10Base-TX -> 10Base-T and 1000Base-TX -> 1000Base-T. Although 1000Base-TX
[dragonfly.git] / sys / dev / netif / sk / if_sk.c
blob45d5254e2972a25070a3bed17e89043583bf463d
1 /*
2 * Copyright (c) 1997, 1998, 1999, 2000
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $OpenBSD: if_sk.c,v 1.129 2006/10/16 12:30:08 tom Exp $
33 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
34 * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.55 2008/03/16 15:50:22 hasso Exp $
38 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40 * Permission to use, copy, modify, and distribute this software for any
41 * purpose with or without fee is hereby granted, provided that the above
42 * copyright notice and this permission notice appear in all copies.
44 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * The XaQti XMAC II datasheet,
58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 * The SysKonnect GEnesis manual, http://www.syskonnect.com
61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
73 * The SysKonnect gigabit ethernet adapters consist of two main
74 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76 * components and a PHY while the GEnesis controller provides a PCI
77 * interface with DMA support. Each card may have between 512K and
78 * 2MB of SRAM on board depending on the configuration.
80 * The SysKonnect GEnesis controller can have either one or two XMAC
81 * chips connected to it, allowing single or dual port NIC configurations.
82 * SysKonnect has the distinction of being the only vendor on the market
83 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85 * XMAC registers. This driver takes advantage of these features to allow
86 * both XMACs to operate as independent interfaces.
89 #include <sys/param.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/in_cksum.h>
93 #include <sys/kernel.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/queue.h>
97 #include <sys/rman.h>
98 #include <sys/serialize.h>
99 #include <sys/socket.h>
100 #include <sys/sockio.h>
101 #include <sys/sysctl.h>
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/ifq_var.h>
110 #include <net/vlan/if_vlan_var.h>
112 #include <netinet/ip.h>
113 #include <netinet/udp.h>
115 #include <dev/netif/mii_layer/mii.h>
116 #include <dev/netif/mii_layer/miivar.h>
117 #include <dev/netif/mii_layer/brgphyreg.h>
119 #include <bus/pci/pcireg.h>
120 #include <bus/pci/pcivar.h>
121 #include <bus/pci/pcidevs.h>
123 #include <dev/netif/sk/if_skreg.h>
124 #include <dev/netif/sk/yukonreg.h>
125 #include <dev/netif/sk/xmaciireg.h>
126 #include <dev/netif/sk/if_skvar.h>
128 #include "miibus_if.h"
130 #if 0
131 #define SK_DEBUG
132 #endif
134 #if 0
135 #define SK_RXCSUM
136 #endif
138 /* supported device vendors */
139 static const struct skc_type {
140 uint16_t skc_vid;
141 uint16_t skc_did;
142 const char *skc_name;
143 } skc_devs[] = {
144 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940,
145 "3Com 3C940" },
146 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940B,
147 "3Com 3C940B" },
149 { PCI_VENDOR_CNET, PCI_PRODUCT_CNET_GIGACARD,
150 "CNet GigaCard" },
152 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T_A1,
153 "D-Link DGE-530T A1" },
154 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T_B1,
155 "D-Link DGE-530T B1" },
157 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
158 "Linksys EG1032 v2" },
159 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064,
160 "Linksys EG1064" },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON,
163 "Marvell Yukon 88E8001/8003/8010" },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_BELKIN,
165 "Belkin F5D5005" },
167 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE,
168 "SysKonnect SK-NET" },
169 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2,
170 "SysKonnect SK9821 v2" },
172 { 0, 0, NULL }
175 static int skc_probe(device_t);
176 static int skc_attach(device_t);
177 static int skc_detach(device_t);
178 static void skc_shutdown(device_t);
179 static int skc_sysctl_imtime(SYSCTL_HANDLER_ARGS);
181 static int sk_probe(device_t);
182 static int sk_attach(device_t);
183 static int sk_detach(device_t);
184 static void sk_tick(void *);
185 static void sk_yukon_tick(void *);
186 static void sk_intr(void *);
187 static void sk_intr_bcom(struct sk_if_softc *);
188 static void sk_intr_xmac(struct sk_if_softc *);
189 static void sk_intr_yukon(struct sk_if_softc *);
190 static void sk_rxeof(struct sk_if_softc *);
191 static void sk_txeof(struct sk_if_softc *);
192 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
193 static void sk_start(struct ifnet *);
194 static int sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
195 static void sk_init(void *);
196 static void sk_init_xmac(struct sk_if_softc *);
197 static void sk_init_yukon(struct sk_if_softc *);
198 static void sk_stop(struct sk_if_softc *);
199 static void sk_watchdog(struct ifnet *);
200 static int sk_ifmedia_upd(struct ifnet *);
201 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202 static void sk_reset(struct sk_softc *);
203 static int sk_newbuf_jumbo(struct sk_if_softc *, int, int);
204 static int sk_newbuf_std(struct sk_if_softc *, int, int);
205 static int sk_jpool_alloc(device_t);
206 static void sk_jpool_free(struct sk_if_softc *);
207 static struct sk_jpool_entry
208 *sk_jalloc(struct sk_if_softc *);
209 static void sk_jfree(void *);
210 static void sk_jref(void *);
211 static int sk_init_rx_ring(struct sk_if_softc *);
212 static int sk_init_tx_ring(struct sk_if_softc *);
214 static int sk_miibus_readreg(device_t, int, int);
215 static int sk_miibus_writereg(device_t, int, int, int);
216 static void sk_miibus_statchg(device_t);
218 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
219 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
220 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
222 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
223 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
224 static void sk_marv_miibus_statchg(struct sk_if_softc *);
226 static void sk_setfilt(struct sk_if_softc *, caddr_t, int);
227 static void sk_setmulti(struct sk_if_softc *);
228 static void sk_setpromisc(struct sk_if_softc *);
230 #ifdef SK_RXCSUM
231 static void sk_rxcsum(struct ifnet *, struct mbuf *, const uint16_t,
232 const uint16_t);
233 #endif
234 static int sk_dma_alloc(device_t);
235 static void sk_dma_free(device_t);
237 static void sk_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
238 int);
239 static void sk_dmamem_addr(void *, bus_dma_segment_t *, int, int);
241 #ifdef SK_DEBUG
242 #define DPRINTF(x) if (skdebug) kprintf x
243 #define DPRINTFN(n,x) if (skdebug >= (n)) kprintf x
244 static int skdebug = 2;
246 static void sk_dump_txdesc(struct sk_tx_desc *, int);
247 static void sk_dump_mbuf(struct mbuf *);
248 static void sk_dump_bytes(const char *, int);
249 #else
250 #define DPRINTF(x)
251 #define DPRINTFN(n,x)
252 #endif
254 /* Interrupt moderation time. */
255 static int skc_imtime = SK_IMTIME_DEFAULT;
256 TUNABLE_INT("hw.skc.imtime", &skc_imtime);
259 * Note that we have newbus methods for both the GEnesis controller
260 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
261 * the miibus code is a child of the XMACs. We need to do it this way
262 * so that the miibus drivers can access the PHY registers on the
263 * right PHY. It's not quite what I had in mind, but it's the only
264 * design that achieves the desired effect.
266 static device_method_t skc_methods[] = {
267 /* Device interface */
268 DEVMETHOD(device_probe, skc_probe),
269 DEVMETHOD(device_attach, skc_attach),
270 DEVMETHOD(device_detach, skc_detach),
271 DEVMETHOD(device_shutdown, skc_shutdown),
273 /* bus interface */
274 DEVMETHOD(bus_print_child, bus_generic_print_child),
275 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
277 { 0, 0 }
280 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
281 static devclass_t skc_devclass;
283 static device_method_t sk_methods[] = {
284 /* Device interface */
285 DEVMETHOD(device_probe, sk_probe),
286 DEVMETHOD(device_attach, sk_attach),
287 DEVMETHOD(device_detach, sk_detach),
288 DEVMETHOD(device_shutdown, bus_generic_shutdown),
290 /* bus interface */
291 DEVMETHOD(bus_print_child, bus_generic_print_child),
292 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
294 /* MII interface */
295 DEVMETHOD(miibus_readreg, sk_miibus_readreg),
296 DEVMETHOD(miibus_writereg, sk_miibus_writereg),
297 DEVMETHOD(miibus_statchg, sk_miibus_statchg),
299 { 0, 0 }
302 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
303 static devclass_t sk_devclass;
305 DECLARE_DUMMY_MODULE(if_sk);
306 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
307 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
308 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
310 static __inline uint32_t
311 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
313 return CSR_READ_4(sc, reg);
316 static __inline uint16_t
317 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
319 return CSR_READ_2(sc, reg);
322 static __inline uint8_t
323 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
325 return CSR_READ_1(sc, reg);
328 static __inline void
329 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
331 CSR_WRITE_4(sc, reg, x);
334 static __inline void
335 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
337 CSR_WRITE_2(sc, reg, x);
340 static __inline void
341 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
343 CSR_WRITE_1(sc, reg, x);
346 static __inline int
347 sk_newbuf(struct sk_if_softc *sc_if, int idx, int wait)
349 int ret;
351 if (sc_if->sk_use_jumbo)
352 ret = sk_newbuf_jumbo(sc_if, idx, wait);
353 else
354 ret = sk_newbuf_std(sc_if, idx, wait);
355 return ret;
358 static int
359 sk_miibus_readreg(device_t dev, int phy, int reg)
361 struct sk_if_softc *sc_if = device_get_softc(dev);
363 if (SK_IS_GENESIS(sc_if->sk_softc))
364 return sk_xmac_miibus_readreg(sc_if, phy, reg);
365 else
366 return sk_marv_miibus_readreg(sc_if, phy, reg);
369 static int
370 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
372 struct sk_if_softc *sc_if = device_get_softc(dev);
374 if (SK_IS_GENESIS(sc_if->sk_softc))
375 return sk_xmac_miibus_writereg(sc_if, phy, reg, val);
376 else
377 return sk_marv_miibus_writereg(sc_if, phy, reg, val);
380 static void
381 sk_miibus_statchg(device_t dev)
383 struct sk_if_softc *sc_if = device_get_softc(dev);
385 if (SK_IS_GENESIS(sc_if->sk_softc))
386 sk_xmac_miibus_statchg(sc_if);
387 else
388 sk_marv_miibus_statchg(sc_if);
391 static int
392 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
394 int i;
396 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
398 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
399 return(0);
401 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
402 SK_XM_READ_2(sc_if, XM_PHY_DATA);
403 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
404 for (i = 0; i < SK_TIMEOUT; i++) {
405 DELAY(1);
406 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
407 XM_MMUCMD_PHYDATARDY)
408 break;
411 if (i == SK_TIMEOUT) {
412 if_printf(&sc_if->arpcom.ac_if,
413 "phy failed to come ready\n");
414 return(0);
417 DELAY(1);
418 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
421 static int
422 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
424 int i;
426 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
428 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
429 for (i = 0; i < SK_TIMEOUT; i++) {
430 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
431 break;
434 if (i == SK_TIMEOUT) {
435 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
436 return(ETIMEDOUT);
439 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
440 for (i = 0; i < SK_TIMEOUT; i++) {
441 DELAY(1);
442 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
443 break;
446 if (i == SK_TIMEOUT)
447 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
448 return(0);
451 static void
452 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
454 struct mii_data *mii;
456 mii = device_get_softc(sc_if->sk_miibus);
457 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
460 * If this is a GMII PHY, manually set the XMAC's
461 * duplex mode accordingly.
