Backout the last commit. _S is also true for a few control codes for which
[dragonfly.git] / sys / vm / vm_object.c
blob9e1b68f13ed486ca927c6b0ace085b55aea73a63
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.21 2004/11/12 00:09:56 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #include <sys/thread2.h>
97 #define EASY_SCAN_FACTOR 8
99 #define MSYNC_FLUSH_HARDSEQ 0x01
100 #define MSYNC_FLUSH_SOFTSEQ 0x02
102 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
103 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
104 CTLFLAG_RW, &msync_flush_flags, 0, "");
106 static void vm_object_qcollapse (vm_object_t object);
107 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
110 * Virtual memory objects maintain the actual data
111 * associated with allocated virtual memory. A given
112 * page of memory exists within exactly one object.
114 * An object is only deallocated when all "references"
115 * are given up. Only one "reference" to a given
116 * region of an object should be writeable.
118 * Associated with each object is a list of all resident
119 * memory pages belonging to that object; this list is
120 * maintained by the "vm_page" module, and locked by the object's
121 * lock.
123 * Each object also records a "pager" routine which is
124 * used to retrieve (and store) pages to the proper backing
125 * storage. In addition, objects may be backed by other
126 * objects from which they were virtual-copied.
128 * The only items within the object structure which are
129 * modified after time of creation are:
130 * reference count locked by object's lock
131 * pager routine locked by object's lock
135 struct object_q vm_object_list;
136 static long vm_object_count; /* count of all objects */
137 vm_object_t kernel_object;
138 vm_object_t kmem_object;
139 static struct vm_object kernel_object_store;
140 static struct vm_object kmem_object_store;
141 extern int vm_pageout_page_count;
143 static long object_collapses;
144 static long object_bypasses;
145 static int next_index;
146 static vm_zone_t obj_zone;
147 static struct vm_zone obj_zone_store;
148 static int object_hash_rand;
149 #define VM_OBJECTS_INIT 256
150 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
152 void
153 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
155 int incr;
156 TAILQ_INIT(&object->memq);
157 LIST_INIT(&object->shadow_head);
159 object->type = type;
160 object->size = size;
161 object->ref_count = 1;
162 object->flags = 0;
163 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164 vm_object_set_flag(object, OBJ_ONEMAPPING);
165 object->paging_in_progress = 0;
166 object->resident_page_count = 0;
167 object->shadow_count = 0;
168 object->pg_color = next_index;
169 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
170 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
171 else
172 incr = size;
173 next_index = (next_index + incr) & PQ_L2_MASK;
174 object->handle = NULL;
175 object->backing_object = NULL;
176 object->backing_object_offset = (vm_ooffset_t) 0;
178 * Try to generate a number that will spread objects out in the
179 * hash table. We 'wipe' new objects across the hash in 128 page
180 * increments plus 1 more to offset it a little more by the time
181 * it wraps around.
183 object->hash_rand = object_hash_rand - 129;
185 object->generation++;
187 crit_enter();
188 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
189 vm_object_count++;
190 object_hash_rand = object->hash_rand;
191 crit_exit();
195 * vm_object_init:
197 * Initialize the VM objects module.
199 void
200 vm_object_init(void)
202 TAILQ_INIT(&vm_object_list);
204 kernel_object = &kernel_object_store;
205 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
206 kernel_object);
208 kmem_object = &kmem_object_store;
209 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
210 kmem_object);
212 obj_zone = &obj_zone_store;
213 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
214 vm_objects_init, VM_OBJECTS_INIT);
217 void
218 vm_object_init2(void)
220 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
224 * vm_object_allocate:
226 * Returns a new object with the given size.
229 vm_object_t
230 vm_object_allocate(objtype_t type, vm_size_t size)
232 vm_object_t result;
234 result = (vm_object_t) zalloc(obj_zone);
236 _vm_object_allocate(type, size, result);
238 return (result);
243 * vm_object_reference:
245 * Gets another reference to the given object.
247 void
248 vm_object_reference(vm_object_t object)
250 if (object == NULL)
251 return;
253 #if 0
254 /* object can be re-referenced during final cleaning */
255 KASSERT(!(object->flags & OBJ_DEAD),
256 ("vm_object_reference: attempting to reference dead obj"));
257 #endif
259 object->ref_count++;
260 if (object->type == OBJT_VNODE) {
261 vref(object->handle);
262 /* XXX what if the vnode is being destroyed? */
263 #if 0
264 while (vget((struct vnode *) object->handle,
265 LK_RETRY|LK_NOOBJ, curthread)) {
266 printf("vm_object_reference: delay in getting object\n");
268 #endif
272 void
273 vm_object_vndeallocate(vm_object_t object)
275 struct vnode *vp = (struct vnode *) object->handle;
277 KASSERT(object->type == OBJT_VNODE,
278 ("vm_object_vndeallocate: not a vnode object"));
279 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
280 #ifdef INVARIANTS
281 if (object->ref_count == 0) {
282 vprint("vm_object_vndeallocate", vp);
283 panic("vm_object_vndeallocate: bad object reference count");
285 #endif
287 object->ref_count--;
288 if (object->ref_count == 0) {
289 vp->v_flag &= ~VTEXT;
290 vm_object_clear_flag(object, OBJ_OPT);
292 vrele(vp);
296 * vm_object_deallocate:
298 * Release a reference to the specified object,
299 * gained either through a vm_object_allocate
300 * or a vm_object_reference call. When all references
301 * are gone, storage associated with this object
302 * may be relinquished.
