN | FIN).
946 * If deprecated address is forbidden,
947 * we do not accept SYN to deprecated interface
948 * address to prevent any new inbound connection from
949 * getting established.
950 * When we do not accept SYN, we send a TCP RST,
951 * with deprecated source address (instead of dropping
952 * it). We compromise it as it is much better for peer
953 * to send a RST, and RST will be the final packet
956 * If we do not forbid deprecated addresses, we accept
957 * the SYN packet. RFC2462 does not suggest dropping
959 * If we decipher RFC2462 5.5.4, it says like this:
960 * 1. use of deprecated addr with existing
961 * communication is okay - "SHOULD continue to be
963 * 2. use of it with new communication:
964 * (2a) "SHOULD NOT be used if alternate address
965 * with sufficient scope is available"
966 * (2b) nothing mentioned otherwise.
967 * Here we fall into (2b) case as we have no choice in
968 * our source address selection - we must obey the peer.
970 * The wording in RFC2462 is confusing, and there are
971 * multiple description text for deprecated address
972 * handling - worse, they are not exactly the same.
973 * I believe 5.5.4 is the best one, so we follow 5.5.4.
975 if (isipv6
&& !ip6_use_deprecated
) {
976 struct in6_ifaddr
*ia6
;
978 if ((ia6
= ip6_getdstifaddr(m
)) &&
979 (ia6
->ia6_flags
& IN6_IFF_DEPRECATED
)) {
981 rstreason
= BANDLIM_RST_OPENPORT
;
987 * If it is from this socket, drop it, it must be forged.
988 * Don't bother responding if the destination was a broadcast.
990 if (th
->th_dport
== th
->th_sport
) {
992 if (IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
,
996 if (ip
->ip_dst
.s_addr
== ip
->ip_src
.s_addr
)
1001 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1003 * Note that it is quite possible to receive unicast
1004 * link-layer packets with a broadcast IP address. Use
1005 * in_broadcast() to find them.
1007 if (m
->m_flags
& (M_BCAST
| M_MCAST
))
1010 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1011 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
1014 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
1015 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
1016 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
1017 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
1021 * SYN appears to be valid; create compressed TCP state
1022 * for syncache, or perform t/tcp connection.
1024 if (so
->so_qlen
<= so
->so_qlimit
) {
1025 tcp_dooptions(&to
, optp
, optlen
, TRUE
);
1026 if (!syncache_add(&inc
, &to
, th
, &so
, m
))
1030 * Entry added to syncache, mbuf used to
1031 * send SYN,ACK packet.
1035 * Segment passed TAO tests.
1038 tp
= intotcpcb(inp
);
1039 tp
->snd_wnd
= tiwin
;
1040 tp
->t_starttime
= ticks
;
1041 tp
->t_state
= TCPS_ESTABLISHED
;
1044 * If there is a FIN, or if there is data and the
1045 * connection is local, then delay SYN,ACK(SYN) in
1046 * the hope of piggy-backing it on a response
1047 * segment. Otherwise must send ACK now in case
1048 * the other side is slow starting.
1050 if (DELAY_ACK(tp
) &&
1051 ((thflags
& TH_FIN
) ||
1053 ((isipv6
&& in6_localaddr(&inp
->in6p_faddr
)) ||
1054 (!isipv6
&& in_localaddr(inp
->inp_faddr
)))))) {
1055 tcp_callout_reset(tp
, tp
->tt_delack
,
1056 tcp_delacktime
, tcp_timer_delack
);
1057 tp
->t_flags
|= TF_NEEDSYN
;
1059 tp
->t_flags
|= (TF_ACKNOW
| TF_NEEDSYN
);
1062 tcpstat
.tcps_connects
++;
1070 /* should not happen - syncache should pick up these connections */
1071 KASSERT(tp
->t_state
!= TCPS_LISTEN
, ("tcp_input: TCPS_LISTEN state"));
1074 * This is the second part of the MSS DoS prevention code (after
1075 * minmss on the sending side) and it deals with too many too small
1076 * tcp packets in a too short timeframe (1 second).
1078 * XXX Removed. This code was crap. It does not scale to network
1079 * speed, and default values break NFS. Gone.
1084 * Segment received on connection.
1086 * Reset idle time and keep-alive timer. Don't waste time if less
1087 * then a second has elapsed. Only update t_rcvtime for non-SYN
1090 * Handle the case where one side thinks the connection is established
1091 * but the other side has, say, rebooted without cleaning out the
1092 * connection. The SYNs could be construed as an attack and wind
1093 * up ignored, but in case it isn't an attack we can validate the
1094 * connection by forcing a keepalive.
1096 if (TCPS_HAVEESTABLISHED(tp
->t_state
) && (ticks
- tp
->t_rcvtime
) > hz
) {
1097 if ((thflags
& (TH_SYN
| TH_ACK
)) == TH_SYN
) {
1098 tp
->t_flags
|= TF_KEEPALIVE
;
1099 tcp_callout_reset(tp
, tp
->tt_keep
, hz
/ 2,
1102 tp
->t_rcvtime
= ticks
;
1103 tp
->t_flags
&= ~TF_KEEPALIVE
;
1104 tcp_callout_reset(tp
, tp
->tt_keep
, tcp_keepidle
,
1111 * XXX this is tradtitional behavior, may need to be cleaned up.
1113 tcp_dooptions(&to
, optp
, optlen
, (thflags
& TH_SYN
) != 0);
1114 if (tp
->t_state
== TCPS_SYN_SENT
&& (thflags
& TH_SYN
)) {
1115 if (to
.to_flags
& TOF_SCALE
) {
1116 tp
->t_flags
|= TF_RCVD_SCALE
;
1117 tp
->requested_s_scale
= to
.to_requested_s_scale
;
1119 if (to
.to_flags
& TOF_TS
) {
1120 tp
->t_flags
|= TF_RCVD_TSTMP
;
1121 tp
->ts_recent
= to
.to_tsval
;
1122 tp
->ts_recent_age
= ticks
;
1124 if (to
.to_flags
& (TOF_CC
| TOF_CCNEW
))
1125 tp
->t_flags
|= TF_RCVD_CC
;
1126 if (to
.to_flags
& TOF_MSS
)
1127 tcp_mss(tp
, to
.to_mss
);
1129 * Only set the TF_SACK_PERMITTED per-connection flag
1130 * if we got a SACK_PERMITTED option from the other side
1131 * and the global tcp_do_sack variable is true.
1133 if (tcp_do_sack
&& (to
.to_flags
& TOF_SACK_PERMITTED
))
1134 tp
->t_flags
|= TF_SACK_PERMITTED
;
1138 * Header prediction: check for the two common cases
1139 * of a uni-directional data xfer. If the packet has
1140 * no control flags, is in-sequence, the window didn't
1141 * change and we're not retransmitting, it's a
1142 * candidate. If the length is zero and the ack moved
1143 * forward, we're the sender side of the xfer. Just
1144 * free the data acked & wake any higher level process
1145 * that was blocked waiting for space. If the length
1146 * is non-zero and the ack didn't move, we're the
1147 * receiver side. If we're getting packets in-order
1148 * (the reassembly queue is empty), add the data to
1149 * the socket buffer and note that we need a delayed ack.
1150 * Make sure that the hidden state-flags are also off.
1151 * Since we check for TCPS_ESTABLISHED above, it can only
1154 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1155 (thflags
& (TH_SYN
|TH_FIN
|TH_RST
|TH_URG
|TH_ACK
)) == TH_ACK
&&
1156 !(tp
->t_flags
& (TF_NEEDSYN
| TF_NEEDFIN
)) &&
1157 (!(to
.to_flags
& TOF_TS
) ||
1158 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
1160 * Using the CC option is compulsory if once started:
1161 * the segment is OK if no T/TCP was negotiated or
1162 * if the segment has a CC option equal to CCrecv
1164 ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) != (TF_REQ_CC
|TF_RCVD_CC
) ||
1165 ((to
.to_flags
& TOF_CC
) && to
.to_cc
== tp
->cc_recv
)) &&
1166 th
->th_seq
== tp
->rcv_nxt
&&
1167 tp
->snd_nxt
== tp
->snd_max
) {
1170 * If last ACK falls within this segment's sequence numbers,
1171 * record the timestamp.
1172 * NOTE that the test is modified according to the latest
1173 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1175 if ((to
.to_flags
& TOF_TS
) &&
1176 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1177 tp
->ts_recent_age
= ticks
;
1178 tp
->ts_recent
= to
.to_tsval
;
1182 if (SEQ_GT(th
->th_ack
, tp
->snd_una
) &&
1183 SEQ_LEQ(th
->th_ack
, tp
->snd_max
) &&
1184 tp
->snd_cwnd
>= tp
->snd_wnd
&&
1185 !IN_FASTRECOVERY(tp
)) {
1187 * This is a pure ack for outstanding data.
1189 ++tcpstat
.tcps_predack
;
1191 * "bad retransmit" recovery
1193 * If Eifel detection applies, then
1194 * it is deterministic, so use it
1195 * unconditionally over the old heuristic.
1196 * Otherwise, fall back to the old heuristic.
1198 if (tcp_do_eifel_detect
&&
1199 (to
.to_flags
& TOF_TS
) && to
.to_tsecr
&&
1200 (tp
->t_flags
& TF_FIRSTACCACK
)) {
1201 /* Eifel detection applicable. */
1202 if (to
.to_tsecr
< tp
->t_rexmtTS
) {
1203 tcp_revert_congestion_state(tp
);
1204 ++tcpstat
.tcps_eifeldetected
;
1206 } else if (tp
->t_rxtshift
== 1 &&
1207 ticks
< tp
->t_badrxtwin
) {
1208 tcp_revert_congestion_state(tp
);
1209 ++tcpstat
.tcps_rttdetected
;
1211 tp
->t_flags
&= ~(TF_FIRSTACCACK
|
1212 TF_FASTREXMT
| TF_EARLYREXMT
);
1214 * Recalculate the retransmit timer / rtt.
1216 * Some machines (certain windows boxes)
1217 * send broken timestamp replies during the
1218 * SYN+ACK phase, ignore timestamps of 0.