463 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
464 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
465 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
466 else
467 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
471 static int
472 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
474 uint16_t val;
475 int i;
477 if (phy != 0 ||
478 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
479 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
480 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
481 phy, reg));
482 return(0);
485 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
486 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
488 for (i = 0; i < SK_TIMEOUT; i++) {
489 DELAY(1);
490 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
491 if (val & YU_SMICR_READ_VALID)
492 break;
495 if (i == SK_TIMEOUT) {
496 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
497 return(0);
500 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
501 SK_TIMEOUT));
503 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
505 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
506 phy, reg, val));
508 return(val);
511 static int
512 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
514 int i;
516 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
517 phy, reg, val));
519 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
520 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
521 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
523 for (i = 0; i < SK_TIMEOUT; i++) {
524 DELAY(1);
525 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
526 break;
529 if (i == SK_TIMEOUT)
530 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
532 return(0);
535 static void
536 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
538 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
539 SK_YU_READ_2(sc_if, YUKON_GPCR)));
542 #define HASH_BITS 6
544 static uint32_t
545 sk_xmac_hash(caddr_t addr)
547 uint32_t crc;
549 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
550 return (~crc & ((1 << HASH_BITS) - 1));
553 static uint32_t
554 sk_yukon_hash(caddr_t addr)
556 uint32_t crc;
558 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
559 return (crc & ((1 << HASH_BITS) - 1));
562 static void
563 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
565 int base;
567 base = XM_RXFILT_ENTRY(slot);
569 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
570 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
571 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
574 static void
575 sk_setmulti(struct sk_if_softc *sc_if)
577 struct sk_softc *sc = sc_if->sk_softc;
578 struct ifnet *ifp = &sc_if->arpcom.ac_if;
579 uint32_t hashes[2] = { 0, 0 };
580 int h = 0, i;
581 struct ifmultiaddr *ifma;
582 uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
584 /* First, zot all the existing filters. */
585 switch(sc->sk_type) {
586 case SK_GENESIS:
587 for (i = 1; i < XM_RXFILT_MAX; i++)
588 sk_setfilt(sc_if, (caddr_t)&dummy, i);
590 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
591 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
592 break;
593 case SK_YUKON:
594 case SK_YUKON_LITE:
595 case SK_YUKON_LP:
596 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
597 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
598 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
599 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
600 break;
603 /* Now program new ones. */
604 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
605 hashes[0] = 0xFFFFFFFF;
606 hashes[1] = 0xFFFFFFFF;
607 } else {
608 i = 1;
609 /* First find the tail of the list. */
610 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
611 if (ifma->ifma_link.le_next == NULL)
612 break;
614 /* Now traverse the list backwards. */
615 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
616 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
617 caddr_t maddr;
619 if (ifma->ifma_addr->sa_family != AF_LINK)
620 continue;
622 maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
625 * Program the first XM_RXFILT_MAX multicast groups
626 * into the perfect filter. For all others,
627 * use the hash table.
629 if (SK_IS_GENESIS(sc) && i < XM_RXFILT_MAX) {
630 sk_setfilt(sc_if, maddr, i);
631 i++;
632 continue;
635 switch(sc->sk_type) {
636 case SK_GENESIS:
637 h = sk_xmac_hash(maddr);
638 break;
640 case SK_YUKON:
641 case SK_YUKON_LITE:
642 case SK_YUKON_LP:
643 h = sk_yukon_hash(maddr);
644 break;
646 if (h < 32)
647 hashes[0] |= (1 << h);
648 else
649 hashes[1] |= (1 << (h - 32));
653 switch(sc->sk_type) {
654 case SK_GENESIS:
655 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
656 XM_MODE_RX_USE_PERFECT);
657 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
658 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
659 break;
660 case SK_YUKON:
661 case SK_YUKON_LITE:
662 case SK_YUKON_LP:
663 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
664 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
665 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
666 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
667 break;
671 static void
672 sk_setpromisc(struct sk_if_softc *sc_if)
674 struct sk_softc *sc = sc_if->sk_softc;
675 struct ifnet *ifp = &sc_if->arpcom.ac_if;
677 switch(sc->sk_type) {
678 case SK_GENESIS:
679 if (ifp->if_flags & IFF_PROMISC)
680 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
681 else
682 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
683 break;
684 case SK_YUKON:
685 case SK_YUKON_LITE:
686 case SK_YUKON_LP:
687 if (ifp->if_flags & IFF_PROMISC) {
688 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
689 YU_RCR_UFLEN | YU_RCR_MUFLEN);
690 } else {
691 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
692 YU_RCR_UFLEN | YU_RCR_MUFLEN);
694 break;
698 static int
699 sk_init_rx_ring(struct sk_if_softc *sc_if)
701 struct sk_chain_data *cd = &sc_if->sk_cdata;
702 struct sk_ring_data *rd = sc_if->sk_rdata;
703 int i, nexti, error;
705 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
707 for (i = 0; i < SK_RX_RING_CNT; i++) {
708 if (i == (SK_RX_RING_CNT - 1))
709 nexti = 0;
710 else
711 nexti = i + 1;
712 rd->sk_rx_ring[i].sk_next =
713 htole32(SK_RX_RING_ADDR(sc_if, nexti));
714 rd->sk_rx_ring[i].sk_csum1_start = htole16(ETHER_HDR_LEN);
715 rd->sk_rx_ring[i].sk_csum2_start =
716 htole16(ETHER_HDR_LEN + sizeof(struct ip));
718 error = sk_newbuf(sc_if, i, 1);
719 if (error) {
720 if_printf(&sc_if->arpcom.ac_if,
721 "failed alloc of %dth mbuf\n", i);
722 return error;
726 cd->sk_rx_prod = 0;
727 cd->sk_rx_cons = 0;
729 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
730 BUS_DMASYNC_PREWRITE);
732 return (0);
735 static int
736 sk_init_tx_ring(struct sk_if_softc *sc_if)
738 struct sk_ring_data *rd = sc_if->sk_rdata;
739 int i, nexti;
741 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
743 for (i = 0; i < SK_TX_RING_CNT; i++) {
744 if (i == (SK_TX_RING_CNT - 1))
745 nexti = 0;
746 else
747 nexti = i + 1;
748 rd->sk_tx_ring[i].sk_next = htole32(SK_TX_RING_ADDR(sc_if, nexti));
751 sc_if->sk_cdata.sk_tx_prod = 0;
752 sc_if->sk_cdata.sk_tx_cons = 0;
753 sc_if->sk_cdata.sk_tx_cnt = 0;
755 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
756 BUS_DMASYNC_PREWRITE);
758 return (0);
761 static int
762 sk_newbuf_jumbo(struct sk_if_softc *sc_if, int idx, int wait)
764 struct sk_jpool_entry *entry;
765 struct mbuf *m_new = NULL;
766 struct sk_rx_desc *r;
768 KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
770 MGETHDR(m_new, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
771 if (m_new == NULL)
772 return ENOBUFS;
774 /* Allocate the jumbo buffer */
775 entry = sk_jalloc(sc_if);
776 if (entry == NULL) {
777 m_freem(m_new);
778 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
779 "dropped!\n", sc_if->arpcom.ac_if.if_xname));
780 return ENOBUFS;
783 m_new->m_ext.ext_arg = entry;
784 m_new->m_ext.ext_buf = entry->buf;
785 m_new->m_ext.ext_free = sk_jfree;
786 m_new->m_ext.ext_ref = sk_jref;
787 m_new->m_ext.ext_size = SK_JLEN;
789 m_new->m_flags |= M_EXT;
791 m_new->m_data = m_new->m_ext.ext_buf;
792 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
795 * Adjust alignment so packet payload begins on a
796 * longword boundary. Mandatory for Alpha, useful on
797 * x86 too.
799 m_adj(m_new, ETHER_ALIGN);
801 sc_if->sk_cdata.sk_rx_mbuf[idx] = m_new;
803 r = &sc_if->sk_rdata->sk_rx_ring[idx];
804 r->sk_data_lo = htole32(entry->paddr + ETHER_ALIGN);
805 r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
807 return 0;
810 static int
811 sk_newbuf_std(struct sk_if_softc *sc_if, int idx, int wait)
813 struct mbuf *m_new = NULL;
814 struct sk_chain_data *cd = &sc_if->sk_cdata;
815 struct sk_rx_desc *r;
816 struct sk_dma_ctx ctx;
817 bus_dma_segment_t seg;
818 bus_dmamap_t map;
819 int error;
821 KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
823 m_new = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
824 if (m_new == NULL)
825 return ENOBUFS;
827 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
830 * Adjust alignment so packet payload begins on a
831 * longword boundary. Mandatory for Alpha, useful on
832 * x86 too.
834 m_adj(m_new, ETHER_ALIGN);
836 bzero(&ctx, sizeof(ctx));
837 ctx.nsegs = 1;
838 ctx.segs = &seg;
839 error = bus_dmamap_load_mbuf(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp,
840 m_new, sk_buf_dma_addr, &ctx,
841 wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
842 if (error) {
843 if_printf(&sc_if->arpcom.ac_if, "could not map RX mbuf\n");
844 m_freem(m_new);
845 return error;
848 /* Unload originally mapped mbuf */
849 if (cd->sk_rx_mbuf[idx] != NULL)
850 bus_dmamap_unload(cd->sk_rx_dtag, cd->sk_rx_dmap[idx]);
852 /* Switch DMA map with tmp DMA map */
853 map = cd->sk_rx_dmap_tmp;
854 cd->sk_rx_dmap_tmp = cd->sk_rx_dmap[idx];
855 cd->sk_rx_dmap[idx] = map;
857 cd->sk_rx_mbuf[idx] = m_new;
859 r = &sc_if->sk_rdata->sk_rx_ring[idx];
860 r->sk_data_lo = htole32(seg.ds_addr);
861 r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
863 return 0;
867 * Allocate a jumbo buffer.
869 struct sk_jpool_entry *
870 sk_jalloc(struct sk_if_softc *sc_if)
872 struct sk_chain_data *cd = &sc_if->sk_cdata;
873 struct sk_jpool_entry *entry;
875 lwkt_serialize_enter(&cd->sk_jpool_serializer);
877 entry = SLIST_FIRST(&cd->sk_jpool_free_ent);
878 if (entry != NULL) {
879 SLIST_REMOVE_HEAD(&cd->sk_jpool_free_ent, entry_next);
880 entry->inuse = 1;
881 } else {
882 DPRINTF(("no free jumbo buffer\n"));
885 lwkt_serialize_exit(&cd->sk_jpool_serializer);
886 return entry;
890 * Release a jumbo buffer.
892 void
893 sk_jfree(void *arg)
895 struct sk_jpool_entry *entry = arg;
896 struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
898 if (&cd->sk_jpool_ent[entry->slot] != entry)
899 panic("%s: free wrong jumbo buffer\n", __func__);
900 else if (entry->inuse == 0)
901 panic("%s: jumbo buffer already freed\n", __func__);
903 lwkt_serialize_enter(&cd->sk_jpool_serializer);
905 atomic_subtract_int(&entry->inuse, 1);
906 if (entry->inuse == 0)
907 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
909 lwkt_serialize_exit(&cd->sk_jpool_serializer);
912 static void
913 sk_jref(void *arg)
915 struct sk_jpool_entry *entry = arg;
916 struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
918 if (&cd->sk_jpool_ent[entry->slot] != entry)
919 panic("%s: free wrong jumbo buffer\n", __func__);
920 else if (entry->inuse == 0)
921 panic("%s: jumbo buffer already freed\n", __func__);
923 atomic_add_int(&entry->inuse, 1);
927 * Set media options.
