10Base-TX -> 10Base-T and 1000Base-TX -> 1000Base-T. Although 1000Base-TX
[dragonfly.git] / sys / dev / netif / sf / if_sf.c
blob0866d58d13928f5787581fe7c6d21348980a02a3
1 /*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33 * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.31 2008/01/05 14:02:37 swildner Exp $
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
47 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48 * controller designed with flexibility and reducing CPU load in mind.
49 * The Starfire offers high and low priority buffer queues, a
50 * producer/consumer index mechanism and several different buffer
51 * queue and completion queue descriptor types. Any one of a number
52 * of different driver designs can be used, depending on system and
53 * OS requirements. This driver makes use of type0 transmit frame
54 * descriptors (since BSD fragments packets across an mbuf chain)
55 * and two RX buffer queues prioritized on size (one queue for small
56 * frames that will fit into a single mbuf, another with full size
57 * mbuf clusters for everything else). The producer/consumer indexes
58 * and completion queues are also used.
60 * One downside to the Starfire has to do with alignment: buffer
61 * queues must be aligned on 256-byte boundaries, and receive buffers
62 * must be aligned on longword boundaries. The receive buffer alignment
63 * causes problems on the Alpha platform, where the packet payload
64 * should be longword aligned. There is no simple way around this.
66 * For receive filtering, the Starfire offers 16 perfect filter slots
67 * and a 512-bit hash table.
69 * The Starfire has no internal transceiver, relying instead on an
70 * external MII-based transceiver. Accessing registers on external
71 * PHYs is done through a special register map rather than with the
72 * usual bitbang MDIO method.
74 * Acesssing the registers on the Starfire is a little tricky. The
75 * Starfire has a 512K internal register space. When programmed for
76 * PCI memory mapped mode, the entire register space can be accessed
77 * directly. However in I/O space mode, only 256 bytes are directly
78 * mapped into PCI I/O space. The other registers can be accessed
79 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80 * registers inside the 256-byte I/O window.
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 #include <sys/thread2.h>
95 #include <net/if.h>
96 #include <net/ifq_var.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
102 #include <net/bpf.h>
104 #include <vm/vm.h> /* for vtophys */
105 #include <vm/pmap.h> /* for vtophys */
107 #include <machine/clock.h> /* for DELAY */
109 #include "../mii_layer/mii.h"
110 #include "../mii_layer/miivar.h"
112 /* "controller miibus0" required. See GENERIC if you get errors here. */
113 #include "miibus_if.h"
115 #include <bus/pci/pcidevs.h>
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
119 #define SF_USEIOSPACE
121 #include "if_sfreg.h"
123 static struct sf_type sf_devs[] = {
124 { PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
125 "Adaptec AIC-6915 10/100BaseTX" },
126 { 0, 0, NULL }
129 static int sf_probe (device_t);
130 static int sf_attach (device_t);
131 static int sf_detach (device_t);
132 static void sf_intr (void *);
133 static void sf_stats_update (void *);
134 static void sf_rxeof (struct sf_softc *);
135 static void sf_txeof (struct sf_softc *);
136 static int sf_encap (struct sf_softc *,
137 struct sf_tx_bufdesc_type0 *,
138 struct mbuf *);
139 static void sf_start (struct ifnet *);
140 static int sf_ioctl (struct ifnet *, u_long, caddr_t,
141 struct ucred *);
142 static void sf_init (void *);
143 static void sf_stop (struct sf_softc *);
144 static void sf_watchdog (struct ifnet *);
145 static void sf_shutdown (device_t);
146 static int sf_ifmedia_upd (struct ifnet *);
147 static void sf_ifmedia_sts (struct ifnet *, struct ifmediareq *);
148 static void sf_reset (struct sf_softc *);
149 static int sf_init_rx_ring (struct sf_softc *);
150 static void sf_init_tx_ring (struct sf_softc *);
151 static int sf_newbuf (struct sf_softc *,
152 struct sf_rx_bufdesc_type0 *,
153 struct mbuf *);
154 static void sf_setmulti (struct sf_softc *);
155 static int sf_setperf (struct sf_softc *, int, caddr_t);
156 static int sf_sethash (struct sf_softc *, caddr_t, int);
157 #ifdef notdef
158 static int sf_setvlan (struct sf_softc *, int, u_int32_t);
