Backout the last commit. _S is also true for a few control codes for which
[dragonfly.git] / sys / vm / vnode_pager.c
blob8ac0d0e6e232d6d68375ae87556a542d857f9ba8
1 /*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.18 2005/03/02 18:42:09 hmp Exp $
46 * Page to/from files (vnodes).
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/buf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/conf.h>
64 #include <sys/sfbuf.h>
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_map.h>
71 #include <vm/vnode_pager.h>
72 #include <vm/vm_extern.h>
74 static vm_offset_t vnode_pager_addr (struct vnode *vp, vm_ooffset_t address,
75 int *run);
76 static void vnode_pager_iodone (struct buf *bp);
77 static int vnode_pager_input_smlfs (vm_object_t object, vm_page_t m);
78 static int vnode_pager_input_old (vm_object_t object, vm_page_t m);
79 static void vnode_pager_dealloc (vm_object_t);
80 static int vnode_pager_getpages (vm_object_t, vm_page_t *, int, int);
81 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
82 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t, int *, int *);
84 struct pagerops vnodepagerops = {
85 NULL,
86 vnode_pager_alloc,
87 vnode_pager_dealloc,
88 vnode_pager_getpages,
89 vnode_pager_putpages,
90 vnode_pager_haspage,
91 NULL
94 int vnode_pbuf_freecnt = -1; /* start out unlimited */
97 * Allocate (or lookup) pager for a vnode.
98 * Handle is a vnode pointer.
100 vm_object_t
101 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
102 vm_ooffset_t offset)
104 vm_object_t object;
105 struct vnode *vp;
108 * Pageout to vnode, no can do yet.
110 if (handle == NULL)
111 return (NULL);
114 * XXX hack - This initialization should be put somewhere else.
116 if (vnode_pbuf_freecnt < 0) {
117 vnode_pbuf_freecnt = nswbuf / 2 + 1;
120 vp = (struct vnode *) handle;
123 * Prevent race condition when allocating the object. This
124 * can happen with NFS vnodes since the nfsnode isn't locked.
126 while (vp->v_flag & VOLOCK) {
127 vp->v_flag |= VOWANT;
128 tsleep(vp, 0, "vnpobj", 0);
130 vp->v_flag |= VOLOCK;
133 * If the object is being terminated, wait for it to
134 * go away.
136 while (((object = vp->v_object) != NULL) &&
137 (object->flags & OBJ_DEAD)) {
138 tsleep(object, 0, "vadead", 0);
141 if (vp->v_usecount == 0)
142 panic("vnode_pager_alloc: no vnode reference");
144 if (object == NULL) {
146 * And an object of the appropriate size
148 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
149 object->flags = 0;
151 object->un_pager.vnp.vnp_size = size;
153 object->handle = handle;
154 vp->v_object = object;
155 vp->v_usecount++;
156 } else {
157 object->ref_count++;
158 vp->v_usecount++;
161 vp->v_flag &= ~VOLOCK;
162 if (vp->v_flag & VOWANT) {
163 vp->v_flag &= ~VOWANT;
164 wakeup(vp);
166 return (object);
169 static void
170 vnode_pager_dealloc(vm_object_t object)
172 struct vnode *vp = object->handle;
174 if (vp == NULL)
175 panic("vnode_pager_dealloc: pager already dealloced");
177 vm_object_pip_wait(object, "vnpdea");
179 object->handle = NULL;
180 object->type = OBJT_DEAD;
181 vp->v_object = NULL;
182 vp->v_flag &= ~(VTEXT | VOBJBUF);
185 static boolean_t
186 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
187 int *after)
189 struct vnode *vp = object->handle;
190 daddr_t bn;
191 int err;
192 daddr_t reqblock;
193 int poff;
194 int bsize;
195 int pagesperblock, blocksperpage;
198 * If no vp or vp is doomed or marked transparent to VM, we do not
199 * have the page.