304 * No object may be locked.
306 void
307 vm_object_deallocate(vm_object_t object)
309 vm_object_t temp;
311 while (object != NULL) {
313 if (object->type == OBJT_VNODE) {
314 vm_object_vndeallocate(object);
315 return;
318 if (object->ref_count == 0) {
319 panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
320 } else if (object->ref_count > 2) {
321 object->ref_count--;
322 return;
326 * Here on ref_count of one or two, which are special cases for
327 * objects.
329 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
330 vm_object_set_flag(object, OBJ_ONEMAPPING);
331 object->ref_count--;
332 return;
333 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
334 object->ref_count--;
335 if ((object->handle == NULL) &&
336 (object->type == OBJT_DEFAULT ||
337 object->type == OBJT_SWAP)) {
338 vm_object_t robject;
340 robject = LIST_FIRST(&object->shadow_head);
341 KASSERT(robject != NULL,
342 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
343 object->ref_count,
344 object->shadow_count));
345 if ((robject->handle == NULL) &&
346 (robject->type == OBJT_DEFAULT ||
347 robject->type == OBJT_SWAP)) {
349 robject->ref_count++;
351 while (
352 robject->paging_in_progress ||
353 object->paging_in_progress
355 vm_object_pip_sleep(robject, "objde1");
356 vm_object_pip_sleep(object, "objde2");
359 if (robject->ref_count == 1) {
360 robject->ref_count--;
361 object = robject;
362 goto doterm;
365 object = robject;
366 vm_object_collapse(object);
367 continue;
371 return;
373 } else {
374 object->ref_count--;
375 if (object->ref_count != 0)
376 return;
379 doterm:
381 temp = object->backing_object;
382 if (temp) {
383 LIST_REMOVE(object, shadow_list);
384 temp->shadow_count--;
385 if (temp->ref_count == 0)
386 vm_object_clear_flag(temp, OBJ_OPT);
387 temp->generation++;
388 object->backing_object = NULL;
392 * Don't double-terminate, we could be in a termination
393 * recursion due to the terminate having to sync data
394 * to disk.
396 if ((object->flags & OBJ_DEAD) == 0)
397 vm_object_terminate(object);
398 object = temp;
403 * vm_object_terminate actually destroys the specified object, freeing
404 * up all previously used resources.
406 * The object must be locked.
407 * This routine may block.
409 void
410 vm_object_terminate(vm_object_t object)
412 vm_page_t p;
415 * Make sure no one uses us.
417 vm_object_set_flag(object, OBJ_DEAD);
420 * wait for the pageout daemon to be done with the object
422 vm_object_pip_wait(object, "objtrm");
424 KASSERT(!object->paging_in_progress,
425 ("vm_object_terminate: pageout in progress"));
428 * Clean and free the pages, as appropriate. All references to the
429 * object are gone, so we don't need to lock it.
431 if (object->type == OBJT_VNODE) {
432 struct vnode *vp;
435 * Freeze optimized copies.
437 vm_freeze_copyopts(object, 0, object->size);
440 * Clean pages and flush buffers.
442 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
444 vp = (struct vnode *) object->handle;
445 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
449 * Wait for any I/O to complete, after which there had better not
450 * be any references left on the object.
452 vm_object_pip_wait(object, "objtrm");
454 if (object->ref_count != 0)
455 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
458 * Now free any remaining pages. For internal objects, this also
459 * removes them from paging queues. Don't free wired pages, just
460 * remove them from the object.
462 crit_enter();
463 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
464 if (p->busy || (p->flags & PG_BUSY))
465 panic("vm_object_terminate: freeing busy page %p", p);
466 if (p->wire_count == 0) {
467 vm_page_busy(p);
468 vm_page_free(p);
469 mycpu->gd_cnt.v_pfree++;
470 } else {
471 vm_page_busy(p);
472 vm_page_remove(p);
473 vm_page_wakeup(p);
476 crit_exit();
479 * Let the pager know object is dead.
481 vm_pager_deallocate(object);
484 * Remove the object from the global object list.
486 crit_enter();
487 TAILQ_REMOVE(&vm_object_list, object, object_list);
488 vm_object_count--;
489 crit_exit();
491 wakeup(object);
492 if (object->ref_count != 0)
493 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
496 * Free the space for the object.
498 zfree(obj_zone, object);
502 * vm_object_page_clean
504 * Clean all dirty pages in the specified range of object. Leaves page
505 * on whatever queue it is currently on. If NOSYNC is set then do not
506 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
507 * leaving the object dirty.
509 * When stuffing pages asynchronously, allow clustering. XXX we need a
510 * synchronous clustering mode implementation.
512 * Odd semantics: if start == end, we clean everything.
515 void
516 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
517 int flags)
519 vm_page_t p, np;
520 vm_offset_t tstart, tend;
521 vm_pindex_t pi;
522 struct vnode *vp;
523 int clearobjflags;
524 int pagerflags;
525 int curgeneration;
527 if (object->type != OBJT_VNODE ||
528 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
529 return;
531 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
532 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
534 vp = object->handle;
536 vm_object_set_flag(object, OBJ_CLEANING);
539 * Handle 'entire object' case
541 tstart = start;
542 if (end == 0) {
543 tend = object->size;
544 } else {
545 tend = end;
549 * If the caller is smart and only msync()s a range he knows is
550 * dirty, we may be able to avoid an object scan. This results in
551 * a phenominal improvement in performance. We cannot do this
552 * as a matter of course because the object may be huge - e.g.
