kern - Clarify the description of hw.physmem.
[dragonfly.git] / sys / platform / pc32 / i386 / machdep.c
blobf5fb9e42b1f9516e4e4cbed3b8e832fe6462731c
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41 #include "use_npx.h"
42 #include "use_isa.h"
43 #include "opt_atalk.h"
44 #include "opt_compat.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_ipx.h"
50 #include "opt_maxmem.h"
51 #include "opt_msgbuf.h"
52 #include "opt_perfmon.h"
53 #include "opt_swap.h"
54 #include "opt_userconfig.h"
55 #include "opt_apic.h"
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/signalvar.h>
61 #include <sys/kernel.h>
62 #include <sys/linker.h>
63 #include <sys/malloc.h>
64 #include <sys/proc.h>
65 #include <sys/priv.h>
66 #include <sys/buf.h>
67 #include <sys/reboot.h>
68 #include <sys/mbuf.h>
69 #include <sys/msgbuf.h>
70 #include <sys/sysent.h>
71 #include <sys/sysctl.h>
72 #include <sys/vmmeter.h>
73 #include <sys/bus.h>
74 #include <sys/upcall.h>
75 #include <sys/usched.h>
76 #include <sys/reg.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
88 #include <sys/thread2.h>
89 #include <sys/mplock2.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
95 #include <ddb/ddb.h>
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #include <machine/bootinfo.h>
101 #include <machine/md_var.h>
102 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
103 #include <machine/globaldata.h> /* CPU_prvspace */
104 #include <machine/smp.h>
105 #ifdef PERFMON
106 #include <machine/perfmon.h>
107 #endif
108 #include <machine/cputypes.h>
109 #include <machine/intr_machdep.h>
111 #ifdef OLD_BUS_ARCH
112 #include <bus/isa/isa_device.h>
113 #endif
114 #include <machine_base/isa/isa_intr.h>
115 #include <machine_base/isa/elcr_var.h>
116 #include <bus/isa/rtc.h>
117 #include <machine/vm86.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
125 #define PHYSMAP_ENTRIES 10
127 extern void init386(int first);
128 extern void dblfault_handler(void);
130 extern void printcpuinfo(void); /* XXX header file */
131 extern void finishidentcpu(void);
132 extern void panicifcpuunsupported(void);
133 extern void initializecpu(void);
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
147 int _udatasel, _ucodesel;
148 u_int atdevbase;
149 #ifdef SMP
150 int64_t tsc_offsets[MAXCPU];
151 #else
152 int64_t tsc_offsets[1];
153 #endif
155 #if defined(SWTCH_OPTIM_STATS)
156 extern int swtch_optim_stats;
157 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
158 CTLFLAG_RD, &swtch_optim_stats, 0, "");
159 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
160 CTLFLAG_RD, &tlb_flush_count, 0, "");
161 #endif
163 long physmem = 0;
165 u_long ebda_addr = 0;
167 static int
168 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
170 u_long pmem = ctob(physmem);
172 int error = sysctl_handle_long(oidp, &pmem, 0, req);
173 return (error);
176 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
177 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
179 static int
180 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
182 int error = sysctl_handle_int(oidp, 0,
183 ctob(physmem - vmstats.v_wire_count), req);
184 return (error);
187 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
188 0, 0, sysctl_hw_usermem, "IU", "");
190 static int
191 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
193 int error = sysctl_handle_int(oidp, 0,
194 i386_btop(avail_end - avail_start), req);
195 return (error);
198 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
199 0, 0, sysctl_hw_availpages, "I", "");
201 vm_paddr_t Maxmem;
202 vm_paddr_t Realmem;
204 vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
205 vm_paddr_t dump_avail[PHYSMAP_ENTRIES*2+2];
208 static vm_offset_t buffer_sva, buffer_eva;
209 vm_offset_t clean_sva, clean_eva;
210 static vm_offset_t pager_sva, pager_eva;
211 static struct trapframe proc0_tf;
213 static void
214 cpu_startup(void *dummy)
216 caddr_t v;
217 vm_size_t size = 0;
218 vm_offset_t firstaddr;
220 if (boothowto & RB_VERBOSE)
221 bootverbose++;
224 * Good {morning,afternoon,evening,night}.
226 kprintf("%s", version);
227 startrtclock();
228 printcpuinfo();
229 panicifcpuunsupported();
230 #ifdef PERFMON
231 perfmon_init();
232 #endif
233 kprintf("real memory = %ju (%ju MB)\n",
234 (intmax_t)Realmem,
235 (intmax_t)Realmem / 1024 / 1024);
237 * Display any holes after the first chunk of extended memory.
239 if (bootverbose) {
240 int indx;
242 kprintf("Physical memory chunk(s):\n");
243 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
244 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
246 kprintf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
247 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
248 size1 / PAGE_SIZE);
253 * Allocate space for system data structures.
254 * The first available kernel virtual address is in "v".
255 * As pages of kernel virtual memory are allocated, "v" is incremented.
256 * As pages of memory are allocated and cleared,
257 * "firstaddr" is incremented.
258 * An index into the kernel page table corresponding to the
259 * virtual memory address maintained in "v" is kept in "mapaddr".
263 * Make two passes. The first pass calculates how much memory is
264 * needed and allocates it. The second pass assigns virtual
265 * addresses to the various data structures.
267 firstaddr = 0;
268 again:
269 v = (caddr_t)firstaddr;
271 #define valloc(name, type, num) \
272 (name) = (type *)v; v = (caddr_t)((name)+(num))
273 #define valloclim(name, type, num, lim) \
274 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
277 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
278 * For the first 64MB of ram nominally allocate sufficient buffers to
279 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
280 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
281 * the buffer cache we limit the eventual kva reservation to
282 * maxbcache bytes.
284 * factor represents the 1/4 x ram conversion.
286 if (nbuf == 0) {
287 int factor = 4 * BKVASIZE / 1024;
288 int kbytes = physmem * (PAGE_SIZE / 1024);
290 nbuf = 50;
291 if (kbytes > 4096)
292 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
293 if (kbytes > 65536)
294 nbuf += (kbytes - 65536) * 2 / (factor * 5);
295 if (maxbcache && nbuf > maxbcache / BKVASIZE)
296 nbuf = maxbcache / BKVASIZE;
300 * Do not allow the buffer_map to be more then 1/2 the size of the
301 * kernel_map.
303 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
304 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
305 kprintf("Warning: nbufs capped at %d\n", nbuf);
308 /* limit to 128 on i386 */
309 nswbuf = max(min(nbuf/4, 128), 16);
310 #ifdef NSWBUF_MIN
311 if (nswbuf < NSWBUF_MIN)
312 nswbuf = NSWBUF_MIN;
313 #endif
314 #ifdef DIRECTIO
315 ffs_rawread_setup();
316 #endif
318 valloc(swbuf, struct buf, nswbuf);
319 valloc(buf, struct buf, nbuf);
322 * End of first pass, size has been calculated so allocate memory
324 if (firstaddr == 0) {
325 size = (vm_size_t)(v - firstaddr);
326 firstaddr = kmem_alloc(&kernel_map, round_page(size));
327 if (firstaddr == 0)
328 panic("startup: no room for tables");
329 goto again;
333 * End of second pass, addresses have been assigned
335 if ((vm_size_t)(v - firstaddr) != size)
336 panic("startup: table size inconsistency");
338 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
339 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
340 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
341 (nbuf*BKVASIZE));
342 buffer_map.system_map = 1;
343 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
344 (nswbuf*MAXPHYS) + pager_map_size);
345 pager_map.system_map = 1;
347 #if defined(USERCONFIG)
348 userconfig();
349 cninit(); /* the preferred console may have changed */
350 #endif
352 kprintf("avail memory = %ju (%ju MB)\n",
353 (intmax_t)ptoa(vmstats.v_free_count),
354 (intmax_t)ptoa(vmstats.v_free_count) / 1024 / 1024);
357 * Set up buffers, so they can be used to read disk labels.
359 bufinit();
360 vm_pager_bufferinit();
362 /* Log ELCR information */
363 elcr_dump();
365 #ifdef SMP
367 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
369 mp_start(); /* fire up the APs and APICs */
370 mp_announce();
371 #else
372 MachIntrABI.finalize();
373 #endif /* SMP */
374 cpu_setregs();
378 * Send an interrupt to process.
380 * Stack is set up to allow sigcode stored
381 * at top to call routine, followed by kcall
382 * to sigreturn routine below. After sigreturn
383 * resets the signal mask, the stack, and the
384 * frame pointer, it returns to the user
385 * specified pc, psl.