201 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
202 return FALSE;
205 * If filesystem no longer mounted or offset beyond end of file we do
206 * not have the page.
208 if ((vp->v_mount == NULL) ||
209 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
210 return FALSE;
212 bsize = vp->v_mount->mnt_stat.f_iosize;
213 pagesperblock = bsize / PAGE_SIZE;
214 blocksperpage = 0;
215 if (pagesperblock > 0) {
216 reqblock = pindex / pagesperblock;
217 } else {
218 blocksperpage = (PAGE_SIZE / bsize);
219 reqblock = pindex * blocksperpage;
221 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn,
222 after, before);
223 if (err)
224 return TRUE;
225 if ( bn == -1)
226 return FALSE;
227 if (pagesperblock > 0) {
228 poff = pindex - (reqblock * pagesperblock);
229 if (before) {
230 *before *= pagesperblock;
231 *before += poff;
233 if (after) {
234 int numafter;
235 *after *= pagesperblock;
236 numafter = pagesperblock - (poff + 1);
237 if (IDX_TO_OFF(pindex + numafter) > object->un_pager.vnp.vnp_size) {
238 numafter = OFF_TO_IDX((object->un_pager.vnp.vnp_size - IDX_TO_OFF(pindex)));
240 *after += numafter;
242 } else {
243 if (before) {
244 *before /= blocksperpage;
247 if (after) {
248 *after /= blocksperpage;
251 return TRUE;
255 * Lets the VM system know about a change in size for a file.
256 * We adjust our own internal size and flush any cached pages in
257 * the associated object that are affected by the size change.
259 * Note: this routine may be invoked as a result of a pager put
260 * operation (possibly at object termination time), so we must be careful.
262 void
263 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
265 vm_pindex_t nobjsize;
266 vm_object_t object = vp->v_object;
268 if (object == NULL)
269 return;
272 * Hasn't changed size
274 if (nsize == object->un_pager.vnp.vnp_size)
275 return;
277 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
280 * File has shrunk. Toss any cached pages beyond the new EOF.
282 if (nsize < object->un_pager.vnp.vnp_size) {
283 vm_freeze_copyopts(object, OFF_TO_IDX(nsize), object->size);
284 if (nobjsize < object->size) {
285 vm_object_page_remove(object, nobjsize, object->size,
286 FALSE);
289 * This gets rid of garbage at the end of a page that is now
290 * only partially backed by the vnode. Since we are setting
291 * the entire page valid & clean after we are done we have
292 * to be sure that the portion of the page within the file
293 * bounds is already valid. If it isn't then making it
294 * valid would create a corrupt block.
296 if (nsize & PAGE_MASK) {
297 vm_offset_t kva;
298 vm_page_t m;
300 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
301 if (m && m->valid) {
302 int base = (int)nsize & PAGE_MASK;
303 int size = PAGE_SIZE - base;
304 struct sf_buf *sf;
307 * Clear out partial-page garbage in case
308 * the page has been mapped.
310 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
311 kva = sf_buf_kva(sf);
312 bzero((caddr_t)kva + base, size);
313 sf_buf_free(sf);
316 * XXX work around SMP data integrity race
317 * by unmapping the page from user processes.
318 * The garbage we just cleared may be mapped
319 * to a user process running on another cpu
320 * and this code is not running through normal
321 * I/O channels which handle SMP issues for
322 * us, so unmap page to synchronize all cpus.
324 * XXX should vm_pager_unmap_page() have
325 * dealt with this?
327 vm_page_protect(m, VM_PROT_NONE);
330 * Clear out partial-page dirty bits. This
331 * has the side effect of setting the valid
332 * bits, but that is ok. There are a bunch
333 * of places in the VM system where we expected
334 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
335 * case is one of them. If the page is still
336 * partially dirty, make it fully dirty.
338 * note that we do not clear out the valid
339 * bits. This would prevent bogus_page
340 * replacement from working properly.