929 static int
930 sk_ifmedia_upd(struct ifnet *ifp)
932 struct sk_if_softc *sc_if = ifp->if_softc;
933 struct mii_data *mii;
935 mii = device_get_softc(sc_if->sk_miibus);
936 sk_init(sc_if);
937 mii_mediachg(mii);
939 return(0);
943 * Report current media status.
945 static void
946 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
948 struct sk_if_softc *sc_if;
949 struct mii_data *mii;
951 sc_if = ifp->if_softc;
952 mii = device_get_softc(sc_if->sk_miibus);
954 mii_pollstat(mii);
955 ifmr->ifm_active = mii->mii_media_active;
956 ifmr->ifm_status = mii->mii_media_status;
959 static int
960 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
962 struct sk_if_softc *sc_if = ifp->if_softc;
963 struct ifreq *ifr = (struct ifreq *)data;
964 struct mii_data *mii;
965 int error = 0;
967 ASSERT_SERIALIZED(ifp->if_serializer);
969 switch(command) {
970 case SIOCSIFMTU:
971 if (ifr->ifr_mtu > SK_JUMBO_MTU)
972 error = EINVAL;
973 else {
974 ifp->if_mtu = ifr->ifr_mtu;
975 ifp->if_flags &= ~IFF_RUNNING;
976 sk_init(sc_if);
978 break;
979 case SIOCSIFFLAGS:
980 if (ifp->if_flags & IFF_UP) {
981 if (ifp->if_flags & IFF_RUNNING) {
982 if ((ifp->if_flags ^ sc_if->sk_if_flags)
983 & IFF_PROMISC) {
984 sk_setpromisc(sc_if);
985 sk_setmulti(sc_if);
987 } else
988 sk_init(sc_if);
989 } else {
990 if (ifp->if_flags & IFF_RUNNING)
991 sk_stop(sc_if);
993 sc_if->sk_if_flags = ifp->if_flags;
994 break;
995 case SIOCADDMULTI:
996 case SIOCDELMULTI:
997 sk_setmulti(sc_if);
998 break;
999 case SIOCGIFMEDIA:
1000 case SIOCSIFMEDIA:
1001 mii = device_get_softc(sc_if->sk_miibus);
1002 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1003 break;
1004 default:
1005 error = ether_ioctl(ifp, command, data);
1006 break;
1009 return(error);
1013 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1014 * IDs against our list and return a device name if we find a match.
1016 static int
1017 skc_probe(device_t dev)
1019 const struct skc_type *t;
1020 uint16_t vid, did;
1022 vid = pci_get_vendor(dev);
1023 did = pci_get_device(dev);
1026 * Only attach to rev.2 of the Linksys EG1032 adapter.
1027 * Rev.3 is supported by re(4).
1029 if (vid == PCI_VENDOR_LINKSYS &&
1030 did == PCI_PRODUCT_LINKSYS_EG1032 &&
1031 pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1032 return ENXIO;
1034 for (t = skc_devs; t->skc_name != NULL; t++) {
1035 if (vid == t->skc_vid && did == t->skc_did) {
1036 device_set_desc(dev, t->skc_name);
1037 return 0;
1040 return ENXIO;
1044 * Force the GEnesis into reset, then bring it out of reset.
1046 static void
1047 sk_reset(struct sk_softc *sc)
1049 DPRINTFN(2, ("sk_reset\n"));
1051 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1052 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1053 if (SK_IS_YUKON(sc))
1054 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1056 DELAY(1000);
1057 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1058 DELAY(2);
1059 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1060 if (SK_IS_YUKON(sc))
1061 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1063 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1064 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1065 CSR_READ_2(sc, SK_LINK_CTRL)));
1067 if (SK_IS_GENESIS(sc)) {
1068 /* Configure packet arbiter */
1069 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1070 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1071 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1072 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1073 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1076 /* Enable RAM interface */
1077 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1080 * Configure interrupt moderation. The moderation timer
1081 * defers interrupts specified in the interrupt moderation
1082 * timer mask based on the timeout specified in the interrupt
1083 * moderation timer init register. Each bit in the timer
1084 * register represents one tick, so to specify a timeout in
1085 * microseconds, we have to multiply by the correct number of
1086 * ticks-per-microsecond.
1088 KKASSERT(sc->sk_imtimer_ticks != 0 && sc->sk_imtime != 0);
1089 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc, sc->sk_imtime));
1090 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1091 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1092 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1095 static int
1096 sk_probe(device_t dev)
1098 struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1099 const char *revstr = "", *name = NULL;
1100 char devname[80];
1102 switch (sc->sk_type) {
1103 case SK_GENESIS:
1104 name = "SysKonnect GEnesis";
1105 break;
1106 case SK_YUKON:
1107 name = "Marvell Yukon";
1108 break;
1109 case SK_YUKON_LITE:
1110 name = "Marvell Yukon Lite";
1111 switch (sc->sk_rev) {
1112 case SK_YUKON_LITE_REV_A0:
1113 revstr = " rev.A0";
1114 break;
1115 case SK_YUKON_LITE_REV_A1:
1116 revstr = " rev.A1";
1117 break;
1118 case SK_YUKON_LITE_REV_A3:
1119 revstr = " rev.A3";
1120 break;
1122 break;
1123 case SK_YUKON_LP:
1124 name = "Marvell Yukon LP";
1125 break;
1126 default:
1127 return ENXIO;
1130 ksnprintf(devname, sizeof(devname), "%s%s (0x%x)",
1131 name, revstr, sc->sk_rev);
1132 device_set_desc_copy(dev, devname);
1133 return 0;
1137 * Each XMAC chip is attached as a separate logical IP interface.
1138 * Single port cards will have only one logical interface of course.
1140 static int
1141 sk_attach(device_t dev)
1143 struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1144 struct sk_if_softc *sc_if = device_get_softc(dev);
1145 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1146 int i, error;
1148 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1150 sc_if->sk_port = *(int *)device_get_ivars(dev);
1151 KKASSERT(sc_if->sk_port == SK_PORT_A || sc_if->sk_port == SK_PORT_B);
1153 sc_if->sk_softc = sc;
1154 sc->sk_if[sc_if->sk_port] = sc_if;
1156 kfree(device_get_ivars(dev), M_DEVBUF);
1157 device_set_ivars(dev, NULL);
1159 if (sc_if->sk_port == SK_PORT_A)
1160 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1161 if (sc_if->sk_port == SK_PORT_B)
1162 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1164 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1167 * Get station address for this interface. Note that
1168 * dual port cards actually come with three station
1169 * addresses: one for each port, plus an extra. The
1170 * extra one is used by the SysKonnect driver software
1171 * as a 'virtual' station address for when both ports
1172 * are operating in failover mode. Currently we don't
1173 * use this extra address.
1175 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1176 /* XXX */
1177 sc_if->arpcom.ac_enaddr[i] =
1178 sk_win_read_1(sc, SK_MAC0_0 + (sc_if->sk_port * 8) + i);
1182 * Set up RAM buffer addresses. The NIC will have a certain
1183 * amount of SRAM on it, somewhere between 512K and 2MB. We
1184 * need to divide this up a) between the transmitter and
1185 * receiver and b) between the two XMACs, if this is a
1186 * dual port NIC. Our algorithm is to divide up the memory
1187 * evenly so that everyone gets a fair share.
1189 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1190 uint32_t chunk, val;
1192 chunk = sc->sk_ramsize / 2;
1193 val = sc->sk_rboff / sizeof(uint64_t);
1194 sc_if->sk_rx_ramstart = val;
1195 val += (chunk / sizeof(uint64_t));
1196 sc_if->sk_rx_ramend = val - 1;
1197 sc_if->sk_tx_ramstart = val;
1198 val += (chunk / sizeof(uint64_t));
1199 sc_if->sk_tx_ramend = val - 1;
1200 } else {
1201 uint32_t chunk, val;
1203 chunk = sc->sk_ramsize / 4;
1204 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1205 sizeof(uint64_t);
1206 sc_if->sk_rx_ramstart = val;
1207 val += (chunk / sizeof(uint64_t));
1208 sc_if->sk_rx_ramend = val - 1;
1209 sc_if->sk_tx_ramstart = val;
1210 val += (chunk / sizeof(uint64_t));
1211 sc_if->sk_tx_ramend = val - 1;
1214 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1215 " tx_ramstart=%#x tx_ramend=%#x\n",
1216 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1217 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1219 /* Read and save PHY type */
1220 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1222 /* Set PHY address */
1223 if (SK_IS_GENESIS(sc)) {
1224 switch (sc_if->sk_phytype) {
1225 case SK_PHYTYPE_XMAC:
1226 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1227 break;
1228 case SK_PHYTYPE_BCOM:
1229 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1230 break;
1231 default:
1232 device_printf(dev, "unsupported PHY type: %d\n",
1233 sc_if->sk_phytype);
1234 error = ENXIO;
1235 goto fail;
1239 if (SK_IS_YUKON(sc)) {
1240 if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1241 sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
1242 /* not initialized, punt */
1243 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1244 sc->sk_coppertype = 1;
1247 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1249 if (!(sc->sk_coppertype))
1250 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1253 error = sk_dma_alloc(dev);
1254 if (error)
1255 goto fail;
1257 ifp->if_softc = sc_if;
1258 ifp->if_mtu = ETHERMTU;
1259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1260 ifp->if_ioctl = sk_ioctl;
1261 ifp->if_start = sk_start;
1262 ifp->if_watchdog = sk_watchdog;
1263 ifp->if_init = sk_init;
1264 ifp->if_baudrate = 1000000000;
1265 ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1266 ifq_set_ready(&ifp->if_snd);
1268 ifp->if_capabilities = IFCAP_VLAN_MTU;
1270 /* Don't use jumbo buffers by default */
1271 sc_if->sk_use_jumbo = 0;
1274 * Do miibus setup.
1276 switch (sc->sk_type) {
1277 case SK_GENESIS:
1278 sk_init_xmac(sc_if);
1279 break;
1280 case SK_YUKON:
1281 case SK_YUKON_LITE:
1282 case SK_YUKON_LP:
1283 sk_init_yukon(sc_if);
1284 break;
1285 default:
1286 device_printf(dev, "unknown device type %d\n", sc->sk_type);
1287 error = ENXIO;
1288 goto fail;
1291 DPRINTFN(2, ("sk_attach: 1\n"));
1293 error = mii_phy_probe(dev, &sc_if->sk_miibus,
1294 sk_ifmedia_upd, sk_ifmedia_sts);
1295 if (error) {
1296 device_printf(dev, "no PHY found!\n");
1297 goto fail;
1300 callout_init(&sc_if->sk_tick_timer);
1303 * Call MI attach routines.
