2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the University of
51 * California, Berkeley and its contributors.
52 * 4. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
69 * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70 * $DragonFly: src/sys/kern/vfs_cache.c,v 1.85 2007/11/02 19:52:25 dillon Exp $
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
91 #include <sys/sysref2.h>
93 #define MAX_RECURSION_DEPTH 64
96 * Random lookups in the cache are accomplished with a hash table using
97 * a hash key of (nc_src_vp, name).
99 * Negative entries may exist and correspond to structures where nc_vp
100 * is NULL. In a negative entry, NCF_WHITEOUT will be set if the entry
101 * corresponds to a whited-out directory entry (verses simply not finding the
104 * Upon reaching the last segment of a path, if the reference is for DELETE,
105 * or NOCACHE is set (rewrite), and the name is located in the cache, it
110 * Structures associated with name cacheing.
112 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
115 MALLOC_DEFINE(M_VFSCACHE
, "vfscache", "VFS name cache entries");
117 static LIST_HEAD(nchashhead
, namecache
) *nchashtbl
; /* Hash Table */
118 static struct namecache_list ncneglist
; /* instead of vnode */
121 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
122 * to create the namecache infrastructure leading to a dangling vnode.
124 * 0 Only errors are reported
125 * 1 Successes are reported
126 * 2 Successes + the whole directory scan is reported
127 * 3 Force the directory scan code run as if the parent vnode did not
128 * have a namecache record, even if it does have one.
130 static int ncvp_debug
;
131 SYSCTL_INT(_debug
, OID_AUTO
, ncvp_debug
, CTLFLAG_RW
, &ncvp_debug
, 0, "");
133 static u_long nchash
; /* size of hash table */
134 SYSCTL_ULONG(_debug
, OID_AUTO
, nchash
, CTLFLAG_RD
, &nchash
, 0, "");
136 static u_long ncnegfactor
= 16; /* ratio of negative entries */
137 SYSCTL_ULONG(_debug
, OID_AUTO
, ncnegfactor
, CTLFLAG_RW
, &ncnegfactor
, 0, "");
139 static int nclockwarn
; /* warn on locked entries in ticks */
140 SYSCTL_INT(_debug
, OID_AUTO
, nclockwarn
, CTLFLAG_RW
, &nclockwarn
, 0, "");
142 static u_long numneg
; /* number of cache entries allocated */
143 SYSCTL_ULONG(_debug
, OID_AUTO
, numneg
, CTLFLAG_RD
, &numneg
, 0, "");
145 static u_long numcache
; /* number of cache entries allocated */
146 SYSCTL_ULONG(_debug
, OID_AUTO
, numcache
, CTLFLAG_RD
, &numcache
, 0, "");
148 static u_long numunres
; /* number of unresolved entries */
149 SYSCTL_ULONG(_debug
, OID_AUTO
, numunres
, CTLFLAG_RD
, &numunres
, 0, "");
151 SYSCTL_INT(_debug
, OID_AUTO
, vnsize
, CTLFLAG_RD
, 0, sizeof(struct vnode
), "");
152 SYSCTL_INT(_debug
, OID_AUTO
, ncsize
, CTLFLAG_RD
, 0, sizeof(struct namecache
), "");
154 static int cache_resolve_mp(struct mount
*mp
);
155 static void _cache_rehash(struct namecache
*ncp
);
156 static void _cache_lock(struct namecache
*ncp
);
157 static void _cache_setunresolved(struct namecache
*ncp
);
160 * The new name cache statistics
162 SYSCTL_NODE(_vfs
, OID_AUTO
, cache
, CTLFLAG_RW
, 0, "Name cache statistics");
163 #define STATNODE(mode, name, var) \
164 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
165 STATNODE(CTLFLAG_RD
, numneg
, &numneg
);
166 STATNODE(CTLFLAG_RD
, numcache
, &numcache
);
167 static u_long numcalls
; STATNODE(CTLFLAG_RD
, numcalls
, &numcalls
);
168 static u_long dothits
; STATNODE(CTLFLAG_RD
, dothits
, &dothits
);
169 static u_long dotdothits
; STATNODE(CTLFLAG_RD
, dotdothits
, &dotdothits
);
170 static u_long numchecks
; STATNODE(CTLFLAG_RD
, numchecks
, &numchecks
);
171 static u_long nummiss
; STATNODE(CTLFLAG_RD
, nummiss
, &nummiss
);
172 static u_long nummisszap
; STATNODE(CTLFLAG_RD
, nummisszap
, &nummisszap
);
173 static u_long numposzaps
; STATNODE(CTLFLAG_RD
, numposzaps
, &numposzaps
);
174 static u_long numposhits
; STATNODE(CTLFLAG_RD
, numposhits
, &numposhits
);
175 static u_long numnegzaps
; STATNODE(CTLFLAG_RD
, numnegzaps
, &numnegzaps
);
176 static u_long numneghits
; STATNODE(CTLFLAG_RD
, numneghits
, &numneghits
);
178 struct nchstats nchstats
[SMP_MAXCPU
];
180 * Export VFS cache effectiveness statistics to user-land.
182 * The statistics are left for aggregation to user-land so
183 * neat things can be achieved, like observing per-CPU cache
187 sysctl_nchstats(SYSCTL_HANDLER_ARGS
)
189 struct globaldata
*gd
;
193 for (i
= 0; i
< ncpus
; ++i
) {
194 gd
= globaldata_find(i
);
195 if ((error
= SYSCTL_OUT(req
, (void *)&(*gd
->gd_nchstats
),
196 sizeof(struct nchstats
))))
202 SYSCTL_PROC(_vfs_cache
, OID_AUTO
, nchstats
, CTLTYPE_OPAQUE
|CTLFLAG_RD
,
203 0, 0, sysctl_nchstats
, "S,nchstats", "VFS cache effectiveness statistics");
205 static void cache_zap(struct namecache
*ncp
);
208 * cache_hold() and cache_drop() prevent the premature deletion of a
209 * namecache entry but do not prevent operations (such as zapping) on
210 * that namecache entry.
212 * This routine may only be called from outside this source module if
213 * nc_refs is already at least 1.
215 * This is a rare case where callers are allowed to hold a spinlock,
216 * so we can't ourselves.
220 _cache_hold(struct namecache
*ncp
)
222 atomic_add_int(&ncp
->nc_refs
, 1);
227 * When dropping an entry, if only one ref remains and the entry has not
228 * been resolved, zap it. Since the one reference is being dropped the
229 * entry had better not be locked.
233 _cache_drop(struct namecache
*ncp
)
235 KKASSERT(ncp
->nc_refs
> 0);
236 if (ncp
->nc_refs
== 1 &&
237 (ncp
->nc_flag
& NCF_UNRESOLVED
) &&
238 TAILQ_EMPTY(&ncp
->nc_list
)
240 KKASSERT(ncp
->nc_exlocks
== 0);
244 atomic_subtract_int(&ncp
->nc_refs
, 1);
249 * Link a new namecache entry to its parent. Be careful to avoid races
250 * if vhold() blocks in the future.
253 cache_link_parent(struct namecache
*ncp
, struct namecache
*par
)
255 KKASSERT(ncp
->nc_parent
== NULL
);
256 ncp
->nc_parent
= par
;
257 if (TAILQ_EMPTY(&par
->nc_list
)) {
258 TAILQ_INSERT_HEAD(&par
->nc_list
, ncp
, nc_entry
);
260 * Any vp associated with an ncp which has children must
261 * be held to prevent it from being recycled.
266 TAILQ_INSERT_HEAD(&par
->nc_list
, ncp
, nc_entry
);
271 * Remove the parent association from a namecache structure. If this is
272 * the last child of the parent the cache_drop(par) will attempt to
273 * recursively zap the parent.
276 cache_unlink_parent(struct namecache
*ncp
)
278 struct namecache
*par
;
280 if ((par
= ncp
->nc_parent
) != NULL
) {
281 ncp
->nc_parent
= NULL
;
282 par
= _cache_hold(par
);
283 TAILQ_REMOVE(&par
->nc_list
, ncp
, nc_entry
);
284 if (par
->nc_vp
&& TAILQ_EMPTY(&par
->nc_list
))
291 * Allocate a new namecache structure. Most of the code does not require
292 * zero-termination of the string but it makes vop_compat_ncreate() easier.