342 vm_page_set_validclean(m, base, size);
343 if (m->dirty != 0)
344 m->dirty = VM_PAGE_BITS_ALL;
348 object->un_pager.vnp.vnp_size = nsize;
349 object->size = nobjsize;
352 void
353 vnode_pager_freepage(vm_page_t m)
355 vm_page_free(m);
359 * calculate the linear (byte) disk address of specified virtual
360 * file address
362 static vm_offset_t
363 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, int *run)
365 int rtaddress;
366 int bsize;
367 daddr_t block;
368 struct vnode *rtvp;
369 int err;
370 daddr_t vblock;
371 int voffset;
373 if (address < 0)
374 return -1;
376 if (vp->v_mount == NULL)
377 return -1;
379 bsize = vp->v_mount->mnt_stat.f_iosize;
380 vblock = address / bsize;
381 voffset = address % bsize;
383 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL);
385 if (err || (block == -1))
386 rtaddress = -1;
387 else {
388 rtaddress = block + voffset / DEV_BSIZE;
389 if( run) {
390 *run += 1;
391 *run *= bsize/PAGE_SIZE;
392 *run -= voffset/PAGE_SIZE;
396 return rtaddress;
400 * interrupt routine for I/O completion
402 static void
403 vnode_pager_iodone(struct buf *bp)
405 bp->b_flags |= B_DONE;
406 wakeup(bp);
410 * small block file system vnode pager input
412 static int
413 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
415 int i;
416 int s;
417 struct vnode *dp, *vp;
418 struct buf *bp;
419 vm_offset_t kva;
420 struct sf_buf *sf;
421 int fileaddr;
422 vm_offset_t bsize;
423 int error = 0;
425 vp = object->handle;
426 if (vp->v_mount == NULL)
427 return VM_PAGER_BAD;
429 bsize = vp->v_mount->mnt_stat.f_iosize;
432 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL);
434 sf = sf_buf_alloc(m, 0);
435 kva = sf_buf_kva(sf);
437 for (i = 0; i < PAGE_SIZE / bsize; i++) {
438 vm_ooffset_t address;
440 if (vm_page_bits(i * bsize, bsize) & m->valid)
441 continue;
443 address = IDX_TO_OFF(m->pindex) + i * bsize;
444 if (address >= object->un_pager.vnp.vnp_size) {
445 fileaddr = -1;
446 } else {
447 fileaddr = vnode_pager_addr(vp, address, NULL);
449 if (fileaddr != -1) {
450 bp = getpbuf(&vnode_pbuf_freecnt);
452 /* build a minimal buffer header */
453 bp->b_flags = B_READ | B_CALL;
454 bp->b_iodone = vnode_pager_iodone;
455 bp->b_data = (caddr_t) kva + i * bsize;
456 bp->b_blkno = fileaddr;
457 pbgetvp(dp, bp);
458 bp->b_bcount = bsize;
459 bp->b_bufsize = bsize;
460 bp->b_runningbufspace = bp->b_bufsize;
461 runningbufspace += bp->b_runningbufspace;
463 /* do the input */
464 VOP_STRATEGY(bp->b_vp, bp);
466 /* we definitely need to be at splvm here */
468 s = splvm();
469 while ((bp->b_flags & B_DONE) == 0) {
470 tsleep(bp, 0, "vnsrd", 0);
472 splx(s);
473 if ((bp->b_flags & B_ERROR) != 0)
474 error = EIO;
477 * free the buffer header back to the swap buffer pool
479 relpbuf(bp, &vnode_pbuf_freecnt);
480 if (error)
481 break;
483 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
484 } else {
485 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
486 bzero((caddr_t) kva + i * bsize, bsize);
489 sf_buf_free(sf);
490 pmap_clear_modify(m);
491 vm_page_flag_clear(m, PG_ZERO);
492 if (error) {
493 return VM_PAGER_ERROR;
495 return VM_PAGER_OK;
501 * old style vnode pager output routine
503 static int
504 vnode_pager_input_old(vm_object_t object, vm_page_t m)
506 struct uio auio;
507 struct iovec aiov;
508 int error;
509 int size;
510 vm_offset_t kva;
511 struct sf_buf *sf;
513 error = 0;
516 * Return failure if beyond current EOF
518 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
519 return VM_PAGER_BAD;
520 } else {
521 size = PAGE_SIZE;
522 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
523 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
526 * Allocate a kernel virtual address and initialize so that
527 * we can use VOP_READ/WRITE routines.