387 void
388 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
390 struct lwp *lp = curthread->td_lwp;
391 struct proc *p = lp->lwp_proc;
392 struct trapframe *regs;
393 struct sigacts *psp = p->p_sigacts;
394 struct sigframe sf, *sfp;
395 int oonstack;
397 regs = lp->lwp_md.md_regs;
398 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
400 /* save user context */
401 bzero(&sf, sizeof(struct sigframe));
402 sf.sf_uc.uc_sigmask = *mask;
403 sf.sf_uc.uc_stack = lp->lwp_sigstk;
404 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
405 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
407 /* make the size of the saved context visible to userland */
408 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
410 /* save mailbox pending state for syscall interlock semantics */
411 if (p->p_flag & P_MAILBOX)
412 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
414 /* Allocate and validate space for the signal handler context. */
415 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
416 SIGISMEMBER(psp->ps_sigonstack, sig)) {
417 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
418 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
419 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
420 } else {
421 sfp = (struct sigframe *)regs->tf_esp - 1;
424 /* Translate the signal is appropriate */
425 if (p->p_sysent->sv_sigtbl) {
426 if (sig <= p->p_sysent->sv_sigsize)
427 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
430 /* Build the argument list for the signal handler. */
431 sf.sf_signum = sig;
432 sf.sf_ucontext = (register_t)&sfp->sf_uc;
433 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
434 /* Signal handler installed with SA_SIGINFO. */
435 sf.sf_siginfo = (register_t)&sfp->sf_si;
436 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
438 /* fill siginfo structure */
439 sf.sf_si.si_signo = sig;
440 sf.sf_si.si_code = code;
441 sf.sf_si.si_addr = (void*)regs->tf_err;
443 else {
444 /* Old FreeBSD-style arguments. */
445 sf.sf_siginfo = code;
446 sf.sf_addr = regs->tf_err;
447 sf.sf_ahu.sf_handler = catcher;
451 * If we're a vm86 process, we want to save the segment registers.
452 * We also change eflags to be our emulated eflags, not the actual
453 * eflags.
455 if (regs->tf_eflags & PSL_VM) {
456 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
457 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
459 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
460 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
461 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
462 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
464 if (vm86->vm86_has_vme == 0)
465 sf.sf_uc.uc_mcontext.mc_eflags =
466 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
467 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
470 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
471 * syscalls made by the signal handler. This just avoids
472 * wasting time for our lazy fixup of such faults. PSL_NT
473 * does nothing in vm86 mode, but vm86 programs can set it
474 * almost legitimately in probes for old cpu types.
476 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
480 * Save the FPU state and reinit the FP unit
482 npxpush(&sf.sf_uc.uc_mcontext);
485 * Copy the sigframe out to the user's stack.
487 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
489 * Something is wrong with the stack pointer.
490 * ...Kill the process.
492 sigexit(lp, SIGILL);
495 regs->tf_esp = (int)sfp;
496 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
499 * i386 abi specifies that the direction flag must be cleared
500 * on function entry
502 regs->tf_eflags &= ~(PSL_T|PSL_D);
504 regs->tf_cs = _ucodesel;
505 regs->tf_ds = _udatasel;
506 regs->tf_es = _udatasel;
509 * Allow the signal handler to inherit %fs in addition to %gs as
510 * the userland program might be using both.
512 * However, if a T_PROTFLT occured the segment registers could be
513 * totally broken. They must be reset in order to be able to
514 * return to userland.
516 if (regs->tf_trapno == T_PROTFLT) {
517 regs->tf_fs = _udatasel;
518 regs->tf_gs = _udatasel;
520 regs->tf_ss = _udatasel;
524 * Sanitize the trapframe for a virtual kernel passing control to a custom
525 * VM context. Remove any items that would otherwise create a privilage
526 * issue.
528 * XXX at the moment we allow userland to set the resume flag. Is this a
529 * bad idea?
532 cpu_sanitize_frame(struct trapframe *frame)
534 frame->tf_cs = _ucodesel;
535 frame->tf_ds = _udatasel;
536 frame->tf_es = _udatasel; /* XXX allow userland this one too? */
537 #if 0
538 frame->tf_fs = _udatasel;
539 frame->tf_gs = _udatasel;
540 #endif
541 frame->tf_ss = _udatasel;
542 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
543 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
544 return(0);
548 cpu_sanitize_tls(struct savetls *tls)
550 struct segment_descriptor *desc;
551 int i;
553 for (i = 0; i < NGTLS; ++i) {
554 desc = &tls->tls[i];
555 if (desc->sd_dpl == 0 && desc->sd_type == 0)
556 continue;
557 if (desc->sd_def32 == 0)
558 return(ENXIO);
559 if (desc->sd_type != SDT_MEMRWA)
560 return(ENXIO);
561 if (desc->sd_dpl != SEL_UPL)
562 return(ENXIO);
563 if (desc->sd_xx != 0 || desc->sd_p != 1)
564 return(ENXIO);
566 return(0);
570 * sigreturn(ucontext_t *sigcntxp)
572 * System call to cleanup state after a signal
573 * has been taken. Reset signal mask and
574 * stack state from context left by sendsig (above).
575 * Return to previous pc and psl as specified by
576 * context left by sendsig. Check carefully to
577 * make sure that the user has not modified the
578 * state to gain improper privileges.
580 * MPSAFE
582 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
583 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
586 sys_sigreturn(struct sigreturn_args *uap)
588 struct lwp *lp = curthread->td_lwp;
589 struct proc *p = lp->lwp_proc;
590 struct trapframe *regs;
591 ucontext_t uc;
592 ucontext_t *ucp;
593 int cs;
594 int eflags;
595 int error;
598 * We have to copy the information into kernel space so userland
599 * can't modify it while we are sniffing it.
601 regs = lp->lwp_md.md_regs;
602 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
603 if (error)
604 return (error);
605 ucp = &uc;
606 eflags = ucp->uc_mcontext.mc_eflags;
608 if (eflags & PSL_VM) {
609 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
610 struct vm86_kernel *vm86;
613 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
614 * set up the vm86 area, and we can't enter vm86 mode.
616 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
617 return (EINVAL);
618 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
619 if (vm86->vm86_inited == 0)
620 return (EINVAL);
622 /* go back to user mode if both flags are set */
623 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
624 trapsignal(lp, SIGBUS, 0);
626 if (vm86->vm86_has_vme) {
627 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
628 (eflags & VME_USERCHANGE) | PSL_VM;
629 } else {
630 vm86->vm86_eflags = eflags; /* save VIF, VIP */
631 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
632 (eflags & VM_USERCHANGE) | PSL_VM;
634 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
635 tf->tf_eflags = eflags;
636 tf->tf_vm86_ds = tf->tf_ds;
637 tf->tf_vm86_es = tf->tf_es;
638 tf->tf_vm86_fs = tf->tf_fs;
639 tf->tf_vm86_gs = tf->tf_gs;
640 tf->tf_ds = _udatasel;
641 tf->tf_es = _udatasel;
642 #if 0
643 tf->tf_fs = _udatasel;
644 tf->tf_gs = _udatasel;
645 #endif
646 } else {
648 * Don't allow users to change privileged or reserved flags.
651 * XXX do allow users to change the privileged flag PSL_RF.
652 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
653 * should sometimes set it there too. tf_eflags is kept in
654 * the signal context during signal handling and there is no
655 * other place to remember it, so the PSL_RF bit may be
656 * corrupted by the signal handler without us knowing.
657 * Corruption of the PSL_RF bit at worst causes one more or
658 * one less debugger trap, so allowing it is fairly harmless.
660 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
661 kprintf("sigreturn: eflags = 0x%x\n", eflags);
662 return(EINVAL);
666 * Don't allow users to load a valid privileged %cs. Let the
667 * hardware check for invalid selectors, excess privilege in
668 * other selectors, invalid %eip's and invalid %esp's.
670 cs = ucp->uc_mcontext.mc_cs;
671 if (!CS_SECURE(cs)) {
672 kprintf("sigreturn: cs = 0x%x\n", cs);
673 trapsignal(lp, SIGBUS, T_PROTFLT);
674 return(EINVAL);
676 bcopy(&ucp->uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
680 * Restore the FPU state from the frame
682 crit_enter();
683 npxpop(&ucp->uc_mcontext);
686 * Merge saved signal mailbox pending flag to maintain interlock
687 * semantics against system calls.
689 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
690 p->p_flag |= P_MAILBOX;
692 if (ucp->uc_mcontext.mc_onstack & 1)
693 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
694 else
695 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
697 lp->lwp_sigmask = ucp->uc_sigmask;
698 SIG_CANTMASK(lp->lwp_sigmask);
699 crit_exit();
700 return(EJUSTRETURN);
704 * Stack frame on entry to function. %eax will contain the function vector,
705 * %ecx will contain the function data. flags, ecx, and eax will have
706 * already been pushed on the stack.
708 struct upc_frame {
709 register_t eax;
710 register_t ecx;
711 register_t edx;
712 register_t flags;
713 register_t oldip;
716 void
717 sendupcall(struct vmupcall *vu, int morepending)
719 struct lwp *lp = curthread->td_lwp;
720 struct trapframe *regs;
721 struct upcall upcall;
722 struct upc_frame upc_frame;
723 int crit_count = 0;
726 * If we are a virtual kernel running an emulated user process
727 * context, switch back to the virtual kernel context before
728 * trying to post the signal.
730 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
731 lp->lwp_md.md_regs->tf_trapno = 0;
732 vkernel_trap(lp, lp->lwp_md.md_regs);
736 * Get the upcall data structure
738 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
739 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
741 vu->vu_pending = 0;
742 kprintf("bad upcall address\n");
743 return;
747 * If the data structure is already marked pending or has a critical
748 * section count, mark the data structure as pending and return
749 * without doing an upcall. vu_pending is left set.
751 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
752 if (upcall.upc_pending < vu->vu_pending) {
753 upcall.upc_pending = vu->vu_pending;
754 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
755 sizeof(upcall.upc_pending));
757 return;
761 * We can run this upcall now, clear vu_pending.