1220 if ((to
.to_flags
& TOF_TS
) && to
.to_tsecr
) {
1222 ticks
- to
.to_tsecr
+ 1);
1223 } else if (tp
->t_rtttime
&&
1224 SEQ_GT(th
->th_ack
, tp
->t_rtseq
)) {
1226 ticks
- tp
->t_rtttime
);
1228 tcp_xmit_bandwidth_limit(tp
, th
->th_ack
);
1229 acked
= th
->th_ack
- tp
->snd_una
;
1230 tcpstat
.tcps_rcvackpack
++;
1231 tcpstat
.tcps_rcvackbyte
+= acked
;
1232 sbdrop(&so
->so_snd
.sb
, acked
);
1233 tp
->snd_recover
= th
->th_ack
- 1;
1234 tp
->snd_una
= th
->th_ack
;
1237 * Update window information.
1239 if (tiwin
!= tp
->snd_wnd
&&
1240 acceptable_window_update(tp
, th
, tiwin
)) {
1241 /* keep track of pure window updates */
1242 if (tp
->snd_wl2
== th
->th_ack
&&
1243 tiwin
> tp
->snd_wnd
)
1244 tcpstat
.tcps_rcvwinupd
++;
1245 tp
->snd_wnd
= tiwin
;
1246 tp
->snd_wl1
= th
->th_seq
;
1247 tp
->snd_wl2
= th
->th_ack
;
1248 if (tp
->snd_wnd
> tp
->max_sndwnd
)
1249 tp
->max_sndwnd
= tp
->snd_wnd
;
1252 ND6_HINT(tp
); /* some progress has been done */
1254 * If all outstanding data are acked, stop
1255 * retransmit timer, otherwise restart timer
1256 * using current (possibly backed-off) value.
1257 * If process is waiting for space,
1258 * wakeup/selwakeup/signal. If data
1259 * are ready to send, let tcp_output
1260 * decide between more output or persist.
1262 if (tp
->snd_una
== tp
->snd_max
) {
1263 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1264 } else if (!tcp_callout_active(tp
,
1266 tcp_callout_reset(tp
, tp
->tt_rexmt
,
1267 tp
->t_rxtcur
, tcp_timer_rexmt
);
1270 if (so
->so_snd
.ssb_cc
> 0)
1274 } else if (tiwin
== tp
->snd_wnd
&&
1275 th
->th_ack
== tp
->snd_una
&&
1276 LIST_EMPTY(&tp
->t_segq
) &&
1277 tlen
<= ssb_space(&so
->so_rcv
)) {
1278 u_long newsize
= 0; /* automatic sockbuf scaling */
1280 * This is a pure, in-sequence data packet
1281 * with nothing on the reassembly queue and
1282 * we have enough buffer space to take it.
1284 ++tcpstat
.tcps_preddat
;
1285 tp
->rcv_nxt
+= tlen
;
1286 tcpstat
.tcps_rcvpack
++;
1287 tcpstat
.tcps_rcvbyte
+= tlen
;
1288 ND6_HINT(tp
); /* some progress has been done */
1290 * Automatic sizing of receive socket buffer. Often the send
1291 * buffer size is not optimally adjusted to the actual network
1292 * conditions at hand (delay bandwidth product). Setting the
1293 * buffer size too small limits throughput on links with high
1294 * bandwidth and high delay (eg. trans-continental/oceanic links).
1296 * On the receive side the socket buffer memory is only rarely
1297 * used to any significant extent. This allows us to be much
1298 * more aggressive in scaling the receive socket buffer. For
1299 * the case that the buffer space is actually used to a large
1300 * extent and we run out of kernel memory we can simply drop
1301 * the new segments; TCP on the sender will just retransmit it
1302 * later. Setting the buffer size too big may only consume too
1303 * much kernel memory if the application doesn't read() from
1304 * the socket or packet loss or reordering makes use of the
1307 * The criteria to step up the receive buffer one notch are:
1308 * 1. the number of bytes received during the time it takes
1309 * one timestamp to be reflected back to us (the RTT);
1310 * 2. received bytes per RTT is within seven eighth of the
1311 * current socket buffer size;
1312 * 3. receive buffer size has not hit maximal automatic size;
1314 * This algorithm does one step per RTT at most and only if
1315 * we receive a bulk stream w/o packet losses or reorderings.
1316 * Shrinking the buffer during idle times is not necessary as
1317 * it doesn't consume any memory when idle.
1319 * TODO: Only step up if the application is actually serving
1320 * the buffer to better manage the socket buffer resources.
1322 if (tcp_do_autorcvbuf
&&
1324 (so
->so_rcv
.ssb_flags
& SSB_AUTOSIZE
)) {
1325 if (to
.to_tsecr
> tp
->rfbuf_ts
&&
1326 to
.to_tsecr
- tp
->rfbuf_ts
< hz
) {
1328 (so
->so_rcv
.ssb_hiwat
/ 8 * 7) &&
1329 so
->so_rcv
.ssb_hiwat
<
1330 tcp_autorcvbuf_max
) {
1332 ulmin(so
->so_rcv
.ssb_hiwat
+
1334 tcp_autorcvbuf_max
);
1336 /* Start over with next RTT. */
1340 tp
->rfbuf_cnt
+= tlen
; /* add up */
1343 * Add data to socket buffer.
1345 if (so
->so_state
& SS_CANTRCVMORE
) {
1349 * Set new socket buffer size, give up when
1352 * Adjusting the size can mess up ACK
1353 * sequencing when pure window updates are
1354 * being avoided (which is the default),
1358 tp
->t_flags
|= TF_RXRESIZED
;
1359 if (!ssb_reserve(&so
->so_rcv
, newsize
,
1361 so
->so_rcv
.ssb_flags
&= ~SSB_AUTOSIZE
;
1364 (TCP_MAXWIN
<< tp
->rcv_scale
)) {
1365 so
->so_rcv
.ssb_flags
&= ~SSB_AUTOSIZE
;
1368 m_adj(m
, drop_hdrlen
); /* delayed header drop */
1369 ssb_appendstream(&so
->so_rcv
, m
);
1373 * This code is responsible for most of the ACKs
1374 * the TCP stack sends back after receiving a data
1375 * packet. Note that the DELAY_ACK check fails if
1376 * the delack timer is already running, which results
1377 * in an ack being sent every other packet (which is
1380 * We then further aggregate acks by not actually
1381 * sending one until the protocol thread has completed
1382 * processing the current backlog of packets. This
1383 * does not delay the ack any further, but allows us
1384 * to take advantage of the packet aggregation that
1385 * high speed NICs do (usually blocks of 8-10 packets)
1386 * to send a single ack rather then four or five acks,
1387 * greatly reducing the ack rate, the return channel
1388 * bandwidth, and the protocol overhead on both ends.
1390 * Since this also has the effect of slowing down
1391 * the exponential slow-start ramp-up, systems with
1392 * very large bandwidth-delay products might want
1393 * to turn the feature off.
1395 if (DELAY_ACK(tp
)) {
1396 tcp_callout_reset(tp
, tp
->tt_delack
,
1397 tcp_delacktime
, tcp_timer_delack
);
1398 } else if (tcp_aggregate_acks
) {
1399 tp
->t_flags
|= TF_ACKNOW
;
1400 if (!(tp
->t_flags
& TF_ONOUTPUTQ
)) {
1401 tp
->t_flags
|= TF_ONOUTPUTQ
;
1402 tp
->tt_cpu
= mycpu
->gd_cpuid
;
1404 &tcpcbackq
[tp
->tt_cpu
],
1408 tp
->t_flags
|= TF_ACKNOW
;
1416 * Calculate amount of space in receive window,
1417 * and then do TCP input processing.
1418 * Receive window is amount of space in rcv queue,
1419 * but not less than advertised window.
1421 recvwin
= ssb_space(&so
->so_rcv
);
1424 tp
->rcv_wnd
= imax(recvwin
, (int)(tp
->rcv_adv
- tp
->rcv_nxt
));
1426 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1430 switch (tp
->t_state
) {
1432 * If the state is SYN_RECEIVED:
1433 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1435 case TCPS_SYN_RECEIVED
:
1436 if ((thflags
& TH_ACK
) &&
1437 (SEQ_LEQ(th
->th_ack
, tp
->snd_una
) ||
1438 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1439 rstreason
= BANDLIM_RST_OPENPORT
;
1445 * If the state is SYN_SENT:
1446 * if seg contains an ACK, but not for our SYN, drop the input.
1447 * if seg contains a RST, then drop the connection.
1448 * if seg does not contain SYN, then drop it.
1449 * Otherwise this is an acceptable SYN segment
1450 * initialize tp->rcv_nxt and tp->irs
1451 * if seg contains ack then advance tp->snd_una
1452 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1453 * arrange for segment to be acked (eventually)
1454 * continue processing rest of data/controls, beginning with URG
1457 if ((taop
= tcp_gettaocache(&inp
->inp_inc
)) == NULL
) {
1458 taop
= &tao_noncached
;
1459 bzero(taop
, sizeof *taop
);
1462 if ((thflags
& TH_ACK
) &&
1463 (SEQ_LEQ(th
->th_ack
, tp
->iss
) ||
1464 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1466 * If we have a cached CCsent for the remote host,
1467 * hence we haven't just crashed and restarted,
1468 * do not send a RST. This may be a retransmission
1469 * from the other side after our earlier ACK was lost.
1470 * Our new SYN, when it arrives, will serve as the
1473 if (taop
->tao_ccsent
!= 0)
1476 rstreason
= BANDLIM_UNLIMITED
;
1480 if (thflags
& TH_RST
) {
1481 if (thflags
& TH_ACK
)
1482 tp
= tcp_drop(tp
, ECONNREFUSED
);
1485 if (!(thflags
& TH_SYN
))
1487 tp
->snd_wnd
= th
->th_win
; /* initial send window */
1488 tp
->cc_recv
= to
.to_cc
; /* foreign CC */
1490 tp
->irs
= th
->th_seq
;
1492 if (thflags
& TH_ACK
) {
1494 * Our SYN was acked. If segment contains CC.ECHO
1495 * option, check it to make sure this segment really
1496 * matches our SYN. If not, just drop it as old
1497 * duplicate, but send an RST if we're still playing
1498 * by the old rules. If no CC.ECHO option, make sure
1499 * we don't get fooled into using T/TCP.