294 static struct namecache
*
295 cache_alloc(int nlen
)
297 struct namecache
*ncp
;
299 ncp
= kmalloc(sizeof(*ncp
), M_VFSCACHE
, M_WAITOK
|M_ZERO
);
301 ncp
->nc_name
= kmalloc(nlen
+ 1, M_VFSCACHE
, M_WAITOK
);
303 ncp
->nc_flag
= NCF_UNRESOLVED
;
304 ncp
->nc_error
= ENOTCONN
; /* needs to be resolved */
308 * Construct a fake FSMID based on the time of day and a 32 bit
309 * roller for uniqueness. This is used to generate a useful
310 * FSMID for filesystems which do not support it.
312 ncp
->nc_fsmid
= cache_getnewfsmid();
313 TAILQ_INIT(&ncp
->nc_list
);
319 _cache_free(struct namecache
*ncp
)
321 KKASSERT(ncp
->nc_refs
== 1 && ncp
->nc_exlocks
== 1);
323 kfree(ncp
->nc_name
, M_VFSCACHE
);
324 kfree(ncp
, M_VFSCACHE
);
328 cache_zero(struct nchandle
*nch
)
335 * Ref and deref a namecache structure.
337 * Warning: caller may hold an unrelated read spinlock, which means we can't
338 * use read spinlocks here.
341 cache_hold(struct nchandle
*nch
)
343 _cache_hold(nch
->ncp
);
344 ++nch
->mount
->mnt_refs
;
349 cache_copy(struct nchandle
*nch
, struct nchandle
*target
)
352 _cache_hold(target
->ncp
);
353 ++nch
->mount
->mnt_refs
;
357 cache_changemount(struct nchandle
*nch
, struct mount
*mp
)
359 --nch
->mount
->mnt_refs
;
361 ++nch
->mount
->mnt_refs
;
365 cache_drop(struct nchandle
*nch
)
367 --nch
->mount
->mnt_refs
;
368 _cache_drop(nch
->ncp
);
374 * Namespace locking. The caller must already hold a reference to the
375 * namecache structure in order to lock/unlock it. This function prevents
376 * the namespace from being created or destroyed by accessors other then
379 * Note that holding a locked namecache structure prevents other threads
380 * from making namespace changes (e.g. deleting or creating), prevents
381 * vnode association state changes by other threads, and prevents the
382 * namecache entry from being resolved or unresolved by other threads.
384 * The lock owner has full authority to associate/disassociate vnodes
385 * and resolve/unresolve the locked ncp.
387 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
388 * or recycled, but it does NOT help you if the vnode had already initiated
389 * a recyclement. If this is important, use cache_get() rather then
390 * cache_lock() (and deal with the differences in the way the refs counter
391 * is handled). Or, alternatively, make an unconditional call to
392 * cache_validate() or cache_resolve() after cache_lock() returns.
396 _cache_lock(struct namecache
*ncp
)
401 KKASSERT(ncp
->nc_refs
!= 0);
406 if (ncp
->nc_exlocks
== 0) {
410 * The vp associated with a locked ncp must be held
411 * to prevent it from being recycled (which would
412 * cause the ncp to become unresolved).
414 * WARNING! If VRECLAIMED is set the vnode could
415 * already be in the middle of a recycle. Callers
416 * should not assume that nc_vp is usable when
417 * not NULL. cache_vref() or cache_vget() must be
420 * XXX loop on race for later MPSAFE work.
426 if (ncp
->nc_locktd
== td
) {
430 ncp
->nc_flag
|= NCF_LOCKREQ
;
431 if (tsleep(ncp
, 0, "clock", nclockwarn
) == EWOULDBLOCK
) {
435 kprintf("[diagnostic] cache_lock: blocked on %p", ncp
);
436 kprintf(" \"%*.*s\"\n",
437 ncp
->nc_nlen
, ncp
->nc_nlen
, ncp
->nc_name
);
442 kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
443 ncp
->nc_nlen
, ncp
->nc_nlen
, ncp
->nc_name
);
448 cache_lock(struct nchandle
*nch
)
450 _cache_lock(nch
->ncp
);
455 _cache_lock_nonblock(struct namecache
*ncp
)
459 KKASSERT(ncp
->nc_refs
!= 0);
461 if (ncp
->nc_exlocks
== 0) {
465 * The vp associated with a locked ncp must be held
466 * to prevent it from being recycled (which would
467 * cause the ncp to become unresolved).
469 * WARNING! If VRECLAIMED is set the vnode could
470 * already be in the middle of a recycle. Callers
471 * should not assume that nc_vp is usable when
472 * not NULL. cache_vref() or cache_vget() must be
475 * XXX loop on race for later MPSAFE work.
486 cache_lock_nonblock(struct nchandle
*nch
)
488 return(_cache_lock_nonblock(nch
->ncp
));
493 _cache_unlock(struct namecache
*ncp
)
495 thread_t td
= curthread
;
497 KKASSERT(ncp
->nc_refs
> 0);
498 KKASSERT(ncp
->nc_exlocks
> 0);
499 KKASSERT(ncp
->nc_locktd
== td
);
500 if (--ncp
->nc_exlocks
== 0) {
503 ncp
->nc_locktd
= NULL
;
504 if (ncp
->nc_flag
& NCF_LOCKREQ
) {
505 ncp
->nc_flag
&= ~NCF_LOCKREQ
;
512 cache_unlock(struct nchandle
*nch
)
514 _cache_unlock(nch
->ncp
);
518 * ref-and-lock, unlock-and-deref functions.
520 * This function is primarily used by nlookup. Even though cache_lock
521 * holds the vnode, it is possible that the vnode may have already
522 * initiated a recyclement. We want cache_get() to return a definitively
523 * usable vnode or a definitively unresolved ncp.
527 _cache_get(struct namecache
*ncp
)
531 if (ncp
->nc_vp
&& (ncp
->nc_vp
->v_flag
& VRECLAIMED
))
532 _cache_setunresolved(ncp
);
537 * note: the same nchandle can be passed for both arguments.
540 cache_get(struct nchandle
*nch
, struct nchandle
*target
)
542 target
->mount
= nch
->mount
;
543 target
->ncp
= _cache_get(nch
->ncp
);
544 ++target
->mount
->mnt_refs
;
548 _cache_get_nonblock(struct namecache
*ncp
)
551 if (ncp
->nc_exlocks
== 0 || ncp
->nc_locktd
== curthread
) {
554 if (ncp
->nc_vp
&& (ncp
->nc_vp
->v_flag
& VRECLAIMED
))
555 _cache_setunresolved(ncp
);
562 cache_get_nonblock(struct nchandle
*nch
)
564 return(_cache_get_nonblock(nch
->ncp
));
569 _cache_put(struct namecache
*ncp
)
576 cache_put(struct nchandle
*nch
)
578 --nch
->mount
->mnt_refs
;
579 _cache_put(nch
->ncp
);
585 * Resolve an unresolved ncp by associating a vnode with it. If the
586 * vnode is NULL, a negative cache entry is created.
588 * The ncp should be locked on entry and will remain locked on return.
592 _cache_setvp(struct namecache
*ncp
, struct vnode
*vp
)
594 KKASSERT(ncp
->nc_flag
& NCF_UNRESOLVED
);
598 * Any vp associated with an ncp which has children must
599 * be held. Any vp associated with a locked ncp must be held.
601 if (!TAILQ_EMPTY(&ncp
->nc_list
))
603 TAILQ_INSERT_HEAD(&vp
->v_namecache
, ncp
, nc_vnode
);
608 * Set auxiliary flags
612 ncp
->nc_flag
|= NCF_ISDIR
;
615 ncp
->nc_flag
|= NCF_ISSYMLINK
;
616 /* XXX cache the contents of the symlink */
624 TAILQ_INSERT_TAIL(&ncneglist
, ncp
, nc_vnode
);
626 ncp
->nc_error
= ENOENT
;
628 ncp
->nc_flag
&= ~NCF_UNRESOLVED
;
632 cache_setvp(struct nchandle
*nch
, struct vnode
*vp
)
634 _cache_setvp(nch
->ncp
, vp
);
638 cache_settimeout(struct nchandle
*nch
, int nticks
)
640 struct namecache
*ncp
= nch
->ncp
;
642 if ((ncp
->nc_timeout
= ticks
+ nticks
) == 0)
647 * Disassociate the vnode or negative-cache association and mark a
648 * namecache entry as unresolved again. Note that the ncp is still
649 * left in the hash table and still linked to its parent.
651 * The ncp should be locked and refd on entry and will remain locked and refd
654 * This routine is normally never called on a directory containing children.
655 * However, NFS often does just that in its rename() code as a cop-out to
656 * avoid complex namespace operations. This disconnects a directory vnode
657 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
660 * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
661 * in a create, properly propogates flag up the chain.