763 * Bump our critical section count and set or clear the
764 * user pending flag depending on whether more upcalls are
765 * pending. The user will be responsible for calling
766 * upc_dispatch(-1) to process remaining upcalls.
768 vu->vu_pending = 0;
769 upcall.upc_pending = morepending;
770 ++crit_count;
771 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
772 sizeof(upcall.upc_pending));
773 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
774 sizeof(int));
777 * Construct a stack frame and issue the upcall
779 regs = lp->lwp_md.md_regs;
780 upc_frame.eax = regs->tf_eax;
781 upc_frame.ecx = regs->tf_ecx;
782 upc_frame.edx = regs->tf_edx;
783 upc_frame.flags = regs->tf_eflags;
784 upc_frame.oldip = regs->tf_eip;
785 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
786 sizeof(upc_frame)) != 0) {
787 kprintf("bad stack on upcall\n");
788 } else {
789 regs->tf_eax = (register_t)vu->vu_func;
790 regs->tf_ecx = (register_t)vu->vu_data;
791 regs->tf_edx = (register_t)lp->lwp_upcall;
792 regs->tf_eip = (register_t)vu->vu_ctx;
793 regs->tf_esp -= sizeof(upc_frame);
798 * fetchupcall occurs in the context of a system call, which means that
799 * we have to return EJUSTRETURN in order to prevent eax and edx from
800 * being overwritten by the syscall return value.
802 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
803 * and the function pointer in %eax.
806 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
808 struct upc_frame upc_frame;
809 struct lwp *lp = curthread->td_lwp;
810 struct trapframe *regs;
811 int error;
812 struct upcall upcall;
813 int crit_count;
815 regs = lp->lwp_md.md_regs;
817 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
818 if (error == 0) {
819 if (vu) {
821 * This jumps us to the next ready context.
823 vu->vu_pending = 0;
824 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
825 crit_count = 0;
826 if (error == 0)
827 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
828 ++crit_count;
829 if (error == 0)
830 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
831 regs->tf_eax = (register_t)vu->vu_func;
832 regs->tf_ecx = (register_t)vu->vu_data;
833 regs->tf_edx = (register_t)lp->lwp_upcall;
834 regs->tf_eip = (register_t)vu->vu_ctx;
835 regs->tf_esp = (register_t)rsp;
836 } else {
838 * This returns us to the originally interrupted code.
840 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
841 regs->tf_eax = upc_frame.eax;
842 regs->tf_ecx = upc_frame.ecx;
843 regs->tf_edx = upc_frame.edx;
844 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
845 (upc_frame.flags & PSL_USERCHANGE);
846 regs->tf_eip = upc_frame.oldip;
847 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
850 if (error == 0)
851 error = EJUSTRETURN;
852 return(error);
856 * Machine dependent boot() routine
858 * I haven't seen anything to put here yet
859 * Possibly some stuff might be grafted back here from boot()
861 void
862 cpu_boot(int howto)
867 * Shutdown the CPU as much as possible
869 void
870 cpu_halt(void)
872 for (;;)
873 __asm__ __volatile("hlt");
877 * cpu_idle() represents the idle LWKT. You cannot return from this function
878 * (unless you want to blow things up!). Instead we look for runnable threads
879 * and loop or halt as appropriate. Giant is not held on entry to the thread.
881 * The main loop is entered with a critical section held, we must release
882 * the critical section before doing anything else. lwkt_switch() will
883 * check for pending interrupts due to entering and exiting its own
884 * critical section.
886 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
887 * However, there are cases where the idlethread will be entered with
888 * the possibility that no IPI will occur and in such cases
889 * lwkt_switch() sets RQF_WAKEUP. We usually check
890 * RQF_IDLECHECK_WK_MASK.
892 * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states). Set to
893 * 1 to just use hlt and for debugging purposes.
895 static int cpu_idle_hlt = 2;
896 static int cpu_idle_hltcnt;
897 static int cpu_idle_spincnt;
898 static u_int cpu_idle_repeat = 4;
899 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
900 &cpu_idle_hlt, 0, "Idle loop HLT enable");
901 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
902 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
903 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
904 &cpu_idle_spincnt, 0, "Idle loop entry spins");
905 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
906 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
908 static void
909 cpu_idle_default_hook(void)
912 * We must guarentee that hlt is exactly the instruction
913 * following the sti.
915 __asm __volatile("sti; hlt");
918 /* Other subsystems (e.g., ACPI) can hook this later. */
919 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
921 void
922 cpu_idle(void)
924 globaldata_t gd = mycpu;
925 struct thread *td = gd->gd_curthread;
926 int reqflags;
927 int quick;
929 crit_exit();
930 KKASSERT(td->td_critcount == 0);
931 for (;;) {
933 * See if there are any LWKTs ready to go.
935 lwkt_switch();
938 * When halting inside a cli we must check for reqflags
939 * races, particularly [re]schedule requests. Running
940 * splz() does the job.
942 * cpu_idle_hlt:
943 * 0 Never halt, just spin
945 * 1 Always use HLT (or MONITOR/MWAIT if avail).
946 * This typically eats more power than the
947 * ACPI halt.
949 * 2 Use HLT/MONITOR/MWAIT up to a point and then
950 * use the ACPI halt (default). This is a hybrid
951 * approach. See machdep.cpu_idle_repeat.
953 * 3 Always use the ACPI halt. This typically
954 * eats the least amount of power but the cpu
955 * will be slow waking up. Slows down e.g.
956 * compiles and other pipe/event oriented stuff.
959 * NOTE: Interrupts are enabled and we are not in a critical
960 * section.
962 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
963 * don't bother capping gd_idle_repeat, it is ok if
964 * it overflows.
966 ++gd->gd_idle_repeat;
967 reqflags = gd->gd_reqflags;
968 quick = (cpu_idle_hlt == 1) ||
969 (cpu_idle_hlt < 3 &&
970 gd->gd_idle_repeat < cpu_idle_repeat);
972 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
973 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
974 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
975 ++cpu_idle_hltcnt;
976 } else if (cpu_idle_hlt) {
977 __asm __volatile("cli");
978 splz();
979 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
980 if (quick)
981 cpu_idle_default_hook();
982 else
983 cpu_idle_hook();
985 __asm __volatile("sti");
986 ++cpu_idle_hltcnt;
987 } else {
988 splz();
989 __asm __volatile("sti");
990 ++cpu_idle_spincnt;
995 #ifdef SMP
998 * This routine is called if a spinlock has been held through the
999 * exponential backoff period and is seriously contested. On a real cpu
1000 * we let it spin.
1002 void
1003 cpu_spinlock_contested(void)
1005 cpu_pause();
1008 #endif
1011 * Clear registers on exec
1013 void
1014 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1016 struct thread *td = curthread;
1017 struct lwp *lp = td->td_lwp;
1018 struct pcb *pcb = td->td_pcb;
1019 struct trapframe *regs = lp->lwp_md.md_regs;
1021 /* was i386_user_cleanup() in NetBSD */
1022 user_ldt_free(pcb);
1024 bzero((char *)regs, sizeof(struct trapframe));
1025 regs->tf_eip = entry;
1026 regs->tf_esp = stack;
1027 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1028 regs->tf_ss = _udatasel;
1029 regs->tf_ds = _udatasel;
1030 regs->tf_es = _udatasel;
1031 regs->tf_fs = _udatasel;
1032 regs->tf_gs = _udatasel;
1033 regs->tf_cs = _ucodesel;
1035 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
1036 regs->tf_ebx = ps_strings;
1039 * Reset the hardware debug registers if they were in use.
1040 * They won't have any meaning for the newly exec'd process.
1042 if (pcb->pcb_flags & PCB_DBREGS) {
1043 pcb->pcb_dr0 = 0;
1044 pcb->pcb_dr1 = 0;
1045 pcb->pcb_dr2 = 0;
1046 pcb->pcb_dr3 = 0;
1047 pcb->pcb_dr6 = 0;
1048 pcb->pcb_dr7 = 0;
1049 if (pcb == td->td_pcb) {
1051 * Clear the debug registers on the running
1052 * CPU, otherwise they will end up affecting
1053 * the next process we switch to.
1055 reset_dbregs();
1057 pcb->pcb_flags &= ~PCB_DBREGS;
1061 * Initialize the math emulator (if any) for the current process.
1062 * Actually, just clear the bit that says that the emulator has
1063 * been initialized. Initialization is delayed until the process
1064 * traps to the emulator (if it is done at all) mainly because
1065 * emulators don't provide an entry point for initialization.
1067 pcb->pcb_flags &= ~FP_SOFTFP;
1070 * note: do not set CR0_TS here. npxinit() must do it after clearing
1071 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
1072 * in npxdna().
1074 crit_enter();
1075 load_cr0(rcr0() | CR0_MP);
1077 #if NNPX > 0
1078 /* Initialize the npx (if any) for the current process. */
1079 npxinit(__INITIAL_NPXCW__);
1080 #endif
1081 crit_exit();
1084 * note: linux emulator needs edx to be 0x0 on entry, which is
1085 * handled in execve simply by setting the 64 bit syscall
1086 * return value to 0.