1501 if (to
.to_flags
& TOF_CCECHO
) {
1502 if (tp
->cc_send
!= to
.to_ccecho
) {
1503 if (taop
->tao_ccsent
!= 0)
1506 rstreason
= BANDLIM_UNLIMITED
;
1511 tp
->t_flags
&= ~TF_RCVD_CC
;
1512 tcpstat
.tcps_connects
++;
1514 /* Do window scaling on this connection? */
1515 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
1516 (TF_RCVD_SCALE
| TF_REQ_SCALE
)) {
1517 tp
->snd_scale
= tp
->requested_s_scale
;
1518 tp
->rcv_scale
= tp
->request_r_scale
;
1520 /* Segment is acceptable, update cache if undefined. */
1521 if (taop
->tao_ccsent
== 0)
1522 taop
->tao_ccsent
= to
.to_ccecho
;
1524 tp
->rcv_adv
+= tp
->rcv_wnd
;
1525 tp
->snd_una
++; /* SYN is acked */
1526 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1528 * If there's data, delay ACK; if there's also a FIN
1529 * ACKNOW will be turned on later.
1531 if (DELAY_ACK(tp
) && tlen
!= 0) {
1532 tcp_callout_reset(tp
, tp
->tt_delack
,
1533 tcp_delacktime
, tcp_timer_delack
);
1535 tp
->t_flags
|= TF_ACKNOW
;
1538 * Received <SYN,ACK> in SYN_SENT[*] state.
1540 * SYN_SENT --> ESTABLISHED
1541 * SYN_SENT* --> FIN_WAIT_1
1543 tp
->t_starttime
= ticks
;
1544 if (tp
->t_flags
& TF_NEEDFIN
) {
1545 tp
->t_state
= TCPS_FIN_WAIT_1
;
1546 tp
->t_flags
&= ~TF_NEEDFIN
;
1549 tp
->t_state
= TCPS_ESTABLISHED
;
1550 tcp_callout_reset(tp
, tp
->tt_keep
, tcp_keepidle
,
1555 * Received initial SYN in SYN-SENT[*] state =>
1556 * simultaneous open. If segment contains CC option
1557 * and there is a cached CC, apply TAO test.
1558 * If it succeeds, connection is * half-synchronized.
1559 * Otherwise, do 3-way handshake:
1560 * SYN-SENT -> SYN-RECEIVED
1561 * SYN-SENT* -> SYN-RECEIVED*
1562 * If there was no CC option, clear cached CC value.
1564 tp
->t_flags
|= TF_ACKNOW
;
1565 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1566 if (to
.to_flags
& TOF_CC
) {
1567 if (taop
->tao_cc
!= 0 &&
1568 CC_GT(to
.to_cc
, taop
->tao_cc
)) {
1570 * update cache and make transition:
1571 * SYN-SENT -> ESTABLISHED*
1572 * SYN-SENT* -> FIN-WAIT-1*
1574 taop
->tao_cc
= to
.to_cc
;
1575 tp
->t_starttime
= ticks
;
1576 if (tp
->t_flags
& TF_NEEDFIN
) {
1577 tp
->t_state
= TCPS_FIN_WAIT_1
;
1578 tp
->t_flags
&= ~TF_NEEDFIN
;
1580 tp
->t_state
= TCPS_ESTABLISHED
;
1581 tcp_callout_reset(tp
,
1582 tp
->tt_keep
, tcp_keepidle
,
1585 tp
->t_flags
|= TF_NEEDSYN
;
1587 tp
->t_state
= TCPS_SYN_RECEIVED
;
1589 /* CC.NEW or no option => invalidate cache */
1591 tp
->t_state
= TCPS_SYN_RECEIVED
;
1597 * Advance th->th_seq to correspond to first data byte.
1598 * If data, trim to stay within window,
1599 * dropping FIN if necessary.
1602 if (tlen
> tp
->rcv_wnd
) {
1603 todrop
= tlen
- tp
->rcv_wnd
;
1607 tcpstat
.tcps_rcvpackafterwin
++;
1608 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1610 tp
->snd_wl1
= th
->th_seq
- 1;
1611 tp
->rcv_up
= th
->th_seq
;
1613 * Client side of transaction: already sent SYN and data.
1614 * If the remote host used T/TCP to validate the SYN,
1615 * our data will be ACK'd; if so, enter normal data segment
1616 * processing in the middle of step 5, ack processing.
1617 * Otherwise, goto step 6.
1619 if (thflags
& TH_ACK
)
1625 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1626 * if segment contains a SYN and CC [not CC.NEW] option:
1627 * if state == TIME_WAIT and connection duration > MSL,
1628 * drop packet and send RST;
1630 * if SEG.CC > CCrecv then is new SYN, and can implicitly
1631 * ack the FIN (and data) in retransmission queue.
1632 * Complete close and delete TCPCB. Then reprocess
1633 * segment, hoping to find new TCPCB in LISTEN state;
1635 * else must be old SYN; drop it.
1636 * else do normal processing.
1640 case TCPS_TIME_WAIT
:
1641 if ((thflags
& TH_SYN
) &&
1642 (to
.to_flags
& TOF_CC
) && tp
->cc_recv
!= 0) {
1643 if (tp
->t_state
== TCPS_TIME_WAIT
&&
1644 (ticks
- tp
->t_starttime
) > tcp_msl
) {
1645 rstreason
= BANDLIM_UNLIMITED
;
1648 if (CC_GT(to
.to_cc
, tp
->cc_recv
)) {
1655 break; /* continue normal processing */
1659 * States other than LISTEN or SYN_SENT.
1660 * First check the RST flag and sequence number since reset segments
1661 * are exempt from the timestamp and connection count tests. This
1662 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1663 * below which allowed reset segments in half the sequence space
1664 * to fall though and be processed (which gives forged reset
1665 * segments with a random sequence number a 50 percent chance of
1666 * killing a connection).
1667 * Then check timestamp, if present.
1668 * Then check the connection count, if present.
1669 * Then check that at least some bytes of segment are within
1670 * receive window. If segment begins before rcv_nxt,
1671 * drop leading data (and SYN); if nothing left, just ack.
1674 * If the RST bit is set, check the sequence number to see
1675 * if this is a valid reset segment.
1677 * In all states except SYN-SENT, all reset (RST) segments
1678 * are validated by checking their SEQ-fields. A reset is
1679 * valid if its sequence number is in the window.
1680 * Note: this does not take into account delayed ACKs, so
1681 * we should test against last_ack_sent instead of rcv_nxt.
1682 * The sequence number in the reset segment is normally an
1683 * echo of our outgoing acknowledgement numbers, but some hosts
1684 * send a reset with the sequence number at the rightmost edge
1685 * of our receive window, and we have to handle this case.
1686 * If we have multiple segments in flight, the intial reset
1687 * segment sequence numbers will be to the left of last_ack_sent,
1688 * but they will eventually catch up.
1689 * In any case, it never made sense to trim reset segments to
1690 * fit the receive window since RFC 1122 says:
1691 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1693 * A TCP SHOULD allow a received RST segment to include data.
1696 * It has been suggested that a RST segment could contain
1697 * ASCII text that encoded and explained the cause of the
1698 * RST. No standard has yet been established for such
1701 * If the reset segment passes the sequence number test examine
1703 * SYN_RECEIVED STATE:
1704 * If passive open, return to LISTEN state.
1705 * If active open, inform user that connection was refused.
1706 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1707 * Inform user that connection was reset, and close tcb.
1708 * CLOSING, LAST_ACK STATES:
1711 * Drop the segment - see Stevens, vol. 2, p. 964 and
1714 if (thflags
& TH_RST
) {
1715 if (SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1716 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) {
1717 switch (tp
->t_state
) {
1719 case TCPS_SYN_RECEIVED
:
1720 so
->so_error
= ECONNREFUSED
;
1723 case TCPS_ESTABLISHED
:
1724 case TCPS_FIN_WAIT_1
:
1725 case TCPS_FIN_WAIT_2
:
1726 case TCPS_CLOSE_WAIT
:
1727 so
->so_error
= ECONNRESET
;
1729 tp
->t_state
= TCPS_CLOSED
;
1730 tcpstat
.tcps_drops
++;
1739 case TCPS_TIME_WAIT
:
1747 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1748 * and it's less than ts_recent, drop it.
1750 if ((to
.to_flags
& TOF_TS
) && tp
->ts_recent
!= 0 &&
1751 TSTMP_LT(to
.to_tsval
, tp
->ts_recent
)) {
1753 /* Check to see if ts_recent is over 24 days old. */
1754 if ((int)(ticks
- tp
->ts_recent_age
) > TCP_PAWS_IDLE
) {
1756 * Invalidate ts_recent. If this segment updates
1757 * ts_recent, the age will be reset later and ts_recent
1758 * will get a valid value. If it does not, setting
1759 * ts_recent to zero will at least satisfy the
1760 * requirement that zero be placed in the timestamp
1761 * echo reply when ts_recent isn't valid. The
1762 * age isn't reset until we get a valid ts_recent
1763 * because we don't want out-of-order segments to be
1764 * dropped when ts_recent is old.
1768 tcpstat
.tcps_rcvduppack
++;
1769 tcpstat
.tcps_rcvdupbyte
+= tlen
;
1770 tcpstat
.tcps_pawsdrop
++;
1779 * If T/TCP was negotiated and the segment doesn't have CC,
1780 * or if its CC is wrong then drop the segment.
1781 * RST segments do not have to comply with this.
1783 if ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) == (TF_REQ_CC
|TF_RCVD_CC
) &&
1784 (!(to
.to_flags
& TOF_CC
) || tp
->cc_recv
!= to
.to_cc
))
1788 * In the SYN-RECEIVED state, validate that the packet belongs to
1789 * this connection before trimming the data to fit the receive
1790 * window. Check the sequence number versus IRS since we know
1791 * the sequence numbers haven't wrapped. This is a partial fix
1792 * for the "LAND" DoS attack.
1794 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& SEQ_LT(th
->th_seq
, tp
->irs
)) {
1795 rstreason
= BANDLIM_RST_OPENPORT
;
1799 todrop
= tp
->rcv_nxt
- th
->th_seq
;
1801 if (TCP_DO_SACK(tp
)) {
1802 /* Report duplicate segment at head of packet. */
1803 tp
->reportblk
.rblk_start
= th
->th_seq
;
1804 tp
->reportblk
.rblk_end
= th
->th_seq
+ tlen
;
1805 if (thflags
& TH_FIN
)
1806 ++tp
->reportblk
.rblk_end
;
1807 if (SEQ_GT(tp
->reportblk
.rblk_end
, tp
->rcv_nxt
))
1808 tp
->reportblk
.rblk_end
= tp
->rcv_nxt
;
1809 tp
->t_flags
|= (TF_DUPSEG
| TF_SACKLEFT
| TF_ACKNOW
);
1811 if (thflags
& TH_SYN
) {
1821 * Following if statement from Stevens, vol. 2, p. 960.