665 _cache_setunresolved(struct namecache
*ncp
)
669 if ((ncp
->nc_flag
& NCF_UNRESOLVED
) == 0) {
670 ncp
->nc_flag
|= NCF_UNRESOLVED
;
672 ncp
->nc_error
= ENOTCONN
;
674 if ((vp
= ncp
->nc_vp
) != NULL
) {
677 TAILQ_REMOVE(&vp
->v_namecache
, ncp
, nc_vnode
);
680 * Any vp associated with an ncp with children is
681 * held by that ncp. Any vp associated with a locked
682 * ncp is held by that ncp. These conditions must be
683 * undone when the vp is cleared out from the ncp.
685 if (ncp
->nc_flag
& NCF_FSMID
)
687 if (!TAILQ_EMPTY(&ncp
->nc_list
))
692 TAILQ_REMOVE(&ncneglist
, ncp
, nc_vnode
);
695 ncp
->nc_flag
&= ~(NCF_WHITEOUT
|NCF_ISDIR
|NCF_ISSYMLINK
|
701 cache_setunresolved(struct nchandle
*nch
)
703 _cache_setunresolved(nch
->ncp
);
707 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
708 * looking for matches. This flag tells the lookup code when it must
709 * check for a mount linkage and also prevents the directories in question
710 * from being deleted or renamed.
714 cache_clrmountpt_callback(struct mount
*mp
, void *data
)
716 struct nchandle
*nch
= data
;
718 if (mp
->mnt_ncmounton
.ncp
== nch
->ncp
)
720 if (mp
->mnt_ncmountpt
.ncp
== nch
->ncp
)
726 cache_clrmountpt(struct nchandle
*nch
)
730 count
= mountlist_scan(cache_clrmountpt_callback
, nch
,
731 MNTSCAN_FORWARD
|MNTSCAN_NOBUSY
);
733 nch
->ncp
->nc_flag
&= ~NCF_ISMOUNTPT
;
737 * Invalidate portions of the namecache topology given a starting entry.
738 * The passed ncp is set to an unresolved state and:
740 * The passed ncp must be locked.
742 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
743 * that the physical underlying nodes have been
744 * destroyed... as in deleted. For example, when
745 * a directory is removed. This will cause record
746 * lookups on the name to no longer be able to find
747 * the record and tells the resolver to return failure
748 * rather then trying to resolve through the parent.
750 * The topology itself, including ncp->nc_name,
753 * This only applies to the passed ncp, if CINV_CHILDREN
754 * is specified the children are not flagged.
756 * CINV_CHILDREN - Set all children (recursively) to an unresolved
759 * Note that this will also have the side effect of
760 * cleaning out any unreferenced nodes in the topology
761 * from the leaves up as the recursion backs out.
763 * Note that the topology for any referenced nodes remains intact.
765 * It is possible for cache_inval() to race a cache_resolve(), meaning that
766 * the namecache entry may not actually be invalidated on return if it was
767 * revalidated while recursing down into its children. This code guarentees
768 * that the node(s) will go through an invalidation cycle, but does not
769 * guarentee that they will remain in an invalidated state.
771 * Returns non-zero if a revalidation was detected during the invalidation
772 * recursion, zero otherwise. Note that since only the original ncp is
773 * locked the revalidation ultimately can only indicate that the original ncp
774 * *MIGHT* no have been reresolved.
776 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
777 * have to avoid blowing out the kernel stack. We do this by saving the
778 * deep namecache node and aborting the recursion, then re-recursing at that
779 * node using a depth-first algorithm in order to allow multiple deep
780 * recursions to chain through each other, then we restart the invalidation
785 struct namecache
*resume_ncp
;
789 static int _cache_inval_internal(struct namecache
*, int, struct cinvtrack
*);
793 _cache_inval(struct namecache
*ncp
, int flags
)
795 struct cinvtrack track
;
796 struct namecache
*ncp2
;
800 track
.resume_ncp
= NULL
;
803 r
= _cache_inval_internal(ncp
, flags
, &track
);
804 if (track
.resume_ncp
== NULL
)
806 kprintf("Warning: deep namecache recursion at %s\n",
809 while ((ncp2
= track
.resume_ncp
) != NULL
) {
810 track
.resume_ncp
= NULL
;
812 _cache_inval_internal(ncp2
, flags
& ~CINV_DESTROY
,
822 cache_inval(struct nchandle
*nch
, int flags
)
824 return(_cache_inval(nch
->ncp
, flags
));
828 _cache_inval_internal(struct namecache
*ncp
, int flags
, struct cinvtrack
*track
)
830 struct namecache
*kid
;
831 struct namecache
*nextkid
;
834 KKASSERT(ncp
->nc_exlocks
);
836 _cache_setunresolved(ncp
);
837 if (flags
& CINV_DESTROY
)
838 ncp
->nc_flag
|= NCF_DESTROYED
;
840 if ((flags
& CINV_CHILDREN
) &&
841 (kid
= TAILQ_FIRST(&ncp
->nc_list
)) != NULL
843 if (++track
->depth
> MAX_RECURSION_DEPTH
) {
844 track
->resume_ncp
= ncp
;
851 if (track
->resume_ncp
) {
855 if ((nextkid
= TAILQ_NEXT(kid
, nc_entry
)) != NULL
)
856 _cache_hold(nextkid
);
857 if ((kid
->nc_flag
& NCF_UNRESOLVED
) == 0 ||
858 TAILQ_FIRST(&kid
->nc_list
)
861 rcnt
+= _cache_inval_internal(kid
, flags
& ~CINV_DESTROY
, track
);
872 * Someone could have gotten in there while ncp was unlocked,
875 if ((ncp
->nc_flag
& NCF_UNRESOLVED
) == 0)
881 * Invalidate a vnode's namecache associations. To avoid races against
882 * the resolver we do not invalidate a node which we previously invalidated
883 * but which was then re-resolved while we were in the invalidation loop.
885 * Returns non-zero if any namecache entries remain after the invalidation
888 * NOTE: unlike the namecache topology which guarentees that ncp's will not
889 * be ripped out of the topology while held, the vnode's v_namecache list
890 * has no such restriction. NCP's can be ripped out of the list at virtually
891 * any time if not locked, even if held.
894 cache_inval_vp(struct vnode
*vp
, int flags
)
896 struct namecache
*ncp
;
897 struct namecache
*next
;
900 ncp
= TAILQ_FIRST(&vp
->v_namecache
);
904 /* loop entered with ncp held */
905 if ((next
= TAILQ_NEXT(ncp
, nc_vnode
)) != NULL
)
908 if (ncp
->nc_vp
!= vp
) {
909 kprintf("Warning: cache_inval_vp: race-A detected on "
910 "%s\n", ncp
->nc_name
);
916 _cache_inval(ncp
, flags
);
917 _cache_put(ncp
); /* also releases reference */
919 if (ncp
&& ncp
->nc_vp
!= vp
) {
920 kprintf("Warning: cache_inval_vp: race-B detected on "
921 "%s\n", ncp
->nc_name
);
926 return(TAILQ_FIRST(&vp
->v_namecache
) != NULL
);
930 * This routine is used instead of the normal cache_inval_vp() when we
931 * are trying to recycle otherwise good vnodes.
933 * Return 0 on success, non-zero if not all namecache records could be
934 * disassociated from the vnode (for various reasons).
937 cache_inval_vp_nonblock(struct vnode
*vp
)
939 struct namecache
*ncp
;
940 struct namecache
*next
;
942 ncp
= TAILQ_FIRST(&vp
->v_namecache
);
946 /* loop entered with ncp held */
947 if ((next
= TAILQ_NEXT(ncp
, nc_vnode
)) != NULL
)
949 if (_cache_lock_nonblock(ncp
)) {
955 if (ncp
->nc_vp
!= vp
) {
956 kprintf("Warning: cache_inval_vp: race-A detected on "
957 "%s\n", ncp
->nc_name
);
963 _cache_inval(ncp
, 0);
964 _cache_put(ncp
); /* also releases reference */
966 if (ncp
&& ncp
->nc_vp
!= vp
) {
967 kprintf("Warning: cache_inval_vp: race-B detected on "
968 "%s\n", ncp
->nc_name
);
973 return(TAILQ_FIRST(&vp
->v_namecache
) != NULL
);
977 * The source ncp has been renamed to the target ncp. Both fncp and tncp
978 * must be locked. Both will be set to unresolved, any children of tncp
979 * will be disconnected (the prior contents of the target is assumed to be
980 * destroyed by the rename operation, e.g. renaming over an empty directory),
981 * and all children of fncp will be moved to tncp.