529 sf = sf_buf_alloc(m, 0);
530 kva = sf_buf_kva(sf);
532 aiov.iov_base = (caddr_t) kva;
533 aiov.iov_len = size;
534 auio.uio_iov = &aiov;
535 auio.uio_iovcnt = 1;
536 auio.uio_offset = IDX_TO_OFF(m->pindex);
537 auio.uio_segflg = UIO_SYSSPACE;
538 auio.uio_rw = UIO_READ;
539 auio.uio_resid = size;
540 auio.uio_td = curthread;
542 error = VOP_READ(((struct vnode *)object->handle),
543 &auio, 0, proc0.p_ucred);
544 if (!error) {
545 int count = size - auio.uio_resid;
547 if (count == 0)
548 error = EINVAL;
549 else if (count != PAGE_SIZE)
550 bzero((caddr_t) kva + count, PAGE_SIZE - count);
552 sf_buf_free(sf);
554 pmap_clear_modify(m);
555 vm_page_undirty(m);
556 vm_page_flag_clear(m, PG_ZERO);
557 if (!error)
558 m->valid = VM_PAGE_BITS_ALL;
559 return error ? VM_PAGER_ERROR : VM_PAGER_OK;
563 * generic vnode pager input routine
567 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
568 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
569 * vnode_pager_generic_getpages() to implement the previous behaviour.
571 * All other FS's should use the bypass to get to the local media
572 * backing vp's VOP_GETPAGES.
574 static int
575 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
577 int rtval;
578 struct vnode *vp;
579 int bytes = count * PAGE_SIZE;
581 vp = object->handle;
583 * XXX temporary diagnostic message to help track stale FS code,
584 * Returning EOPNOTSUPP from here may make things unhappy.
586 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
587 if (rtval == EOPNOTSUPP) {
588 printf("vnode_pager: *** WARNING *** stale FS getpages\n");
589 rtval = vnode_pager_generic_getpages( vp, m, bytes, reqpage);
591 return rtval;
596 * This is now called from local media FS's to operate against their
597 * own vnodes if they fail to implement VOP_GETPAGES.
600 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
601 int reqpage)
603 vm_object_t object;
604 vm_offset_t kva;
605 off_t foff, tfoff, nextoff;
606 int i, size, bsize, first, firstaddr;
607 struct vnode *dp;
608 int runpg;
609 int runend;
610 struct buf *bp;
611 int s;
612 int count;
613 int error = 0;
615 object = vp->v_object;
616 count = bytecount / PAGE_SIZE;
618 if (vp->v_mount == NULL)
619 return VM_PAGER_BAD;
621 bsize = vp->v_mount->mnt_stat.f_iosize;
623 /* get the UNDERLYING device for the file with VOP_BMAP() */
626 * originally, we did not check for an error return value -- assuming
627 * an fs always has a bmap entry point -- that assumption is wrong!!!
629 foff = IDX_TO_OFF(m[reqpage]->pindex);
632 * if we can't bmap, use old VOP code
634 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) {
635 for (i = 0; i < count; i++) {
636 if (i != reqpage) {
637 vnode_pager_freepage(m[i]);
640 mycpu->gd_cnt.v_vnodein++;
641 mycpu->gd_cnt.v_vnodepgsin++;
642 return vnode_pager_input_old(object, m[reqpage]);
645 * if the blocksize is smaller than a page size, then use
646 * special small filesystem code. NFS sometimes has a small
647 * blocksize, but it can handle large reads itself.