1305 ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sc->sk_serializer);
1307 DPRINTFN(2, ("sk_attach: end\n"));
1308 return 0;
1309 fail:
1310 sk_detach(dev);
1311 sc->sk_if[sc_if->sk_port] = NULL;
1312 return error;
1316 * Attach the interface. Allocate softc structures, do ifmedia
1317 * setup and ethernet/BPF attach.
1319 static int
1320 skc_attach(device_t dev)
1322 struct sk_softc *sc = device_get_softc(dev);
1323 uint8_t skrs;
1324 int *port;
1325 int error;
1327 DPRINTFN(2, ("begin skc_attach\n"));
1329 sc->sk_dev = dev;
1330 lwkt_serialize_init(&sc->sk_serializer);
1332 #ifndef BURN_BRIDGES
1334 * Handle power management nonsense.
1336 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1337 uint32_t iobase, membase, irq;
1339 /* Save important PCI config data. */
1340 iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1341 membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1342 irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1344 /* Reset the power state. */
1345 device_printf(dev, "chip is in D%d power mode "
1346 "-- setting to D0\n", pci_get_powerstate(dev));
1348 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1350 /* Restore PCI config data. */
1351 pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1352 pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1353 pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1355 #endif /* BURN_BRIDGES */
1358 * Map control/status registers.
1360 pci_enable_busmaster(dev);
1362 sc->sk_res_rid = SK_PCI_LOMEM;
1363 sc->sk_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1364 &sc->sk_res_rid, RF_ACTIVE);
1365 if (sc->sk_res == NULL) {
1366 device_printf(dev, "couldn't map memory\n");
1367 error = ENXIO;
1368 goto fail;
1370 sc->sk_btag = rman_get_bustag(sc->sk_res);
1371 sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1373 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1374 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1376 /* Bail out here if chip is not recognized */
1377 if (!SK_IS_GENESIS(sc) && !SK_IS_YUKON(sc)) {
1378 device_printf(dev, "unknown chip type: %d\n", sc->sk_type);
1379 error = ENXIO;
1380 goto fail;
1383 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1385 /* Allocate interrupt */
1386 sc->sk_irq_rid = 0;
1387 sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sk_irq_rid,
1388 RF_SHAREABLE | RF_ACTIVE);
1389 if (sc->sk_irq == NULL) {
1390 device_printf(dev, "couldn't map interrupt\n");
1391 error = ENXIO;
1392 goto fail;
1395 switch (sc->sk_type) {
1396 case SK_GENESIS:
1397 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1398 break;
1399 default:
1400 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1401 break;
1403 sc->sk_imtime = skc_imtime;
1405 /* Reset the adapter. */
1406 sk_reset(sc);
1408 skrs = sk_win_read_1(sc, SK_EPROM0);
1409 if (SK_IS_GENESIS(sc)) {
1410 /* Read and save RAM size and RAMbuffer offset */
1411 switch(skrs) {
1412 case SK_RAMSIZE_512K_64:
1413 sc->sk_ramsize = 0x80000;
1414 sc->sk_rboff = SK_RBOFF_0;
1415 break;
1416 case SK_RAMSIZE_1024K_64:
1417 sc->sk_ramsize = 0x100000;
1418 sc->sk_rboff = SK_RBOFF_80000;
1419 break;
1420 case SK_RAMSIZE_1024K_128:
1421 sc->sk_ramsize = 0x100000;
1422 sc->sk_rboff = SK_RBOFF_0;
1423 break;
1424 case SK_RAMSIZE_2048K_128:
1425 sc->sk_ramsize = 0x200000;
1426 sc->sk_rboff = SK_RBOFF_0;
1427 break;
1428 default:
1429 device_printf(dev, "unknown ram size: %d\n", skrs);
1430 error = ENXIO;
1431 goto fail;
1433 } else {
1434 if (skrs == 0x00)
1435 sc->sk_ramsize = 0x20000;
1436 else
1437 sc->sk_ramsize = skrs * (1<<12);
1438 sc->sk_rboff = SK_RBOFF_0;
1441 DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n",
1442 sc->sk_ramsize, sc->sk_ramsize / 1024,
1443 sc->sk_rboff));
1445 /* Read and save physical media type */
1446 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1448 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1449 sc->sk_coppertype = 1;
1450 else
1451 sc->sk_coppertype = 0;
1453 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1454 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1455 uint32_t flashaddr;
1456 uint8_t testbyte;
1458 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1460 /* Test Flash-Address Register */
1461 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1462 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1464 if (testbyte != 0) {
1465 /* This is a Yukon Lite Rev A0 */
1466 sc->sk_type = SK_YUKON_LITE;
1467 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1468 /* Restore Flash-Address Register */
1469 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1474 * Create sysctl nodes.
1476 sysctl_ctx_init(&sc->sk_sysctl_ctx);
1477 sc->sk_sysctl_tree = SYSCTL_ADD_NODE(&sc->sk_sysctl_ctx,
1478 SYSCTL_STATIC_CHILDREN(_hw),
1479 OID_AUTO,
1480 device_get_nameunit(dev),
1481 CTLFLAG_RD, 0, "");
1482 if (sc->sk_sysctl_tree == NULL) {
1483 device_printf(dev, "can't add sysctl node\n");
1484 error = ENXIO;
1485 goto fail;
1487 SYSCTL_ADD_PROC(&sc->sk_sysctl_ctx,
1488 SYSCTL_CHILDREN(sc->sk_sysctl_tree),
1489 OID_AUTO, "imtime", CTLTYPE_INT | CTLFLAG_RW,
1490 sc, 0, skc_sysctl_imtime, "I",
1491 "Interrupt moderation time (usec).");
1493 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1494 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1495 *port = SK_PORT_A;
1496 device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1498 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1499 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1500 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1501 *port = SK_PORT_B;
1502 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1505 /* Turn on the 'driver is loaded' LED. */
1506 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1508 bus_generic_attach(dev);
1510 error = bus_setup_intr(dev, sc->sk_irq, INTR_NETSAFE, sk_intr, sc,
1511 &sc->sk_intrhand, &sc->sk_serializer);
1512 if (error) {
1513 device_printf(dev, "couldn't set up irq\n");
1514 goto fail;
1516 return 0;
1517 fail:
1518 skc_detach(dev);
1519 return error;
1522 static int
1523 sk_detach(device_t dev)
1525 struct sk_if_softc *sc_if = device_get_softc(dev);
1527 if (device_is_attached(dev)) {
1528 struct sk_softc *sc = sc_if->sk_softc;
1529 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1531 lwkt_serialize_enter(ifp->if_serializer);
1533 if (sc->sk_intrhand != NULL) {
1534 if (sc->sk_if[SK_PORT_A] != NULL)
1535 sk_stop(sc->sk_if[SK_PORT_A]);
1536 if (sc->sk_if[SK_PORT_B] != NULL)
1537 sk_stop(sc->sk_if[SK_PORT_B]);
1539 bus_teardown_intr(sc->sk_dev, sc->sk_irq,
1540 sc->sk_intrhand);
1541 sc->sk_intrhand = NULL;
1544 lwkt_serialize_exit(ifp->if_serializer);
1546 ether_ifdetach(ifp);
1549 if (sc_if->sk_miibus != NULL)
1550 device_delete_child(dev, sc_if->sk_miibus);
1552 sk_dma_free(dev);
1553 return 0;
1556 static int
1557 skc_detach(device_t dev)
1559 struct sk_softc *sc = device_get_softc(dev);
1560 int *port;
1562 #ifdef INVARIANTS
1563 if (device_is_attached(dev)) {
1564 KASSERT(sc->sk_intrhand == NULL,
1565 ("intr has not been torn down yet"));
1567 #endif
1569 if (sc->sk_devs[SK_PORT_A] != NULL) {
1570 port = device_get_ivars(sc->sk_devs[SK_PORT_A]);
1571 if (port != NULL) {
1572 kfree(port, M_DEVBUF);
1573 device_set_ivars(sc->sk_devs[SK_PORT_A], NULL);
1575 device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1577 if (sc->sk_devs[SK_PORT_B] != NULL) {
1578 port = device_get_ivars(sc->sk_devs[SK_PORT_B]);
1579 if (port != NULL) {
1580 kfree(port, M_DEVBUF);
1581 device_set_ivars(sc->sk_devs[SK_PORT_B], NULL);
1583 device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1586 if (sc->sk_irq != NULL) {
1587 bus_release_resource(dev, SYS_RES_IRQ, sc->sk_irq_rid,
1588 sc->sk_irq);
1590 if (sc->sk_res != NULL) {
1591 bus_release_resource(dev, SYS_RES_MEMORY, sc->sk_res_rid,
1592 sc->sk_res);
1595 if (sc->sk_sysctl_tree != NULL)
1596 sysctl_ctx_free(&sc->sk_sysctl_ctx);
1598 return 0;
1601 static int
1602 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1604 struct sk_chain_data *cd = &sc_if->sk_cdata;
1605 struct sk_ring_data *rd = sc_if->sk_rdata;
1606 struct sk_tx_desc *f = NULL;
1607 uint32_t frag, cur, sk_ctl;
1608 struct sk_dma_ctx ctx;
1609 bus_dma_segment_t segs[SK_NTXSEG];
1610 bus_dmamap_t map;
1611 int i, error;
1613 DPRINTFN(2, ("sk_encap\n"));
1615 cur = frag = *txidx;
1617 #ifdef SK_DEBUG
1618 if (skdebug >= 2)
1619 sk_dump_mbuf(m_head);
1620 #endif
1622 map = cd->sk_tx_dmap[*txidx];
1625 * Start packing the mbufs in this chain into
1626 * the fragment pointers. Stop when we run out
1627 * of fragments or hit the end of the mbuf chain.
1629 ctx.nsegs = SK_NTXSEG;
1630 ctx.segs = segs;
1631 error = bus_dmamap_load_mbuf(cd->sk_tx_dtag, map, m_head,
1632 sk_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
1633 if (error) {
1634 if_printf(&sc_if->arpcom.ac_if, "could not map TX mbuf\n");
1635 return ENOBUFS;
1638 if ((SK_TX_RING_CNT - (cd->sk_tx_cnt + ctx.nsegs)) < 2) {
1639 bus_dmamap_unload(cd->sk_tx_dtag, map);
1640 DPRINTFN(2, ("sk_encap: too few descriptors free\n"));
1641 return ENOBUFS;
1644 DPRINTFN(2, ("sk_encap: nsegs=%d\n", ctx.nsegs));
1646 /* Sync the DMA map. */
1647 bus_dmamap_sync(cd->sk_tx_dtag, map, BUS_DMASYNC_PREWRITE);
1649 for (i = 0; i < ctx.nsegs; i++) {
1650 f = &rd->sk_tx_ring[frag];
1651 f->sk_data_lo = htole32(segs[i].ds_addr);
1652 sk_ctl = segs[i].ds_len | SK_OPCODE_DEFAULT;
1653 if (i == 0)
1654 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1655 else
1656 sk_ctl |= SK_TXCTL_OWN;
1657 f->sk_ctl = htole32(sk_ctl);
1658 cur = frag;
1659 SK_INC(frag, SK_TX_RING_CNT);
1662 cd->sk_tx_mbuf[cur] = m_head;
1663 /* Switch DMA map */
1664 cd->sk_tx_dmap[*txidx] = cd->sk_tx_dmap[cur];
1665 cd->sk_tx_dmap[cur] = map;
1667 rd->sk_tx_ring[cur].sk_ctl |=
1668 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1669 rd->sk_tx_ring[*txidx].sk_ctl |= htole32(SK_TXCTL_OWN);
1671 /* Sync first descriptor to hand it off */
1672 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1673 BUS_DMASYNC_PREWRITE);
1675 sc_if->sk_cdata.sk_tx_cnt += ctx.nsegs;
1677 #ifdef SK_DEBUG
1678 if (skdebug >= 2) {
1679 struct sk_tx_desc *desc;
1680 uint32_t idx;
1682 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1683 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1684 sk_dump_txdesc(desc, idx);
1687 #endif
1689 *txidx = frag;
1691 DPRINTFN(2, ("sk_encap: completed successfully\n"));
1693 return (0);
1696 static void
1697 sk_start(struct ifnet *ifp)
1699 struct sk_if_softc *sc_if = ifp->if_softc;
1700 struct sk_softc *sc = sc_if->sk_softc;
1701 struct mbuf *m_head = NULL;
1702 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1703 int pkts = 0;
1705 DPRINTFN(2, ("sk_start\n"));
1707 while (sc_if->sk_cdata.sk_tx_mbuf[idx] == NULL) {
1708 m_head = ifq_poll(&ifp->if_snd);
1709 if (m_head == NULL)
1710 break;
1713 * Pack the data into the transmit ring. If we
1714 * don't have room, set the OACTIVE flag and wait
1715 * for the NIC to drain the ring.