1090 void
1091 cpu_setregs(void)
1093 unsigned int cr0;
1095 cr0 = rcr0();
1096 cr0 |= CR0_NE; /* Done by npxinit() */
1097 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1098 cr0 |= CR0_WP | CR0_AM;
1099 load_cr0(cr0);
1100 load_gs(_udatasel);
1103 static int
1104 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1106 int error;
1107 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1108 req);
1109 if (!error && req->newptr)
1110 resettodr();
1111 return (error);
1114 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1115 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1117 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1118 CTLFLAG_RW, &disable_rtc_set, 0, "");
1120 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1121 CTLFLAG_RD, &bootinfo, bootinfo, "");
1123 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1124 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1126 extern u_long bootdev; /* not a cdev_t - encoding is different */
1127 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1128 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1131 * Initialize 386 and configure to run kernel
1135 * Initialize segments & interrupt table
1138 int _default_ldt;
1139 union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1140 static struct gate_descriptor idt0[NIDT];
1141 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1142 union descriptor ldt[NLDT]; /* local descriptor table */
1144 /* table descriptors - used to load tables by cpu */
1145 struct region_descriptor r_gdt, r_idt;
1147 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1148 extern int has_f00f_bug;
1149 #endif
1151 static struct i386tss dblfault_tss;
1152 static char dblfault_stack[PAGE_SIZE];
1154 extern struct user *proc0paddr;
1157 /* software prototypes -- in more palatable form */
1158 struct soft_segment_descriptor gdt_segs[] = {
1159 /* GNULL_SEL 0 Null Descriptor */
1160 { 0x0, /* segment base address */
1161 0x0, /* length */
1162 0, /* segment type */
1163 0, /* segment descriptor priority level */
1164 0, /* segment descriptor present */
1165 0, 0,
1166 0, /* default 32 vs 16 bit size */
1167 0 /* limit granularity (byte/page units)*/ },
1168 /* GCODE_SEL 1 Code Descriptor for kernel */
1169 { 0x0, /* segment base address */
1170 0xfffff, /* length - all address space */
1171 SDT_MEMERA, /* segment type */
1172 0, /* segment descriptor priority level */
1173 1, /* segment descriptor present */
1174 0, 0,
1175 1, /* default 32 vs 16 bit size */
1176 1 /* limit granularity (byte/page units)*/ },
1177 /* GDATA_SEL 2 Data Descriptor for kernel */
1178 { 0x0, /* segment base address */
1179 0xfffff, /* length - all address space */
1180 SDT_MEMRWA, /* segment type */
1181 0, /* segment descriptor priority level */
1182 1, /* segment descriptor present */
1183 0, 0,
1184 1, /* default 32 vs 16 bit size */
1185 1 /* limit granularity (byte/page units)*/ },
1186 /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1187 { 0x0, /* segment base address */
1188 0xfffff, /* length - all address space */
1189 SDT_MEMRWA, /* segment type */
1190 0, /* segment descriptor priority level */
1191 1, /* segment descriptor present */
1192 0, 0,
1193 1, /* default 32 vs 16 bit size */
1194 1 /* limit granularity (byte/page units)*/ },
1195 /* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1197 0x0, /* segment base address */
1198 sizeof(struct i386tss)-1,/* length - all address space */
1199 SDT_SYS386TSS, /* segment type */
1200 0, /* segment descriptor priority level */
1201 1, /* segment descriptor present */
1202 0, 0,
1203 0, /* unused - default 32 vs 16 bit size */
1204 0 /* limit granularity (byte/page units)*/ },
1205 /* GLDT_SEL 5 LDT Descriptor */
1206 { (int) ldt, /* segment base address */
1207 sizeof(ldt)-1, /* length - all address space */
1208 SDT_SYSLDT, /* segment type */
1209 SEL_UPL, /* segment descriptor priority level */
1210 1, /* segment descriptor present */
1211 0, 0,
1212 0, /* unused - default 32 vs 16 bit size */
1213 0 /* limit granularity (byte/page units)*/ },
1214 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
1215 { (int) ldt, /* segment base address */
1216 (512 * sizeof(union descriptor)-1), /* length */
1217 SDT_SYSLDT, /* segment type */
1218 0, /* segment descriptor priority level */
1219 1, /* segment descriptor present */
1220 0, 0,
1221 0, /* unused - default 32 vs 16 bit size */
1222 0 /* limit granularity (byte/page units)*/ },
1223 /* GTGATE_SEL 7 Null Descriptor - Placeholder */
1224 { 0x0, /* segment base address */
1225 0x0, /* length - all address space */
1226 0, /* segment type */
1227 0, /* segment descriptor priority level */
1228 0, /* segment descriptor present */
1229 0, 0,
1230 0, /* default 32 vs 16 bit size */
1231 0 /* limit granularity (byte/page units)*/ },
1232 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1233 { 0x400, /* segment base address */
1234 0xfffff, /* length */
1235 SDT_MEMRWA, /* segment type */
1236 0, /* segment descriptor priority level */
1237 1, /* segment descriptor present */
1238 0, 0,
1239 1, /* default 32 vs 16 bit size */
1240 1 /* limit granularity (byte/page units)*/ },
1241 /* GPANIC_SEL 9 Panic Tss Descriptor */
1242 { (int) &dblfault_tss, /* segment base address */
1243 sizeof(struct i386tss)-1,/* length - all address space */
1244 SDT_SYS386TSS, /* segment type */
1245 0, /* segment descriptor priority level */
1246 1, /* segment descriptor present */
1247 0, 0,
1248 0, /* unused - default 32 vs 16 bit size */
1249 0 /* limit granularity (byte/page units)*/ },
1250 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1251 { 0, /* segment base address (overwritten) */
1252 0xfffff, /* length */
1253 SDT_MEMERA, /* segment type */
1254 0, /* segment descriptor priority level */
1255 1, /* segment descriptor present */
1256 0, 0,
1257 0, /* default 32 vs 16 bit size */
1258 1 /* limit granularity (byte/page units)*/ },
1259 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1260 { 0, /* segment base address (overwritten) */
1261 0xfffff, /* length */
1262 SDT_MEMERA, /* segment type */
1263 0, /* segment descriptor priority level */
1264 1, /* segment descriptor present */
1265 0, 0,
1266 0, /* default 32 vs 16 bit size */
1267 1 /* limit granularity (byte/page units)*/ },
1268 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1269 { 0, /* segment base address (overwritten) */
1270 0xfffff, /* length */
1271 SDT_MEMRWA, /* segment type */
1272 0, /* segment descriptor priority level */
1273 1, /* segment descriptor present */
1274 0, 0,
1275 1, /* default 32 vs 16 bit size */
1276 1 /* limit granularity (byte/page units)*/ },
1277 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1278 { 0, /* segment base address (overwritten) */
1279 0xfffff, /* length */
1280 SDT_MEMRWA, /* segment type */
1281 0, /* segment descriptor priority level */
1282 1, /* segment descriptor present */
1283 0, 0,
1284 0, /* default 32 vs 16 bit size */
1285 1 /* limit granularity (byte/page units)*/ },
1286 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1287 { 0, /* segment base address (overwritten) */
1288 0xfffff, /* length */
1289 SDT_MEMRWA, /* segment type */
1290 0, /* segment descriptor priority level */
1291 1, /* segment descriptor present */
1292 0, 0,
1293 0, /* default 32 vs 16 bit size */
1294 1 /* limit granularity (byte/page units)*/ },
1295 /* GTLS_START 15 TLS */
1296 { 0x0, /* segment base address */
1297 0x0, /* length */
1298 0, /* segment type */
1299 0, /* segment descriptor priority level */
1300 0, /* segment descriptor present */
1301 0, 0,
1302 0, /* default 32 vs 16 bit size */
1303 0 /* limit granularity (byte/page units)*/ },
1304 /* GTLS_START+1 16 TLS */
1305 { 0x0, /* segment base address */
1306 0x0, /* length */
1307 0, /* segment type */
1308 0, /* segment descriptor priority level */
1309 0, /* segment descriptor present */
1310 0, 0,
1311 0, /* default 32 vs 16 bit size */
1312 0 /* limit granularity (byte/page units)*/ },
1313 /* GTLS_END 17 TLS */
1314 { 0x0, /* segment base address */
1315 0x0, /* length */
1316 0, /* segment type */
1317 0, /* segment descriptor priority level */
1318 0, /* segment descriptor present */
1319 0, 0,
1320 0, /* default 32 vs 16 bit size */
1321 0 /* limit granularity (byte/page units)*/ },
1324 static struct soft_segment_descriptor ldt_segs[] = {
1325 /* Null Descriptor - overwritten by call gate */
1326 { 0x0, /* segment base address */
1327 0x0, /* length - all address space */
1328 0, /* segment type */
1329 0, /* segment descriptor priority level */
1330 0, /* segment descriptor present */
1331 0, 0,
1332 0, /* default 32 vs 16 bit size */
1333 0 /* limit granularity (byte/page units)*/ },
1334 /* Null Descriptor - overwritten by call gate */
1335 { 0x0, /* segment base address */
1336 0x0, /* length - all address space */
1337 0, /* segment type */
1338 0, /* segment descriptor priority level */
1339 0, /* segment descriptor present */
1340 0, 0,
1341 0, /* default 32 vs 16 bit size */
1342 0 /* limit granularity (byte/page units)*/ },
1343 /* Null Descriptor - overwritten by call gate */
1344 { 0x0, /* segment base address */
1345 0x0, /* length - all address space */
1346 0, /* segment type */
1347 0, /* segment descriptor priority level */
1348 0, /* segment descriptor present */
1349 0, 0,
1350 0, /* default 32 vs 16 bit size */
1351 0 /* limit granularity (byte/page units)*/ },
1352 /* Code Descriptor for user */
1353 { 0x0, /* segment base address */
1354 0xfffff, /* length - all address space */
1355 SDT_MEMERA, /* segment type */
1356 SEL_UPL, /* segment descriptor priority level */
1357 1, /* segment descriptor present */
1358 0, 0,
1359 1, /* default 32 vs 16 bit size */
1360 1 /* limit granularity (byte/page units)*/ },
1361 /* Null Descriptor - overwritten by call gate */
1362 { 0x0, /* segment base address */
1363 0x0, /* length - all address space */
1364 0, /* segment type */
1365 0, /* segment descriptor priority level */
1366 0, /* segment descriptor present */
1367 0, 0,
1368 0, /* default 32 vs 16 bit size */
1369 0 /* limit granularity (byte/page units)*/ },
1370 /* Data Descriptor for user */
1371 { 0x0, /* segment base address */
1372 0xfffff, /* length - all address space */
1373 SDT_MEMRWA, /* segment type */
1374 SEL_UPL, /* segment descriptor priority level */
1375 1, /* segment descriptor present */
1376 0, 0,
1377 1, /* default 32 vs 16 bit size */
1378 1 /* limit granularity (byte/page units)*/ },
1381 void
1382 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1384 struct gate_descriptor *ip;
1386 ip = idt + idx;
1387 ip->gd_looffset = (int)func;
1388 ip->gd_selector = selec;
1389 ip->gd_stkcpy = 0;
1390 ip->gd_xx = 0;
1391 ip->gd_type = typ;
1392 ip->gd_dpl = dpl;
1393 ip->gd_p = 1;
1394 ip->gd_hioffset = ((int)func)>>16 ;
1397 #define IDTVEC(name) __CONCAT(X,name)
1399 extern inthand_t
1400 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1401 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1402 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1403 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1404 IDTVEC(xmm), IDTVEC(syscall),
1405 IDTVEC(rsvd0);
1406 extern inthand_t
1407 IDTVEC(int0x80_syscall);
1409 #ifdef DEBUG_INTERRUPTS
1410 extern inthand_t *Xrsvdary[256];
1411 #endif
1413 void
1414 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1416 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1417 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1418 ssd->ssd_type = sd->sd_type;
1419 ssd->ssd_dpl = sd->sd_dpl;
1420 ssd->ssd_p = sd->sd_p;
1421 ssd->ssd_def32 = sd->sd_def32;
1422 ssd->ssd_gran = sd->sd_gran;
1426 * Populate the (physmap) array with base/bound pairs describing the
1427 * available physical memory in the system, then test this memory and
1428 * build the phys_avail array describing the actually-available memory.