649 } else if ((PAGE_SIZE / bsize) > 1 &&
650 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
651 for (i = 0; i < count; i++) {
652 if (i != reqpage) {
653 vnode_pager_freepage(m[i]);
656 mycpu->gd_cnt.v_vnodein++;
657 mycpu->gd_cnt.v_vnodepgsin++;
658 return vnode_pager_input_smlfs(object, m[reqpage]);
662 * If we have a completely valid page available to us, we can
663 * clean up and return. Otherwise we have to re-read the
664 * media.
666 * Note that this does not work with NFS, so NFS has its own
667 * getpages routine. The problem is that NFS can have partially
668 * valid pages associated with the buffer cache due to the piecemeal
669 * write support. If we were to fall through and re-read the media
670 * as we do here, dirty data could be lost.
673 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
674 for (i = 0; i < count; i++) {
675 if (i != reqpage)
676 vnode_pager_freepage(m[i]);
678 return VM_PAGER_OK;
680 m[reqpage]->valid = 0;
683 * here on direct device I/O
686 firstaddr = -1;
688 * calculate the run that includes the required page
690 for(first = 0, i = 0; i < count; i = runend) {
691 firstaddr = vnode_pager_addr(vp,
692 IDX_TO_OFF(m[i]->pindex), &runpg);
693 if (firstaddr == -1) {
694 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
695 /* XXX no %qd in kernel. */
696 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%lx%08lx, vnp_size: 0x%lx%08lx",
697 firstaddr, (u_long)(foff >> 32),
698 (u_long)(u_int32_t)foff,
699 (u_long)(u_int32_t)
700 (object->un_pager.vnp.vnp_size >> 32),
701 (u_long)(u_int32_t)
702 object->un_pager.vnp.vnp_size);
704 vnode_pager_freepage(m[i]);
705 runend = i + 1;
706 first = runend;
707 continue;
709 runend = i + runpg;
710 if (runend <= reqpage) {
711 int j;
712 for (j = i; j < runend; j++) {
713 vnode_pager_freepage(m[j]);
715 } else {
716 if (runpg < (count - first)) {
717 for (i = first + runpg; i < count; i++)
718 vnode_pager_freepage(m[i]);
719 count = first + runpg;
721 break;
723 first = runend;
727 * the first and last page have been calculated now, move input pages
728 * to be zero based...
730 if (first != 0) {
731 for (i = first; i < count; i++) {
732 m[i - first] = m[i];
734 count -= first;
735 reqpage -= first;
739 * calculate the file virtual address for the transfer
741 foff = IDX_TO_OFF(m[0]->pindex);
744 * calculate the size of the transfer
746 size = count * PAGE_SIZE;
747 if ((foff + size) > object->un_pager.vnp.vnp_size)
748 size = object->un_pager.vnp.vnp_size - foff;
751 * round up physical size for real devices.
753 if (dp->v_type == VBLK || dp->v_type == VCHR) {
754 int secmask = dp->v_rdev->si_bsize_phys - 1;
755 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
756 size = (size + secmask) & ~secmask;
759 bp = getpbuf(&vnode_pbuf_freecnt);
760 kva = (vm_offset_t) bp->b_data;
763 * and map the pages to be read into the kva
765 pmap_qenter(kva, m, count);
767 /* build a minimal buffer header */
768 bp->b_flags = B_READ | B_CALL;
769 bp->b_iodone = vnode_pager_iodone;
770 /* B_PHYS is not set, but it is nice to fill this in */
771 bp->b_blkno = firstaddr;
772 pbgetvp(dp, bp);
773 bp->b_bcount = size;
774 bp->b_bufsize = size;
775 bp->b_runningbufspace = bp->b_bufsize;
776 runningbufspace += bp->b_runningbufspace;
778 mycpu->gd_cnt.v_vnodein++;
779 mycpu->gd_cnt.v_vnodepgsin += count;
781 /* do the input */
782 VOP_STRATEGY(bp->b_vp, bp);
784 s = splvm();
785 /* we definitely need to be at splvm here */
787 while ((bp->b_flags & B_DONE) == 0) {
788 tsleep(bp, 0, "vnread", 0);
790 splx(s);
791 if ((bp->b_flags & B_ERROR) != 0)
792 error = EIO;
794 if (!error) {
795 if (size != count * PAGE_SIZE)
796 bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
798 pmap_qremove(kva, count);
801 * free the buffer header back to the swap buffer pool
803 relpbuf(bp, &vnode_pbuf_freecnt);
805 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
806 vm_page_t mt;
808 nextoff = tfoff + PAGE_SIZE;
809 mt = m[i];
811 if (nextoff <= object->un_pager.vnp.vnp_size) {
813 * Read filled up entire page.