1717 if (sk_encap(sc_if, m_head, &idx)) {
1718 ifp->if_flags |= IFF_OACTIVE;
1719 break;
1722 /* now we are committed to transmit the packet */
1723 ifq_dequeue(&ifp->if_snd, m_head);
1724 pkts++;
1726 BPF_MTAP(ifp, m_head);
1728 if (pkts == 0)
1729 return;
1731 /* Transmit */
1732 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1733 sc_if->sk_cdata.sk_tx_prod = idx;
1734 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1736 /* Set a timeout in case the chip goes out to lunch. */
1737 ifp->if_timer = 5;
1741 static void
1742 sk_watchdog(struct ifnet *ifp)
1744 struct sk_if_softc *sc_if = ifp->if_softc;
1746 ASSERT_SERIALIZED(ifp->if_serializer);
1748 * Reclaim first as there is a possibility of losing Tx completion
1749 * interrupts.
1751 sk_txeof(sc_if);
1752 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1753 if_printf(&sc_if->arpcom.ac_if, "watchdog timeout\n");
1754 ifp->if_oerrors++;
1755 ifp->if_flags &= ~IFF_RUNNING;
1756 sk_init(sc_if);
1760 static void
1761 skc_shutdown(device_t dev)
1763 struct sk_softc *sc = device_get_softc(dev);
1765 DPRINTFN(2, ("sk_shutdown\n"));
1767 lwkt_serialize_enter(&sc->sk_serializer);
1769 /* Turn off the 'driver is loaded' LED. */
1770 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1773 * Reset the GEnesis controller. Doing this should also
1774 * assert the resets on the attached XMAC(s).
1776 sk_reset(sc);
1778 lwkt_serialize_exit(&sc->sk_serializer);
1781 static __inline int
1782 sk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
1784 if (sc->sk_type == SK_GENESIS) {
1785 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
1786 XM_RXSTAT_BYTES(stat) != len)
1787 return (0);
1788 } else {
1789 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1790 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1791 YU_RXSTAT_JABBER)) != 0 ||
1792 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1793 YU_RXSTAT_BYTES(stat) != len)
1794 return (0);
1797 return (1);
1800 static void
1801 sk_rxeof(struct sk_if_softc *sc_if)
1803 struct sk_softc *sc = sc_if->sk_softc;
1804 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1805 struct sk_chain_data *cd = &sc_if->sk_cdata;
1806 struct sk_ring_data *rd = sc_if->sk_rdata;
1807 int i, reap, max_frmlen;
1809 DPRINTFN(2, ("sk_rxeof\n"));
1811 i = cd->sk_rx_prod;
1813 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1814 BUS_DMASYNC_POSTREAD);
1815 if (sc_if->sk_use_jumbo) {
1816 bus_dmamap_sync(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
1817 BUS_DMASYNC_POSTREAD);
1818 max_frmlen = SK_JUMBO_FRAMELEN;
1819 } else {
1820 max_frmlen = ETHER_MAX_LEN;
1823 reap = 0;
1824 for (;;) {
1825 struct sk_rx_desc *cur_desc;
1826 uint32_t rxstat, sk_ctl;
1827 #ifdef SK_RXCSUM
1828 uint16_t csum1, csum2;
1829 #endif
1830 int cur, total_len;
1831 struct mbuf *m;
1833 cur = i;
1834 cur_desc = &rd->sk_rx_ring[cur];
1836 sk_ctl = le32toh(cur_desc->sk_ctl);
1837 if (sk_ctl & SK_RXCTL_OWN) {
1838 /* Invalidate the descriptor -- it's not ready yet */
1839 cd->sk_rx_prod = cur;
1840 break;
1843 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
1844 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
1846 #ifdef SK_RXCSUM
1847 csum1 = le16toh(cur_desc->sk_csum1);
1848 csum2 = le16toh(cur_desc->sk_csum2);
1849 #endif
1851 m = cd->sk_rx_mbuf[cur];
1854 * Bump 'i' here, so we can keep going, even if the current
1855 * RX descriptor reaping fails later. 'i' shoult NOT be used
1856 * in the following processing any more.
1858 SK_INC(i, SK_RX_RING_CNT);
1859 reap = 1;
1861 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
1862 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
1863 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
1864 total_len < SK_MIN_FRAMELEN || total_len > max_frmlen ||
1865 sk_rxvalid(sc, rxstat, total_len) == 0) {
1866 ifp->if_ierrors++;
1867 cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1868 continue;
1871 if (!sc_if->sk_use_jumbo) {
1872 bus_dmamap_sync(cd->sk_rx_dtag, cd->sk_rx_dmap[cur],
1873 BUS_DMASYNC_POSTREAD);
1877 * Try to allocate a new RX buffer. If that fails,
1878 * copy the packet to mbufs and put the RX buffer
1879 * back in the ring so it can be re-used. If
1880 * allocating mbufs fails, then we have to drop
1881 * the packet.
1883 if (sk_newbuf(sc_if, cur, 0)) {
1884 struct mbuf *m0;
1886 cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1888 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1889 total_len + ETHER_ALIGN, 0, ifp, NULL);
1890 if (m0 == NULL) {
1891 ifp->if_ierrors++;
1892 continue;
1894 m_adj(m0, ETHER_ALIGN);
1895 m = m0;
1896 } else {
1897 m->m_pkthdr.rcvif = ifp;
1898 m->m_pkthdr.len = m->m_len = total_len;
1901 #ifdef SK_RXCSUM
1902 sk_rxcsum(ifp, m, csum1, csum2);
1903 #endif
1905 ifp->if_ipackets++;
1906 ifp->if_input(ifp, m);
1909 if (reap) {
1910 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1911 BUS_DMASYNC_PREWRITE);
1915 #ifdef SK_RXCSUM
1916 static void
1917 sk_rxcsum(struct ifnet *ifp, struct mbuf *m,
1918 const uint16_t csum1, const uint16_t csum2)
1920 struct ether_header *eh;
1921 struct ip *ip;
1922 uint8_t *pp;
1923 int hlen, len, plen;
1924 uint16_t iph_csum, ipo_csum, ipd_csum, csum;
1926 pp = mtod(m, uint8_t *);
1927 plen = m->m_pkthdr.len;
1928 if (plen < sizeof(*eh))
1929 return;
1930 eh = (struct ether_header *)pp;
1931 iph_csum = in_addword(csum1, (~csum2 & 0xffff));
1933 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1934 uint16_t *xp = (uint16_t *)pp;
1936 xp = (uint16_t *)pp;
1937 if (xp[1] != htons(ETHERTYPE_IP))
1938 return;
1939 iph_csum = in_addword(iph_csum, (~xp[0] & 0xffff));
1940 iph_csum = in_addword(iph_csum, (~xp[1] & 0xffff));
1941 xp = (uint16_t *)(pp + sizeof(struct ip));
1942 iph_csum = in_addword(iph_csum, xp[0]);
1943 iph_csum = in_addword(iph_csum, xp[1]);
1944 pp += EVL_ENCAPLEN;
1945 } else if (eh->ether_type != htons(ETHERTYPE_IP)) {
1946 return;
1949 pp += sizeof(*eh);
1950 plen -= sizeof(*eh);
1952 ip = (struct ip *)pp;
1954 if (ip->ip_v != IPVERSION)
1955 return;
1957 hlen = ip->ip_hl << 2;
1958 if (hlen < sizeof(struct ip))
1959 return;
1960 if (hlen > ntohs(ip->ip_len))
1961 return;
1963 /* Don't deal with truncated or padded packets. */
1964 if (plen != ntohs(ip->ip_len))
1965 return;
1967 len = hlen - sizeof(struct ip);
1968 if (len > 0) {
1969 uint16_t *p;
1971 p = (uint16_t *)(ip + 1);
1972 ipo_csum = 0;
1973 for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++)
1974 ipo_csum = in_addword(ipo_csum, *p);
1975 iph_csum = in_addword(iph_csum, ipo_csum);
1976 ipd_csum = in_addword(csum2, (~ipo_csum & 0xffff));
1977 } else {
1978 ipd_csum = csum2;
1981 if (iph_csum != 0xffff)
1982 return;
1983 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID;
1985 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1986 return; /* ip frag, we're done for now */
1988 pp += hlen;
1990 /* Only know checksum protocol for udp/tcp */
1991 if (ip->ip_p == IPPROTO_UDP) {
1992 struct udphdr *uh = (struct udphdr *)pp;
1994 if (uh->uh_sum == 0) /* udp with no checksum */
1995 return;
1996 } else if (ip->ip_p != IPPROTO_TCP) {
1997 return;
2000 csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2001 htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum);
2002 if (csum == 0xffff) {
2003 m->m_pkthdr.csum_data = csum;
2004 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2007 #endif
2009 static void
2010 sk_txeof(struct sk_if_softc *sc_if)
2012 struct sk_chain_data *cd = &sc_if->sk_cdata;
2013 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2014 uint32_t idx;
2015 int reap = 0;
2017 DPRINTFN(2, ("sk_txeof\n"));
2019 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2020 BUS_DMASYNC_POSTREAD);
2023 * Go through our tx ring and free mbufs for those
2024 * frames that have been sent.