983 * XXX the disconnection could pose a problem, check code paths to make
984 * sure any code that blocks can handle the parent being changed out from
985 * under it. Maybe we should lock the children (watch out for deadlocks) ?
987 * After we return the caller has the option of calling cache_setvp() if
988 * the vnode of the new target ncp is known.
990 * Any process CD'd into any of the children will no longer be able to ".."
991 * back out. An rm -rf can cause this situation to occur.
994 cache_rename(struct nchandle
*fnch
, struct nchandle
*tnch
)
996 struct namecache
*fncp
= fnch
->ncp
;
997 struct namecache
*tncp
= tnch
->ncp
;
998 struct namecache
*scan
;
1001 _cache_setunresolved(fncp
);
1002 _cache_setunresolved(tncp
);
1003 while (_cache_inval(tncp
, CINV_CHILDREN
) != 0) {
1004 if (didwarn
++ % 10 == 0) {
1005 kprintf("Warning: cache_rename: race during "
1007 fncp
->nc_name
, tncp
->nc_name
);
1009 tsleep(tncp
, 0, "mvrace", hz
/ 10);
1010 _cache_setunresolved(tncp
);
1012 while ((scan
= TAILQ_FIRST(&fncp
->nc_list
)) != NULL
) {
1014 cache_unlink_parent(scan
);
1015 cache_link_parent(scan
, tncp
);
1016 if (scan
->nc_flag
& NCF_HASHED
)
1017 _cache_rehash(scan
);
1023 * vget the vnode associated with the namecache entry. Resolve the namecache
1024 * entry if necessary and deal with namecache/vp races. The passed ncp must
1025 * be referenced and may be locked. The ncp's ref/locking state is not
1026 * effected by this call.
1028 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
1029 * (depending on the passed lk_type) will be returned in *vpp with an error
1030 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
1031 * most typical error is ENOENT, meaning that the ncp represents a negative
1032 * cache hit and there is no vnode to retrieve, but other errors can occur
1035 * The main race we have to deal with are namecache zaps. The ncp itself
1036 * will not disappear since it is referenced, and it turns out that the
1037 * validity of the vp pointer can be checked simply by rechecking the
1038 * contents of ncp->nc_vp.
1041 cache_vget(struct nchandle
*nch
, struct ucred
*cred
,
1042 int lk_type
, struct vnode
**vpp
)
1044 struct namecache
*ncp
;
1051 if (ncp
->nc_flag
& NCF_UNRESOLVED
) {
1053 error
= cache_resolve(nch
, cred
);
1058 if (error
== 0 && (vp
= ncp
->nc_vp
) != NULL
) {
1060 * Accessing the vnode from the namecache is a bit
1061 * dangerous. Because there are no refs on the vnode, it
1062 * could be in the middle of a reclaim.
1064 if (vp
->v_flag
& VRECLAIMED
) {
1065 kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp
, ncp
->nc_name
);
1067 _cache_setunresolved(ncp
);
1071 error
= vget(vp
, lk_type
);
1073 if (vp
!= ncp
->nc_vp
)
1076 } else if (vp
!= ncp
->nc_vp
) {
1079 } else if (vp
->v_flag
& VRECLAIMED
) {
1080 panic("vget succeeded on a VRECLAIMED node! vp %p", vp
);
1083 if (error
== 0 && vp
== NULL
)
1090 cache_vref(struct nchandle
*nch
, struct ucred
*cred
, struct vnode
**vpp
)
1092 struct namecache
*ncp
;
1100 if (ncp
->nc_flag
& NCF_UNRESOLVED
) {
1102 error
= cache_resolve(nch
, cred
);
1107 if (error
== 0 && (vp
= ncp
->nc_vp
) != NULL
) {
1109 * Since we did not obtain any locks, a cache zap
1110 * race can occur here if the vnode is in the middle
1111 * of being reclaimed and has not yet been able to
1112 * clean out its cache node. If that case occurs,
1113 * we must lock and unresolve the cache, then loop
1116 if ((error
= vget(vp
, LK_SHARED
)) != 0) {
1117 if (error
== ENOENT
) {
1118 kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp
, ncp
->nc_name
);
1120 _cache_setunresolved(ncp
);
1126 /* caller does not want a lock */
1130 if (error
== 0 && vp
== NULL
)
1137 * Recursively set the FSMID update flag for namecache nodes leading
1138 * to root. This will cause the next getattr or reclaim to increment the
1139 * fsmid and mark the inode for lazy updating.
1141 * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1142 * This makes FSMIDs work in an Einsteinian fashion - where the observation
1143 * effects the result. In this case a program monitoring a higher level
1144 * node will have detected some prior change and started its scan (clearing
1145 * NCF_FSMID in higher level nodes), but since it has not yet observed the
1146 * node where we find NCF_FSMID still set, we can safely make the related
1147 * modification without interfering with the theorized program.
1149 * This also means that FSMIDs cannot represent time-domain quantities
1150 * in a hierarchical sense. But the main reason for doing it this way
1151 * is to reduce the amount of recursion that occurs in the critical path
1152 * when e.g. a program is writing to a file that sits deep in a directory
1156 cache_update_fsmid(struct nchandle
*nch
)
1158 struct namecache
*ncp
;
1159 struct namecache
*scan
;
1165 * Warning: even if we get a non-NULL vp it could still be in the
1166 * middle of a recyclement. Don't do anything fancy, just set
1169 if ((vp
= ncp
->nc_vp
) != NULL
) {
1170 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1171 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1172 if (scan
->nc_flag
& NCF_FSMID
)
1174 scan
->nc_flag
|= NCF_FSMID
;
1178 while (ncp
&& (ncp
->nc_flag
& NCF_FSMID
) == 0) {
1179 ncp
->nc_flag
|= NCF_FSMID
;
1180 ncp
= ncp
->nc_parent
;
1186 cache_update_fsmid_vp(struct vnode
*vp
)
1188 struct namecache
*ncp
;
1189 struct namecache
*scan
;
1191 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1192 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1193 if (scan
->nc_flag
& NCF_FSMID
)
1195 scan
->nc_flag
|= NCF_FSMID
;
1201 * If getattr is called on a vnode (e.g. a stat call), the filesystem
1202 * may call this routine to determine if the namecache has the hierarchical
1203 * change flag set, requiring the fsmid to be updated.
1205 * Since 0 indicates no support, make sure the filesystem fsmid is at least
1209 cache_check_fsmid_vp(struct vnode
*vp
, int64_t *fsmid
)
1211 struct namecache
*ncp
;
1214 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1215 if (ncp
->nc_flag
& NCF_FSMID
) {
1216 ncp
->nc_flag
&= ~NCF_FSMID
;
1228 * Obtain the FSMID for a vnode for filesystems which do not support
1232 cache_sync_fsmid_vp(struct vnode
*vp
)
1234 struct namecache
*ncp
;
1236 if ((ncp
= TAILQ_FIRST(&vp
->v_namecache
)) != NULL
) {
1237 if (ncp
->nc_flag
& NCF_FSMID
) {
1238 ncp
->nc_flag
&= ~NCF_FSMID
;
1241 return(ncp
->nc_fsmid
);
1247 * Convert a directory vnode to a namecache record without any other
1248 * knowledge of the topology. This ONLY works with directory vnodes and
1249 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
1250 * returned ncp (if not NULL) will be held and unlocked.
1252 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1253 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1254 * for dvp. This will fail only if the directory has been deleted out from
1257 * Callers must always check for a NULL return no matter the value of 'makeit'.
1259 * To avoid underflowing the kernel stack each recursive call increments
1260 * the makeit variable.
1263 static int cache_inefficient_scan(struct nchandle
*nch
, struct ucred
*cred
,
1265 static int cache_fromdvp_try(struct vnode
*dvp
, struct ucred
*cred
,
1266 struct vnode
**saved_dvp
);
1269 cache_fromdvp(struct vnode
*dvp
, struct ucred
*cred
, int makeit
,
1270 struct nchandle
*nch
)
1272 struct vnode
*saved_dvp
;
1277 nch
->mount
= dvp
->v_mount
;
1281 * Temporary debugging code to force the directory scanning code
1284 if (ncvp_debug
>= 3 && makeit
&& TAILQ_FIRST(&dvp
->v_namecache
)) {
1285 nch
->ncp
= TAILQ_FIRST(&dvp
->v_namecache
);
1286 kprintf("cache_fromdvp: forcing %s\n", nch
->ncp
->nc_name
);
1291 * Loop until resolution, inside code will break out on error.