159 #endif
161 static u_int8_t sf_read_eeprom (struct sf_softc *, int);
162 static u_int32_t sf_calchash (caddr_t);
164 static int sf_miibus_readreg (device_t, int, int);
165 static int sf_miibus_writereg (device_t, int, int, int);
166 static void sf_miibus_statchg (device_t);
168 static u_int32_t csr_read_4 (struct sf_softc *, int);
169 static void csr_write_4 (struct sf_softc *, int, u_int32_t);
170 static void sf_txthresh_adjust (struct sf_softc *);
172 #ifdef SF_USEIOSPACE
173 #define SF_RES SYS_RES_IOPORT
174 #define SF_RID SF_PCI_LOIO
175 #else
176 #define SF_RES SYS_RES_MEMORY
177 #define SF_RID SF_PCI_LOMEM
178 #endif
180 static device_method_t sf_methods[] = {
181 /* Device interface */
182 DEVMETHOD(device_probe, sf_probe),
183 DEVMETHOD(device_attach, sf_attach),
184 DEVMETHOD(device_detach, sf_detach),
185 DEVMETHOD(device_shutdown, sf_shutdown),
187 /* bus interface */
188 DEVMETHOD(bus_print_child, bus_generic_print_child),
189 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
191 /* MII interface */
192 DEVMETHOD(miibus_readreg, sf_miibus_readreg),
193 DEVMETHOD(miibus_writereg, sf_miibus_writereg),
194 DEVMETHOD(miibus_statchg, sf_miibus_statchg),
196 { 0, 0 }
199 static driver_t sf_driver = {
200 "sf",
201 sf_methods,
202 sizeof(struct sf_softc),
205 static devclass_t sf_devclass;
207 DECLARE_DUMMY_MODULE(if_sf);
208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 #define SF_SETBIT(sc, reg, x) \
212 csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 #define SF_CLRBIT(sc, reg, x) \
215 csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 static u_int32_t
218 csr_read_4(struct sf_softc *sc, int reg)
220 u_int32_t val;
222 #ifdef SF_USEIOSPACE
223 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
224 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
225 #else
226 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
227 #endif
229 return(val);
232 static u_int8_t
233 sf_read_eeprom(struct sf_softc *sc, int reg)
235 u_int8_t val;
237 val = (csr_read_4(sc, SF_EEADDR_BASE +
238 (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
240 return(val);
243 static void
244 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
246 #ifdef SF_USEIOSPACE
247 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
248 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
249 #else
250 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
251 #endif
252 return;
255 static u_int32_t
256 sf_calchash(caddr_t addr)
258 u_int32_t crc, carry;
259 int i, j;
260 u_int8_t c;
262 /* Compute CRC for the address value. */
263 crc = 0xFFFFFFFF; /* initial value */
265 for (i = 0; i < 6; i++) {
266 c = *(addr + i);
267 for (j = 0; j < 8; j++) {
268 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
269 crc <<= 1;
270 c >>= 1;
271 if (carry)
272 crc = (crc ^ 0x04c11db6) | carry;
276 /* return the filter bit position */
277 return(crc >> 23 & 0x1FF);
281 * Copy the address 'mac' into the perfect RX filter entry at
282 * offset 'idx.' The perfect filter only has 16 entries so do
283 * some sanity tests.
285 static int
286 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
288 u_int16_t *p;
290 if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
291 return(EINVAL);
293 if (mac == NULL)
294 return(EINVAL);
296 p = (u_int16_t *)mac;
298 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
299 (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
300 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
301 (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
302 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
303 (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
305 return(0);
309 * Set the bit in the 512-bit hash table that corresponds to the
310 * specified mac address 'mac.' If 'prio' is nonzero, update the
311 * priority hash table instead of the filter hash table.
313 static int
314 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
316 u_int32_t h = 0;
318 if (mac == NULL)
319 return(EINVAL);
321 h = sf_calchash(mac);
323 if (prio) {
324 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
325 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
326 } else {
327 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
328 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
331 return(0);
334 #ifdef notdef
336 * Set a VLAN tag in the receive filter.