1430 * If we cannot accurately determine the physical memory map, then use
1431 * value from the 0xE801 call, and failing that, the RTC.
1433 * Total memory size may be set by the kernel environment variable
1434 * hw.physmem or the compile-time define MAXMEM.
1436 static void
1437 getmemsize(int first)
1439 int i, physmap_idx, pa_indx, da_indx;
1440 int hasbrokenint12;
1441 u_int basemem, extmem;
1442 struct vm86frame vmf;
1443 struct vm86context vmc;
1444 vm_offset_t pa;
1445 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1446 pt_entry_t *pte;
1447 quad_t maxmem;
1448 struct {
1449 u_int64_t base;
1450 u_int64_t length;
1451 u_int32_t type;
1452 } *smap;
1453 quad_t dcons_addr, dcons_size;
1455 bzero(&vmf, sizeof(struct vm86frame));
1456 bzero(physmap, sizeof(physmap));
1457 basemem = 0;
1460 * Some newer BIOSes has broken INT 12H implementation which cause
1461 * kernel panic immediately. In this case, we need to scan SMAP
1462 * with INT 15:E820 first, then determine base memory size.
1464 hasbrokenint12 = 0;
1465 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1466 if (hasbrokenint12) {
1467 goto int15e820;
1471 * Perform "base memory" related probes & setup. If we get a crazy
1472 * value give the bios some scribble space just in case.
1474 vm86_intcall(0x12, &vmf);
1475 basemem = vmf.vmf_ax;
1476 if (basemem > 640) {
1477 kprintf("Preposterous BIOS basemem of %uK, "
1478 "truncating to < 640K\n", basemem);
1479 basemem = 636;
1483 * XXX if biosbasemem is now < 640, there is a `hole'
1484 * between the end of base memory and the start of
1485 * ISA memory. The hole may be empty or it may
1486 * contain BIOS code or data. Map it read/write so
1487 * that the BIOS can write to it. (Memory from 0 to
1488 * the physical end of the kernel is mapped read-only
1489 * to begin with and then parts of it are remapped.
1490 * The parts that aren't remapped form holes that
1491 * remain read-only and are unused by the kernel.
1492 * The base memory area is below the physical end of
1493 * the kernel and right now forms a read-only hole.
1494 * The part of it from PAGE_SIZE to
1495 * (trunc_page(biosbasemem * 1024) - 1) will be
1496 * remapped and used by the kernel later.)
1498 * This code is similar to the code used in
1499 * pmap_mapdev, but since no memory needs to be
1500 * allocated we simply change the mapping.
1502 for (pa = trunc_page(basemem * 1024);
1503 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1504 pte = vtopte(pa + KERNBASE);
1505 *pte = pa | PG_RW | PG_V;
1509 * if basemem != 640, map pages r/w into vm86 page table so
1510 * that the bios can scribble on it.
1512 pte = vm86paddr;
1513 for (i = basemem / 4; i < 160; i++)
1514 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1516 int15e820:
1518 * map page 1 R/W into the kernel page table so we can use it
1519 * as a buffer. The kernel will unmap this page later.
1521 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1522 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1525 * get memory map with INT 15:E820
1527 #define SMAPSIZ sizeof(*smap)
1528 #define SMAP_SIG 0x534D4150 /* 'SMAP' */
1530 vmc.npages = 0;
1531 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1532 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1534 physmap_idx = 0;
1535 vmf.vmf_ebx = 0;
1536 do {
1537 vmf.vmf_eax = 0xE820;
1538 vmf.vmf_edx = SMAP_SIG;
1539 vmf.vmf_ecx = SMAPSIZ;
1540 i = vm86_datacall(0x15, &vmf, &vmc);
1541 if (i || vmf.vmf_eax != SMAP_SIG)
1542 break;
1543 if (boothowto & RB_VERBOSE)
1544 kprintf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1545 smap->type,
1546 *(u_int32_t *)((char *)&smap->base + 4),
1547 (u_int32_t)smap->base,
1548 *(u_int32_t *)((char *)&smap->length + 4),
1549 (u_int32_t)smap->length);
1551 if (smap->type != 0x01)
1552 goto next_run;
1554 if (smap->length == 0)
1555 goto next_run;
1557 Realmem += smap->length;
1559 if (smap->base >= 0xffffffffLLU) {
1560 kprintf("%ju MB of memory above 4GB ignored\n",
1561 (uintmax_t)(smap->length / 1024 / 1024));
1562 goto next_run;
1565 for (i = 0; i <= physmap_idx; i += 2) {
1566 if (smap->base < physmap[i + 1]) {
1567 if (boothowto & RB_VERBOSE) {
1568 kprintf("Overlapping or non-montonic "
1569 "memory region, ignoring "
1570 "second region\n");
1572 Realmem -= smap->length;
1573 goto next_run;
1577 if (smap->base == physmap[physmap_idx + 1]) {
1578 physmap[physmap_idx + 1] += smap->length;
1579 goto next_run;
1582 physmap_idx += 2;
1583 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1584 kprintf("Too many segments in the physical "
1585 "address map, giving up\n");
1586 break;
1588 physmap[physmap_idx] = smap->base;
1589 physmap[physmap_idx + 1] = smap->base + smap->length;
1590 next_run:
1591 ; /* fix GCC3.x warning */
1592 } while (vmf.vmf_ebx != 0);
1595 * Perform "base memory" related probes & setup based on SMAP
1597 if (basemem == 0) {
1598 for (i = 0; i <= physmap_idx; i += 2) {
1599 if (physmap[i] == 0x00000000) {
1600 basemem = physmap[i + 1] / 1024;
1601 break;
1605 if (basemem == 0) {
1606 basemem = 640;
1609 if (basemem > 640) {
1610 kprintf("Preposterous BIOS basemem of %uK, "
1611 "truncating to 640K\n", basemem);
1612 basemem = 640;
1615 for (pa = trunc_page(basemem * 1024);
1616 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1617 pte = vtopte(pa + KERNBASE);
1618 *pte = pa | PG_RW | PG_V;
1621 pte = vm86paddr;
1622 for (i = basemem / 4; i < 160; i++)
1623 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1626 if (physmap[1] != 0)
1627 goto physmap_done;
1630 * If we failed above, try memory map with INT 15:E801
1632 vmf.vmf_ax = 0xE801;
1633 if (vm86_intcall(0x15, &vmf) == 0) {
1634 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1635 } else {
1636 #if 0
1637 vmf.vmf_ah = 0x88;
1638 vm86_intcall(0x15, &vmf);
1639 extmem = vmf.vmf_ax;
1640 #else
1642 * Prefer the RTC value for extended memory.