1823 if (todrop
> tlen
||
1824 (todrop
== tlen
&& !(thflags
& TH_FIN
))) {
1826 * Any valid FIN must be to the left of the window.
1827 * At this point the FIN must be a duplicate or out
1828 * of sequence; drop it.
1833 * Send an ACK to resynchronize and drop any data.
1834 * But keep on processing for RST or ACK.
1836 tp
->t_flags
|= TF_ACKNOW
;
1838 tcpstat
.tcps_rcvduppack
++;
1839 tcpstat
.tcps_rcvdupbyte
+= todrop
;
1841 tcpstat
.tcps_rcvpartduppack
++;
1842 tcpstat
.tcps_rcvpartdupbyte
+= todrop
;
1844 drop_hdrlen
+= todrop
; /* drop from the top afterwards */
1845 th
->th_seq
+= todrop
;
1847 if (th
->th_urp
> todrop
)
1848 th
->th_urp
-= todrop
;
1856 * If new data are received on a connection after the
1857 * user processes are gone, then RST the other end.
1859 if ((so
->so_state
& SS_NOFDREF
) &&
1860 tp
->t_state
> TCPS_CLOSE_WAIT
&& tlen
) {
1862 tcpstat
.tcps_rcvafterclose
++;
1863 rstreason
= BANDLIM_UNLIMITED
;
1868 * If segment ends after window, drop trailing data
1869 * (and PUSH and FIN); if nothing left, just ACK.
1871 todrop
= (th
->th_seq
+ tlen
) - (tp
->rcv_nxt
+ tp
->rcv_wnd
);
1873 tcpstat
.tcps_rcvpackafterwin
++;
1874 if (todrop
>= tlen
) {
1875 tcpstat
.tcps_rcvbyteafterwin
+= tlen
;
1877 * If a new connection request is received
1878 * while in TIME_WAIT, drop the old connection
1879 * and start over if the sequence numbers
1880 * are above the previous ones.
1882 if (thflags
& TH_SYN
&&
1883 tp
->t_state
== TCPS_TIME_WAIT
&&
1884 SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
1889 * If window is closed can only take segments at
1890 * window edge, and have to drop data and PUSH from
1891 * incoming segments. Continue processing, but
1892 * remember to ack. Otherwise, drop segment
1895 if (tp
->rcv_wnd
== 0 && th
->th_seq
== tp
->rcv_nxt
) {
1896 tp
->t_flags
|= TF_ACKNOW
;
1897 tcpstat
.tcps_rcvwinprobe
++;
1901 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1904 thflags
&= ~(TH_PUSH
| TH_FIN
);
1908 * If last ACK falls within this segment's sequence numbers,
1909 * record its timestamp.
1911 * 1) That the test incorporates suggestions from the latest
1912 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1913 * 2) That updating only on newer timestamps interferes with
1914 * our earlier PAWS tests, so this check should be solely
1915 * predicated on the sequence space of this segment.
1916 * 3) That we modify the segment boundary check to be
1917 * Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1918 * instead of RFC1323's
1919 * Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1920 * This modified check allows us to overcome RFC1323's
1921 * limitations as described in Stevens TCP/IP Illustrated
1922 * Vol. 2 p.869. In such cases, we can still calculate the
1923 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1925 if ((to
.to_flags
& TOF_TS
) && SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1926 SEQ_LEQ(tp
->last_ack_sent
, (th
->th_seq
+ tlen
1927 + ((thflags
& TH_SYN
) != 0)
1928 + ((thflags
& TH_FIN
) != 0)))) {
1929 tp
->ts_recent_age
= ticks
;
1930 tp
->ts_recent
= to
.to_tsval
;
1934 * If a SYN is in the window, then this is an
1935 * error and we send an RST and drop the connection.
1937 if (thflags
& TH_SYN
) {
1938 tp
= tcp_drop(tp
, ECONNRESET
);
1939 rstreason
= BANDLIM_UNLIMITED
;
1944 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
1945 * flag is on (half-synchronized state), then queue data for
1946 * later processing; else drop segment and return.
1948 if (!(thflags
& TH_ACK
)) {
1949 if (tp
->t_state
== TCPS_SYN_RECEIVED
||
1950 (tp
->t_flags
& TF_NEEDSYN
))
1959 switch (tp
->t_state
) {
1961 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1962 * ESTABLISHED state and continue processing.
1963 * The ACK was checked above.
1965 case TCPS_SYN_RECEIVED
:
1967 tcpstat
.tcps_connects
++;
1969 /* Do window scaling? */
1970 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
1971 (TF_RCVD_SCALE
| TF_REQ_SCALE
)) {
1972 tp
->snd_scale
= tp
->requested_s_scale
;
1973 tp
->rcv_scale
= tp
->request_r_scale
;
1976 * Upon successful completion of 3-way handshake,
1977 * update cache.CC if it was undefined, pass any queued
1978 * data to the user, and advance state appropriately.
1980 if ((taop
= tcp_gettaocache(&inp
->inp_inc
)) != NULL
&&
1982 taop
->tao_cc
= tp
->cc_recv
;
1986 * SYN-RECEIVED -> ESTABLISHED
1987 * SYN-RECEIVED* -> FIN-WAIT-1
1989 tp
->t_starttime
= ticks
;
1990 if (tp
->t_flags
& TF_NEEDFIN
) {
1991 tp
->t_state
= TCPS_FIN_WAIT_1
;
1992 tp
->t_flags
&= ~TF_NEEDFIN
;
1994 tp
->t_state
= TCPS_ESTABLISHED
;
1995 tcp_callout_reset(tp
, tp
->tt_keep
, tcp_keepidle
,
1999 * If segment contains data or ACK, will call tcp_reass()
2000 * later; if not, do so now to pass queued data to user.
2002 if (tlen
== 0 && !(thflags
& TH_FIN
))
2003 tcp_reass(tp
, NULL
, NULL
, NULL
);
2007 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2008 * ACKs. If the ack is in the range
2009 * tp->snd_una < th->th_ack <= tp->snd_max
2010 * then advance tp->snd_una to th->th_ack and drop
2011 * data from the retransmission queue. If this ACK reflects
2012 * more up to date window information we update our window information.
2014 case TCPS_ESTABLISHED
:
2015 case TCPS_FIN_WAIT_1
:
2016 case TCPS_FIN_WAIT_2
:
2017 case TCPS_CLOSE_WAIT
:
2020 case TCPS_TIME_WAIT
:
2022 if (SEQ_LEQ(th
->th_ack
, tp
->snd_una
)) {
2023 if (TCP_DO_SACK(tp
))
2024 tcp_sack_update_scoreboard(tp
, &to
);
2025 if (tlen
!= 0 || tiwin
!= tp
->snd_wnd
) {
2029 tcpstat
.tcps_rcvdupack
++;
2030 if (!tcp_callout_active(tp
, tp
->tt_rexmt
) ||
2031 th
->th_ack
!= tp
->snd_una
) {
2036 * We have outstanding data (other than
2037 * a window probe), this is a completely
2038 * duplicate ack (ie, window info didn't
2039 * change), the ack is the biggest we've
2040 * seen and we've seen exactly our rexmt
2041 * threshhold of them, so assume a packet
2042 * has been dropped and retransmit it.
2043 * Kludge snd_nxt & the congestion
2044 * window so we send only this one
2047 if (IN_FASTRECOVERY(tp
)) {
2048 if (TCP_DO_SACK(tp
)) {
2049 /* No artifical cwnd inflation. */
2050 tcp_sack_rexmt(tp
, th
);
2053 * Dup acks mean that packets
2054 * have left the network
2055 * (they're now cached at the
2056 * receiver) so bump cwnd by
2057 * the amount in the receiver
2058 * to keep a constant cwnd
2059 * packets in the network.