338 static int
339 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
341 if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
342 return(EINVAL);
344 csr_write_4(sc, SF_RXFILT_HASH_BASE +
345 (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
347 return(0);
349 #endif
351 static int
352 sf_miibus_readreg(device_t dev, int phy, int reg)
354 struct sf_softc *sc;
355 int i;
356 u_int32_t val = 0;
358 sc = device_get_softc(dev);
360 for (i = 0; i < SF_TIMEOUT; i++) {
361 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
362 if (val & SF_MII_DATAVALID)
363 break;
366 if (i == SF_TIMEOUT)
367 return(0);
369 if ((val & 0x0000FFFF) == 0xFFFF)
370 return(0);
372 return(val & 0x0000FFFF);
375 static int
376 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
378 struct sf_softc *sc;
379 int i;
380 int busy;
382 sc = device_get_softc(dev);
384 csr_write_4(sc, SF_PHY_REG(phy, reg), val);
386 for (i = 0; i < SF_TIMEOUT; i++) {
387 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
388 if (!(busy & SF_MII_BUSY))
389 break;
392 return(0);
395 static void
396 sf_miibus_statchg(device_t dev)
398 struct sf_softc *sc;
399 struct mii_data *mii;
401 sc = device_get_softc(dev);
402 mii = device_get_softc(sc->sf_miibus);
404 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
405 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
406 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
407 } else {
408 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
409 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
412 return;
415 static void
416 sf_setmulti(struct sf_softc *sc)
418 struct ifnet *ifp;
419 int i;
420 struct ifmultiaddr *ifma;
421 u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
423 ifp = &sc->arpcom.ac_if;
425 /* First zot all the existing filters. */
426 for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
427 sf_setperf(sc, i, (char *)&dummy);
428 for (i = SF_RXFILT_HASH_BASE;
429 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
430 csr_write_4(sc, i, 0);
431 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
433 /* Now program new ones. */
434 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
435 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
436 } else {
437 i = 1;
438 /* First find the tail of the list. */
439 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
440 ifma = ifma->ifma_link.le_next) {
441 if (ifma->ifma_link.le_next == NULL)
442 break;
444 /* Now traverse the list backwards. */
445 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
446 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
447 if (ifma->ifma_addr->sa_family != AF_LINK)
448 continue;
450 * Program the first 15 multicast groups
451 * into the perfect filter. For all others,
452 * use the hash table.
454 if (i < SF_RXFILT_PERFECT_CNT) {
455 sf_setperf(sc, i,
456 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
457 i++;
458 continue;
461 sf_sethash(sc,
462 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
466 return;
470 * Set media options.
472 static int
473 sf_ifmedia_upd(struct ifnet *ifp)
475 struct sf_softc *sc;
476 struct mii_data *mii;
478 sc = ifp->if_softc;
479 mii = device_get_softc(sc->sf_miibus);
480 sc->sf_link = 0;
481 if (mii->mii_instance) {
482 struct mii_softc *miisc;
483 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
484 miisc = LIST_NEXT(miisc, mii_list))
485 mii_phy_reset(miisc);
487 mii_mediachg(mii);
489 return(0);
493 * Report current media status.
495 static void
496 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
498 struct sf_softc *sc;
499 struct mii_data *mii;
501 sc = ifp->if_softc;
502 mii = device_get_softc(sc->sf_miibus);
504 mii_pollstat(mii);
505 ifmr->ifm_active = mii->mii_media_active;
506 ifmr->ifm_status = mii->mii_media_status;
508 return;
511 static int
512 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
514 struct sf_softc *sc = ifp->if_softc;
515 struct ifreq *ifr = (struct ifreq *) data;
516 struct mii_data *mii;
517 int error = 0;
519 switch(command) {
520 case SIOCSIFFLAGS:
521 if (ifp->if_flags & IFF_UP) {
522 if (ifp->if_flags & IFF_RUNNING &&
523 ifp->if_flags & IFF_PROMISC &&
524 !(sc->sf_if_flags & IFF_PROMISC)) {
525 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
526 } else if (ifp->if_flags & IFF_RUNNING &&
527 !(ifp->if_flags & IFF_PROMISC) &&
528 sc->sf_if_flags & IFF_PROMISC) {
529 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
530 } else if (!(ifp->if_flags & IFF_RUNNING))
531 sf_init(sc);
532 } else {
533 if (ifp->if_flags & IFF_RUNNING)
534 sf_stop(sc);
536 sc->sf_if_flags = ifp->if_flags;
537 error = 0;
538 break;
539 case SIOCADDMULTI:
540 case SIOCDELMULTI:
541 sf_setmulti(sc);
542 error = 0;
543 break;
544 case SIOCGIFMEDIA:
545 case SIOCSIFMEDIA:
546 mii = device_get_softc(sc->sf_miibus);
547 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
548 break;
549 default:
550 error = ether_ioctl(ifp, command, data);
551 break;
554 return(error);
557 static void
558 sf_reset(struct sf_softc *sc)
560 int i;
562 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
563 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
564 DELAY(1000);
565 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
567 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
569 for (i = 0; i < SF_TIMEOUT; i++) {
570 DELAY(10);
571 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
572 break;
575 if (i == SF_TIMEOUT)
576 kprintf("sf%d: reset never completed!\n", sc->sf_unit);
578 /* Wait a little while for the chip to get its brains in order. */
579 DELAY(1000);
580 return;
584 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
585 * IDs against our list and return a device name if we find a match.