1644 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1645 #endif
1649 * Special hack for chipsets that still remap the 384k hole when
1650 * there's 16MB of memory - this really confuses people that
1651 * are trying to use bus mastering ISA controllers with the
1652 * "16MB limit"; they only have 16MB, but the remapping puts
1653 * them beyond the limit.
1655 * If extended memory is between 15-16MB (16-17MB phys address range),
1656 * chop it to 15MB.
1658 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1659 extmem = 15 * 1024;
1661 physmap[0] = 0;
1662 physmap[1] = basemem * 1024;
1663 physmap_idx = 2;
1664 physmap[physmap_idx] = 0x100000;
1665 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1667 physmap_done:
1669 * Now, physmap contains a map of physical memory.
1672 #ifdef SMP
1673 /* make hole for AP bootstrap code YYY */
1674 physmap[1] = mp_bootaddress(physmap[1]);
1676 /* Save EBDA address, if any */
1677 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1678 ebda_addr <<= 4;
1679 #endif
1682 * Maxmem isn't the "maximum memory", it's one larger than the
1683 * highest page of the physical address space. It should be
1684 * called something like "Maxphyspage". We may adjust this
1685 * based on ``hw.physmem'' and the results of the memory test.
1687 Maxmem = atop(physmap[physmap_idx + 1]);
1689 #ifdef MAXMEM
1690 Maxmem = MAXMEM / 4;
1691 #endif
1693 if (kgetenv_quad("hw.physmem", &maxmem))
1694 Maxmem = atop(maxmem);
1696 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1697 (boothowto & RB_VERBOSE))
1698 kprintf("Physical memory use set to %lluK\n", Maxmem * 4);
1701 * If Maxmem has been increased beyond what the system has detected,
1702 * extend the last memory segment to the new limit.
1704 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1705 physmap[physmap_idx + 1] = ptoa(Maxmem);
1707 /* call pmap initialization to make new kernel address space */
1708 pmap_bootstrap(first, 0);
1711 * Size up each available chunk of physical memory.
1713 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1714 pa_indx = 0;
1715 da_indx = 1;
1716 phys_avail[pa_indx++] = physmap[0];
1717 phys_avail[pa_indx] = physmap[0];
1718 dump_avail[da_indx] = physmap[0];
1720 pte = CMAP1;
1723 * Get dcons buffer address
1725 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1726 kgetenv_quad("dcons.size", &dcons_size) == 0)
1727 dcons_addr = 0;
1730 * physmap is in bytes, so when converting to page boundaries,
1731 * round up the start address and round down the end address.
1733 for (i = 0; i <= physmap_idx; i += 2) {
1734 vm_offset_t end;
1736 end = ptoa(Maxmem);
1737 if (physmap[i + 1] < end)
1738 end = trunc_page(physmap[i + 1]);
1739 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1740 int tmp, page_bad, full;
1741 #if 0
1742 int *ptr = 0;
1743 #else
1744 int *ptr = (int *)CADDR1;
1745 #endif
1746 full = FALSE;
1749 * block out kernel memory as not available.
1751 if (pa >= 0x100000 && pa < first)
1752 goto do_dump_avail;
1755 * block out dcons buffer
1757 if (dcons_addr > 0
1758 && pa >= trunc_page(dcons_addr)
1759 && pa < dcons_addr + dcons_size)
1760 goto do_dump_avail;
1762 page_bad = FALSE;
1765 * map page into kernel: valid, read/write,non-cacheable
1767 *pte = pa | PG_V | PG_RW | PG_N;
1768 cpu_invltlb();
1770 tmp = *(int *)ptr;
1772 * Test for alternating 1's and 0's
1774 *(volatile int *)ptr = 0xaaaaaaaa;
1775 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1776 page_bad = TRUE;
1779 * Test for alternating 0's and 1's
1781 *(volatile int *)ptr = 0x55555555;
1782 if (*(volatile int *)ptr != 0x55555555) {
1783 page_bad = TRUE;
1786 * Test for all 1's
1788 *(volatile int *)ptr = 0xffffffff;
1789 if (*(volatile int *)ptr != 0xffffffff) {
1790 page_bad = TRUE;
1793 * Test for all 0's
1795 *(volatile int *)ptr = 0x0;
1796 if (*(volatile int *)ptr != 0x0) {
1797 page_bad = TRUE;
1800 * Restore original value.
1802 *(int *)ptr = tmp;
1805 * Adjust array of valid/good pages.
1807 if (page_bad == TRUE) {
1808 continue;
1811 * If this good page is a continuation of the
1812 * previous set of good pages, then just increase
1813 * the end pointer. Otherwise start a new chunk.
1814 * Note that "end" points one higher than end,
1815 * making the range >= start and < end.
1816 * If we're also doing a speculative memory
1817 * test and we at or past the end, bump up Maxmem
1818 * so that we keep going. The first bad page
1819 * will terminate the loop.
1821 if (phys_avail[pa_indx] == pa) {
1822 phys_avail[pa_indx] += PAGE_SIZE;
1823 } else {
1824 pa_indx++;
1825 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1826 kprintf("Too many holes in the physical address space, giving up\n");
1827 pa_indx--;
1828 full = TRUE;
1829 goto do_dump_avail;
1831 phys_avail[pa_indx++] = pa; /* start */
1832 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1834 physmem++;
1835 do_dump_avail:
1836 if (dump_avail[da_indx] == pa) {
1837 dump_avail[da_indx] += PAGE_SIZE;
1838 } else {
1839 da_indx++;
1840 if (da_indx >= PHYSMAP_ENTRIES*2) {
1841 da_indx--;
1842 goto do_next;
1844 dump_avail[da_indx++] = pa; /* start */
1845 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1847 do_next:
1848 if (full)
1849 break;
1853 *pte = 0;
1854 cpu_invltlb();
1857 * XXX
1858 * The last chunk must contain at least one page plus the message
1859 * buffer to avoid complicating other code (message buffer address
1860 * calculation, etc.).
1862 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1863 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1864 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1865 phys_avail[pa_indx--] = 0;
1866 phys_avail[pa_indx--] = 0;
1869 Maxmem = atop(phys_avail[pa_indx]);
1871 /* Trim off space for the message buffer. */
1872 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1874 avail_end = phys_avail[pa_indx];
1877 #ifdef SMP
1878 #ifdef APIC_IO
1879 int apic_io_enable = 1; /* Enabled by default for kernels compiled w/APIC_IO */
1880 #else
1881 int apic_io_enable = 0; /* Disabled by default for kernels compiled without */
1882 #endif
1883 TUNABLE_INT("hw.apic_io_enable", &apic_io_enable);
1884 extern struct machintr_abi MachIntrABI_APIC;
1885 #endif
1887 struct machintr_abi MachIntrABI;
1890 * IDT VECTORS:
1891 * 0 Divide by zero
1892 * 1 Debug
1893 * 2 NMI
1894 * 3 BreakPoint
1895 * 4 OverFlow
1896 * 5 Bound-Range
1897 * 6 Invalid OpCode
1898 * 7 Device Not Available (x87)
1899 * 8 Double-Fault
1900 * 9 Coprocessor Segment overrun (unsupported, reserved)
1901 * 10 Invalid-TSS
1902 * 11 Segment not present
1903 * 12 Stack
1904 * 13 General Protection
1905 * 14 Page Fault
1906 * 15 Reserved
1907 * 16 x87 FP Exception pending
1908 * 17 Alignment Check
1909 * 18 Machine Check
1910 * 19 SIMD floating point
1911 * 20-31 reserved
1912 * 32-255 INTn/external sources
1914 void
1915 init386(int first)
1917 struct gate_descriptor *gdp;
1918 int gsel_tss, metadata_missing, off, x;
1919 struct mdglobaldata *gd;
1922 * Prevent lowering of the ipl if we call tsleep() early.
1924 gd = &CPU_prvspace[0].mdglobaldata;
1925 bzero(gd, sizeof(*gd));
1927 gd->mi.gd_curthread = &thread0;
1928 thread0.td_gd = &gd->mi;
1930 atdevbase = ISA_HOLE_START + KERNBASE;
1932 metadata_missing = 0;
1933 if (bootinfo.bi_modulep) {
1934 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1935 preload_bootstrap_relocate(KERNBASE);
1936 } else {
1937 metadata_missing = 1;
1939 if (bootinfo.bi_envp)
1940 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1943 * Default MachIntrABI to ICU
1945 MachIntrABI = MachIntrABI_ICU;
1946 #ifdef SMP
1947 TUNABLE_INT_FETCH("hw.apic_io_enable", &apic_io_enable);
1948 #endif
1951 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1952 * and ncpus_fit_mask remain 0.
1954 ncpus = 1;
1955 ncpus2 = 1;
1956 ncpus_fit = 1;
1957 /* Init basic tunables, hz etc */
1958 init_param1();
1961 * make gdt memory segments, the code segment goes up to end of the
1962 * page with etext in it, the data segment goes to the end of
1963 * the address space
1966 * XXX text protection is temporarily (?) disabled. The limit was
1967 * i386_btop(round_page(etext)) - 1.
1969 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1970 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1972 gdt_segs[GPRIV_SEL].ssd_limit =
1973 atop(sizeof(struct privatespace) - 1);
1974 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1975 gdt_segs[GPROC0_SEL].ssd_base =
1976 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1978 gd->mi.gd_prvspace = &CPU_prvspace[0];
1981 * Note: on both UP and SMP curthread must be set non-NULL
1982 * early in the boot sequence because the system assumes
1983 * that 'curthread' is never NULL.