553 * the size might be in the gigabytes or terrabytes.
555 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
556 vm_offset_t tscan;
557 int scanlimit;
558 int scanreset;
560 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
561 if (scanreset < 16)
562 scanreset = 16;
563 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
565 scanlimit = scanreset;
566 tscan = tstart;
569 * spl protection is required despite the obj generation
570 * tracking because we cannot safely call vm_page_test_dirty()
571 * or avoid page field tests against an interrupt unbusy/free
572 * race that might occur prior to the busy check in
573 * vm_object_page_collect_flush().
575 crit_enter();
576 while (tscan < tend) {
577 curgeneration = object->generation;
578 p = vm_page_lookup(object, tscan);
579 if (p == NULL || p->valid == 0 ||
580 (p->queue - p->pc) == PQ_CACHE) {
581 if (--scanlimit == 0)
582 break;
583 ++tscan;
584 continue;
586 vm_page_test_dirty(p);
587 if ((p->dirty & p->valid) == 0) {
588 if (--scanlimit == 0)
589 break;
590 ++tscan;
591 continue;
594 * If we have been asked to skip nosync pages and
595 * this is a nosync page, we can't continue.
597 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
598 if (--scanlimit == 0)
599 break;
600 ++tscan;
601 continue;
603 scanlimit = scanreset;
606 * This returns 0 if it was unable to busy the first
607 * page (i.e. had to sleep).
609 tscan += vm_object_page_collect_flush(object, p,
610 curgeneration, pagerflags);
612 crit_exit();
615 * If everything was dirty and we flushed it successfully,
616 * and the requested range is not the entire object, we
617 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
618 * return immediately.
620 if (tscan >= tend && (tstart || tend < object->size)) {
621 vm_object_clear_flag(object, OBJ_CLEANING);
622 return;
624 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
628 * Generally set CLEANCHK interlock and make the page read-only so
629 * we can then clear the object flags.
631 * However, if this is a nosync mmap then the object is likely to
632 * stay dirty so do not mess with the page and do not clear the
633 * object flags.
635 * spl protection is required because an interrupt can remove page
636 * from the object.
638 clearobjflags = 1;
640 crit_enter();
641 for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
642 vm_page_flag_set(p, PG_CLEANCHK);
643 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
644 clearobjflags = 0;
645 else
646 vm_page_protect(p, VM_PROT_READ);
648 crit_exit();
650 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
651 struct vnode *vp;
653 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
654 if (object->type == OBJT_VNODE &&
655 (vp = (struct vnode *)object->handle) != NULL) {
656 if (vp->v_flag & VOBJDIRTY)
657 vclrflags(vp, VOBJDIRTY);
662 * spl protection is required both to avoid an interrupt unbusy/free
663 * race against a vm_page_lookup(), and also to ensure that the
664 * memq is consistent. We do not want a busy page to be ripped out
665 * from under us.
667 crit_enter();
668 rescan:
669 crit_exit();
670 crit_enter();
671 curgeneration = object->generation;
673 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
674 int n;
676 np = TAILQ_NEXT(p, listq);
678 again:
679 pi = p->pindex;
680 if (((p->flags & PG_CLEANCHK) == 0) ||
681 (pi < tstart) || (pi >= tend) ||
682 (p->valid == 0) ||
683 ((p->queue - p->pc) == PQ_CACHE)) {
684 vm_page_flag_clear(p, PG_CLEANCHK);
685 continue;
688 vm_page_test_dirty(p);
689 if ((p->dirty & p->valid) == 0) {
690 vm_page_flag_clear(p, PG_CLEANCHK);
691 continue;
695 * If we have been asked to skip nosync pages and this is a
696 * nosync page, skip it. Note that the object flags were
697 * not cleared in this case so we do not have to set them.
699 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
700 vm_page_flag_clear(p, PG_CLEANCHK);
701 continue;
704 n = vm_object_page_collect_flush(object, p,
705 curgeneration, pagerflags);
706 if (n == 0)
707 goto rescan;
708 if (object->generation != curgeneration)
709 goto rescan;
712 * Try to optimize the next page. If we can't we pick up
713 * our (random) scan where we left off.
715 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
716 if ((p = vm_page_lookup(object, pi + n)) != NULL)
717 goto again;
720 crit_exit();
722 #if 0
723 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
724 #endif
726 vm_object_clear_flag(object, OBJ_CLEANING);
727 return;
731 * This routine must be called within a critical section to properly avoid
732 * an interrupt unbusy/free race that can occur prior to the busy check.
734 * Using the object generation number here to detect page ripout is not
735 * the best idea in the world. XXX
737 * NOTE: we operate under the assumption that a page found to not be busy
738 * will not be ripped out from under us by an interrupt. XXX we should
739 * recode this to explicitly busy the pages.