1293 while ((nch
->ncp
= TAILQ_FIRST(&dvp
->v_namecache
)) == NULL
&& makeit
) {
1296 * If dvp is the root of its filesystem it should already
1297 * have a namecache pointer associated with it as a side
1298 * effect of the mount, but it may have been disassociated.
1300 if (dvp
->v_flag
& VROOT
) {
1301 nch
->ncp
= _cache_get(nch
->mount
->mnt_ncmountpt
.ncp
);
1302 error
= cache_resolve_mp(nch
->mount
);
1303 _cache_put(nch
->ncp
);
1305 kprintf("cache_fromdvp: resolve root of mount %p error %d",
1306 dvp
->v_mount
, error
);
1310 kprintf(" failed\n");
1315 kprintf(" succeeded\n");
1320 * If we are recursed too deeply resort to an O(n^2)
1321 * algorithm to resolve the namecache topology. The
1322 * resolved pvp is left referenced in saved_dvp to
1323 * prevent the tree from being destroyed while we loop.
1326 error
= cache_fromdvp_try(dvp
, cred
, &saved_dvp
);
1328 kprintf("lookupdotdot(longpath) failed %d "
1329 "dvp %p\n", error
, dvp
);
1336 * Get the parent directory and resolve its ncp.
1338 error
= vop_nlookupdotdot(*dvp
->v_ops
, dvp
, &pvp
, cred
);
1340 kprintf("lookupdotdot failed %d dvp %p\n", error
, dvp
);
1346 * Reuse makeit as a recursion depth counter.
1348 cache_fromdvp(pvp
, cred
, makeit
+ 1, nch
);
1350 if (nch
->ncp
== NULL
)
1354 * Do an inefficient scan of pvp (embodied by ncp) to look
1355 * for dvp. This will create a namecache record for dvp on
1356 * success. We loop up to recheck on success.
1358 * ncp and dvp are both held but not locked.
1360 error
= cache_inefficient_scan(nch
, cred
, dvp
);
1361 _cache_drop(nch
->ncp
);
1363 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1364 pvp
, nch
->ncp
->nc_name
, dvp
);
1369 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1370 pvp
, nch
->ncp
->nc_name
);
1375 * hold it for real so the mount gets a ref
1387 * Go up the chain of parent directories until we find something
1388 * we can resolve into the namecache. This is very inefficient.
1392 cache_fromdvp_try(struct vnode
*dvp
, struct ucred
*cred
,
1393 struct vnode
**saved_dvp
)
1395 struct nchandle nch
;
1398 static time_t last_fromdvp_report
;
1401 * Loop getting the parent directory vnode until we get something we
1402 * can resolve in the namecache.
1405 nch
.mount
= dvp
->v_mount
;
1408 error
= vop_nlookupdotdot(*dvp
->v_ops
, dvp
, &pvp
, cred
);
1414 if ((nch
.ncp
= TAILQ_FIRST(&pvp
->v_namecache
)) != NULL
) {
1415 _cache_hold(nch
.ncp
);
1419 if (pvp
->v_flag
& VROOT
) {
1420 nch
.ncp
= _cache_get(pvp
->v_mount
->mnt_ncmountpt
.ncp
);
1421 error
= cache_resolve_mp(nch
.mount
);
1422 _cache_unlock(nch
.ncp
);
1425 _cache_drop(nch
.ncp
);
1434 if (last_fromdvp_report
!= time_second
) {
1435 last_fromdvp_report
= time_second
;
1436 kprintf("Warning: extremely inefficient path resolution on %s\n",
1439 error
= cache_inefficient_scan(&nch
, cred
, dvp
);
1442 * Hopefully dvp now has a namecache record associated with it.
1443 * Leave it referenced to prevent the kernel from recycling the
1444 * vnode. Otherwise extremely long directory paths could result
1445 * in endless recycling.
1455 * Do an inefficient scan of the directory represented by ncp looking for
1456 * the directory vnode dvp. ncp must be held but not locked on entry and
1457 * will be held on return. dvp must be refd but not locked on entry and
1458 * will remain refd on return.
1460 * Why do this at all? Well, due to its stateless nature the NFS server
1461 * converts file handles directly to vnodes without necessarily going through
1462 * the namecache ops that would otherwise create the namecache topology
1463 * leading to the vnode. We could either (1) Change the namecache algorithms
1464 * to allow disconnect namecache records that are re-merged opportunistically,
1465 * or (2) Make the NFS server backtrack and scan to recover a connected
1466 * namecache topology in order to then be able to issue new API lookups.
1468 * It turns out that (1) is a huge mess. It takes a nice clean set of
1469 * namecache algorithms and introduces a lot of complication in every subsystem
1470 * that calls into the namecache to deal with the re-merge case, especially
1471 * since we are using the namecache to placehold negative lookups and the
1472 * vnode might not be immediately assigned. (2) is certainly far less
1473 * efficient then (1), but since we are only talking about directories here
1474 * (which are likely to remain cached), the case does not actually run all
1475 * that often and has the supreme advantage of not polluting the namecache
1479 cache_inefficient_scan(struct nchandle
*nch
, struct ucred
*cred
,
1482 struct nlcomponent nlc
;
1483 struct nchandle rncp
;
1495 vat
.va_blocksize
= 0;
1496 if ((error
= VOP_GETATTR(dvp
, &vat
)) != 0)
1498 if ((error
= cache_vref(nch
, cred
, &pvp
)) != 0)
1501 kprintf("inefficient_scan: directory iosize %ld vattr fileid = %lld\n", vat
.va_blocksize
, vat
.va_fileid
);
1502 if ((blksize
= vat
.va_blocksize
) == 0)
1503 blksize
= DEV_BSIZE
;
1504 rbuf
= kmalloc(blksize
, M_TEMP
, M_WAITOK
);
1510 iov
.iov_base
= rbuf
;
1511 iov
.iov_len
= blksize
;
1514 uio
.uio_resid
= blksize
;
1515 uio
.uio_segflg
= UIO_SYSSPACE
;
1516 uio
.uio_rw
= UIO_READ
;
1517 uio
.uio_td
= curthread
;
1519 if (ncvp_debug
>= 2)
1520 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio
.uio_offset
);
1521 error
= VOP_READDIR(pvp
, &uio
, cred
, &eofflag
, NULL
, NULL
);
1523 den
= (struct dirent
*)rbuf
;
1524 bytes
= blksize
- uio
.uio_resid
;
1527 if (ncvp_debug
>= 2) {
1528 kprintf("cache_inefficient_scan: %*.*s\n",
1529 den
->d_namlen
, den
->d_namlen
,
1532 if (den
->d_type
!= DT_WHT
&&
1533 den
->d_ino
== vat
.va_fileid
) {
1535 kprintf("cache_inefficient_scan: "
1536 "MATCHED inode %lld path %s/%*.*s\n",
1537 vat
.va_fileid
, nch
->ncp
->nc_name
,
1538 den
->d_namlen
, den
->d_namlen
,
1541 nlc
.nlc_nameptr
= den
->d_name
;
1542 nlc
.nlc_namelen
= den
->d_namlen
;
1543 rncp
= cache_nlookup(nch
, &nlc
);
1544 KKASSERT(rncp
.ncp
!= NULL
);
1547 bytes
-= _DIRENT_DIRSIZ(den
);
1548 den
= _DIRENT_NEXT(den
);
1550 if (rncp
.ncp
== NULL
&& eofflag
== 0 && uio
.uio_resid
!= blksize
)
1555 if (rncp
.ncp
->nc_flag
& NCF_UNRESOLVED
) {
1556 _cache_setvp(rncp
.ncp
, dvp
);
1557 if (ncvp_debug
>= 2) {
1558 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1559 nch
->ncp
->nc_name
, rncp
.ncp
->nc_name
, dvp
);
1562 if (ncvp_debug
>= 2) {
1563 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1564 nch
->ncp
->nc_name
, rncp
.ncp
->nc_name
, dvp
,
1568 if (rncp
.ncp
->nc_vp
== NULL
)
1569 error
= rncp
.ncp
->nc_error
;
1570 _cache_put(rncp
.ncp
);
1572 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1573 dvp
, nch
->ncp
->nc_name
);
1576 kfree(rbuf
, M_TEMP
);
1581 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
1582 * state, which disassociates it from its vnode or ncneglist.
1584 * Then, if there are no additional references to the ncp and no children,
1585 * the ncp is removed from the topology and destroyed. This function will
1586 * also run through the nc_parent chain and destroy parent ncps if possible.
1587 * As a side benefit, it turns out the only conditions that allow running
1588 * up the chain are also the conditions to ensure no deadlock will occur.