1986 for (x = 0; x < NGDT; x++) {
1987 #ifdef BDE_DEBUGGER
1988 /* avoid overwriting db entries with APM ones */
1989 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1990 continue;
1991 #endif
1992 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1995 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1996 r_gdt.rd_base = (int) gdt;
1997 lgdt(&r_gdt);
1999 mi_gdinit(&gd->mi, 0);
2000 cpu_gdinit(gd, 0);
2001 mi_proc0init(&gd->mi, proc0paddr);
2002 safepri = TDPRI_MAX;
2004 /* make ldt memory segments */
2006 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max. And it
2007 * should be spelled ...MAX_USER...
2009 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
2010 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
2011 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2012 ssdtosd(&ldt_segs[x], &ldt[x].sd);
2014 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2015 lldt(_default_ldt);
2016 gd->gd_currentldt = _default_ldt;
2017 /* spinlocks and the BGL */
2018 init_locks();
2021 * Setup the hardware exception table. Most exceptions use
2022 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
2023 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
2024 * an 'interrupt trap gate', which disables interrupts on entry,
2025 * in order to be able to poll the appropriate CRn register to
2026 * determine the fault address.
2028 for (x = 0; x < NIDT; x++) {
2029 #ifdef DEBUG_INTERRUPTS
2030 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2031 #else
2032 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2033 #endif
2035 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2036 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2037 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2038 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2039 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2040 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2041 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2042 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2043 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2044 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2045 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2046 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2047 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2048 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2049 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2050 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2051 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2052 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2053 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2054 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2055 setidt(0x80, &IDTVEC(int0x80_syscall),
2056 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2058 r_idt.rd_limit = sizeof(idt0) - 1;
2059 r_idt.rd_base = (int) idt;
2060 lidt(&r_idt);
2063 * Initialize the console before we print anything out.
2065 cninit();
2067 if (metadata_missing)
2068 kprintf("WARNING: loader(8) metadata is missing!\n");
2070 #if NISA >0
2071 elcr_probe();
2072 isa_defaultirq();
2073 #endif
2074 rand_initialize();
2076 #ifdef DDB
2077 kdb_init();
2078 if (boothowto & RB_KDB)
2079 Debugger("Boot flags requested debugger");
2080 #endif
2082 finishidentcpu(); /* Final stage of CPU initialization */
2083 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2084 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2085 initializecpu(); /* Initialize CPU registers */
2088 * make an initial tss so cpu can get interrupt stack on syscall!
2089 * The 16 bytes is to save room for a VM86 context.
2091 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
2092 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
2093 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2094 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
2095 gd->gd_common_tssd = *gd->gd_tss_gdt;
2096 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
2097 ltr(gsel_tss);
2099 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2100 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2101 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2102 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2103 dblfault_tss.tss_cr3 = (int)IdlePTD;
2104 dblfault_tss.tss_eip = (int) dblfault_handler;
2105 dblfault_tss.tss_eflags = PSL_KERNEL;
2106 dblfault_tss.tss_ds = dblfault_tss.tss_es =
2107 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2108 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2109 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2110 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2112 vm86_initialize();
2113 getmemsize(first);
2114 init_param2(physmem);
2116 /* now running on new page tables, configured,and u/iom is accessible */
2118 /* Map the message buffer. */
2119 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2120 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2122 msgbufinit(msgbufp, MSGBUF_SIZE);
2124 /* make a call gate to reenter kernel with */
2125 gdp = &ldt[LSYS5CALLS_SEL].gd;
2127 x = (int) &IDTVEC(syscall);
2128 gdp->gd_looffset = x++;
2129 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2130 gdp->gd_stkcpy = 1;
2131 gdp->gd_type = SDT_SYS386CGT;
2132 gdp->gd_dpl = SEL_UPL;
2133 gdp->gd_p = 1;
2134 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2136 /* XXX does this work? */
2137 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2138 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2140 /* transfer to user mode */
2142 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2143 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2145 /* setup proc 0's pcb */
2146 thread0.td_pcb->pcb_flags = 0;
2147 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2148 thread0.td_pcb->pcb_ext = 0;
2149 lwp0.lwp_md.md_regs = &proc0_tf;
2153 * Initialize machine-dependant portions of the global data structure.
2154 * Note that the global data area and cpu0's idlestack in the private
2155 * data space were allocated in locore.
2157 * Note: the idlethread's cpl is 0
2159 * WARNING! Called from early boot, 'mycpu' may not work yet.
2161 void
2162 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2164 if (cpu)
2165 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2167 lwkt_init_thread(&gd->mi.gd_idlethread,
2168 gd->mi.gd_prvspace->idlestack,
2169 sizeof(gd->mi.gd_prvspace->idlestack),
2170 0, &gd->mi);
2171 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2172 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2173 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2174 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2178 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2180 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2181 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2182 return (TRUE);
2184 return (FALSE);
2187 struct globaldata *
2188 globaldata_find(int cpu)
2190 KKASSERT(cpu >= 0 && cpu < ncpus);
2191 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2194 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2195 static void f00f_hack(void *unused);
2196 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
2198 static void
2199 f00f_hack(void *unused)
2201 struct gate_descriptor *new_idt;
2202 vm_offset_t tmp;
2204 if (!has_f00f_bug)
2205 return;
2207 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
2209 r_idt.rd_limit = sizeof(idt0) - 1;
2211 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
2212 if (tmp == 0)
2213 panic("kmem_alloc returned 0");
2214 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2215 panic("kmem_alloc returned non-page-aligned memory");
2216 /* Put the first seven entries in the lower page */
2217 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2218 bcopy(idt, new_idt, sizeof(idt0));
2219 r_idt.rd_base = (int)new_idt;
2220 lidt(&r_idt);
2221 idt = new_idt;
2222 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
2223 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2224 panic("vm_map_protect failed");
2225 return;
2227 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2230 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2232 lp->lwp_md.md_regs->tf_eip = addr;
2233 return (0);
2237 ptrace_single_step(struct lwp *lp)
2239 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2240 return (0);
2244 fill_regs(struct lwp *lp, struct reg *regs)
2246 struct trapframe *tp;
2248 tp = lp->lwp_md.md_regs;
2249 regs->r_gs = tp->tf_gs;
2250 regs->r_fs = tp->tf_fs;
2251 regs->r_es = tp->tf_es;
2252 regs->r_ds = tp->tf_ds;
2253 regs->r_edi = tp->tf_edi;
2254 regs->r_esi = tp->tf_esi;
2255 regs->r_ebp = tp->tf_ebp;
2256 regs->r_ebx = tp->tf_ebx;
2257 regs->r_edx = tp->tf_edx;
2258 regs->r_ecx = tp->tf_ecx;
2259 regs->r_eax = tp->tf_eax;
2260 regs->r_eip = tp->tf_eip;
2261 regs->r_cs = tp->tf_cs;
2262 regs->r_eflags = tp->tf_eflags;
2263 regs->r_esp = tp->tf_esp;
2264 regs->r_ss = tp->tf_ss;
2265 return (0);
2269 set_regs(struct lwp *lp, struct reg *regs)
2271 struct trapframe *tp;
2273 tp = lp->lwp_md.md_regs;
2274 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2275 !CS_SECURE(regs->r_cs))
2276 return (EINVAL);
2277 tp->tf_gs = regs->r_gs;
2278 tp->tf_fs = regs->r_fs;
2279 tp->tf_es = regs->r_es;
2280 tp->tf_ds = regs->r_ds;
2281 tp->tf_edi = regs->r_edi;