741 static int
742 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
744 int runlen;
745 int maxf;
746 int chkb;
747 int maxb;
748 int i;
749 vm_pindex_t pi;
750 vm_page_t maf[vm_pageout_page_count];
751 vm_page_t mab[vm_pageout_page_count];
752 vm_page_t ma[vm_pageout_page_count];
754 pi = p->pindex;
755 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
756 if (object->generation != curgeneration) {
757 return(0);
761 maxf = 0;
762 for(i = 1; i < vm_pageout_page_count; i++) {
763 vm_page_t tp;
765 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
766 if ((tp->flags & PG_BUSY) ||
767 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
768 (tp->flags & PG_CLEANCHK) == 0) ||
769 (tp->busy != 0))
770 break;
771 if((tp->queue - tp->pc) == PQ_CACHE) {
772 vm_page_flag_clear(tp, PG_CLEANCHK);
773 break;
775 vm_page_test_dirty(tp);
776 if ((tp->dirty & tp->valid) == 0) {
777 vm_page_flag_clear(tp, PG_CLEANCHK);
778 break;
780 maf[ i - 1 ] = tp;
781 maxf++;
782 continue;
784 break;
787 maxb = 0;
788 chkb = vm_pageout_page_count - maxf;
789 if (chkb) {
790 for(i = 1; i < chkb;i++) {
791 vm_page_t tp;
793 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
794 if ((tp->flags & PG_BUSY) ||
795 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
796 (tp->flags & PG_CLEANCHK) == 0) ||
797 (tp->busy != 0))
798 break;
799 if((tp->queue - tp->pc) == PQ_CACHE) {
800 vm_page_flag_clear(tp, PG_CLEANCHK);
801 break;
803 vm_page_test_dirty(tp);
804 if ((tp->dirty & tp->valid) == 0) {
805 vm_page_flag_clear(tp, PG_CLEANCHK);
806 break;
808 mab[ i - 1 ] = tp;
809 maxb++;
810 continue;
812 break;
816 for(i = 0; i < maxb; i++) {
817 int index = (maxb - i) - 1;
818 ma[index] = mab[i];
819 vm_page_flag_clear(ma[index], PG_CLEANCHK);
821 vm_page_flag_clear(p, PG_CLEANCHK);
822 ma[maxb] = p;
823 for(i = 0; i < maxf; i++) {
824 int index = (maxb + i) + 1;
825 ma[index] = maf[i];
826 vm_page_flag_clear(ma[index], PG_CLEANCHK);
828 runlen = maxb + maxf + 1;
830 vm_pageout_flush(ma, runlen, pagerflags);
831 for (i = 0; i < runlen; i++) {
832 if (ma[i]->valid & ma[i]->dirty) {
833 vm_page_protect(ma[i], VM_PROT_READ);
834 vm_page_flag_set(ma[i], PG_CLEANCHK);
837 * maxf will end up being the actual number of pages
838 * we wrote out contiguously, non-inclusive of the
839 * first page. We do not count look-behind pages.
841 if (i >= maxb + 1 && (maxf > i - maxb - 1))
842 maxf = i - maxb - 1;
845 return(maxf + 1);
848 #ifdef not_used
849 /* XXX I cannot tell if this should be an exported symbol */
851 * vm_object_deactivate_pages
853 * Deactivate all pages in the specified object. (Keep its pages
854 * in memory even though it is no longer referenced.)
856 * The object must be locked.
858 static void
859 vm_object_deactivate_pages(vm_object_t object)
861 vm_page_t p, next;
862 int s;
864 crit_enter();
865 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
866 next = TAILQ_NEXT(p, listq);
867 vm_page_deactivate(p);
869 crit_exit();
871 #endif
874 * Same as vm_object_pmap_copy, except range checking really
875 * works, and is meant for small sections of an object.
877 * This code protects resident pages by making them read-only
878 * and is typically called on a fork or split when a page
879 * is converted to copy-on-write.
881 * NOTE: If the page is already at VM_PROT_NONE, calling
882 * vm_page_protect will have no effect.
884 void
885 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
887 vm_pindex_t idx;
888 vm_page_t p;
890 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
891 return;
894 * spl protection needed to prevent races between the lookup,
895 * an interrupt unbusy/free, and our protect call.
897 crit_enter();
898 for (idx = start; idx < end; idx++) {
899 p = vm_page_lookup(object, idx);
900 if (p == NULL)
901 continue;
902 vm_page_protect(p, VM_PROT_READ);
904 crit_exit();
908 * vm_object_pmap_remove:
910 * Removes all physical pages in the specified
911 * object range from all physical maps.
913 * The object must *not* be locked.
915 void
916 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
918 vm_page_t p;
920 if (object == NULL)
921 return;
924 * spl protection is required because an interrupt can unbusy/free
925 * a page.
927 crit_enter();
928 for (p = TAILQ_FIRST(&object->memq);
929 p != NULL;
930 p = TAILQ_NEXT(p, listq)
932 if (p->pindex >= start && p->pindex < end)
933 vm_page_protect(p, VM_PROT_NONE);
935 crit_exit();
936 if ((start == 0) && (object->size == end))
937 vm_object_clear_flag(object, OBJ_WRITEABLE);
941 * vm_object_madvise:
943 * Implements the madvise function at the object/page level.
945 * MADV_WILLNEED (any object)
947 * Activate the specified pages if they are resident.
949 * MADV_DONTNEED (any object)
951 * Deactivate the specified pages if they are resident.
953 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
954 * OBJ_ONEMAPPING only)
956 * Deactivate and clean the specified pages if they are
957 * resident. This permits the process to reuse the pages
958 * without faulting or the kernel to reclaim the pages
959 * without I/O.