1590 * References and/or children may exist if the ncp is in the middle of the
1591 * topology, preventing the ncp from being destroyed.
1593 * This function must be called with the ncp held and locked and will unlock
1594 * and drop it during zapping.
1597 cache_zap(struct namecache
*ncp
)
1599 struct namecache
*par
;
1602 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1604 _cache_setunresolved(ncp
);
1607 * Try to scrap the entry and possibly tail-recurse on its parent.
1608 * We only scrap unref'd (other then our ref) unresolved entries,
1609 * we do not scrap 'live' entries.
1611 while (ncp
->nc_flag
& NCF_UNRESOLVED
) {
1613 * Someone other then us has a ref, stop.
1615 if (ncp
->nc_refs
> 1)
1619 * We have children, stop.
1621 if (!TAILQ_EMPTY(&ncp
->nc_list
))
1625 * Remove ncp from the topology: hash table and parent linkage.
1627 if (ncp
->nc_flag
& NCF_HASHED
) {
1628 ncp
->nc_flag
&= ~NCF_HASHED
;
1629 LIST_REMOVE(ncp
, nc_hash
);
1631 if ((par
= ncp
->nc_parent
) != NULL
) {
1632 par
= _cache_hold(par
);
1633 TAILQ_REMOVE(&par
->nc_list
, ncp
, nc_entry
);
1634 ncp
->nc_parent
= NULL
;
1635 if (par
->nc_vp
&& TAILQ_EMPTY(&par
->nc_list
))
1640 * ncp should not have picked up any refs. Physically
1643 KKASSERT(ncp
->nc_refs
== 1);
1645 /* _cache_unlock(ncp) not required */
1646 ncp
->nc_refs
= -1; /* safety */
1648 kfree(ncp
->nc_name
, M_VFSCACHE
);
1649 kfree(ncp
, M_VFSCACHE
);
1652 * Loop on the parent (it may be NULL). Only bother looping
1653 * if the parent has a single ref (ours), which also means
1654 * we can lock it trivially.
1659 if (ncp
->nc_refs
!= 1) {
1663 KKASSERT(par
->nc_exlocks
== 0);
1668 atomic_subtract_int(&ncp
->nc_refs
, 1);
1671 static enum { CHI_LOW
, CHI_HIGH
} cache_hysteresis_state
= CHI_LOW
;
1675 cache_hysteresis(void)
1678 * Don't cache too many negative hits. We use hysteresis to reduce
1679 * the impact on the critical path.
1681 switch(cache_hysteresis_state
) {
1683 if (numneg
> MINNEG
&& numneg
* ncnegfactor
> numcache
) {
1685 cache_hysteresis_state
= CHI_HIGH
;
1689 if (numneg
> MINNEG
* 9 / 10 &&
1690 numneg
* ncnegfactor
* 9 / 10 > numcache
1694 cache_hysteresis_state
= CHI_LOW
;
1701 * NEW NAMECACHE LOOKUP API
1703 * Lookup an entry in the cache. A locked, referenced, non-NULL
1704 * entry is *always* returned, even if the supplied component is illegal.
1705 * The resulting namecache entry should be returned to the system with
1706 * cache_put() or _cache_unlock() + cache_drop().
1708 * namecache locks are recursive but care must be taken to avoid lock order
1711 * Nobody else will be able to manipulate the associated namespace (e.g.
1712 * create, delete, rename, rename-target) until the caller unlocks the
1715 * The returned entry will be in one of three states: positive hit (non-null
1716 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1717 * Unresolved entries must be resolved through the filesystem to associate the
1718 * vnode and/or determine whether a positive or negative hit has occured.
1720 * It is not necessary to lock a directory in order to lock namespace under
1721 * that directory. In fact, it is explicitly not allowed to do that. A
1722 * directory is typically only locked when being created, renamed, or
1725 * The directory (par) may be unresolved, in which case any returned child
1726 * will likely also be marked unresolved. Likely but not guarenteed. Since
1727 * the filesystem lookup requires a resolved directory vnode the caller is
1728 * responsible for resolving the namecache chain top-down. This API
1729 * specifically allows whole chains to be created in an unresolved state.
1732 cache_nlookup(struct nchandle
*par_nch
, struct nlcomponent
*nlc
)
1734 struct nchandle nch
;
1735 struct namecache
*ncp
;
1736 struct namecache
*new_ncp
;
1737 struct nchashhead
*nchpp
;
1745 * Try to locate an existing entry
1747 hash
= fnv_32_buf(nlc
->nlc_nameptr
, nlc
->nlc_namelen
, FNV1_32_INIT
);
1748 hash
= fnv_32_buf(&par_nch
->ncp
, sizeof(par_nch
->ncp
), hash
);
1751 LIST_FOREACH(ncp
, (NCHHASH(hash
)), nc_hash
) {
1755 * Try to zap entries that have timed out. We have
1756 * to be careful here because locked leafs may depend
1757 * on the vnode remaining intact in a parent, so only
1758 * do this under very specific conditions.
1760 if (ncp
->nc_timeout
&&
1761 (int)(ncp
->nc_timeout
- ticks
) < 0 &&
1762 (ncp
->nc_flag
& NCF_UNRESOLVED
) == 0 &&
1763 ncp
->nc_exlocks
== 0 &&
1764 TAILQ_EMPTY(&ncp
->nc_list
)
1766 cache_zap(_cache_get(ncp
));
1771 * Break out if we find a matching entry. Note that
1772 * UNRESOLVED entries may match, but DESTROYED entries
1775 if (ncp
->nc_parent
== par_nch
->ncp
&&
1776 ncp
->nc_nlen
== nlc
->nlc_namelen
&&
1777 bcmp(ncp
->nc_name
, nlc
->nlc_nameptr
, ncp
->nc_nlen
) == 0 &&
1778 (ncp
->nc_flag
& NCF_DESTROYED
) == 0
1780 if (_cache_get_nonblock(ncp
) == 0) {
1782 _cache_free(new_ncp
);
1792 * We failed to locate an entry, create a new entry and add it to
1793 * the cache. We have to relookup after possibly blocking in
1796 if (new_ncp
== NULL
) {
1797 new_ncp
= cache_alloc(nlc
->nlc_namelen
);
1804 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1805 * and link to the parent. The mount point is usually inherited
1806 * from the parent unless this is a special case such as a mount
1807 * point where nlc_namelen is 0. If nlc_namelen is 0 nc_name will
1810 if (nlc
->nlc_namelen
) {
1811 bcopy(nlc
->nlc_nameptr
, ncp
->nc_name
, nlc
->nlc_namelen
);
1812 ncp
->nc_name
[nlc
->nlc_namelen
] = 0;
1814 nchpp
= NCHHASH(hash
);
1815 LIST_INSERT_HEAD(nchpp
, ncp
, nc_hash
);
1816 ncp
->nc_flag
|= NCF_HASHED
;
1817 cache_link_parent(ncp
, par_nch
->ncp
);
1820 * stats and namecache size management
1822 if (ncp
->nc_flag
& NCF_UNRESOLVED
)
1823 ++gd
->gd_nchstats
->ncs_miss
;
1824 else if (ncp
->nc_vp
)
1825 ++gd
->gd_nchstats
->ncs_goodhits
;
1827 ++gd
->gd_nchstats
->ncs_neghits
;
1829 nch
.mount
= par_nch
->mount
;
1831 ++nch
.mount
->mnt_refs
;
1836 * The namecache entry is marked as being used as a mount point.
1837 * Locate the mount if it is visible to the caller.
1839 struct findmount_info
{
1840 struct mount
*result
;
1841 struct mount
*nch_mount
;
1842 struct namecache
*nch_ncp
;
1847 cache_findmount_callback(struct mount
*mp
, void *data
)
1849 struct findmount_info
*info
= data
;
1852 * Check the mount's mounted-on point against the passed nch.
1854 if (mp
->mnt_ncmounton
.mount
== info
->nch_mount
&&
1855 mp
->mnt_ncmounton
.ncp
== info
->nch_ncp
1864 cache_findmount(struct nchandle
*nch
)
1866 struct findmount_info info
;
1869 info
.nch_mount
= nch
->mount
;
1870 info
.nch_ncp
= nch
->ncp
;
1871 mountlist_scan(cache_findmount_callback
, &info
,
1872 MNTSCAN_FORWARD
|MNTSCAN_NOBUSY
);
1873 return(info
.result
);
1877 * Resolve an unresolved namecache entry, generally by looking it up.
1878 * The passed ncp must be locked and refd.