586 * We also check the subsystem ID so that we can identify exactly which
587 * NIC has been found, if possible.
589 static int
590 sf_probe(device_t dev)
592 struct sf_type *t;
594 t = sf_devs;
596 while(t->sf_name != NULL) {
597 if ((pci_get_vendor(dev) == t->sf_vid) &&
598 (pci_get_device(dev) == t->sf_did)) {
599 switch((pci_read_config(dev,
600 SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
601 case AD_SUBSYSID_62011_REV0:
602 case AD_SUBSYSID_62011_REV1:
603 device_set_desc(dev,
604 "Adaptec ANA-62011 10/100BaseTX");
605 return(0);
606 break;
607 case AD_SUBSYSID_62022:
608 device_set_desc(dev,
609 "Adaptec ANA-62022 10/100BaseTX");
610 return(0);
611 break;
612 case AD_SUBSYSID_62044_REV0:
613 case AD_SUBSYSID_62044_REV1:
614 device_set_desc(dev,
615 "Adaptec ANA-62044 10/100BaseTX");
616 return(0);
617 break;
618 case AD_SUBSYSID_62020:
619 device_set_desc(dev,
620 "Adaptec ANA-62020 10/100BaseFX");
621 return(0);
622 break;
623 case AD_SUBSYSID_69011:
624 device_set_desc(dev,
625 "Adaptec ANA-69011 10/100BaseTX");
626 return(0);
627 break;
628 default:
629 device_set_desc(dev, t->sf_name);
630 return(0);
631 break;
634 t++;
637 return(ENXIO);
641 * Attach the interface. Allocate softc structures, do ifmedia
642 * setup and ethernet/BPF attach.
644 static int
645 sf_attach(device_t dev)
647 int i;
648 u_int32_t command;
649 struct sf_softc *sc;
650 struct ifnet *ifp;
651 int unit, rid, error = 0;
653 sc = device_get_softc(dev);
654 unit = device_get_unit(dev);
657 * Handle power management nonsense.
659 command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
660 if (command == 0x01) {
662 command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
663 if (command & SF_PSTATE_MASK) {
664 u_int32_t iobase, membase, irq;
666 /* Save important PCI config data. */
667 iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
668 membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
669 irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
671 /* Reset the power state. */
672 kprintf("sf%d: chip is in D%d power mode "
673 "-- setting to D0\n", unit, command & SF_PSTATE_MASK);
674 command &= 0xFFFFFFFC;
675 pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
677 /* Restore PCI config data. */
678 pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
679 pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
680 pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
685 * Map control/status registers.
687 command = pci_read_config(dev, PCIR_COMMAND, 4);
688 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
689 pci_write_config(dev, PCIR_COMMAND, command, 4);
690 command = pci_read_config(dev, PCIR_COMMAND, 4);
692 #ifdef SF_USEIOSPACE
693 if (!(command & PCIM_CMD_PORTEN)) {
694 kprintf("sf%d: failed to enable I/O ports!\n", unit);
695 error = ENXIO;
696 return(error);
698 #else
699 if (!(command & PCIM_CMD_MEMEN)) {
700 kprintf("sf%d: failed to enable memory mapping!\n", unit);
701 error = ENXIO;
702 return(error);
704 #endif
706 rid = SF_RID;
707 sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
709 if (sc->sf_res == NULL) {
710 kprintf ("sf%d: couldn't map ports\n", unit);
711 error = ENXIO;
712 return(error);
715 sc->sf_btag = rman_get_bustag(sc->sf_res);
716 sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
718 /* Allocate interrupt */
719 rid = 0;
720 sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
721 RF_SHAREABLE | RF_ACTIVE);
723 if (sc->sf_irq == NULL) {
724 kprintf("sf%d: couldn't map interrupt\n", unit);
725 error = ENXIO;
726 goto fail;
729 callout_init(&sc->sf_stat_timer);
731 /* Reset the adapter. */
732 sf_reset(sc);
735 * Get station address from the EEPROM.