815 mt->valid = VM_PAGE_BITS_ALL;
816 vm_page_undirty(mt); /* should be an assert? XXX */
817 pmap_clear_modify(mt);
818 } else {
820 * Read did not fill up entire page. Since this
821 * is getpages, the page may be mapped, so we have
822 * to zero the invalid portions of the page even
823 * though we aren't setting them valid.
825 * Currently we do not set the entire page valid,
826 * we just try to clear the piece that we couldn't
827 * read.
829 vm_page_set_validclean(mt, 0,
830 object->un_pager.vnp.vnp_size - tfoff);
831 /* handled by vm_fault now */
832 /* vm_page_zero_invalid(mt, FALSE); */
835 vm_page_flag_clear(mt, PG_ZERO);
836 if (i != reqpage) {
839 * whether or not to leave the page activated is up in
840 * the air, but we should put the page on a page queue
841 * somewhere. (it already is in the object). Result:
842 * It appears that empirical results show that
843 * deactivating pages is best.
847 * just in case someone was asking for this page we
848 * now tell them that it is ok to use
850 if (!error) {
851 if (mt->flags & PG_WANTED)
852 vm_page_activate(mt);
853 else
854 vm_page_deactivate(mt);
855 vm_page_wakeup(mt);
856 } else {
857 vnode_pager_freepage(mt);
861 if (error) {
862 printf("vnode_pager_getpages: I/O read error\n");
864 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
868 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
869 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
870 * vnode_pager_generic_putpages() to implement the previous behaviour.
872 * All other FS's should use the bypass to get to the local media
873 * backing vp's VOP_PUTPAGES.
875 static void
876 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
877 boolean_t sync, int *rtvals)
879 int rtval;
880 struct vnode *vp;
881 int bytes = count * PAGE_SIZE;
884 * Force synchronous operation if we are extremely low on memory
885 * to prevent a low-memory deadlock. VOP operations often need to
886 * allocate more memory to initiate the I/O ( i.e. do a BMAP
887 * operation ). The swapper handles the case by limiting the amount
888 * of asynchronous I/O, but that sort of solution doesn't scale well
889 * for the vnode pager without a lot of work.
891 * Also, the backing vnode's iodone routine may not wake the pageout
892 * daemon up. This should be probably be addressed XXX.
895 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
896 sync |= OBJPC_SYNC;
899 * Call device-specific putpages function
902 vp = object->handle;
903 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
904 if (rtval == EOPNOTSUPP) {
905 printf("vnode_pager: *** WARNING *** stale FS putpages\n");
906 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
912 * This is now called from local media FS's to operate against their
913 * own vnodes if they fail to implement VOP_PUTPAGES.
915 * This is typically called indirectly via the pageout daemon and
916 * clustering has already typically occured, so in general we ask the
917 * underlying filesystem to write the data out asynchronously rather
918 * then delayed.