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
964 vm_pindex_t end, tpindex;
965 vm_object_t tobject;
966 vm_page_t m;
968 if (object == NULL)
969 return;
971 end = pindex + count;
974 * Locate and adjust resident pages
977 for (; pindex < end; pindex += 1) {
978 relookup:
979 tobject = object;
980 tpindex = pindex;
981 shadowlookup:
983 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
984 * and those pages must be OBJ_ONEMAPPING.
986 if (advise == MADV_FREE) {
987 if ((tobject->type != OBJT_DEFAULT &&
988 tobject->type != OBJT_SWAP) ||
989 (tobject->flags & OBJ_ONEMAPPING) == 0) {
990 continue;
995 * spl protection is required to avoid a race between the
996 * lookup, an interrupt unbusy/free, and our busy check.
999 crit_enter();
1000 m = vm_page_lookup(tobject, tpindex);
1002 if (m == NULL) {
1004 * There may be swap even if there is no backing page
1006 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1007 swap_pager_freespace(tobject, tpindex, 1);
1010 * next object
1012 crit_exit();
1013 if (tobject->backing_object == NULL)
1014 continue;
1015 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1016 tobject = tobject->backing_object;
1017 goto shadowlookup;
1021 * If the page is busy or not in a normal active state,
1022 * we skip it. If the page is not managed there are no
1023 * page queues to mess with. Things can break if we mess
1024 * with pages in any of the below states.
1026 if (
1027 m->hold_count ||
1028 m->wire_count ||
1029 (m->flags & PG_UNMANAGED) ||
1030 m->valid != VM_PAGE_BITS_ALL
1032 crit_exit();
1033 continue;
1036 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1037 crit_exit();
1038 goto relookup;
1040 crit_exit();
1043 * Theoretically once a page is known not to be busy, an
1044 * interrupt cannot come along and rip it out from under us.
1047 if (advise == MADV_WILLNEED) {
1048 vm_page_activate(m);
1049 } else if (advise == MADV_DONTNEED) {
1050 vm_page_dontneed(m);
1051 } else if (advise == MADV_FREE) {
1053 * Mark the page clean. This will allow the page
1054 * to be freed up by the system. However, such pages
1055 * are often reused quickly by malloc()/free()
1056 * so we do not do anything that would cause
1057 * a page fault if we can help it.
1059 * Specifically, we do not try to actually free
1060 * the page now nor do we try to put it in the
1061 * cache (which would cause a page fault on reuse).
1063 * But we do make the page is freeable as we
1064 * can without actually taking the step of unmapping
1065 * it.
1067 pmap_clear_modify(m);
1068 m->dirty = 0;
1069 m->act_count = 0;
1070 vm_page_dontneed(m);
1071 if (tobject->type == OBJT_SWAP)
1072 swap_pager_freespace(tobject, tpindex, 1);
1078 * vm_object_shadow:
1080 * Create a new object which is backed by the
1081 * specified existing object range. The source
1082 * object reference is deallocated.
1084 * The new object and offset into that object
1085 * are returned in the source parameters.
1088 void
1089 vm_object_shadow(vm_object_t *object, /* IN/OUT */
1090 vm_ooffset_t *offset, /* IN/OUT */
1091 vm_size_t length)
1093 vm_object_t source;
1094 vm_object_t result;
1096 source = *object;
1099 * Don't create the new object if the old object isn't shared.
1102 if (source != NULL &&
1103 source->ref_count == 1 &&
1104 source->handle == NULL &&
1105 (source->type == OBJT_DEFAULT ||
1106 source->type == OBJT_SWAP))
1107 return;
1110 * Allocate a new object with the given length
1113 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1114 panic("vm_object_shadow: no object for shadowing");
1117 * The new object shadows the source object, adding a reference to it.
1118 * Our caller changes his reference to point to the new object,
1119 * removing a reference to the source object. Net result: no change
1120 * of reference count.
1122 * Try to optimize the result object's page color when shadowing
1123 * in order to maintain page coloring consistency in the combined
1124 * shadowed object.
1126 result->backing_object = source;
1127 if (source) {
1128 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1129 source->shadow_count++;
1130 source->generation++;
1131 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1135 * Store the offset into the source object, and fix up the offset into
1136 * the new object.
1139 result->backing_object_offset = *offset;
1142 * Return the new things
1145 *offset = 0;
1146 *object = result;
1149 #define OBSC_TEST_ALL_SHADOWED 0x0001
1150 #define OBSC_COLLAPSE_NOWAIT 0x0002
1151 #define OBSC_COLLAPSE_WAIT 0x0004
1153 static __inline int
1154 vm_object_backing_scan(vm_object_t object, int op)
1156 int r = 1;
1157 vm_page_t p;
1158 vm_object_t backing_object;
1159 vm_pindex_t backing_offset_index;
1162 * spl protection is required to avoid races between the memq/lookup,
1163 * an interrupt doing an unbusy/free, and our busy check. Amoung
1164 * other things.
1166 crit_enter();
1168 backing_object = object->backing_object;
1169 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1172 * Initial conditions
1175 if (op & OBSC_TEST_ALL_SHADOWED) {
1177 * We do not want to have to test for the existence of
1178 * swap pages in the backing object. XXX but with the
1179 * new swapper this would be pretty easy to do.