737 for (i = 0; i < ETHER_ADDR_LEN; i++)
738 sc->arpcom.ac_enaddr[i] =
739 sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
741 sc->sf_unit = unit;
743 /* Allocate the descriptor queues. */
744 sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
745 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
747 if (sc->sf_ldata == NULL) {
748 kprintf("sf%d: no memory for list buffers!\n", unit);
749 error = ENXIO;
750 goto fail;
753 /* Do MII setup. */
754 if (mii_phy_probe(dev, &sc->sf_miibus,
755 sf_ifmedia_upd, sf_ifmedia_sts)) {
756 kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
757 error = ENXIO;
758 goto fail;
761 ifp = &sc->arpcom.ac_if;
762 ifp->if_softc = sc;
763 if_initname(ifp, "sf", unit);
764 ifp->if_mtu = ETHERMTU;
765 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
766 ifp->if_ioctl = sf_ioctl;
767 ifp->if_start = sf_start;
768 ifp->if_watchdog = sf_watchdog;
769 ifp->if_init = sf_init;
770 ifp->if_baudrate = 10000000;
771 ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
772 ifq_set_ready(&ifp->if_snd);
775 * Call MI attach routine.
777 ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
779 error = bus_setup_intr(dev, sc->sf_irq, INTR_NETSAFE,
780 sf_intr, sc, &sc->sf_intrhand,
781 ifp->if_serializer);
783 if (error) {
784 ether_ifdetach(ifp);
785 device_printf(dev, "couldn't set up irq\n");
786 goto fail;
789 return(0);
791 fail:
792 sf_detach(dev);
793 return(error);
796 static int
797 sf_detach(device_t dev)
799 struct sf_softc *sc = device_get_softc(dev);
800 struct ifnet *ifp = &sc->arpcom.ac_if;
802 if (device_is_attached(dev)) {
803 lwkt_serialize_enter(ifp->if_serializer);
804 sf_stop(sc);
805 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
806 lwkt_serialize_exit(ifp->if_serializer);
808 ether_ifdetach(ifp);
811 if (sc->sf_miibus)
812 device_delete_child(dev, sc->sf_miibus);
813 bus_generic_detach(dev);
815 if (sc->sf_irq)
816 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
817 if(sc->sf_res)
818 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
820 if (sc->sf_ldata) {
821 contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
822 M_DEVBUF);
825 return(0);
828 static int
829 sf_init_rx_ring(struct sf_softc *sc)
831 struct sf_list_data *ld;
832 int i;
834 ld = sc->sf_ldata;
836 bzero((char *)ld->sf_rx_dlist_big,
837 sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
838 bzero((char *)ld->sf_rx_clist,
839 sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
841 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
842 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
843 return(ENOBUFS);
846 return(0);
849 static void
850 sf_init_tx_ring(struct sf_softc *sc)
852 struct sf_list_data *ld;
853 int i;
855 ld = sc->sf_ldata;
857 bzero((char *)ld->sf_tx_dlist,
858 sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
859 bzero((char *)ld->sf_tx_clist,
860 sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
862 for (i = 0; i < SF_TX_DLIST_CNT; i++)
863 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
864 for (i = 0; i < SF_TX_CLIST_CNT; i++)
865 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
867 ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
868 sc->sf_tx_cnt = 0;
870 return;
873 static int
874 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
875 struct mbuf *m)
877 struct mbuf *m_new = NULL;
879 if (m == NULL) {
880 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
881 if (m_new == NULL)
882 return(ENOBUFS);
884 MCLGET(m_new, MB_DONTWAIT);
885 if (!(m_new->m_flags & M_EXT)) {
886 m_freem(m_new);
887 return(ENOBUFS);
889 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
890 } else {
891 m_new = m;
892 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
893 m_new->m_data = m_new->m_ext.ext_buf;
896 m_adj(m_new, sizeof(u_int64_t));
898 c->sf_mbuf = m_new;
899 c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
900 c->sf_valid = 1;
902 return(0);
906 * The starfire is programmed to use 'normal' mode for packet reception,
907 * which means we use the consumer/producer model for both the buffer
908 * descriptor queue and the completion descriptor queue. The only problem
909 * with this is that it involves a lot of register accesses: we have to
910 * read the RX completion consumer and producer indexes and the RX buffer
911 * producer index, plus the RX completion consumer and RX buffer producer
912 * indexes have to be updated. It would have been easier if Adaptec had
913 * put each index in a separate register, especially given that the damn
914 * NIC has a 512K register space.
916 * In spite of all the lovely features that Adaptec crammed into the 6915,
917 * it is marred by one truly stupid design flaw, which is that receive
918 * buffer addresses must be aligned on a longword boundary. This forces
919 * the packet payload to be unaligned, which is suboptimal on the x86 and
920 * completely unuseable on the Alpha. Our only recourse is to copy received
921 * packets into properly aligned buffers before handing them off.