2061 tp
->snd_cwnd
+= tp
->t_maxseg
;
2064 } else if (SEQ_LT(th
->th_ack
, tp
->snd_recover
)) {
2067 } else if (++tp
->t_dupacks
== tcprexmtthresh
) {
2068 tcp_seq old_snd_nxt
;
2072 if (tcp_do_eifel_detect
&&
2073 (tp
->t_flags
& TF_RCVD_TSTMP
)) {
2074 tcp_save_congestion_state(tp
);
2075 tp
->t_flags
|= TF_FASTREXMT
;
2078 * We know we're losing at the current
2079 * window size, so do congestion avoidance:
2080 * set ssthresh to half the current window
2081 * and pull our congestion window back to the
2084 win
= min(tp
->snd_wnd
, tp
->snd_cwnd
) / 2 /
2088 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
2089 ENTER_FASTRECOVERY(tp
);
2090 tp
->snd_recover
= tp
->snd_max
;
2091 tcp_callout_stop(tp
, tp
->tt_rexmt
);
2093 old_snd_nxt
= tp
->snd_nxt
;
2094 tp
->snd_nxt
= th
->th_ack
;
2095 tp
->snd_cwnd
= tp
->t_maxseg
;
2097 ++tcpstat
.tcps_sndfastrexmit
;
2098 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2099 tp
->rexmt_high
= tp
->snd_nxt
;
2100 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
2101 tp
->snd_nxt
= old_snd_nxt
;
2102 KASSERT(tp
->snd_limited
<= 2,
2103 ("tp->snd_limited too big"));
2104 if (TCP_DO_SACK(tp
))
2105 tcp_sack_rexmt(tp
, th
);
2107 tp
->snd_cwnd
+= tp
->t_maxseg
*
2108 (tp
->t_dupacks
- tp
->snd_limited
);
2109 } else if (tcp_do_limitedtransmit
) {
2110 u_long oldcwnd
= tp
->snd_cwnd
;
2111 tcp_seq oldsndmax
= tp
->snd_max
;
2112 tcp_seq oldsndnxt
= tp
->snd_nxt
;
2113 /* outstanding data */
2114 uint32_t ownd
= tp
->snd_max
- tp
->snd_una
;
2117 #define iceildiv(n, d) (((n)+(d)-1) / (d))
2119 KASSERT(tp
->t_dupacks
== 1 ||
2121 ("dupacks not 1 or 2"));
2122 if (tp
->t_dupacks
== 1)
2123 tp
->snd_limited
= 0;
2124 tp
->snd_nxt
= tp
->snd_max
;
2125 tp
->snd_cwnd
= ownd
+
2126 (tp
->t_dupacks
- tp
->snd_limited
) *
2131 * Other acks may have been processed,
2132 * snd_nxt cannot be reset to a value less
2135 if (SEQ_LT(oldsndnxt
, oldsndmax
)) {
2136 if (SEQ_GT(oldsndnxt
, tp
->snd_una
))
2137 tp
->snd_nxt
= oldsndnxt
;
2139 tp
->snd_nxt
= tp
->snd_una
;
2141 tp
->snd_cwnd
= oldcwnd
;
2142 sent
= tp
->snd_max
- oldsndmax
;
2143 if (sent
> tp
->t_maxseg
) {
2144 KASSERT((tp
->t_dupacks
== 2 &&
2145 tp
->snd_limited
== 0) ||
2146 (sent
== tp
->t_maxseg
+ 1 &&
2147 tp
->t_flags
& TF_SENTFIN
),
2149 KASSERT(sent
<= tp
->t_maxseg
* 2,
2150 ("sent too many segments"));
2151 tp
->snd_limited
= 2;
2152 tcpstat
.tcps_sndlimited
+= 2;
2153 } else if (sent
> 0) {
2155 ++tcpstat
.tcps_sndlimited
;
2156 } else if (tcp_do_early_retransmit
&&
2157 (tcp_do_eifel_detect
&&
2158 (tp
->t_flags
& TF_RCVD_TSTMP
)) &&
2159 ownd
< 4 * tp
->t_maxseg
&&
2160 tp
->t_dupacks
+ 1 >=
2161 iceildiv(ownd
, tp
->t_maxseg
) &&
2162 (!TCP_DO_SACK(tp
) ||
2163 ownd
<= tp
->t_maxseg
||
2164 tcp_sack_has_sacked(&tp
->scb
,
2165 ownd
- tp
->t_maxseg
))) {
2166 ++tcpstat
.tcps_sndearlyrexmit
;
2167 tp
->t_flags
|= TF_EARLYREXMT
;
2168 goto fastretransmit
;
2174 KASSERT(SEQ_GT(th
->th_ack
, tp
->snd_una
), ("th_ack <= snd_una"));
2176 if (SEQ_GT(th
->th_ack
, tp
->snd_max
)) {
2178 * Detected optimistic ACK attack.
2179 * Force slow-start to de-synchronize attack.
2181 tp
->snd_cwnd
= tp
->t_maxseg
;
2184 tcpstat
.tcps_rcvacktoomuch
++;
2188 * If we reach this point, ACK is not a duplicate,
2189 * i.e., it ACKs something we sent.
2191 if (tp
->t_flags
& TF_NEEDSYN
) {
2193 * T/TCP: Connection was half-synchronized, and our
2194 * SYN has been ACK'd (so connection is now fully
2195 * synchronized). Go to non-starred state,
2196 * increment snd_una for ACK of SYN, and check if
2197 * we can do window scaling.
2199 tp
->t_flags
&= ~TF_NEEDSYN
;
2201 /* Do window scaling? */
2202 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
2203 (TF_RCVD_SCALE
| TF_REQ_SCALE
)) {
2204 tp
->snd_scale
= tp
->requested_s_scale
;
2205 tp
->rcv_scale
= tp
->request_r_scale
;
2210 acked
= th
->th_ack
- tp
->snd_una
;
2211 tcpstat
.tcps_rcvackpack
++;
2212 tcpstat
.tcps_rcvackbyte
+= acked
;
2214 if (tcp_do_eifel_detect
&& acked
> 0 &&
2215 (to
.to_flags
& TOF_TS
) && (to
.to_tsecr
!= 0) &&
2216 (tp
->t_flags
& TF_FIRSTACCACK
)) {
2217 /* Eifel detection applicable. */
2218 if (to
.to_tsecr
< tp
->t_rexmtTS
) {
2219 ++tcpstat
.tcps_eifeldetected
;
2220 tcp_revert_congestion_state(tp
);
2221 if (tp
->t_rxtshift
== 1 &&
2222 ticks
>= tp
->t_badrxtwin
)
2223 ++tcpstat
.tcps_rttcantdetect
;
2225 } else if (tp
->t_rxtshift
== 1 && ticks
< tp
->t_badrxtwin
) {
2227 * If we just performed our first retransmit,
2228 * and the ACK arrives within our recovery window,
2229 * then it was a mistake to do the retransmit
2230 * in the first place. Recover our original cwnd
2231 * and ssthresh, and proceed to transmit where we
2234 tcp_revert_congestion_state(tp
);
2235 ++tcpstat
.tcps_rttdetected
;
2239 * If we have a timestamp reply, update smoothed
2240 * round trip time. If no timestamp is present but
2241 * transmit timer is running and timed sequence
2242 * number was acked, update smoothed round trip time.
2243 * Since we now have an rtt measurement, cancel the
2244 * timer backoff (cf., Phil Karn's retransmit alg.).
2245 * Recompute the initial retransmit timer.
2247 * Some machines (certain windows boxes) send broken
2248 * timestamp replies during the SYN+ACK phase, ignore
2251 if ((to
.to_flags
& TOF_TS
) && (to
.to_tsecr
!= 0))
2252 tcp_xmit_timer(tp
, ticks
- to
.to_tsecr
+ 1);
2253 else if (tp
->t_rtttime
&& SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
2254 tcp_xmit_timer(tp
, ticks
- tp
->t_rtttime
);
2255 tcp_xmit_bandwidth_limit(tp
, th
->th_ack
);
2258 * If no data (only SYN) was ACK'd,
2259 * skip rest of ACK processing.
2264 /* Stop looking for an acceptable ACK since one was received. */
2265 tp
->t_flags
&= ~(TF_FIRSTACCACK
| TF_FASTREXMT
| TF_EARLYREXMT
);
2267 if (acked
> so
->so_snd
.ssb_cc
) {
2268 tp
->snd_wnd
-= so
->so_snd
.ssb_cc
;
2269 sbdrop(&so
->so_snd
.sb
, (int)so
->so_snd
.ssb_cc
);
2270 ourfinisacked
= TRUE
;
2272 sbdrop(&so
->so_snd
.sb
, acked
);
2273 tp
->snd_wnd
-= acked
;
2274 ourfinisacked
= FALSE
;
2279 * Update window information.
2280 * Don't look at window if no ACK:
2281 * TAC's send garbage on first SYN.
2283 if (SEQ_LT(tp
->snd_wl1
, th
->th_seq
) ||
2284 (tp
->snd_wl1
== th
->th_seq
&&
2285 (SEQ_LT(tp
->snd_wl2
, th
->th_ack
) ||
2286 (tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
)))) {
2287 /* keep track of pure window updates */
2288 if (tlen
== 0 && tp
->snd_wl2
== th
->th_ack
&&
2289 tiwin
> tp
->snd_wnd
)
2290 tcpstat
.tcps_rcvwinupd
++;
2291 tp
->snd_wnd
= tiwin
;
2292 tp
->snd_wl1
= th
->th_seq
;
2293 tp
->snd_wl2
= th
->th_ack
;
2294 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2295 tp
->max_sndwnd
= tp
->snd_wnd
;
2299 tp
->snd_una
= th
->th_ack
;
2300 if (TCP_DO_SACK(tp
))
2301 tcp_sack_update_scoreboard(tp
, &to
);
2302 if (IN_FASTRECOVERY(tp
)) {
2303 if (SEQ_GEQ(th
->th_ack
, tp
->snd_recover
)) {
2304 EXIT_FASTRECOVERY(tp
);
2307 * If the congestion window was inflated
2308 * to account for the other side's
2309 * cached packets, retract it.
2311 if (!TCP_DO_SACK(tp
))
2312 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2315 * Window inflation should have left us
2316 * with approximately snd_ssthresh outstanding
2317 * data. But, in case we would be inclined
2318 * to send a burst, better do it using
2321 if (SEQ_GT(th
->th_ack
+ tp
->snd_cwnd
,
2322 tp
->snd_max
+ 2 * tp
->t_maxseg
))
2324 (tp
->snd_max
- tp
->snd_una
) +
2329 if (TCP_DO_SACK(tp
)) {
2330 tp
->snd_max_rexmt
= tp
->snd_max
;
2331 tcp_sack_rexmt(tp
, th
);
2333 tcp_newreno_partial_ack(tp
, th
, acked
);
2339 * Open the congestion window. When in slow-start,
2340 * open exponentially: maxseg per packet. Otherwise,
2341 * open linearly: maxseg per window.
2343 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
) {
2345 (SEQ_LT(tp
->snd_nxt
, tp
->snd_max
) ?
2346 tp
->t_maxseg
: 2 * tp
->t_maxseg
);
2349 tp
->snd_cwnd
+= tcp_do_abc
?
2350 min(acked
, abc_sslimit
) : tp
->t_maxseg
;
2352 /* linear increase */
2353 tp
->snd_wacked
+= tcp_do_abc
? acked
:
2355 if (tp
->snd_wacked
>= tp
->snd_cwnd
) {
2356 tp
->snd_wacked
-= tp
->snd_cwnd
;
2357 tp
->snd_cwnd
+= tp
->t_maxseg
;
2360 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2361 TCP_MAXWIN
<< tp
->snd_scale
);
2362 tp
->snd_recover
= th
->th_ack
- 1;
2364 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
))
2365 tp
->snd_nxt
= tp
->snd_una
;
2368 * If all outstanding data is acked, stop retransmit
2369 * timer and remember to restart (more output or persist).
2370 * If there is more data to be acked, restart retransmit
2371 * timer, using current (possibly backed-off) value.
2373 if (th
->th_ack
== tp
->snd_max
) {
2374 tcp_callout_stop(tp
, tp
->tt_rexmt
);
2376 } else if (!tcp_callout_active(tp
, tp
->tt_persist
)) {
2377 tcp_callout_reset(tp
, tp
->tt_rexmt
, tp
->t_rxtcur
,
2381 switch (tp
->t_state
) {
2383 * In FIN_WAIT_1 STATE in addition to the processing
2384 * for the ESTABLISHED state if our FIN is now acknowledged
2385 * then enter FIN_WAIT_2.