2026 idx = cd->sk_tx_cons;
2027 while (idx != cd->sk_tx_prod) {
2028 struct sk_tx_desc *cur_tx;
2029 uint32_t sk_ctl;
2031 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2032 sk_ctl = le32toh(cur_tx->sk_ctl);
2033 #ifdef SK_DEBUG
2034 if (skdebug >= 2)
2035 sk_dump_txdesc(cur_tx, idx);
2036 #endif
2037 if (sk_ctl & SK_TXCTL_OWN)
2038 break;
2039 if (sk_ctl & SK_TXCTL_LASTFRAG)
2040 ifp->if_opackets++;
2041 if (cd->sk_tx_mbuf[idx] != NULL) {
2042 bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[idx]);
2043 m_freem(cd->sk_tx_mbuf[idx]);
2044 cd->sk_tx_mbuf[idx] = NULL;
2046 sc_if->sk_cdata.sk_tx_cnt--;
2047 reap = 1;
2048 SK_INC(idx, SK_TX_RING_CNT);
2050 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2052 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2053 ifp->if_flags &= ~IFF_OACTIVE;
2055 sc_if->sk_cdata.sk_tx_cons = idx;
2057 if (reap) {
2058 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2059 BUS_DMASYNC_PREWRITE);
2063 static void
2064 sk_tick(void *xsc_if)
2066 struct sk_if_softc *sc_if = xsc_if;
2067 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2068 struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2069 int i;
2071 DPRINTFN(2, ("sk_tick\n"));
2073 lwkt_serialize_enter(ifp->if_serializer);
2075 if ((ifp->if_flags & IFF_UP) == 0) {
2076 lwkt_serialize_exit(ifp->if_serializer);
2077 return;
2080 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2081 sk_intr_bcom(sc_if);
2082 lwkt_serialize_exit(ifp->if_serializer);
2083 return;
2087 * According to SysKonnect, the correct way to verify that
2088 * the link has come back up is to poll bit 0 of the GPIO
2089 * register three times. This pin has the signal from the
2090 * link sync pin connected to it; if we read the same link
2091 * state 3 times in a row, we know the link is up.
2093 for (i = 0; i < 3; i++) {
2094 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2095 break;
2098 if (i != 3) {
2099 callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2100 lwkt_serialize_exit(ifp->if_serializer);
2101 return;
2104 /* Turn the GP0 interrupt back on. */
2105 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2106 SK_XM_READ_2(sc_if, XM_ISR);
2107 mii_tick(mii);
2108 callout_stop(&sc_if->sk_tick_timer);
2109 lwkt_serialize_exit(ifp->if_serializer);
2112 static void
2113 sk_yukon_tick(void *xsc_if)
2115 struct sk_if_softc *sc_if = xsc_if;
2116 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2117 struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2119 lwkt_serialize_enter(ifp->if_serializer);
2120 mii_tick(mii);
2121 callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2122 lwkt_serialize_exit(ifp->if_serializer);
2125 static void
2126 sk_intr_bcom(struct sk_if_softc *sc_if)
2128 struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2129 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2130 int status;
2132 DPRINTFN(2, ("sk_intr_bcom\n"));
2134 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2137 * Read the PHY interrupt register to make sure
2138 * we clear any pending interrupts.
2140 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2142 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2143 sk_init_xmac(sc_if);
2144 return;
2147 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2148 int lstat;
2150 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2151 BRGPHY_MII_AUXSTS);
2153 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2154 mii_mediachg(mii);
2155 /* Turn off the link LED. */
2156 SK_IF_WRITE_1(sc_if, 0,
2157 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2158 sc_if->sk_link = 0;
2159 } else if (status & BRGPHY_ISR_LNK_CHG) {
2160 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2161 BRGPHY_MII_IMR, 0xFF00);
2162 mii_tick(mii);
2163 sc_if->sk_link = 1;
2164 /* Turn on the link LED. */
2165 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2166 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2167 SK_LINKLED_BLINK_OFF);
2168 } else {
2169 mii_tick(mii);
2170 callout_reset(&sc_if->sk_tick_timer, hz,
2171 sk_tick, sc_if);
2175 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2178 static void
2179 sk_intr_xmac(struct sk_if_softc *sc_if)
2181 uint16_t status;
2183 status = SK_XM_READ_2(sc_if, XM_ISR);
2184 DPRINTFN(2, ("sk_intr_xmac\n"));
2186 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC &&
2187 (status & (XM_ISR_GP0_SET | XM_ISR_AUTONEG_DONE))) {
2188 if (status & XM_ISR_GP0_SET)
2189 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2191 callout_reset(&sc_if->sk_tick_timer, hz,
2192 sk_tick, sc_if);
2195 if (status & XM_IMR_TX_UNDERRUN)
2196 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2198 if (status & XM_IMR_RX_OVERRUN)
2199 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2202 static void
2203 sk_intr_yukon(struct sk_if_softc *sc_if)
2205 uint8_t status;
2207 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2208 /* RX overrun */
2209 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2210 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2211 SK_RFCTL_RX_FIFO_OVER);
2213 /* TX underrun */
2214 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2215 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2216 SK_TFCTL_TX_FIFO_UNDER);
2219 DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status));
2222 static void
2223 sk_intr(void *xsc)
2225 struct sk_softc *sc = xsc;
2226 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2227 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2228 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2229 uint32_t status;
2231 ASSERT_SERIALIZED(&sc->sk_serializer);
2233 status = CSR_READ_4(sc, SK_ISSR);
2234 if (status == 0 || status == 0xffffffff)
2235 return;
2237 if (sc_if0 != NULL)
2238 ifp0 = &sc_if0->arpcom.ac_if;
2239 if (sc_if1 != NULL)
2240 ifp1 = &sc_if1->arpcom.ac_if;
2242 for (; (status &= sc->sk_intrmask) != 0;) {
2243 /* Handle receive interrupts first. */
2244 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2245 sk_rxeof(sc_if0);
2246 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2247 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2249 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2250 sk_rxeof(sc_if1);
2251 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2252 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2255 /* Then transmit interrupts. */
2256 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2257 sk_txeof(sc_if0);
2258 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2259 SK_TXBMU_CLR_IRQ_EOF);
2261 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2262 sk_txeof(sc_if1);
2263 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2264 SK_TXBMU_CLR_IRQ_EOF);
2267 /* Then MAC interrupts. */
2268 if (sc_if0 && (status & SK_ISR_MAC1) &&
2269 (ifp0->if_flags & IFF_RUNNING)) {
2270 if (SK_IS_GENESIS(sc))
2271 sk_intr_xmac(sc_if0);
2272 else
2273 sk_intr_yukon(sc_if0);
2276 if (sc_if1 && (status & SK_ISR_MAC2) &&
2277 (ifp1->if_flags & IFF_RUNNING)) {
2278 if (SK_IS_GENESIS(sc))
2279 sk_intr_xmac(sc_if1);
2280 else
2281 sk_intr_yukon(sc_if1);
2284 if (status & SK_ISR_EXTERNAL_REG) {
2285 if (sc_if0 != NULL &&
2286 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2287 sk_intr_bcom(sc_if0);
2289 if (sc_if1 != NULL &&
2290 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2291 sk_intr_bcom(sc_if1);
2293 status = CSR_READ_4(sc, SK_ISSR);
2296 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2298 if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2299 sk_start(ifp0);
2300 if (ifp1 != NULL && !ifq_is_empty(&ifp1->if_snd))
2301 sk_start(ifp1);
2304 static void
2305 sk_init_xmac(struct sk_if_softc *sc_if)
2307 struct sk_softc *sc = sc_if->sk_softc;
2308 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2309 static const struct sk_bcom_hack bhack[] = {
2310 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2311 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2312 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2313 { 0, 0 } };
2315 DPRINTFN(2, ("sk_init_xmac\n"));
2317 /* Unreset the XMAC. */
2318 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2319 DELAY(1000);
2321 /* Reset the XMAC's internal state. */
2322 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2324 /* Save the XMAC II revision */
2325 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2328 * Perform additional initialization for external PHYs,
2329 * namely for the 1000baseT cards that use the XMAC's
2330 * GMII mode.
2332 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2333 int i = 0;
2334 uint32_t val;
2336 /* Take PHY out of reset. */
2337 val = sk_win_read_4(sc, SK_GPIO);
2338 if (sc_if->sk_port == SK_PORT_A)
2339 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2340 else
2341 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2342 sk_win_write_4(sc, SK_GPIO, val);
2344 /* Enable GMII mode on the XMAC. */
2345 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2347 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2348 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2349 DELAY(10000);
2350 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2351 BRGPHY_MII_IMR, 0xFFF0);
2354 * Early versions of the BCM5400 apparently have
2355 * a bug that requires them to have their reserved
2356 * registers initialized to some magic values. I don't
2357 * know what the numbers do, I'm just the messenger.
2359 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2360 == 0x6041) {
2361 while(bhack[i].reg) {
2362 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2363 bhack[i].reg, bhack[i].val);
2364 i++;
2369 /* Set station address */
2370 SK_XM_WRITE_2(sc_if, XM_PAR0,
2371 *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2372 SK_XM_WRITE_2(sc_if, XM_PAR1,
2373 *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2374 SK_XM_WRITE_2(sc_if, XM_PAR2,
2375 *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2376 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2378 if (ifp->if_flags & IFF_BROADCAST)
2379 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2380 else
2381 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2383 /* We don't need the FCS appended to the packet. */
2384 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2386 /* We want short frames padded to 60 bytes. */
2387 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2390 * Enable the reception of all error frames. This is
2391 * a necessary evil due to the design of the XMAC. The
2392 * XMAC's receive FIFO is only 8K in size, however jumbo
2393 * frames can be up to 9000 bytes in length. When bad
2394 * frame filtering is enabled, the XMAC's RX FIFO operates
2395 * in 'store and forward' mode. For this to work, the
2396 * entire frame has to fit into the FIFO, but that means
2397 * that jumbo frames larger than 8192 bytes will be
2398 * truncated. Disabling all bad frame filtering causes
2399 * the RX FIFO to operate in streaming mode, in which
2400 * case the XMAC will start transfering frames out of the
2401 * RX FIFO as soon as the FIFO threshold is reached.
2403 if (sc_if->sk_use_jumbo) {
2404 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2405 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2406 XM_MODE_RX_INRANGELEN);
2409 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2412 * Bump up the transmit threshold. This helps hold off transmit
2413 * underruns when we're blasting traffic from both ports at once.
2415 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2417 /* Set promiscuous mode */
2418 sk_setpromisc(sc_if);
2420 /* Set multicast filter */
2421 sk_setmulti(sc_if);
2423 /* Clear and enable interrupts */
2424 SK_XM_READ_2(sc_if, XM_ISR);
2425 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2426 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2427 else
2428 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2430 /* Configure MAC arbiter */
2431 switch(sc_if->sk_xmac_rev) {
2432 case XM_XMAC_REV_B2:
2433 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2434 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2435 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2436 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2437 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2438 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2439 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2440 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2441 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2442 break;
2443 case XM_XMAC_REV_C1:
2444 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2445 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2446 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2447 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2448 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2449 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2450 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2451 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2452 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2453 break;
2454 default:
2455 break;
2457 sk_win_write_2(sc, SK_MACARB_CTL,
2458 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2460 sc_if->sk_link = 1;
2463 static void
2464 sk_init_yukon(struct sk_if_softc *sc_if)
2466 uint32_t phy, v;
2467 uint16_t reg;
2468 struct sk_softc *sc;
2469 int i;
2471 sc = sc_if->sk_softc;
2473 DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n",
2474 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2476 if (sc->sk_type == SK_YUKON_LITE &&
2477 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2479 * Workaround code for COMA mode, set PHY reset.