924 static void
925 sf_rxeof(struct sf_softc *sc)
927 struct mbuf *m;
928 struct ifnet *ifp;
929 struct sf_rx_bufdesc_type0 *desc;
930 struct sf_rx_cmpdesc_type3 *cur_rx;
931 u_int32_t rxcons, rxprod;
932 int cmpprodidx, cmpconsidx, bufprodidx;
934 ifp = &sc->arpcom.ac_if;
936 rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
937 rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
938 cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
939 cmpconsidx = SF_IDX_LO(rxcons);
940 bufprodidx = SF_IDX_LO(rxprod);
942 while (cmpconsidx != cmpprodidx) {
943 struct mbuf *m0;
945 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
946 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
947 m = desc->sf_mbuf;
948 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
949 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
951 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
952 ifp->if_ierrors++;
953 sf_newbuf(sc, desc, m);
954 continue;
957 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
958 cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
959 sf_newbuf(sc, desc, m);
960 if (m0 == NULL) {
961 ifp->if_ierrors++;
962 continue;
964 m_adj(m0, ETHER_ALIGN);
965 m = m0;
967 ifp->if_ipackets++;
969 ifp->if_input(ifp, m);
972 csr_write_4(sc, SF_CQ_CONSIDX,
973 (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
974 csr_write_4(sc, SF_RXDQ_PTR_Q1,
975 (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
977 return;
981 * Read the transmit status from the completion queue and release
982 * mbufs. Note that the buffer descriptor index in the completion
983 * descriptor is an offset from the start of the transmit buffer
984 * descriptor list in bytes. This is important because the manual
985 * gives the impression that it should match the producer/consumer
986 * index, which is the offset in 8 byte blocks.
988 static void
989 sf_txeof(struct sf_softc *sc)
991 int txcons, cmpprodidx, cmpconsidx;
992 struct sf_tx_cmpdesc_type1 *cur_cmp;
993 struct sf_tx_bufdesc_type0 *cur_tx;
994 struct ifnet *ifp;
996 ifp = &sc->arpcom.ac_if;
998 txcons = csr_read_4(sc, SF_CQ_CONSIDX);
999 cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1000 cmpconsidx = SF_IDX_HI(txcons);
1002 while (cmpconsidx != cmpprodidx) {
1003 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1004 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1006 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1007 ifp->if_opackets++;
1008 else {
1009 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1010 sf_txthresh_adjust(sc);
1011 ifp->if_oerrors++;
1014 sc->sf_tx_cnt--;
1015 if (cur_tx->sf_mbuf != NULL) {
1016 m_freem(cur_tx->sf_mbuf);
1017 cur_tx->sf_mbuf = NULL;
1018 } else
1019 break;
1020 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1023 ifp->if_timer = 0;
1024 ifp->if_flags &= ~IFF_OACTIVE;
1026 csr_write_4(sc, SF_CQ_CONSIDX,
1027 (txcons & ~SF_CQ_CONSIDX_TXQ) |
1028 ((cmpconsidx << 16) & 0xFFFF0000));
1030 return;
1033 static void
1034 sf_txthresh_adjust(struct sf_softc *sc)
1036 u_int32_t txfctl;
1037 u_int8_t txthresh;
1039 txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1040 txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1041 if (txthresh < 0xFF) {
1042 txthresh++;
1043 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1044 txfctl |= txthresh;
1045 #ifdef DIAGNOSTIC
1046 kprintf("sf%d: tx underrun, increasing "
1047 "tx threshold to %d bytes\n",
1048 sc->sf_unit, txthresh * 4);
1049 #endif
1050 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1053 return;
1056 static void
1057 sf_intr(void *arg)
1059 struct sf_softc *sc;
1060 struct ifnet *ifp;
1061 u_int32_t status;
1063 sc = arg;
1064 ifp = &sc->arpcom.ac_if;
1066 if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1067 return;
1069 /* Disable interrupts. */
1070 csr_write_4(sc, SF_IMR, 0x00000000);
1072 for (;;) {
1073 status = csr_read_4(sc, SF_ISR);
1074 if (status)
1075 csr_write_4(sc, SF_ISR, status);
1077 if (!(status & SF_INTRS))
1078 break;
1080 if (status & SF_ISR_RXDQ1_DMADONE)
1081 sf_rxeof(sc);
1083 if (status & SF_ISR_TX_TXDONE ||
1084 status & SF_ISR_TX_DMADONE ||
1085 status & SF_ISR_TX_QUEUEDONE)
1086 sf_txeof(sc);
1088 if (status & SF_ISR_TX_LOFIFO)
1089 sf_txthresh_adjust(sc);
1091 if (status & SF_ISR_ABNORMALINTR) {
1092 if (status & SF_ISR_STATSOFLOW) {
1093 callout_stop(&sc->sf_stat_timer);
1094 sf_stats_update(sc);
1095 } else
1096 sf_init(sc);
1100 /* Re-enable interrupts. */
1101 csr_write_4(sc, SF_IMR, SF_INTRS);
1103 if (!ifq_is_empty(&ifp->if_snd))
1104 sf_start(ifp);
1106 return;
1109 static void
1110 sf_init(void *xsc)
1112 struct sf_softc *sc = xsc;
1113 struct ifnet *ifp = &sc->arpcom.ac_if;
1114 int i;
1116 sf_stop(sc);
1117 sf_reset(sc);
1119 /* Init all the receive filter registers */
1120 for (i = SF_RXFILT_PERFECT_BASE;
1121 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1122 csr_write_4(sc, i, 0);
1124 /* Empty stats counter registers. */
1125 for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1126 csr_write_4(sc, SF_STATS_BASE +
1127 (i + sizeof(u_int32_t)), 0);
1129 /* Init our MAC address */