1880 * Theoretically since a vnode cannot be recycled while held, and since
1881 * the nc_parent chain holds its vnode as long as children exist, the
1882 * direct parent of the cache entry we are trying to resolve should
1883 * have a valid vnode. If not then generate an error that we can
1884 * determine is related to a resolver bug.
1886 * However, if a vnode was in the middle of a recyclement when the NCP
1887 * got locked, ncp->nc_vp might point to a vnode that is about to become
1888 * invalid. cache_resolve() handles this case by unresolving the entry
1889 * and then re-resolving it.
1891 * Note that successful resolution does not necessarily return an error
1892 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
1896 cache_resolve(struct nchandle
*nch
, struct ucred
*cred
)
1898 struct namecache
*par
;
1899 struct namecache
*ncp
;
1900 struct nchandle nctmp
;
1909 * If the ncp is already resolved we have nothing to do. However,
1910 * we do want to guarentee that a usable vnode is returned when
1911 * a vnode is present, so make sure it hasn't been reclaimed.
1913 if ((ncp
->nc_flag
& NCF_UNRESOLVED
) == 0) {
1914 if (ncp
->nc_vp
&& (ncp
->nc_vp
->v_flag
& VRECLAIMED
))
1915 _cache_setunresolved(ncp
);
1916 if ((ncp
->nc_flag
& NCF_UNRESOLVED
) == 0)
1917 return (ncp
->nc_error
);
1921 * Mount points need special handling because the parent does not
1922 * belong to the same filesystem as the ncp.
1924 if (ncp
== mp
->mnt_ncmountpt
.ncp
)
1925 return (cache_resolve_mp(mp
));
1928 * We expect an unbroken chain of ncps to at least the mount point,
1929 * and even all the way to root (but this code doesn't have to go
1930 * past the mount point).
1932 if (ncp
->nc_parent
== NULL
) {
1933 kprintf("EXDEV case 1 %p %*.*s\n", ncp
,
1934 ncp
->nc_nlen
, ncp
->nc_nlen
, ncp
->nc_name
);
1935 ncp
->nc_error
= EXDEV
;
1936 return(ncp
->nc_error
);
1940 * The vp's of the parent directories in the chain are held via vhold()
1941 * due to the existance of the child, and should not disappear.
1942 * However, there are cases where they can disappear:
1944 * - due to filesystem I/O errors.
1945 * - due to NFS being stupid about tracking the namespace and
1946 * destroys the namespace for entire directories quite often.
1947 * - due to forced unmounts.
1948 * - due to an rmdir (parent will be marked DESTROYED)
1950 * When this occurs we have to track the chain backwards and resolve
1951 * it, looping until the resolver catches up to the current node. We
1952 * could recurse here but we might run ourselves out of kernel stack
1953 * so we do it in a more painful manner. This situation really should
1954 * not occur all that often, or if it does not have to go back too
1955 * many nodes to resolve the ncp.
1957 while (ncp
->nc_parent
->nc_vp
== NULL
) {
1959 * This case can occur if a process is CD'd into a
1960 * directory which is then rmdir'd. If the parent is marked
1961 * destroyed there is no point trying to resolve it.
1963 if (ncp
->nc_parent
->nc_flag
& NCF_DESTROYED
)
1966 par
= ncp
->nc_parent
;
1967 while (par
->nc_parent
&& par
->nc_parent
->nc_vp
== NULL
)
1968 par
= par
->nc_parent
;
1969 if (par
->nc_parent
== NULL
) {
1970 kprintf("EXDEV case 2 %*.*s\n",
1971 par
->nc_nlen
, par
->nc_nlen
, par
->nc_name
);
1974 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
1975 par
->nc_nlen
, par
->nc_nlen
, par
->nc_name
);
1977 * The parent is not set in stone, ref and lock it to prevent
1978 * it from disappearing. Also note that due to renames it
1979 * is possible for our ncp to move and for par to no longer
1980 * be one of its parents. We resolve it anyway, the loop
1981 * will handle any moves.
1984 if (par
== nch
->mount
->mnt_ncmountpt
.ncp
) {
1985 cache_resolve_mp(nch
->mount
);
1986 } else if ((dvp
= par
->nc_parent
->nc_vp
) == NULL
) {
1987 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par
->nc_nlen
, par
->nc_nlen
, par
->nc_name
);
1990 } else if (par
->nc_flag
& NCF_UNRESOLVED
) {
1991 /* vhold(dvp); - DVP can't go away */
1994 par
->nc_error
= VOP_NRESOLVE(&nctmp
, dvp
, cred
);
1997 if ((error
= par
->nc_error
) != 0) {
1998 if (par
->nc_error
!= EAGAIN
) {
1999 kprintf("EXDEV case 3 %*.*s error %d\n",
2000 par
->nc_nlen
, par
->nc_nlen
, par
->nc_name
,
2005 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2006 par
, par
->nc_nlen
, par
->nc_nlen
, par
->nc_name
);
2013 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2014 * ncp's and reattach them. If this occurs the original ncp is marked
2015 * EAGAIN to force a relookup.
2017 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2018 * ncp must already be resolved.
2020 dvp
= ncp
->nc_parent
->nc_vp
;
2021 /* vhold(dvp); - dvp can't go away */
2024 ncp
->nc_error
= VOP_NRESOLVE(&nctmp
, dvp
, cred
);
2026 if (ncp
->nc_error
== EAGAIN
) {
2027 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2028 ncp
, ncp
->nc_nlen
, ncp
->nc_nlen
, ncp
->nc_name
);
2031 return(ncp
->nc_error
);
2035 * Resolve the ncp associated with a mount point. Such ncp's almost always
2036 * remain resolved and this routine is rarely called. NFS MPs tends to force
2037 * re-resolution more often due to its mac-truck-smash-the-namecache
2038 * method of tracking namespace changes.
2040 * The semantics for this call is that the passed ncp must be locked on
2041 * entry and will be locked on return. However, if we actually have to
2042 * resolve the mount point we temporarily unlock the entry in order to
2043 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
2044 * the unlock we have to recheck the flags after we relock.
2047 cache_resolve_mp(struct mount
*mp
)
2049 struct namecache
*ncp
= mp
->mnt_ncmountpt
.ncp
;
2053 KKASSERT(mp
!= NULL
);
2056 * If the ncp is already resolved we have nothing to do. However,
2057 * we do want to guarentee that a usable vnode is returned when
2058 * a vnode is present, so make sure it hasn't been reclaimed.
2060 if ((ncp
->nc_flag
& NCF_UNRESOLVED
) == 0) {
2061 if (ncp
->nc_vp
&& (ncp
->nc_vp
->v_flag
& VRECLAIMED
))
2062 _cache_setunresolved(ncp
);
2065 if (ncp
->nc_flag
& NCF_UNRESOLVED
) {
2067 while (vfs_busy(mp
, 0))
2069 error
= VFS_ROOT(mp
, &vp
);
2073 * recheck the ncp state after relocking.
2075 if (ncp
->nc_flag
& NCF_UNRESOLVED
) {
2076 ncp
->nc_error
= error
;
2078 _cache_setvp(ncp
, vp
);
2081 kprintf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp
);
2082 _cache_setvp(ncp
, NULL
);
2084 } else if (error
== 0) {
2089 return(ncp
->nc_error
);
2093 cache_cleanneg(int count
)
2095 struct namecache
*ncp
;
2098 * Automode from the vnlru proc - clean out 10% of the negative cache
2102 count
= numneg
/ 10 + 1;
2105 * Attempt to clean out the specified number of negative cache
2109 ncp
= TAILQ_FIRST(&ncneglist
);
2111 KKASSERT(numneg
== 0);
2114 TAILQ_REMOVE(&ncneglist
, ncp
, nc_vnode
);
2115 TAILQ_INSERT_TAIL(&ncneglist
, ncp
, nc_vnode
);
2116 if (_cache_get_nonblock(ncp
) == 0)
2123 * Rehash a ncp. Rehashing is typically required if the name changes (should
2124 * not generally occur) or the parent link changes. This function will
2125 * unhash the ncp if the ncp is no longer hashable.