2282 tp->tf_esi = regs->r_esi;
2283 tp->tf_ebp = regs->r_ebp;
2284 tp->tf_ebx = regs->r_ebx;
2285 tp->tf_edx = regs->r_edx;
2286 tp->tf_ecx = regs->r_ecx;
2287 tp->tf_eax = regs->r_eax;
2288 tp->tf_eip = regs->r_eip;
2289 tp->tf_cs = regs->r_cs;
2290 tp->tf_eflags = regs->r_eflags;
2291 tp->tf_esp = regs->r_esp;
2292 tp->tf_ss = regs->r_ss;
2293 return (0);
2296 #ifndef CPU_DISABLE_SSE
2297 static void
2298 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2300 struct env87 *penv_87 = &sv_87->sv_env;
2301 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2302 int i;
2304 /* FPU control/status */
2305 penv_87->en_cw = penv_xmm->en_cw;
2306 penv_87->en_sw = penv_xmm->en_sw;
2307 penv_87->en_tw = penv_xmm->en_tw;
2308 penv_87->en_fip = penv_xmm->en_fip;
2309 penv_87->en_fcs = penv_xmm->en_fcs;
2310 penv_87->en_opcode = penv_xmm->en_opcode;
2311 penv_87->en_foo = penv_xmm->en_foo;
2312 penv_87->en_fos = penv_xmm->en_fos;
2314 /* FPU registers */
2315 for (i = 0; i < 8; ++i)
2316 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2318 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2321 static void
2322 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2324 struct env87 *penv_87 = &sv_87->sv_env;
2325 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2326 int i;
2328 /* FPU control/status */
2329 penv_xmm->en_cw = penv_87->en_cw;
2330 penv_xmm->en_sw = penv_87->en_sw;
2331 penv_xmm->en_tw = penv_87->en_tw;
2332 penv_xmm->en_fip = penv_87->en_fip;
2333 penv_xmm->en_fcs = penv_87->en_fcs;
2334 penv_xmm->en_opcode = penv_87->en_opcode;
2335 penv_xmm->en_foo = penv_87->en_foo;
2336 penv_xmm->en_fos = penv_87->en_fos;
2338 /* FPU registers */
2339 for (i = 0; i < 8; ++i)
2340 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2342 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2344 #endif /* CPU_DISABLE_SSE */
2347 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2349 #ifndef CPU_DISABLE_SSE
2350 if (cpu_fxsr) {
2351 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2352 (struct save87 *)fpregs);
2353 return (0);
2355 #endif /* CPU_DISABLE_SSE */
2356 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2357 return (0);
2361 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2363 #ifndef CPU_DISABLE_SSE
2364 if (cpu_fxsr) {
2365 set_fpregs_xmm((struct save87 *)fpregs,
2366 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2367 return (0);
2369 #endif /* CPU_DISABLE_SSE */
2370 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2371 return (0);
2375 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2377 if (lp == NULL) {
2378 dbregs->dr0 = rdr0();
2379 dbregs->dr1 = rdr1();
2380 dbregs->dr2 = rdr2();
2381 dbregs->dr3 = rdr3();
2382 dbregs->dr4 = rdr4();
2383 dbregs->dr5 = rdr5();
2384 dbregs->dr6 = rdr6();
2385 dbregs->dr7 = rdr7();
2386 } else {
2387 struct pcb *pcb;
2389 pcb = lp->lwp_thread->td_pcb;
2390 dbregs->dr0 = pcb->pcb_dr0;
2391 dbregs->dr1 = pcb->pcb_dr1;
2392 dbregs->dr2 = pcb->pcb_dr2;
2393 dbregs->dr3 = pcb->pcb_dr3;
2394 dbregs->dr4 = 0;
2395 dbregs->dr5 = 0;
2396 dbregs->dr6 = pcb->pcb_dr6;
2397 dbregs->dr7 = pcb->pcb_dr7;
2399 return (0);
2403 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2405 if (lp == NULL) {
2406 load_dr0(dbregs->dr0);
2407 load_dr1(dbregs->dr1);
2408 load_dr2(dbregs->dr2);
2409 load_dr3(dbregs->dr3);
2410 load_dr4(dbregs->dr4);
2411 load_dr5(dbregs->dr5);
2412 load_dr6(dbregs->dr6);
2413 load_dr7(dbregs->dr7);
2414 } else {
2415 struct pcb *pcb;
2416 struct ucred *ucred;
2417 int i;
2418 uint32_t mask1, mask2;
2421 * Don't let an illegal value for dr7 get set. Specifically,
2422 * check for undefined settings. Setting these bit patterns
2423 * result in undefined behaviour and can lead to an unexpected
2424 * TRCTRAP.
2426 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2427 i++, mask1 <<= 2, mask2 <<= 2)
2428 if ((dbregs->dr7 & mask1) == mask2)
2429 return (EINVAL);
2431 pcb = lp->lwp_thread->td_pcb;
2432 ucred = lp->lwp_proc->p_ucred;
2435 * Don't let a process set a breakpoint that is not within the
2436 * process's address space. If a process could do this, it
2437 * could halt the system by setting a breakpoint in the kernel
2438 * (if ddb was enabled). Thus, we need to check to make sure
2439 * that no breakpoints are being enabled for addresses outside
2440 * process's address space, unless, perhaps, we were called by
2441 * uid 0.
2443 * XXX - what about when the watched area of the user's
2444 * address space is written into from within the kernel
2445 * ... wouldn't that still cause a breakpoint to be generated
2446 * from within kernel mode?
2449 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2450 if (dbregs->dr7 & 0x3) {
2451 /* dr0 is enabled */
2452 if (dbregs->dr0 >= VM_MAX_USER_ADDRESS)
2453 return (EINVAL);
2456 if (dbregs->dr7 & (0x3<<2)) {
2457 /* dr1 is enabled */
2458 if (dbregs->dr1 >= VM_MAX_USER_ADDRESS)
2459 return (EINVAL);
2462 if (dbregs->dr7 & (0x3<<4)) {
2463 /* dr2 is enabled */
2464 if (dbregs->dr2 >= VM_MAX_USER_ADDRESS)
2465 return (EINVAL);
2468 if (dbregs->dr7 & (0x3<<6)) {
2469 /* dr3 is enabled */
2470 if (dbregs->dr3 >= VM_MAX_USER_ADDRESS)
2471 return (EINVAL);
2475 pcb->pcb_dr0 = dbregs->dr0;
2476 pcb->pcb_dr1 = dbregs->dr1;
2477 pcb->pcb_dr2 = dbregs->dr2;
2478 pcb->pcb_dr3 = dbregs->dr3;
2479 pcb->pcb_dr6 = dbregs->dr6;
2480 pcb->pcb_dr7 = dbregs->dr7;
2482 pcb->pcb_flags |= PCB_DBREGS;
2485 return (0);
2489 * Return > 0 if a hardware breakpoint has been hit, and the
2490 * breakpoint was in user space. Return 0, otherwise.
2493 user_dbreg_trap(void)
2495 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2496 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2497 int nbp; /* number of breakpoints that triggered */
2498 caddr_t addr[4]; /* breakpoint addresses */
2499 int i;
2501 dr7 = rdr7();
2502 if ((dr7 & 0x000000ff) == 0) {
2504 * all GE and LE bits in the dr7 register are zero,
2505 * thus the trap couldn't have been caused by the
2506 * hardware debug registers
2508 return 0;
2511 nbp = 0;
2512 dr6 = rdr6();
2513 bp = dr6 & 0x0000000f;
2515 if (!bp) {
2517 * None of the breakpoint bits are set meaning this
2518 * trap was not caused by any of the debug registers
2520 return 0;
2524 * at least one of the breakpoints were hit, check to see
2525 * which ones and if any of them are user space addresses
2528 if (bp & 0x01) {
2529 addr[nbp++] = (caddr_t)rdr0();
2531 if (bp & 0x02) {
2532 addr[nbp++] = (caddr_t)rdr1();
2534 if (bp & 0x04) {
2535 addr[nbp++] = (caddr_t)rdr2();
2537 if (bp & 0x08) {
2538 addr[nbp++] = (caddr_t)rdr3();
2541 for (i=0; i<nbp; i++) {
2542 if (addr[i] <
2543 (caddr_t)VM_MAX_USER_ADDRESS) {
2545 * addr[i] is in user space
2547 return nbp;
2552 * None of the breakpoints are in user space.
2554 return 0;
2558 #ifndef DDB
2559 void
2560 Debugger(const char *msg)
2562 kprintf("Debugger(\"%s\") called.\n", msg);
2564 #endif /* no DDB */
2566 #ifdef DDB
2569 * Provide inb() and outb() as functions. They are normally only
2570 * available as macros calling inlined functions, thus cannot be
2571 * called inside DDB.
2573 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2576 #undef inb
2577 #undef outb
2579 /* silence compiler warnings */
2580 u_char inb(u_int);
2581 void outb(u_int, u_char);
2583 u_char
2584 inb(u_int port)
2586 u_char data;
2588 * We use %%dx and not %1 here because i/o is done at %dx and not at
2589 * %edx, while gcc generates inferior code (movw instead of movl)
2590 * if we tell it to load (u_short) port.
2592 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2593 return (data);
2596 void
2597 outb(u_int port, u_char data)
2599 u_char al;
2601 * Use an unnecessary assignment to help gcc's register allocator.
2602 * This make a large difference for gcc-1.40 and a tiny difference
2603 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2604 * best results. gcc-2.6.0 can't handle this.
2606 al = data;
2607 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2610 #endif /* DDB */
2614 #include "opt_cpu.h"
2618 * initialize all the SMP locks
2621 /* critical region when masking or unmasking interupts */
2622 struct spinlock_deprecated imen_spinlock;
2624 /* critical region for old style disable_intr/enable_intr */
2625 struct spinlock_deprecated mpintr_spinlock;
2627 /* critical region around INTR() routines */
2628 struct spinlock_deprecated intr_spinlock;
2630 /* lock region used by kernel profiling */
2631 struct spinlock_deprecated mcount_spinlock;
2633 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2634 struct spinlock_deprecated com_spinlock;
2636 /* lock regions around the clock hardware */
2637 struct spinlock_deprecated clock_spinlock;
2639 /* lock around the MP rendezvous */
2640 struct spinlock_deprecated smp_rv_spinlock;
2642 static void
2643 init_locks(void)
2645 #ifdef SMP
2647 * Get the initial mplock with a count of 1 for the BSP.
2648 * This uses a LOGICAL cpu ID, ie BSP == 0.
2650 cpu_get_initial_mplock();
2651 #endif
2652 /* DEPRECATED */
2653 spin_lock_init(&mcount_spinlock);
2654 spin_lock_init(&intr_spinlock);
2655 spin_lock_init(&mpintr_spinlock);
2656 spin_lock_init(&imen_spinlock);
2657 spin_lock_init(&smp_rv_spinlock);
2658 spin_lock_init(&com_spinlock);
2659 spin_lock_init(&clock_spinlock);
2661 /* our token pool needs to work early */
2662 lwkt_token_pool_init();