2480 * Otherwise it will not correctly take chip out of
2481 * powerdown (coma)
2483 v = sk_win_read_4(sc, SK_GPIO);
2484 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
2485 sk_win_write_4(sc, SK_GPIO, v);
2488 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2490 /* GMAC and GPHY Reset */
2491 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2492 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2493 DELAY(1000);
2495 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2497 if (sc->sk_type == SK_YUKON_LITE &&
2498 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2500 * Workaround code for COMA mode, clear PHY reset
2502 v = sk_win_read_4(sc, SK_GPIO);
2503 v |= SK_GPIO_DIR9;
2504 v &= ~SK_GPIO_DAT9;
2505 sk_win_write_4(sc, SK_GPIO, v);
2508 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2509 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2511 if (sc->sk_coppertype)
2512 phy |= SK_GPHY_COPPER;
2513 else
2514 phy |= SK_GPHY_FIBER;
2516 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2518 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2519 DELAY(1000);
2520 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2521 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2522 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2524 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2525 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2527 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2529 /* unused read of the interrupt source register */
2530 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2531 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2533 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2534 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2535 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2537 /* MIB Counter Clear Mode set */
2538 reg |= YU_PAR_MIB_CLR;
2539 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2540 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2541 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2543 /* MIB Counter Clear Mode clear */
2544 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2545 reg &= ~YU_PAR_MIB_CLR;
2546 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2548 /* receive control reg */
2549 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2550 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2552 /* transmit parameter register */
2553 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2554 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2555 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2557 /* serial mode register */
2558 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2559 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2560 if (sc_if->sk_use_jumbo)
2561 reg |= YU_SMR_MFL_JUMBO;
2562 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2564 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2565 /* Setup Yukon's address */
2566 for (i = 0; i < 3; i++) {
2567 /* Write Source Address 1 (unicast filter) */
2568 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2569 sc_if->arpcom.ac_enaddr[i * 2] |
2570 sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2573 for (i = 0; i < 3; i++) {
2574 reg = sk_win_read_2(sc_if->sk_softc,
2575 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2576 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2579 /* Set promiscuous mode */
2580 sk_setpromisc(sc_if);
2582 /* Set multicast filter */
2583 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2584 sk_setmulti(sc_if);
2586 /* enable interrupt mask for counter overflows */
2587 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2588 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2589 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2590 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2592 /* Configure RX MAC FIFO Flush Mask */
2593 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2594 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2595 YU_RXSTAT_JABBER;
2596 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2598 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
2599 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
2600 v = SK_TFCTL_OPERATION_ON;
2601 else
2602 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2603 /* Configure RX MAC FIFO */
2604 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2605 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2607 /* Increase flush threshould to 64 bytes */
2608 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2609 SK_RFCTL_FIFO_THRESHOLD + 1);
2611 /* Configure TX MAC FIFO */
2612 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2613 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2615 DPRINTFN(6, ("sk_init_yukon: end\n"));
2619 * Note that to properly initialize any part of the GEnesis chip,
2620 * you first have to take it out of reset mode.
2622 static void
2623 sk_init(void *xsc_if)
2625 struct sk_if_softc *sc_if = xsc_if;
2626 struct sk_softc *sc = sc_if->sk_softc;
2627 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2628 struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2630 DPRINTFN(2, ("sk_init\n"));
2632 ASSERT_SERIALIZED(ifp->if_serializer);
2634 if (ifp->if_flags & IFF_RUNNING)
2635 return;
2637 /* Cancel pending I/O and free all RX/TX buffers. */
2638 sk_stop(sc_if);
2641 * NOTE: Change sk_use_jumbo after sk_stop(),
2642 * but before real initialization.
2644 if (ifp->if_mtu > ETHER_MAX_LEN)
2645 sc_if->sk_use_jumbo = 1;
2646 else
2647 sc_if->sk_use_jumbo = 0;
2648 DPRINTF(("use jumbo buffer: %s\n", sc_if->sk_use_jumbo ? "YES" : "NO"));
2650 if (SK_IS_GENESIS(sc)) {
2651 /* Configure LINK_SYNC LED */
2652 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2653 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2654 SK_LINKLED_LINKSYNC_ON);
2656 /* Configure RX LED */
2657 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2658 SK_RXLEDCTL_COUNTER_START);
2660 /* Configure TX LED */
2661 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2662 SK_TXLEDCTL_COUNTER_START);
2666 * Configure descriptor poll timer
2668 * SK-NET GENESIS data sheet says that possibility of losing Start
2669 * transmit command due to CPU/cache related interim storage problems
2670 * under certain conditions. The document recommends a polling
2671 * mechanism to send a Start transmit command to initiate transfer
2672 * of ready descriptors regulary. To cope with this issue sk(4) now
2673 * enables descriptor poll timer to initiate descriptor processing
2674 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
2675 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
2676 * command instead of waiting for next descriptor polling time.
2677 * The same rule may apply to Rx side too but it seems that is not
2678 * needed at the moment.
2679 * Since sk(4) uses descriptor polling as a last resort there is no
2680 * need to set smaller polling time than maximum allowable one.
2682 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
2684 /* Configure I2C registers */
2686 /* Configure XMAC(s) */
2687 switch (sc->sk_type) {
2688 case SK_GENESIS:
2689 sk_init_xmac(sc_if);
2690 break;
2691 case SK_YUKON:
2692 case SK_YUKON_LITE:
2693 case SK_YUKON_LP:
2694 sk_init_yukon(sc_if);
2695 break;
2697 mii_mediachg(mii);
2699 if (SK_IS_GENESIS(sc)) {
2700 /* Configure MAC FIFOs */
2701 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2702 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2703 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2705 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2706 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2707 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2710 /* Configure transmit arbiter(s) */
2711 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2712 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2714 /* Configure RAMbuffers */
2715 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2716 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2717 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2718 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2719 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2720 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2722 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2723 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2724 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2725 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2726 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2727 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2728 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2730 /* Configure BMUs */
2731 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2732 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2733 SK_RX_RING_ADDR(sc_if, 0));
2734 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2736 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2737 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2738 SK_TX_RING_ADDR(sc_if, 0));
2739 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2741 /* Init descriptors */
2742 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2743 if_printf(ifp, "initialization failed: "
2744 "no memory for rx buffers\n");
2745 sk_stop(sc_if);
2746 return;
2749 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2750 if_printf(ifp, "initialization failed: "
2751 "no memory for tx buffers\n");
2752 sk_stop(sc_if);
2753 return;
2756 /* Configure interrupt handling */
2757 CSR_READ_4(sc, SK_ISSR);
2758 if (sc_if->sk_port == SK_PORT_A)
2759 sc->sk_intrmask |= SK_INTRS1;
2760 else
2761 sc->sk_intrmask |= SK_INTRS2;
2763 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2765 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2767 /* Start BMUs. */
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2770 if (SK_IS_GENESIS(sc)) {
2771 /* Enable XMACs TX and RX state machines */
2772 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2773 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2774 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2777 if (SK_IS_YUKON(sc)) {
2778 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2779 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2780 #if 0
2781 /* XXX disable 100Mbps and full duplex mode? */
2782 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
2783 #endif
2784 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2787 /* Activate descriptor polling timer */
2788 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
2789 /* Start transfer of Tx descriptors */
2790 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2792 ifp->if_flags |= IFF_RUNNING;
2793 ifp->if_flags &= ~IFF_OACTIVE;
2795 if (SK_IS_YUKON(sc))
2796 callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2799 static void
2800 sk_stop(struct sk_if_softc *sc_if)
2802 struct sk_softc *sc = sc_if->sk_softc;
2803 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2804 struct sk_chain_data *cd = &sc_if->sk_cdata;
2805 uint32_t val;
2806 int i;
2808 ASSERT_SERIALIZED(ifp->if_serializer);
2810 DPRINTFN(2, ("sk_stop\n"));
2812 callout_stop(&sc_if->sk_tick_timer);
2814 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2816 /* Stop Tx descriptor polling timer */
2817 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
2819 /* Stop transfer of Tx descriptors */
2820 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
2821 for (i = 0; i < SK_TIMEOUT; i++) {
2822 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
2823 if (!(val & SK_TXBMU_TX_STOP))
2824 break;
2825 DELAY(1);
2827 if (i == SK_TIMEOUT)
2828 if_printf(ifp, "cannot stop transfer of Tx descriptors\n");
2830 /* Stop transfer of Rx descriptors */
2831 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
2832 for (i = 0; i < SK_TIMEOUT; i++) {
2833 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
2834 if (!(val & SK_RXBMU_RX_STOP))
2835 break;
2836 DELAY(1);
2838 if (i == SK_TIMEOUT)
2839 if_printf(ifp, "cannot stop transfer of Rx descriptors\n");
2841 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2842 /* Put PHY back into reset. */
2843 val = sk_win_read_4(sc, SK_GPIO);
2844 if (sc_if->sk_port == SK_PORT_A) {
2845 val |= SK_GPIO_DIR0;
2846 val &= ~SK_GPIO_DAT0;
2847 } else {
2848 val |= SK_GPIO_DIR2;
2849 val &= ~SK_GPIO_DAT2;
2851 sk_win_write_4(sc, SK_GPIO, val);
2854 /* Turn off various components of this interface. */
2855 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2856 switch (sc->sk_type) {
2857 case SK_GENESIS:
2858 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2859 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2860 break;
2861 case SK_YUKON:
2862 case SK_YUKON_LITE:
2863 case SK_YUKON_LP:
2864 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2865 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2866 break;
2868 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2869 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2870 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2871 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2872 SK_RBCTL_RESET | SK_RBCTL_OFF);
2873 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2874 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2875 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2876 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2877 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2879 /* Disable interrupts */
2880 if (sc_if->sk_port == SK_PORT_A)
2881 sc->sk_intrmask &= ~SK_INTRS1;
2882 else
2883 sc->sk_intrmask &= ~SK_INTRS2;
2884 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2886 SK_XM_READ_2(sc_if, XM_ISR);
2887 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2889 /* Free RX and TX mbufs still in the queues. */
2890 for (i = 0; i < SK_RX_RING_CNT; i++) {
2891 if (cd->sk_rx_mbuf[i] != NULL) {
2892 if (!sc_if->sk_use_jumbo) {
2893 bus_dmamap_unload(cd->sk_rx_dtag,
2894 cd->sk_rx_dmap[i]);
2896 m_freem(cd->sk_rx_mbuf[i]);
2897 cd->sk_rx_mbuf[i] = NULL;
2900 for (i = 0; i < SK_TX_RING_CNT; i++) {
2901 if (cd->sk_tx_mbuf[i] != NULL) {
2902 bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
2903 m_freem(cd->sk_tx_mbuf[i]);
2904 cd->sk_tx_mbuf[i] = NULL;
2909 #ifdef SK_DEBUG
2910 static void
2911 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2913 #define DESC_PRINT(X) \
2914 if (X) \
2915 kprintf("txdesc[%d]." #X "=%#x\n", \
2916 idx, X);
2918 DESC_PRINT(le32toh(desc->sk_ctl));
2919 DESC_PRINT(le32toh(desc->sk_next));
2920 DESC_PRINT(le32toh(desc->sk_data_lo));
2921 DESC_PRINT(le32toh(desc->sk_data_hi));
2922 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2923 DESC_PRINT(le16toh(desc->sk_rsvd0));
2924 DESC_PRINT(le16toh(desc->sk_csum_startval));
2925 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2926 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2927 DESC_PRINT(le16toh(desc->sk_rsvd1));
2928 #undef PRINT
2931 static void
2932 sk_dump_bytes(const char *data, int len)
2934 int c, i, j;
2936 for (i = 0; i < len; i += 16) {
2937 kprintf("%08x ", i);
2938 c = len - i;
2939 if (c > 16) c = 16;
2941 for (j = 0; j < c; j++) {
2942 kprintf("%02x ", data[i + j] & 0xff);
2943 if ((j & 0xf) == 7 && j > 0)
2944 kprintf(" ");
2947 for (; j < 16; j++)
2948 kprintf(" ");
2949 kprintf(" ");
2951 for (j = 0; j < c; j++) {
2952 int ch = data[i + j] & 0xff;
2953 kprintf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2956 kprintf("\n");
2958 if (c < 16)
2959 break;
2963 static void
2964 sk_dump_mbuf(struct mbuf *m)
2966 int count = m->m_pkthdr.len;
2968 kprintf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2970 while (count > 0 && m) {
2971 kprintf("m=%p, m->m_data=%p, m->m_len=%d\n",
2972 m, m->m_data, m->m_len);
2973 sk_dump_bytes(mtod(m, char *), m->m_len);
2975 count -= m->m_len;
2976 m = m->m_next;
2979 #endif
2982 * Allocate jumbo buffer storage. The SysKonnect adapters support
2983 * "jumbograms" (9K frames), although SysKonnect doesn't currently
2984 * use them in their drivers. In order for us to use them, we need
2985 * large 9K receive buffers, however standard mbuf clusters are only
2986 * 2048 bytes in size. Consequently, we need to allocate and manage
2987 * our own jumbo buffer pool. Fortunately, this does not require an
2988 * excessive amount of additional code.