2387 case TCPS_FIN_WAIT_1
:
2388 if (ourfinisacked
) {
2390 * If we can't receive any more
2391 * data, then closing user can proceed.
2392 * Starting the timer is contrary to the
2393 * specification, but if we don't get a FIN
2394 * we'll hang forever.
2396 if (so
->so_state
& SS_CANTRCVMORE
) {
2397 soisdisconnected(so
);
2398 tcp_callout_reset(tp
, tp
->tt_2msl
,
2399 tcp_maxidle
, tcp_timer_2msl
);
2401 tp
->t_state
= TCPS_FIN_WAIT_2
;
2406 * In CLOSING STATE in addition to the processing for
2407 * the ESTABLISHED state if the ACK acknowledges our FIN
2408 * then enter the TIME-WAIT state, otherwise ignore
2412 if (ourfinisacked
) {
2413 tp
->t_state
= TCPS_TIME_WAIT
;
2414 tcp_canceltimers(tp
);
2415 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2416 if (tp
->cc_recv
!= 0 &&
2417 (ticks
- tp
->t_starttime
) < tcp_msl
) {
2418 tcp_callout_reset(tp
, tp
->tt_2msl
,
2419 tp
->t_rxtcur
* TCPTV_TWTRUNC
,
2422 tcp_callout_reset(tp
, tp
->tt_2msl
,
2423 2 * tcp_msl
, tcp_timer_2msl
);
2425 soisdisconnected(so
);
2430 * In LAST_ACK, we may still be waiting for data to drain
2431 * and/or to be acked, as well as for the ack of our FIN.
2432 * If our FIN is now acknowledged, delete the TCB,
2433 * enter the closed state and return.
2436 if (ourfinisacked
) {
2443 * In TIME_WAIT state the only thing that should arrive
2444 * is a retransmission of the remote FIN. Acknowledge
2445 * it and restart the finack timer.
2447 case TCPS_TIME_WAIT
:
2448 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_msl
,
2456 * Update window information.
2457 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2459 if ((thflags
& TH_ACK
) &&
2460 acceptable_window_update(tp
, th
, tiwin
)) {
2461 /* keep track of pure window updates */
2462 if (tlen
== 0 && tp
->snd_wl2
== th
->th_ack
&&
2463 tiwin
> tp
->snd_wnd
)
2464 tcpstat
.tcps_rcvwinupd
++;
2465 tp
->snd_wnd
= tiwin
;
2466 tp
->snd_wl1
= th
->th_seq
;
2467 tp
->snd_wl2
= th
->th_ack
;
2468 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2469 tp
->max_sndwnd
= tp
->snd_wnd
;
2474 * Process segments with URG.
2476 if ((thflags
& TH_URG
) && th
->th_urp
&&
2477 !TCPS_HAVERCVDFIN(tp
->t_state
)) {
2479 * This is a kludge, but if we receive and accept
2480 * random urgent pointers, we'll crash in
2481 * soreceive. It's hard to imagine someone
2482 * actually wanting to send this much urgent data.
2484 if (th
->th_urp
+ so
->so_rcv
.ssb_cc
> sb_max
) {
2485 th
->th_urp
= 0; /* XXX */
2486 thflags
&= ~TH_URG
; /* XXX */
2487 goto dodata
; /* XXX */
2490 * If this segment advances the known urgent pointer,
2491 * then mark the data stream. This should not happen
2492 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2493 * a FIN has been received from the remote side.
2494 * In these states we ignore the URG.
2496 * According to RFC961 (Assigned Protocols),
2497 * the urgent pointer points to the last octet
2498 * of urgent data. We continue, however,
2499 * to consider it to indicate the first octet
2500 * of data past the urgent section as the original
2501 * spec states (in one of two places).
2503 if (SEQ_GT(th
->th_seq
+ th
->th_urp
, tp
->rcv_up
)) {
2504 tp
->rcv_up
= th
->th_seq
+ th
->th_urp
;
2505 so
->so_oobmark
= so
->so_rcv
.ssb_cc
+
2506 (tp
->rcv_up
- tp
->rcv_nxt
) - 1;
2507 if (so
->so_oobmark
== 0)
2508 so
->so_state
|= SS_RCVATMARK
;
2510 tp
->t_oobflags
&= ~(TCPOOB_HAVEDATA
| TCPOOB_HADDATA
);
2513 * Remove out of band data so doesn't get presented to user.
2514 * This can happen independent of advancing the URG pointer,
2515 * but if two URG's are pending at once, some out-of-band
2516 * data may creep in... ick.
2518 if (th
->th_urp
<= (u_long
)tlen
&&
2519 !(so
->so_options
& SO_OOBINLINE
)) {
2520 /* hdr drop is delayed */
2521 tcp_pulloutofband(so
, th
, m
, drop_hdrlen
);
2525 * If no out of band data is expected,
2526 * pull receive urgent pointer along
2527 * with the receive window.
2529 if (SEQ_GT(tp
->rcv_nxt
, tp
->rcv_up
))
2530 tp
->rcv_up
= tp
->rcv_nxt
;
2535 * Process the segment text, merging it into the TCP sequencing queue,
2536 * and arranging for acknowledgment of receipt if necessary.
2537 * This process logically involves adjusting tp->rcv_wnd as data
2538 * is presented to the user (this happens in tcp_usrreq.c,
2539 * case PRU_RCVD). If a FIN has already been received on this
2540 * connection then we just ignore the text.
2542 if ((tlen
|| (thflags
& TH_FIN
)) && !TCPS_HAVERCVDFIN(tp
->t_state
)) {
2543 m_adj(m
, drop_hdrlen
); /* delayed header drop */
2545 * Insert segment which includes th into TCP reassembly queue
2546 * with control block tp. Set thflags to whether reassembly now
2547 * includes a segment with FIN. This handles the common case
2548 * inline (segment is the next to be received on an established
2549 * connection, and the queue is empty), avoiding linkage into
2550 * and removal from the queue and repetition of various
2552 * Set DELACK for segments received in order, but ack
2553 * immediately when segments are out of order (so
2554 * fast retransmit can work).
2556 if (th
->th_seq
== tp
->rcv_nxt
&&
2557 LIST_EMPTY(&tp
->t_segq
) &&
2558 TCPS_HAVEESTABLISHED(tp
->t_state
)) {
2559 if (DELAY_ACK(tp
)) {
2560 tcp_callout_reset(tp
, tp
->tt_delack
,
2561 tcp_delacktime
, tcp_timer_delack
);
2563 tp
->t_flags
|= TF_ACKNOW
;
2565 tp
->rcv_nxt
+= tlen
;
2566 thflags
= th
->th_flags
& TH_FIN
;
2567 tcpstat
.tcps_rcvpack
++;
2568 tcpstat
.tcps_rcvbyte
+= tlen
;
2570 if (so
->so_state
& SS_CANTRCVMORE
)
2573 ssb_appendstream(&so
->so_rcv
, m
);
2576 if (!(tp
->t_flags
& TF_DUPSEG
)) {
2577 /* Initialize SACK report block. */
2578 tp
->reportblk
.rblk_start
= th
->th_seq
;
2579 tp
->reportblk
.rblk_end
= th
->th_seq
+ tlen
+
2580 ((thflags
& TH_FIN
) != 0);
2582 thflags
= tcp_reass(tp
, th
, &tlen
, m
);
2583 tp
->t_flags
|= TF_ACKNOW
;
2587 * Note the amount of data that peer has sent into
2588 * our window, in order to estimate the sender's
2591 len
= so
->so_rcv
.ssb_hiwat
- (tp
->rcv_adv
- tp
->rcv_nxt
);
2598 * If FIN is received ACK the FIN and let the user know
2599 * that the connection is closing.
2601 if (thflags
& TH_FIN
) {
2602 if (!TCPS_HAVERCVDFIN(tp
->t_state
)) {
2605 * If connection is half-synchronized
2606 * (ie NEEDSYN flag on) then delay ACK,
2607 * so it may be piggybacked when SYN is sent.
2608 * Otherwise, since we received a FIN then no
2609 * more input can be expected, send ACK now.
2611 if (DELAY_ACK(tp
) && (tp
->t_flags
& TF_NEEDSYN
)) {
2612 tcp_callout_reset(tp
, tp
->tt_delack
,
2613 tcp_delacktime
, tcp_timer_delack
);
2615 tp
->t_flags
|= TF_ACKNOW
;
2620 switch (tp
->t_state
) {
2622 * In SYN_RECEIVED and ESTABLISHED STATES
2623 * enter the CLOSE_WAIT state.
2625 case TCPS_SYN_RECEIVED
:
2626 tp
->t_starttime
= ticks
;
2628 case TCPS_ESTABLISHED
:
2629 tp
->t_state
= TCPS_CLOSE_WAIT
;
2633 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2634 * enter the CLOSING state.
2636 case TCPS_FIN_WAIT_1
:
2637 tp
->t_state
= TCPS_CLOSING
;
2641 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2642 * starting the time-wait timer, turning off the other
2645 case TCPS_FIN_WAIT_2
:
2646 tp
->t_state
= TCPS_TIME_WAIT
;
2647 tcp_canceltimers(tp
);
2648 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2649 if (tp
->cc_recv
!= 0 &&
2650 (ticks
- tp
->t_starttime
) < tcp_msl
) {
2651 tcp_callout_reset(tp
, tp
->tt_2msl
,
2652 tp
->t_rxtcur
* TCPTV_TWTRUNC
,
2654 /* For transaction client, force ACK now. */
2655 tp
->t_flags
|= TF_ACKNOW
;
2657 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_msl
,
2660 soisdisconnected(so
);
2664 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2666 case TCPS_TIME_WAIT
:
2667 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_msl
,
2674 if (so
->so_options
& SO_DEBUG
)
2675 tcp_trace(TA_INPUT
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2679 * Return any desired output.
2681 if (needoutput
|| (tp
->t_flags
& TF_ACKNOW
))
2687 * Generate an ACK dropping incoming segment if it occupies
2688 * sequence space, where the ACK reflects our state.
2690 * We can now skip the test for the RST flag since all
2691 * paths to this code happen after packets containing
2692 * RST have been dropped.
2694 * In the SYN-RECEIVED state, don't send an ACK unless the
2695 * segment we received passes the SYN-RECEIVED ACK test.