1130 csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1131 csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1132 sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1134 if (sf_init_rx_ring(sc) == ENOBUFS) {
1135 kprintf("sf%d: initialization failed: no "
1136 "memory for rx buffers\n", sc->sf_unit);
1137 return;
1140 sf_init_tx_ring(sc);
1142 csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1144 /* If we want promiscuous mode, set the allframes bit. */
1145 if (ifp->if_flags & IFF_PROMISC) {
1146 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1147 } else {
1148 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1151 if (ifp->if_flags & IFF_BROADCAST) {
1152 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1153 } else {
1154 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1158 * Load the multicast filter.
1160 sf_setmulti(sc);
1162 /* Init the completion queue indexes */
1163 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1164 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1166 /* Init the RX completion queue */
1167 csr_write_4(sc, SF_RXCQ_CTL_1,
1168 vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1169 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1171 /* Init RX DMA control. */
1172 SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1174 /* Init the RX buffer descriptor queue. */
1175 csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1176 vtophys(sc->sf_ldata->sf_rx_dlist_big));
1177 csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1178 csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1180 /* Init the TX completion queue */
1181 csr_write_4(sc, SF_TXCQ_CTL,
1182 vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1184 /* Init the TX buffer descriptor queue. */
1185 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1186 vtophys(sc->sf_ldata->sf_tx_dlist));
1187 SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1188 csr_write_4(sc, SF_TXDQ_CTL,
1189 SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1190 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1192 /* Enable autopadding of short TX frames. */
1193 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1195 /* Enable interrupts. */
1196 csr_write_4(sc, SF_IMR, SF_INTRS);
1197 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1199 /* Enable the RX and TX engines. */
1200 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1201 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1203 /*mii_mediachg(mii);*/
1204 sf_ifmedia_upd(ifp);
1206 ifp->if_flags |= IFF_RUNNING;
1207 ifp->if_flags &= ~IFF_OACTIVE;
1209 callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1212 static int
1213 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
1214 struct mbuf *m_head)
1216 int frag = 0;
1217 struct sf_frag *f = NULL;
1218 struct mbuf *m;
1220 m = m_head;
1222 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1223 if (m->m_len != 0) {
1224 if (frag == SF_MAXFRAGS)
1225 break;
1226 f = &c->sf_frags[frag];
1227 if (frag == 0)
1228 f->sf_pktlen = m_head->m_pkthdr.len;
1229 f->sf_fraglen = m->m_len;
1230 f->sf_addr = vtophys(mtod(m, vm_offset_t));
1231 frag++;
1235 if (m != NULL) {
1236 struct mbuf *m_new = NULL;
1238 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1239 if (m_new == NULL) {
1240 kprintf("sf%d: no memory for tx list", sc->sf_unit);
1241 return(1);
1244 if (m_head->m_pkthdr.len > MHLEN) {
1245 MCLGET(m_new, MB_DONTWAIT);
1246 if (!(m_new->m_flags & M_EXT)) {
1247 m_freem(m_new);
1248 kprintf("sf%d: no memory for tx list",
1249 sc->sf_unit);
1250 return(1);
1253 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1254 mtod(m_new, caddr_t));
1255 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1256 m_freem(m_head);
1257 m_head = m_new;
1258 f = &c->sf_frags[0];
1259 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1260 f->sf_addr = vtophys(mtod(m_head, caddr_t));
1261 frag = 1;
1264 c->sf_mbuf = m_head;
1265 c->sf_id = SF_TX_BUFDESC_ID;
1266 c->sf_fragcnt = frag;
1267 c->sf_intr = 1;
1268 c->sf_caltcp = 0;
1269 c->sf_crcen = 1;
1271 return(0);
1274 static void
1275 sf_start(struct ifnet *ifp)
1277 struct sf_softc *sc;
1278 struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1279 struct mbuf *m_head = NULL;
1280 int i, txprod;
1282 sc = ifp->if_softc;
1284 if (!sc->sf_link)
1285 return;
1287 if (ifp->if_flags & IFF_OACTIVE)
1288 return;
1290 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1291 i = SF_IDX_HI(txprod) >> 4;
1293 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1294 kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1295 sf_init(sc);
1296 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1297 i = SF_IDX_HI(txprod) >> 4;
1300 while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1301 if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1302 ifp->if_flags |= IFF_OACTIVE;
1303 cur_tx = NULL;
1304 break;
1306 m_head = ifq_poll(&ifp->if_snd);
1307 if (m_head == NULL)
1308 break;
1310 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1311 if (sf_encap(sc, cur_tx, m_head)) {
1312 ifp->if_flags |= IFF_OACTIVE;
1313 cur_tx = NULL;
1314 break;
1316 ifq_dequeue(&ifp->if_snd, m_head);
1317 BPF_MTAP(ifp, cur_tx->sf_mbuf);
1319 SF_INC(i, SF_TX_DLIST_CNT);
1320 sc->sf_tx_cnt++;
1322 * Don't get the TX DMA queue get too full.