2990 static int
2991 sk_jpool_alloc(device_t dev)
2993 struct sk_if_softc *sc_if = device_get_softc(dev);
2994 struct sk_chain_data *cd = &sc_if->sk_cdata;
2995 bus_addr_t paddr;
2996 caddr_t buf;
2997 int error, i;
2999 lwkt_serialize_init(&cd->sk_jpool_serializer);
3001 error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3002 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3003 NULL, NULL, SK_JMEM, 1, SK_JMEM,
3004 0, &cd->sk_jpool_dtag);
3005 if (error) {
3006 device_printf(dev, "can't create jpool DMA tag\n");
3007 return error;
3010 error = bus_dmamem_alloc(cd->sk_jpool_dtag, &cd->sk_jpool,
3011 BUS_DMA_WAITOK, &cd->sk_jpool_dmap);
3012 if (error) {
3013 device_printf(dev, "can't alloc jpool DMA mem\n");
3014 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3015 cd->sk_jpool_dtag = NULL;
3016 return error;
3019 error = bus_dmamap_load(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
3020 cd->sk_jpool, SK_JMEM,
3021 sk_dmamem_addr, &paddr, BUS_DMA_WAITOK);
3022 if (error) {
3023 device_printf(dev, "can't load DMA mem\n");
3024 bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3025 cd->sk_jpool_dmap);
3026 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3027 cd->sk_jpool_dtag = NULL;
3028 return error;
3031 SLIST_INIT(&cd->sk_jpool_free_ent);
3032 buf = cd->sk_jpool;
3035 * Now divide it up into SK_JLEN pieces.
3037 for (i = 0; i < SK_JSLOTS; i++) {
3038 struct sk_jpool_entry *entry = &cd->sk_jpool_ent[i];
3040 entry->sc_if = sc_if;
3041 entry->inuse = 0;
3042 entry->slot = i;
3043 entry->buf = buf;
3044 entry->paddr = paddr;
3046 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
3048 buf += SK_JLEN;
3049 paddr += SK_JLEN;
3051 return 0;
3054 static void
3055 sk_jpool_free(struct sk_if_softc *sc_if)
3057 struct sk_chain_data *cd = &sc_if->sk_cdata;
3059 if (cd->sk_jpool_dtag != NULL) {
3060 bus_dmamap_unload(cd->sk_jpool_dtag, cd->sk_jpool_dmap);
3061 bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3062 cd->sk_jpool_dmap);
3063 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3064 cd->sk_jpool_dtag = NULL;
3068 static int
3069 sk_dma_alloc(device_t dev)
3071 struct sk_if_softc *sc_if = device_get_softc(dev);
3072 struct sk_chain_data *cd = &sc_if->sk_cdata;
3073 int i, j, error;
3076 * Allocate the descriptor queues.
3077 * TODO: split into RX/TX rings
3079 error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3080 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3081 NULL, NULL,
3082 sizeof(struct sk_ring_data), 1,
3083 sizeof(struct sk_ring_data), 0,
3084 &sc_if->sk_rdata_dtag);
3085 if (error) {
3086 device_printf(dev, "can't create desc DMA tag\n");
3087 return error;
3090 error = bus_dmamem_alloc(sc_if->sk_rdata_dtag,
3091 (void **)&sc_if->sk_rdata,
3092 BUS_DMA_WAITOK | BUS_DMA_ZERO,
3093 &sc_if->sk_rdata_dmap);
3094 if (error) {
3095 device_printf(dev, "can't alloc desc DMA mem\n");
3096 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3097 sc_if->sk_rdata_dtag = NULL;
3098 return error;
3101 error = bus_dmamap_load(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
3102 sc_if->sk_rdata, sizeof(struct sk_ring_data),
3103 sk_dmamem_addr, &sc_if->sk_rdata_paddr,
3104 BUS_DMA_WAITOK);
3105 if (error) {
3106 device_printf(dev, "can't load desc DMA mem\n");
3107 bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3108 sc_if->sk_rdata_dmap);
3109 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3110 sc_if->sk_rdata_dtag = NULL;
3111 return error;
3114 /* Try to allocate memory for jumbo buffers. */
3115 error = sk_jpool_alloc(dev);
3116 if (error) {
3117 device_printf(dev, "jumbo buffer allocation failed\n");
3118 return error;
3121 /* Create DMA tag for TX. */
3122 error = bus_dma_tag_create(NULL, 1, 0,
3123 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3124 NULL, NULL,
3125 SK_JLEN, SK_NTXSEG, SK_JLEN,
3126 0, &cd->sk_tx_dtag);
3127 if (error) {
3128 device_printf(dev, "can't create TX DMA tag\n");
3129 return error;
3132 /* Create DMA maps for TX. */
3133 for (i = 0; i < SK_TX_RING_CNT; i++) {
3134 error = bus_dmamap_create(cd->sk_tx_dtag, 0,
3135 &cd->sk_tx_dmap[i]);
3136 if (error) {
3137 device_printf(dev, "can't create %dth TX DMA map\n", i);
3139 for (j = 0; j < i; ++j) {
3140 bus_dmamap_destroy(cd->sk_tx_dtag,
3141 cd->sk_tx_dmap[i]);
3143 bus_dma_tag_destroy(cd->sk_tx_dtag);
3144 cd->sk_tx_dtag = NULL;
3145 return error;
3149 /* Create DMA tag for RX. */
3150 error = bus_dma_tag_create(NULL, 1, 0,
3151 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3152 NULL, NULL, MCLBYTES, 1, MCLBYTES,
3153 0, &cd->sk_rx_dtag);
3154 if (error) {
3155 device_printf(dev, "can't create RX DMA tag\n");
3156 return error;
3159 /* Create a spare RX DMA map. */
3160 error = bus_dmamap_create(cd->sk_rx_dtag, 0, &cd->sk_rx_dmap_tmp);
3161 if (error) {
3162 device_printf(dev, "can't create spare RX DMA map\n");
3163 bus_dma_tag_destroy(cd->sk_rx_dtag);
3164 cd->sk_rx_dtag = NULL;
3165 return error;
3168 /* Create DMA maps for RX. */
3169 for (i = 0; i < SK_RX_RING_CNT; ++i) {
3170 error = bus_dmamap_create(cd->sk_rx_dtag, 0,
3171 &cd->sk_rx_dmap[i]);
3172 if (error) {
3173 device_printf(dev, "can't create %dth RX DMA map\n", i);
3175 for (j = 0; j < i; ++j) {
3176 bus_dmamap_destroy(cd->sk_rx_dtag,
3177 cd->sk_rx_dmap[i]);
3179 bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3180 bus_dma_tag_destroy(cd->sk_rx_dtag);
3181 cd->sk_rx_dtag = NULL;
3182 return error;
3185 return 0;
3188 static void
3189 sk_dma_free(device_t dev)
3191 struct sk_if_softc *sc_if = device_get_softc(dev);
3192 struct sk_chain_data *cd = &sc_if->sk_cdata;
3193 int i;
3195 if (cd->sk_tx_dtag != NULL) {
3196 for (i = 0; i < SK_TX_RING_CNT; ++i) {
3197 KASSERT(cd->sk_tx_mbuf[i] == NULL,
3198 ("sk_stop() is not called before %s()",
3199 __func__));
3200 bus_dmamap_destroy(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
3202 bus_dma_tag_destroy(cd->sk_tx_dtag);
3203 cd->sk_tx_dtag = NULL;
3206 if (cd->sk_rx_dtag != NULL) {
3207 for (i = 0; i < SK_RX_RING_CNT; ++i) {
3208 KASSERT(cd->sk_rx_mbuf[i] == NULL,
3209 ("sk_stop() is not called before %s()",
3210 __func__));
3211 bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap[i]);
3213 bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3214 bus_dma_tag_destroy(cd->sk_rx_dtag);
3215 cd->sk_rx_dtag = NULL;
3218 sk_jpool_free(sc_if);
3220 if (sc_if->sk_rdata_dtag != NULL) {
3221 bus_dmamap_unload(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap);
3222 bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3223 sc_if->sk_rdata_dmap);
3224 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3225 sc_if->sk_rdata_dtag = NULL;
3229 static void
3230 sk_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
3231 bus_size_t mapsz __unused, int error)
3233 struct sk_dma_ctx *ctx = arg;
3234 int i;
3236 if (error)
3237 return;
3239 KASSERT(nsegs <= ctx->nsegs,
3240 ("too many segments(%d), should be <= %d\n",
3241 nsegs, ctx->nsegs));
3243 ctx->nsegs = nsegs;
3244 for (i = 0; i < nsegs; ++i)
3245 ctx->segs[i] = segs[i];
3248 static void
3249 sk_dmamem_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
3251 KASSERT(nseg == 1, ("too many segments %d", nseg));
3252 *((bus_addr_t *)arg) = seg->ds_addr;
3255 static int
3256 skc_sysctl_imtime(SYSCTL_HANDLER_ARGS)
3258 struct sk_softc *sc = arg1;
3259 struct lwkt_serialize *slize = &sc->sk_serializer;
3260 int error = 0, v;
3262 lwkt_serialize_enter(slize);
3264 v = sc->sk_imtime;
3265 error = sysctl_handle_int(oidp, &v, 0, req);
3266 if (error || req->newptr == NULL)
3267 goto back;
3268 if (v <= 0) {
3269 error = EINVAL;
3270 goto back;
3273 if (sc->sk_imtime != v) {
3274 sc->sk_imtime = v;
3275 sk_win_write_4(sc, SK_IMTIMERINIT,
3276 SK_IM_USECS(sc, sc->sk_imtime));
3279 * Force interrupt moderation timer to
3280 * reload new value.
3282 sk_win_write_4(sc, SK_IMTIMER, 0);
3284 back:
3285 lwkt_serialize_exit(slize);
3286 return error;