921 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
922 int flags, int *rtvals)
924 int i;
925 vm_object_t object;
926 int count;
928 int maxsize, ncount;
929 vm_ooffset_t poffset;
930 struct uio auio;
931 struct iovec aiov;
932 int error;
933 int ioflags;
935 object = vp->v_object;
936 count = bytecount / PAGE_SIZE;
938 for (i = 0; i < count; i++)
939 rtvals[i] = VM_PAGER_AGAIN;
941 if ((int) m[0]->pindex < 0) {
942 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
943 (long)m[0]->pindex, m[0]->dirty);
944 rtvals[0] = VM_PAGER_BAD;
945 return VM_PAGER_BAD;
948 maxsize = count * PAGE_SIZE;
949 ncount = count;
951 poffset = IDX_TO_OFF(m[0]->pindex);
954 * If the page-aligned write is larger then the actual file we
955 * have to invalidate pages occuring beyond the file EOF. However,
956 * there is an edge case where a file may not be page-aligned where
957 * the last page is partially invalid. In this case the filesystem
958 * may not properly clear the dirty bits for the entire page (which
959 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
960 * With the page locked we are free to fix-up the dirty bits here.
962 * We do not under any circumstances truncate the valid bits, as
963 * this will screw up bogus page replacement.
965 if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
966 if (object->un_pager.vnp.vnp_size > poffset) {
967 int pgoff;
969 maxsize = object->un_pager.vnp.vnp_size - poffset;
970 ncount = btoc(maxsize);
971 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
972 vm_page_clear_dirty(m[ncount - 1], pgoff,
973 PAGE_SIZE - pgoff);
975 } else {
976 maxsize = 0;
977 ncount = 0;
979 if (ncount < count) {
980 for (i = ncount; i < count; i++) {
981 rtvals[i] = VM_PAGER_BAD;
987 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
988 * rather then a bdwrite() to prevent paging I/O from saturating
989 * the buffer cache. Dummy-up the sequential heuristic to cause
990 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
991 * the system decides how to cluster.
993 ioflags = IO_VMIO;
994 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
995 ioflags |= IO_SYNC;
996 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
997 ioflags |= IO_ASYNC;
998 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
999 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1001 aiov.iov_base = (caddr_t) 0;
1002 aiov.iov_len = maxsize;
1003 auio.uio_iov = &aiov;
1004 auio.uio_iovcnt = 1;
1005 auio.uio_offset = poffset;
1006 auio.uio_segflg = UIO_NOCOPY;
1007 auio.uio_rw = UIO_WRITE;
1008 auio.uio_resid = maxsize;
1009 auio.uio_td = NULL;
1010 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
1011 mycpu->gd_cnt.v_vnodeout++;
1012 mycpu->gd_cnt.v_vnodepgsout += ncount;
1014 if (error) {
1015 printf("vnode_pager_putpages: I/O error %d\n", error);
1017 if (auio.uio_resid) {
1018 printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1019 auio.uio_resid, (u_long)m[0]->pindex);
1021 for (i = 0; i < ncount; i++) {
1022 rtvals[i] = VM_PAGER_OK;
1024 return rtvals[0];
1027 struct vnode *
1028 vnode_pager_lock(vm_object_t object)
1030 struct thread *td = curthread; /* XXX */
1031 int error;
1033 for (; object != NULL; object = object->backing_object) {
1034 if (object->type != OBJT_VNODE)
1035 continue;
1036 if (object->flags & OBJ_DEAD)
1037 return NULL;
1039 for (;;) {
1040 struct vnode *vp = object->handle;
1041 error = vget(vp, LK_NOPAUSE | LK_SHARED |
1042 LK_RETRY | LK_CANRECURSE, td);
1043 if (error == 0) {
1044 if (object->handle != vp) {
1045 vput(vp);
1046 continue;
1048 return (vp);
1050 if ((object->flags & OBJ_DEAD) ||
1051 (object->type != OBJT_VNODE)) {
1052 return NULL;
1054 printf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
1055 tsleep(object->handle, 0, "vnpgrl", hz);
1058 return NULL;