1181 * XXX what about anonymous MAP_SHARED memory that hasn't
1182 * been ZFOD faulted yet? If we do not test for this, the
1183 * shadow test may succeed! XXX
1185 if (backing_object->type != OBJT_DEFAULT) {
1186 crit_exit();
1187 return(0);
1190 if (op & OBSC_COLLAPSE_WAIT) {
1191 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1192 vm_object_set_flag(backing_object, OBJ_DEAD);
1196 * Our scan
1199 p = TAILQ_FIRST(&backing_object->memq);
1200 while (p) {
1201 vm_page_t next = TAILQ_NEXT(p, listq);
1202 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1204 if (op & OBSC_TEST_ALL_SHADOWED) {
1205 vm_page_t pp;
1208 * Ignore pages outside the parent object's range
1209 * and outside the parent object's mapping of the
1210 * backing object.
1212 * note that we do not busy the backing object's
1213 * page.
1216 if (
1217 p->pindex < backing_offset_index ||
1218 new_pindex >= object->size
1220 p = next;
1221 continue;
1225 * See if the parent has the page or if the parent's
1226 * object pager has the page. If the parent has the
1227 * page but the page is not valid, the parent's
1228 * object pager must have the page.
1230 * If this fails, the parent does not completely shadow
1231 * the object and we might as well give up now.
1234 pp = vm_page_lookup(object, new_pindex);
1235 if (
1236 (pp == NULL || pp->valid == 0) &&
1237 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1239 r = 0;
1240 break;
1245 * Check for busy page
1248 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1249 vm_page_t pp;
1251 if (op & OBSC_COLLAPSE_NOWAIT) {
1252 if (
1253 (p->flags & PG_BUSY) ||
1254 !p->valid ||
1255 p->hold_count ||
1256 p->wire_count ||
1257 p->busy
1259 p = next;
1260 continue;
1262 } else if (op & OBSC_COLLAPSE_WAIT) {
1263 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1265 * If we slept, anything could have
1266 * happened. Since the object is
1267 * marked dead, the backing offset
1268 * should not have changed so we
1269 * just restart our scan.
1271 p = TAILQ_FIRST(&backing_object->memq);
1272 continue;
1277 * Busy the page
1279 vm_page_busy(p);
1281 KASSERT(
1282 p->object == backing_object,
1283 ("vm_object_qcollapse(): object mismatch")
1287 * Destroy any associated swap
1289 if (backing_object->type == OBJT_SWAP) {
1290 swap_pager_freespace(
1291 backing_object,
1292 p->pindex,
1297 if (
1298 p->pindex < backing_offset_index ||
1299 new_pindex >= object->size
1302 * Page is out of the parent object's range, we
1303 * can simply destroy it.
1305 vm_page_protect(p, VM_PROT_NONE);
1306 vm_page_free(p);
1307 p = next;
1308 continue;
1311 pp = vm_page_lookup(object, new_pindex);
1312 if (
1313 pp != NULL ||
1314 vm_pager_has_page(object, new_pindex, NULL, NULL)
1317 * page already exists in parent OR swap exists
1318 * for this location in the parent. Destroy
1319 * the original page from the backing object.
1321 * Leave the parent's page alone
1323 vm_page_protect(p, VM_PROT_NONE);
1324 vm_page_free(p);
1325 p = next;
1326 continue;
1330 * Page does not exist in parent, rename the
1331 * page from the backing object to the main object.
1333 * If the page was mapped to a process, it can remain
1334 * mapped through the rename.
1336 if ((p->queue - p->pc) == PQ_CACHE)
1337 vm_page_deactivate(p);
1339 vm_page_rename(p, object, new_pindex);
1340 /* page automatically made dirty by rename */
1342 p = next;
1344 crit_exit();
1345 return(r);
1350 * this version of collapse allows the operation to occur earlier and
1351 * when paging_in_progress is true for an object... This is not a complete
1352 * operation, but should plug 99.9% of the rest of the leaks.
1354 static void
1355 vm_object_qcollapse(vm_object_t object)
1357 vm_object_t backing_object = object->backing_object;
1359 if (backing_object->ref_count != 1)
1360 return;
1362 backing_object->ref_count += 2;
1364 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1366 backing_object->ref_count -= 2;
1370 * vm_object_collapse:
1372 * Collapse an object with the object backing it.
1373 * Pages in the backing object are moved into the
1374 * parent, and the backing object is deallocated.
1376 void
1377 vm_object_collapse(vm_object_t object)
1379 while (TRUE) {
1380 vm_object_t backing_object;
1383 * Verify that the conditions are right for collapse:
1385 * The object exists and the backing object exists.
1387 if (object == NULL)
1388 break;
1390 if ((backing_object = object->backing_object) == NULL)
1391 break;
1394 * we check the backing object first, because it is most likely
1395 * not collapsable.
1397 if (backing_object->handle != NULL ||
1398 (backing_object->type != OBJT_DEFAULT &&
1399 backing_object->type != OBJT_SWAP) ||
1400 (backing_object->flags & OBJ_DEAD) ||
1401 object->handle != NULL ||
1402 (object->type != OBJT_DEFAULT &&
1403 object->type != OBJT_SWAP) ||
1404 (object->flags & OBJ_DEAD)) {
1405 break;
1408 if (
1409 object->paging_in_progress != 0 ||
1410 backing_object->paging_in_progress != 0
1412 vm_object_qcollapse(object);
1413 break;
1417 * We know that we can either collapse the backing object (if
1418 * the parent is the only reference to it) or (perhaps) have
1419 * the parent bypass the object if the parent happens to shadow
1420 * all the resident pages in the entire backing object.