2696 * If it fails send a RST. This breaks the loop in the
2697 * "LAND" DoS attack, and also prevents an ACK storm
2698 * between two listening ports that have been sent forged
2699 * SYN segments, each with the source address of the other.
2701 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& (thflags
& TH_ACK
) &&
2702 (SEQ_GT(tp
->snd_una
, th
->th_ack
) ||
2703 SEQ_GT(th
->th_ack
, tp
->snd_max
)) ) {
2704 rstreason
= BANDLIM_RST_OPENPORT
;
2708 if (so
->so_options
& SO_DEBUG
)
2709 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2712 tp
->t_flags
|= TF_ACKNOW
;
2718 * Generate a RST, dropping incoming segment.
2719 * Make ACK acceptable to originator of segment.
2720 * Don't bother to respond if destination was broadcast/multicast.
2722 if ((thflags
& TH_RST
) || m
->m_flags
& (M_BCAST
| M_MCAST
))
2725 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
2726 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
2729 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
2730 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
2731 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
2732 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
2735 /* IPv6 anycast check is done at tcp6_input() */
2738 * Perform bandwidth limiting.
2741 if (badport_bandlim(rstreason
) < 0)
2746 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2747 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2749 if (thflags
& TH_ACK
)
2750 /* mtod() below is safe as long as hdr dropping is delayed */
2751 tcp_respond(tp
, mtod(m
, void *), th
, m
, (tcp_seq
)0, th
->th_ack
,
2754 if (thflags
& TH_SYN
)
2756 /* mtod() below is safe as long as hdr dropping is delayed */
2757 tcp_respond(tp
, mtod(m
, void *), th
, m
, th
->th_seq
+ tlen
,
2758 (tcp_seq
)0, TH_RST
| TH_ACK
);
2764 * Drop space held by incoming segment and return.
2767 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2768 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2775 * Parse TCP options and place in tcpopt.
2778 tcp_dooptions(struct tcpopt
*to
, u_char
*cp
, int cnt
, boolean_t is_syn
)
2783 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2785 if (opt
== TCPOPT_EOL
)
2787 if (opt
== TCPOPT_NOP
)
2793 if (optlen
< 2 || optlen
> cnt
)
2798 if (optlen
!= TCPOLEN_MAXSEG
)
2802 to
->to_flags
|= TOF_MSS
;
2803 bcopy(cp
+ 2, &to
->to_mss
, sizeof to
->to_mss
);
2804 to
->to_mss
= ntohs(to
->to_mss
);
2807 if (optlen
!= TCPOLEN_WINDOW
)
2811 to
->to_flags
|= TOF_SCALE
;
2812 to
->to_requested_s_scale
= min(cp
[2], TCP_MAX_WINSHIFT
);
2814 case TCPOPT_TIMESTAMP
:
2815 if (optlen
!= TCPOLEN_TIMESTAMP
)
2817 to
->to_flags
|= TOF_TS
;
2818 bcopy(cp
+ 2, &to
->to_tsval
, sizeof to
->to_tsval
);
2819 to
->to_tsval
= ntohl(to
->to_tsval
);
2820 bcopy(cp
+ 6, &to
->to_tsecr
, sizeof to
->to_tsecr
);
2821 to
->to_tsecr
= ntohl(to
->to_tsecr
);
2823 * If echoed timestamp is later than the current time,
2824 * fall back to non RFC1323 RTT calculation.
2826 if (to
->to_tsecr
!= 0 && TSTMP_GT(to
->to_tsecr
, ticks
))
2830 if (optlen
!= TCPOLEN_CC
)
2832 to
->to_flags
|= TOF_CC
;
2833 bcopy(cp
+ 2, &to
->to_cc
, sizeof to
->to_cc
);
2834 to
->to_cc
= ntohl(to
->to_cc
);
2837 if (optlen
!= TCPOLEN_CC
)
2841 to
->to_flags
|= TOF_CCNEW
;
2842 bcopy(cp
+ 2, &to
->to_cc
, sizeof to
->to_cc
);
2843 to
->to_cc
= ntohl(to
->to_cc
);
2846 if (optlen
!= TCPOLEN_CC
)
2850 to
->to_flags
|= TOF_CCECHO
;
2851 bcopy(cp
+ 2, &to
->to_ccecho
, sizeof to
->to_ccecho
);
2852 to
->to_ccecho
= ntohl(to
->to_ccecho
);
2854 case TCPOPT_SACK_PERMITTED
:
2855 if (optlen
!= TCPOLEN_SACK_PERMITTED
)
2859 to
->to_flags
|= TOF_SACK_PERMITTED
;
2862 if ((optlen
- 2) & 0x07) /* not multiple of 8 */
2864 to
->to_nsackblocks
= (optlen
- 2) / 8;
2865 to
->to_sackblocks
= (struct raw_sackblock
*) (cp
+ 2);
2866 to
->to_flags
|= TOF_SACK
;
2867 for (i
= 0; i
< to
->to_nsackblocks
; i
++) {
2868 struct raw_sackblock
*r
= &to
->to_sackblocks
[i
];
2870 r
->rblk_start
= ntohl(r
->rblk_start
);
2871 r
->rblk_end
= ntohl(r
->rblk_end
);
2881 * Pull out of band byte out of a segment so
2882 * it doesn't appear in the user's data queue.
2883 * It is still reflected in the segment length for
2884 * sequencing purposes.
2885 * "off" is the delayed to be dropped hdrlen.
2888 tcp_pulloutofband(struct socket
*so
, struct tcphdr
*th
, struct mbuf
*m
, int off
)
2890 int cnt
= off
+ th
->th_urp
- 1;
2893 if (m
->m_len
> cnt
) {
2894 char *cp
= mtod(m
, caddr_t
) + cnt
;
2895 struct tcpcb
*tp
= sototcpcb(so
);
2898 tp
->t_oobflags
|= TCPOOB_HAVEDATA
;
2899 bcopy(cp
+ 1, cp
, m
->m_len
- cnt
- 1);
2901 if (m
->m_flags
& M_PKTHDR
)
2910 panic("tcp_pulloutofband");
2914 * Collect new round-trip time estimate
2915 * and update averages and current timeout.
2918 tcp_xmit_timer(struct tcpcb
*tp
, int rtt
)
2922 tcpstat
.tcps_rttupdated
++;
2924 if (tp
->t_srtt
!= 0) {
2926 * srtt is stored as fixed point with 5 bits after the
2927 * binary point (i.e., scaled by 8). The following magic
2928 * is equivalent to the smoothing algorithm in rfc793 with
2929 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2930 * point). Adjust rtt to origin 0.
2932 delta
= ((rtt
- 1) << TCP_DELTA_SHIFT
)
2933 - (tp
->t_srtt
>> (TCP_RTT_SHIFT
- TCP_DELTA_SHIFT
));
2935 if ((tp
->t_srtt
+= delta
) <= 0)
2939 * We accumulate a smoothed rtt variance (actually, a
2940 * smoothed mean difference), then set the retransmit
2941 * timer to smoothed rtt + 4 times the smoothed variance.
2942 * rttvar is stored as fixed point with 4 bits after the
2943 * binary point (scaled by 16). The following is
2944 * equivalent to rfc793 smoothing with an alpha of .75
2945 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2946 * rfc793's wired-in beta.
2950 delta
-= tp
->t_rttvar
>> (TCP_RTTVAR_SHIFT
- TCP_DELTA_SHIFT
);
2951 if ((tp
->t_rttvar
+= delta
) <= 0)
2953 if (tp
->t_rttbest
> tp
->t_srtt
+ tp
->t_rttvar
)
2954 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
2957 * No rtt measurement yet - use the unsmoothed rtt.
2958 * Set the variance to half the rtt (so our first
2959 * retransmit happens at 3*rtt).
2961 tp
->t_srtt
= rtt
<< TCP_RTT_SHIFT
;
2962 tp
->t_rttvar
= rtt
<< (TCP_RTTVAR_SHIFT
- 1);
2963 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
2969 * the retransmit should happen at rtt + 4 * rttvar.
2970 * Because of the way we do the smoothing, srtt and rttvar
2971 * will each average +1/2 tick of bias. When we compute
2972 * the retransmit timer, we want 1/2 tick of rounding and
2973 * 1 extra tick because of +-1/2 tick uncertainty in the
2974 * firing of the timer. The bias will give us exactly the
2975 * 1.5 tick we need. But, because the bias is
2976 * statistical, we have to test that we don't drop below
2977 * the minimum feasible timer (which is 2 ticks).
2979 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
2980 max(tp
->t_rttmin
, rtt
+ 2), TCPTV_REXMTMAX
);
2983 * We received an ack for a packet that wasn't retransmitted;
2984 * it is probably safe to discard any error indications we've
2985 * received recently. This isn't quite right, but close enough
2986 * for now (a route might have failed after we sent a segment,
2987 * and the return path might not be symmetrical).
2989 tp
->t_softerror
= 0;
2993 * Determine a reasonable value for maxseg size.
2994 * If the route is known, check route for mtu.
2995 * If none, use an mss that can be handled on the outgoing
2996 * interface without forcing IP to fragment; if bigger than
2997 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2998 * to utilize large mbufs. If no route is found, route has no mtu,
2999 * or the destination isn't local, use a default, hopefully conservative
3000 * size (usually 512 or the default IP max size, but no more than the mtu
3001 * of the interface), as we can't discover anything about intervening
3002 * gateways or networks. We also initialize the congestion/slow start
3003 * window to be a single segment if the destination isn't local.
3004 * While looking at the routing entry, we also initialize other path-dependent
3005 * parameters from pre-set or cached values in the routing entry.
3007 * Also take into account the space needed for options that we
3008 * send regularly. Make maxseg shorter by that amount to assure
3009 * that we can send maxseg amount of data even when the options
3010 * are present. Store the upper limit of the length of options plus
3013 * NOTE that this routine is only called when we process an incoming
3014 * segment, for outgoing segments only tcp_mssopt is called.
3016 * In case of T/TCP, we call this routine during implicit connection
3017 * setup as well (offer = -1), to initialize maxseg from the cached
3021 tcp_mss(struct tcpcb
*tp
, int offer
)
3027 struct inpcb
*inp
= tp
->t_inpcb
;
3029 struct rmxp_tao
*taop
;
3030 int origoffer
= offer
;
3032 boolean_t isipv6
= ((inp
->inp_vflag
& INP_IPV6
) ? TRUE
: FALSE
);
3033 size_t min_protoh
= isipv6
?