2128 _cache_rehash(struct namecache
*ncp
)
2130 struct nchashhead
*nchpp
;
2133 if (ncp
->nc_flag
& NCF_HASHED
) {
2134 ncp
->nc_flag
&= ~NCF_HASHED
;
2135 LIST_REMOVE(ncp
, nc_hash
);
2137 if (ncp
->nc_nlen
&& ncp
->nc_parent
) {
2138 hash
= fnv_32_buf(ncp
->nc_name
, ncp
->nc_nlen
, FNV1_32_INIT
);
2139 hash
= fnv_32_buf(&ncp
->nc_parent
,
2140 sizeof(ncp
->nc_parent
), hash
);
2141 nchpp
= NCHHASH(hash
);
2142 LIST_INSERT_HEAD(nchpp
, ncp
, nc_hash
);
2143 ncp
->nc_flag
|= NCF_HASHED
;
2148 * Name cache initialization, from vfsinit() when we are booting
2156 /* initialise per-cpu namecache effectiveness statistics. */
2157 for (i
= 0; i
< ncpus
; ++i
) {
2158 gd
= globaldata_find(i
);
2159 gd
->gd_nchstats
= &nchstats
[i
];
2161 TAILQ_INIT(&ncneglist
);
2162 nchashtbl
= hashinit(desiredvnodes
*2, M_VFSCACHE
, &nchash
);
2163 nclockwarn
= 1 * hz
;
2167 * Called from start_init() to bootstrap the root filesystem. Returns
2168 * a referenced, unlocked namecache record.
2171 cache_allocroot(struct nchandle
*nch
, struct mount
*mp
, struct vnode
*vp
)
2173 nch
->ncp
= cache_alloc(0);
2177 _cache_setvp(nch
->ncp
, vp
);
2181 * vfs_cache_setroot()
2183 * Create an association between the root of our namecache and
2184 * the root vnode. This routine may be called several times during
2187 * If the caller intends to save the returned namecache pointer somewhere
2188 * it must cache_hold() it.
2191 vfs_cache_setroot(struct vnode
*nvp
, struct nchandle
*nch
)
2194 struct nchandle onch
;
2202 cache_zero(&rootnch
);
2210 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
2211 * topology and is being removed as quickly as possible. The new VOP_N*()
2212 * API calls are required to make specific adjustments using the supplied
2213 * ncp pointers rather then just bogusly purging random vnodes.
2215 * Invalidate all namecache entries to a particular vnode as well as
2216 * any direct children of that vnode in the namecache. This is a
2217 * 'catch all' purge used by filesystems that do not know any better.
2219 * Note that the linkage between the vnode and its namecache entries will
2220 * be removed, but the namecache entries themselves might stay put due to
2221 * active references from elsewhere in the system or due to the existance of
2222 * the children. The namecache topology is left intact even if we do not
2223 * know what the vnode association is. Such entries will be marked
2227 cache_purge(struct vnode
*vp
)
2229 cache_inval_vp(vp
, CINV_DESTROY
| CINV_CHILDREN
);
2233 * Flush all entries referencing a particular filesystem.
2235 * Since we need to check it anyway, we will flush all the invalid
2236 * entries at the same time.
2241 cache_purgevfs(struct mount
*mp
)
2243 struct nchashhead
*nchpp
;
2244 struct namecache
*ncp
, *nnp
;
2247 * Scan hash tables for applicable entries.
2249 for (nchpp
= &nchashtbl
[nchash
]; nchpp
>= nchashtbl
; nchpp
--) {
2250 ncp
= LIST_FIRST(nchpp
);
2254 nnp
= LIST_NEXT(ncp
, nc_hash
);
2257 if (ncp
->nc_mount
== mp
) {
2271 * Create a new (theoretically) unique fsmid
2274 cache_getnewfsmid(void)
2276 static int fsmid_roller
;
2280 fsmid
= ((int64_t)time_second
<< 32) |
2281 (fsmid_roller
& 0x7FFFFFFF);
2286 static int disablecwd
;
2287 SYSCTL_INT(_debug
, OID_AUTO
, disablecwd
, CTLFLAG_RW
, &disablecwd
, 0, "");
2289 static u_long numcwdcalls
; STATNODE(CTLFLAG_RD
, numcwdcalls
, &numcwdcalls
);
2290 static u_long numcwdfail1
; STATNODE(CTLFLAG_RD
, numcwdfail1
, &numcwdfail1
);
2291 static u_long numcwdfail2
; STATNODE(CTLFLAG_RD
, numcwdfail2
, &numcwdfail2
);
2292 static u_long numcwdfail3
; STATNODE(CTLFLAG_RD
, numcwdfail3
, &numcwdfail3
);
2293 static u_long numcwdfail4
; STATNODE(CTLFLAG_RD
, numcwdfail4
, &numcwdfail4
);
2294 static u_long numcwdfound
; STATNODE(CTLFLAG_RD
, numcwdfound
, &numcwdfound
);
2297 sys___getcwd(struct __getcwd_args
*uap
)
2307 buflen
= uap
->buflen
;
2310 if (buflen
> MAXPATHLEN
)
2311 buflen
= MAXPATHLEN
;
2313 buf
= kmalloc(buflen
, M_TEMP
, M_WAITOK
);
2314 bp
= kern_getcwd(buf
, buflen
, &error
);
2316 error
= copyout(bp
, uap
->buf
, strlen(bp
) + 1);
2322 kern_getcwd(char *buf
, size_t buflen
, int *error
)
2324 struct proc
*p
= curproc
;
2326 int i
, slash_prefixed
;
2327 struct filedesc
*fdp
;
2328 struct nchandle nch
;
2337 nch
= fdp
->fd_ncdir
;
2338 while (nch
.ncp
&& (nch
.ncp
!= fdp
->fd_nrdir
.ncp
||
2339 nch
.mount
!= fdp
->fd_nrdir
.mount
)
2342 * While traversing upwards if we encounter the root
2343 * of the current mount we have to skip to the mount point
2344 * in the underlying filesystem.
2346 if (nch
.ncp
== nch
.mount
->mnt_ncmountpt
.ncp
) {
2347 nch
= nch
.mount
->mnt_ncmounton
;
2352 * Prepend the path segment
2354 for (i
= nch
.ncp
->nc_nlen
- 1; i
>= 0; i
--) {
2360 *--bp
= nch
.ncp
->nc_name
[i
];
2371 * Go up a directory. This isn't a mount point so we don't
2372 * have to check again.
2374 nch
.ncp
= nch
.ncp
->nc_parent
;
2376 if (nch
.ncp
== NULL
) {
2381 if (!slash_prefixed
) {
2395 * Thus begins the fullpath magic.
2399 #define STATNODE(name) \
2400 static u_int name; \
2401 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2403 static int disablefullpath
;
2404 SYSCTL_INT(_debug
, OID_AUTO
, disablefullpath
, CTLFLAG_RW
,
2405 &disablefullpath
, 0, "");
2407 STATNODE(numfullpathcalls
);
2408 STATNODE(numfullpathfail1
);
2409 STATNODE(numfullpathfail2
);
2410 STATNODE(numfullpathfail3
);
2411 STATNODE(numfullpathfail4
);
2412 STATNODE(numfullpathfound
);
2415 cache_fullpath(struct proc
*p
, struct nchandle
*nchp
, char **retbuf
, char **freebuf
)
2418 int i
, slash_prefixed
;
2419 struct nchandle fd_nrdir
;
2420 struct nchandle nch
;
2427 buf
= kmalloc(MAXPATHLEN
, M_TEMP
, M_WAITOK
);
2428 bp
= buf
+ MAXPATHLEN
- 1;
2431 fd_nrdir
= p
->p_fd
->fd_nrdir
;
2438 (nch
.ncp
!= fd_nrdir
.ncp
|| nch
.mount
!= fd_nrdir
.mount
)
2441 * While traversing upwards if we encounter the root
2442 * of the current mount we have to skip to the mount point.
2444 if (nch
.ncp
== nch
.mount
->mnt_ncmountpt
.ncp
) {
2445 nch
= nch
.mount
->mnt_ncmounton
;
2450 * Prepend the path segment
2452 for (i
= nch
.ncp
->nc_nlen
- 1; i
>= 0; i
--) {
2458 *--bp
= nch
.ncp
->nc_name
[i
];
2469 * Go up a directory. This isn't a mount point so we don't
2470 * have to check again.
2472 nch
.ncp
= nch
.ncp
->nc_parent
;
2474 if (nch
.ncp
== NULL
) {
2480 if (!slash_prefixed
) {
2496 vn_fullpath(struct proc
*p
, struct vnode
*vn
, char **retbuf
, char **freebuf
)
2498 struct namecache
*ncp
;
2499 struct nchandle nch
;
2502 if (disablefullpath
)
2508 /* vn is NULL, client wants us to use p->p_textvp */
2510 if ((vn
= p
->p_textvp
) == NULL
)
2513 TAILQ_FOREACH(ncp
, &vn
->v_namecache
, nc_vnode
) {
2522 nch
.mount
= vn
->v_mount
;
2523 return(cache_fullpath(p
, &nch
, retbuf
, freebuf
));