1422 * This is ignoring pager-backed pages such as swap pages.
1423 * vm_object_backing_scan fails the shadowing test in this
1424 * case.
1427 if (backing_object->ref_count == 1) {
1429 * If there is exactly one reference to the backing
1430 * object, we can collapse it into the parent.
1432 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1435 * Move the pager from backing_object to object.
1438 if (backing_object->type == OBJT_SWAP) {
1439 vm_object_pip_add(backing_object, 1);
1442 * scrap the paging_offset junk and do a
1443 * discrete copy. This also removes major
1444 * assumptions about how the swap-pager
1445 * works from where it doesn't belong. The
1446 * new swapper is able to optimize the
1447 * destroy-source case.
1450 vm_object_pip_add(object, 1);
1451 swap_pager_copy(
1452 backing_object,
1453 object,
1454 OFF_TO_IDX(object->backing_object_offset), TRUE);
1455 vm_object_pip_wakeup(object);
1457 vm_object_pip_wakeup(backing_object);
1460 * Object now shadows whatever backing_object did.
1461 * Note that the reference to
1462 * backing_object->backing_object moves from within
1463 * backing_object to within object.
1466 LIST_REMOVE(object, shadow_list);
1467 object->backing_object->shadow_count--;
1468 object->backing_object->generation++;
1469 if (backing_object->backing_object) {
1470 LIST_REMOVE(backing_object, shadow_list);
1471 backing_object->backing_object->shadow_count--;
1472 backing_object->backing_object->generation++;
1474 object->backing_object = backing_object->backing_object;
1475 if (object->backing_object) {
1476 LIST_INSERT_HEAD(
1477 &object->backing_object->shadow_head,
1478 object,
1479 shadow_list
1481 object->backing_object->shadow_count++;
1482 object->backing_object->generation++;
1485 object->backing_object_offset +=
1486 backing_object->backing_object_offset;
1489 * Discard backing_object.
1491 * Since the backing object has no pages, no pager left,
1492 * and no object references within it, all that is
1493 * necessary is to dispose of it.
1496 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1497 KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1498 crit_enter();
1499 TAILQ_REMOVE(
1500 &vm_object_list,
1501 backing_object,
1502 object_list
1504 vm_object_count--;
1505 crit_exit();
1507 zfree(obj_zone, backing_object);
1509 object_collapses++;
1510 } else {
1511 vm_object_t new_backing_object;
1514 * If we do not entirely shadow the backing object,
1515 * there is nothing we can do so we give up.
1518 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1519 break;
1523 * Make the parent shadow the next object in the
1524 * chain. Deallocating backing_object will not remove
1525 * it, since its reference count is at least 2.
1528 LIST_REMOVE(object, shadow_list);
1529 backing_object->shadow_count--;
1530 backing_object->generation++;
1532 new_backing_object = backing_object->backing_object;
1533 if ((object->backing_object = new_backing_object) != NULL) {
1534 vm_object_reference(new_backing_object);
1535 LIST_INSERT_HEAD(
1536 &new_backing_object->shadow_head,
1537 object,
1538 shadow_list
1540 new_backing_object->shadow_count++;
1541 new_backing_object->generation++;
1542 object->backing_object_offset +=
1543 backing_object->backing_object_offset;
1547 * Drop the reference count on backing_object. Since
1548 * its ref_count was at least 2, it will not vanish;
1549 * so we don't need to call vm_object_deallocate, but
1550 * we do anyway.
1552 vm_object_deallocate(backing_object);
1553 object_bypasses++;
1557 * Try again with this object's new backing object.
1563 * vm_object_page_remove: [internal]
1565 * Removes all physical pages in the specified
1566 * object range from the object's list of pages.
1568 void
1569 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1570 boolean_t clean_only)
1572 vm_page_t p, next;
1573 unsigned int size;
1574 int all;
1576 if (object == NULL || object->resident_page_count == 0)
1577 return;
1579 all = ((end == 0) && (start == 0));
1582 * Since physically-backed objects do not use managed pages, we can't
1583 * remove pages from the object (we must instead remove the page
1584 * references, and then destroy the object).
1586 KASSERT(object->type != OBJT_PHYS,
1587 ("attempt to remove pages from a physical object"));
1590 * Indicating that the object is undergoing paging.
1592 * spl protection is required to avoid a race between the memq scan,
1593 * an interrupt unbusy/free, and the busy check.