3034 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
3035 sizeof(struct tcpiphdr
);
3037 const boolean_t isipv6
= FALSE
;
3038 const size_t min_protoh
= sizeof(struct tcpiphdr
);
3042 rt
= tcp_rtlookup6(&inp
->inp_inc
);
3044 rt
= tcp_rtlookup(&inp
->inp_inc
);
3046 tp
->t_maxopd
= tp
->t_maxseg
=
3047 (isipv6
? tcp_v6mssdflt
: tcp_mssdflt
);
3051 so
= inp
->inp_socket
;
3053 taop
= rmx_taop(rt
->rt_rmx
);
3056 * Offer == -1 means that we didn't receive SYN yet,
3057 * use cached value in that case;
3060 offer
= taop
->tao_mssopt
;
3063 * Offer == 0 means that there was no MSS on the SYN segment,
3064 * in this case we use either the interface mtu or tcp_mssdflt.
3066 * An offer which is too large will be cut down later.
3070 if (in6_localaddr(&inp
->in6p_faddr
)) {
3071 offer
= ND_IFINFO(rt
->rt_ifp
)->linkmtu
-
3074 offer
= tcp_v6mssdflt
;
3077 if (in_localaddr(inp
->inp_faddr
))
3078 offer
= ifp
->if_mtu
- min_protoh
;
3080 offer
= tcp_mssdflt
;
3085 * Prevent DoS attack with too small MSS. Round up
3086 * to at least minmss.
3088 * Sanity check: make sure that maxopd will be large
3089 * enough to allow some data on segments even is the
3090 * all the option space is used (40bytes). Otherwise
3091 * funny things may happen in tcp_output.
3093 offer
= max(offer
, tcp_minmss
);
3094 offer
= max(offer
, 64);
3096 taop
->tao_mssopt
= offer
;
3099 * While we're here, check if there's an initial rtt
3100 * or rttvar. Convert from the route-table units
3101 * to scaled multiples of the slow timeout timer.
3103 if (tp
->t_srtt
== 0 && (rtt
= rt
->rt_rmx
.rmx_rtt
)) {
3105 * XXX the lock bit for RTT indicates that the value
3106 * is also a minimum value; this is subject to time.
3108 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
)
3109 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ hz
);
3110 tp
->t_srtt
= rtt
/ (RTM_RTTUNIT
/ (hz
* TCP_RTT_SCALE
));
3111 tp
->t_rttbest
= tp
->t_srtt
+ TCP_RTT_SCALE
;
3112 tcpstat
.tcps_usedrtt
++;
3113 if (rt
->rt_rmx
.rmx_rttvar
) {
3114 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
3115 (RTM_RTTUNIT
/ (hz
* TCP_RTTVAR_SCALE
));
3116 tcpstat
.tcps_usedrttvar
++;
3118 /* default variation is +- 1 rtt */
3120 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
3122 TCPT_RANGESET(tp
->t_rxtcur
,
3123 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
3124 tp
->t_rttmin
, TCPTV_REXMTMAX
);
3128 * if there's an mtu associated with the route, use it
3129 * else, use the link mtu. Take the smaller of mss or offer
3132 if (rt
->rt_rmx
.rmx_mtu
) {
3133 mss
= rt
->rt_rmx
.rmx_mtu
- min_protoh
;
3136 mss
= ND_IFINFO(rt
->rt_ifp
)->linkmtu
- min_protoh
;
3138 mss
= ifp
->if_mtu
- min_protoh
;
3140 mss
= min(mss
, offer
);
3143 * maxopd stores the maximum length of data AND options
3144 * in a segment; maxseg is the amount of data in a normal
3145 * segment. We need to store this value (maxopd) apart
3146 * from maxseg, because now every segment carries options
3147 * and thus we normally have somewhat less data in segments.
3152 * In case of T/TCP, origoffer==-1 indicates, that no segments
3153 * were received yet. In this case we just guess, otherwise
3154 * we do the same as before T/TCP.
3156 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_NOOPT
)) == TF_REQ_TSTMP
&&
3158 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
))
3159 mss
-= TCPOLEN_TSTAMP_APPA
;
3160 if ((tp
->t_flags
& (TF_REQ_CC
| TF_NOOPT
)) == TF_REQ_CC
&&
3162 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
))
3163 mss
-= TCPOLEN_CC_APPA
;
3165 #if (MCLBYTES & (MCLBYTES - 1)) == 0
3167 mss
&= ~(MCLBYTES
-1);
3170 mss
= mss
/ MCLBYTES
* MCLBYTES
;
3173 * If there's a pipesize, change the socket buffer
3174 * to that size. Make the socket buffers an integral
3175 * number of mss units; if the mss is larger than
3176 * the socket buffer, decrease the mss.
3179 if ((bufsize
= rt
->rt_rmx
.rmx_sendpipe
) == 0)
3181 bufsize
= so
->so_snd
.ssb_hiwat
;
3185 bufsize
= roundup(bufsize
, mss
);
3186 if (bufsize
> sb_max
)
3188 if (bufsize
> so
->so_snd
.ssb_hiwat
)
3189 ssb_reserve(&so
->so_snd
, bufsize
, so
, NULL
);
3194 if ((bufsize
= rt
->rt_rmx
.rmx_recvpipe
) == 0)
3196 bufsize
= so
->so_rcv
.ssb_hiwat
;
3197 if (bufsize
> mss
) {
3198 bufsize
= roundup(bufsize
, mss
);
3199 if (bufsize
> sb_max
)
3201 if (bufsize
> so
->so_rcv
.ssb_hiwat
)
3202 ssb_reserve(&so
->so_rcv
, bufsize
, so
, NULL
);
3206 * Set the slow-start flight size depending on whether this
3207 * is a local network or not.
3210 tp
->snd_cwnd
= min(4 * mss
, max(2 * mss
, 4380));
3214 if (rt
->rt_rmx
.rmx_ssthresh
) {
3216 * There's some sort of gateway or interface
3217 * buffer limit on the path. Use this to set
3218 * the slow start threshhold, but set the
3219 * threshold to no less than 2*mss.
3221 tp
->snd_ssthresh
= max(2 * mss
, rt
->rt_rmx
.rmx_ssthresh
);
3222 tcpstat
.tcps_usedssthresh
++;
3227 * Determine the MSS option to send on an outgoing SYN.
3230 tcp_mssopt(struct tcpcb
*tp
)
3235 ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) ? TRUE
: FALSE
);
3236 int min_protoh
= isipv6
?
3237 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
3238 sizeof(struct tcpiphdr
);
3240 const boolean_t isipv6
= FALSE
;
3241 const size_t min_protoh
= sizeof(struct tcpiphdr
);
3245 rt
= tcp_rtlookup6(&tp
->t_inpcb
->inp_inc
);
3247 rt
= tcp_rtlookup(&tp
->t_inpcb
->inp_inc
);
3249 return (isipv6
? tcp_v6mssdflt
: tcp_mssdflt
);
3251 return (rt
->rt_ifp
->if_mtu
- min_protoh
);
3255 * When a partial ack arrives, force the retransmission of the
3256 * next unacknowledged segment. Do not exit Fast Recovery.
3258 * Implement the Slow-but-Steady variant of NewReno by restarting the
3259 * the retransmission timer. Turn it off here so it can be restarted
3260 * later in tcp_output().
3263 tcp_newreno_partial_ack(struct tcpcb
*tp
, struct tcphdr
*th
, int acked
)
3265 tcp_seq old_snd_nxt
= tp
->snd_nxt
;
3266 u_long ocwnd
= tp
->snd_cwnd
;
3268 tcp_callout_stop(tp
, tp
->tt_rexmt
);
3270 tp
->snd_nxt
= th
->th_ack
;
3271 /* Set snd_cwnd to one segment beyond acknowledged offset. */
3272 tp
->snd_cwnd
= tp
->t_maxseg
;
3273 tp
->t_flags
|= TF_ACKNOW
;
3275 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
3276 tp
->snd_nxt
= old_snd_nxt
;
3277 /* partial window deflation */
3279 tp
->snd_cwnd
= ocwnd
- acked
+ tp
->t_maxseg
;
3281 tp
->snd_cwnd
= tp
->t_maxseg
;
3285 * In contrast to the Slow-but-Steady NewReno variant,
3286 * we do not reset the retransmission timer for SACK retransmissions,
3287 * except when retransmitting snd_una.
3290 tcp_sack_rexmt(struct tcpcb
*tp
, struct tcphdr
*th
)
3292 uint32_t pipe
, seglen
;
3295 tcp_seq old_snd_nxt
= tp
->snd_nxt
;
3296 u_long ocwnd
= tp
->snd_cwnd
;
3297 int nseg
= 0; /* consecutive new segments */
3298 #define MAXBURST 4 /* limit burst of new packets on partial ack */
3301 pipe
= tcp_sack_compute_pipe(tp
);
3302 while ((tcp_seq_diff_t
)(ocwnd
- pipe
) >= (tcp_seq_diff_t
)tp
->t_maxseg
&&
3303 (!tcp_do_smartsack
|| nseg
< MAXBURST
) &&
3304 tcp_sack_nextseg(tp
, &nextrexmt
, &seglen
, &lostdup
)) {
3306 tcp_seq old_snd_max
;
3309 if (nextrexmt
== tp
->snd_max
)
3311 tp
->snd_nxt
= nextrexmt
;
3312 tp
->snd_cwnd
= nextrexmt
- tp
->snd_una
+ seglen
;
3313 old_snd_max
= tp
->snd_max
;
3314 if (nextrexmt
== tp
->snd_una
)
3315 tcp_callout_stop(tp
, tp
->tt_rexmt
);
3316 error
= tcp_output(tp
);
3319 sent
= tp
->snd_nxt
- nextrexmt
;
3324 tcpstat
.tcps_sndsackpack
++;
3325 tcpstat
.tcps_sndsackbyte
+= sent
;
3326 if (SEQ_LT(nextrexmt
, old_snd_max
) &&
3327 SEQ_LT(tp
->rexmt_high
, tp
->snd_nxt
))
3328 tp
->rexmt_high
= seq_min(tp
->snd_nxt
, old_snd_max
);
3330 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
3331 tp
->snd_nxt
= old_snd_nxt
;
3332 tp
->snd_cwnd
= ocwnd
;