1324 if (sc->sf_tx_cnt > 64)
1325 break;
1328 if (cur_tx == NULL)
1329 return;
1331 /* Transmit */
1332 csr_write_4(sc, SF_TXDQ_PRODIDX,
1333 (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1334 ((i << 20) & 0xFFFF0000));
1336 ifp->if_timer = 5;
1338 return;
1341 static void
1342 sf_stop(struct sf_softc *sc)
1344 int i;
1345 struct ifnet *ifp;
1347 ifp = &sc->arpcom.ac_if;
1349 callout_stop(&sc->sf_stat_timer);
1351 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1352 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1353 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1354 csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1355 csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1356 csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1357 csr_write_4(sc, SF_TXCQ_CTL, 0);
1358 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1359 csr_write_4(sc, SF_TXDQ_CTL, 0);
1360 sf_reset(sc);
1362 sc->sf_link = 0;
1364 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1365 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1366 m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1367 sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1371 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1372 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1373 m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1374 sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1378 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1380 return;
1384 * Note: it is important that this function not be interrupted. We
1385 * use a two-stage register access scheme: if we are interrupted in
1386 * between setting the indirect address register and reading from the
1387 * indirect data register, the contents of the address register could
1388 * be changed out from under us.
1390 static void
1391 sf_stats_update(void *xsc)
1393 struct sf_softc *sc = xsc;
1394 struct ifnet *ifp = &sc->arpcom.ac_if;
1395 struct mii_data *mii = device_get_softc(sc->sf_miibus);
1396 struct sf_stats stats;
1397 u_int32_t *ptr;
1398 int i;
1400 lwkt_serialize_enter(ifp->if_serializer);
1402 ptr = (u_int32_t *)&stats;
1403 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1404 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1405 (i + sizeof(u_int32_t)));
1407 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1408 csr_write_4(sc, SF_STATS_BASE +
1409 (i + sizeof(u_int32_t)), 0);
1411 ifp->if_collisions += stats.sf_tx_single_colls +
1412 stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1414 mii_tick(mii);
1415 if (!sc->sf_link) {
1416 mii_pollstat(mii);
1417 if (mii->mii_media_status & IFM_ACTIVE &&
1418 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1419 sc->sf_link++;
1420 if (!ifq_is_empty(&ifp->if_snd))
1421 sf_start(ifp);
1424 callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1426 lwkt_serialize_exit(ifp->if_serializer);
1429 static void
1430 sf_watchdog(struct ifnet *ifp)
1432 struct sf_softc *sc;
1434 sc = ifp->if_softc;
1436 ifp->if_oerrors++;
1437 kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
1439 sf_stop(sc);
1440 sf_reset(sc);
1441 sf_init(sc);
1443 if (!ifq_is_empty(&ifp->if_snd))
1444 sf_start(ifp);
1446 return;
1449 static void
1450 sf_shutdown(device_t dev)
1452 struct sf_softc *sc;
1453 struct ifnet *ifp;
1455 sc = device_get_softc(dev);
1456 ifp = &sc->arpcom.ac_if;
1457 lwkt_serialize_enter(ifp->if_serializer);
1458 sf_stop(sc);
1459 lwkt_serialize_exit(ifp->if_serializer);
1461 return;