1595 vm_object_pip_add(object, 1);
1596 crit_enter();
1597 again:
1598 size = end - start;
1599 if (all || size > object->resident_page_count / 4) {
1600 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1601 next = TAILQ_NEXT(p, listq);
1602 if (all || ((start <= p->pindex) && (p->pindex < end))) {
1603 if (p->wire_count != 0) {
1604 vm_page_protect(p, VM_PROT_NONE);
1605 if (!clean_only)
1606 p->valid = 0;
1607 continue;
1611 * The busy flags are only cleared at
1612 * interrupt -- minimize the spl transitions
1615 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1616 goto again;
1618 if (clean_only && p->valid) {
1619 vm_page_test_dirty(p);
1620 if (p->valid & p->dirty)
1621 continue;
1624 vm_page_busy(p);
1625 vm_page_protect(p, VM_PROT_NONE);
1626 vm_page_free(p);
1629 } else {
1630 while (size > 0) {
1631 if ((p = vm_page_lookup(object, start)) != 0) {
1632 if (p->wire_count != 0) {
1633 vm_page_protect(p, VM_PROT_NONE);
1634 if (!clean_only)
1635 p->valid = 0;
1636 start += 1;
1637 size -= 1;
1638 continue;
1642 * The busy flags are only cleared at
1643 * interrupt -- minimize the spl transitions
1645 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1646 goto again;
1648 if (clean_only && p->valid) {
1649 vm_page_test_dirty(p);
1650 if (p->valid & p->dirty) {
1651 start += 1;
1652 size -= 1;
1653 continue;
1657 vm_page_busy(p);
1658 vm_page_protect(p, VM_PROT_NONE);
1659 vm_page_free(p);
1661 start += 1;
1662 size -= 1;
1665 crit_exit();
1666 vm_object_pip_wakeup(object);
1670 * Routine: vm_object_coalesce
1671 * Function: Coalesces two objects backing up adjoining
1672 * regions of memory into a single object.
1674 * returns TRUE if objects were combined.
1676 * NOTE: Only works at the moment if the second object is NULL -
1677 * if it's not, which object do we lock first?
1679 * Parameters:
1680 * prev_object First object to coalesce
1681 * prev_offset Offset into prev_object
1682 * next_object Second object into coalesce
1683 * next_offset Offset into next_object
1685 * prev_size Size of reference to prev_object
1686 * next_size Size of reference to next_object
1688 * Conditions:
1689 * The object must *not* be locked.
1691 boolean_t
1692 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1693 vm_size_t prev_size, vm_size_t next_size)
1695 vm_pindex_t next_pindex;
1697 if (prev_object == NULL) {
1698 return (TRUE);
1701 if (prev_object->type != OBJT_DEFAULT &&
1702 prev_object->type != OBJT_SWAP) {
1703 return (FALSE);
1707 * Try to collapse the object first
1709 vm_object_collapse(prev_object);
1712 * Can't coalesce if: . more than one reference . paged out . shadows
1713 * another object . has a copy elsewhere (any of which mean that the
1714 * pages not mapped to prev_entry may be in use anyway)
1717 if (prev_object->backing_object != NULL) {
1718 return (FALSE);
1721 prev_size >>= PAGE_SHIFT;
1722 next_size >>= PAGE_SHIFT;
1723 next_pindex = prev_pindex + prev_size;
1725 if ((prev_object->ref_count > 1) &&
1726 (prev_object->size != next_pindex)) {
1727 return (FALSE);
1731 * Remove any pages that may still be in the object from a previous
1732 * deallocation.
1734 if (next_pindex < prev_object->size) {
1735 vm_object_page_remove(prev_object,
1736 next_pindex,
1737 next_pindex + next_size, FALSE);
1738 if (prev_object->type == OBJT_SWAP)
1739 swap_pager_freespace(prev_object,
1740 next_pindex, next_size);
1744 * Extend the object if necessary.
1746 if (next_pindex + next_size > prev_object->size)
1747 prev_object->size = next_pindex + next_size;
1749 return (TRUE);
1752 void
1753 vm_object_set_writeable_dirty(vm_object_t object)
1755 struct vnode *vp;
1757 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1758 if (object->type == OBJT_VNODE &&
1759 (vp = (struct vnode *)object->handle) != NULL) {
1760 if ((vp->v_flag & VOBJDIRTY) == 0) {
1761 vsetflags(vp, VOBJDIRTY);
1768 #include "opt_ddb.h"
1769 #ifdef DDB
1770 #include <sys/kernel.h>
1772 #include <sys/cons.h>
1774 #include <ddb/ddb.h>
1776 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1777 vm_map_entry_t entry);
1778 static int vm_object_in_map (vm_object_t object);
1780 static int
1781 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1783 vm_map_t tmpm;
1784 vm_map_entry_t tmpe;
1785 vm_object_t obj;
1786 int entcount;
1788 if (map == 0)
1789 return 0;
1791 if (entry == 0) {
1792 tmpe = map->header.next;
1793 entcount = map->nentries;
1794 while (entcount-- && (tmpe != &map->header)) {
1795 if( _vm_object_in_map(map, object, tmpe)) {
1796 return 1;
1798 tmpe = tmpe->next;
1800 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1801 tmpm = entry->object.sub_map;
1802 tmpe = tmpm->header.next;
1803 entcount = tmpm->nentries;
1804 while (entcount-- && tmpe != &tmpm->header) {
1805 if( _vm_object_in_map(tmpm, object, tmpe)) {
1806 return 1;
1808 tmpe = tmpe->next;
1810 } else if ((obj = entry->object.vm_object) != NULL) {
1811 for(; obj; obj=obj->backing_object)
1812 if( obj == object) {
1813 return 1;
1816 return 0;
1819 static int
1820 vm_object_in_map(vm_object_t object)
1822 struct proc *p;
1823 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1824 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1825 continue;
1826 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1827 return 1;
1829 if( _vm_object_in_map( kernel_map, object, 0))
1830 return 1;
1831 if( _vm_object_in_map( pager_map, object, 0))
1832 return 1;
1833 if( _vm_object_in_map( buffer_map, object, 0))
1834 return 1;
1835 return 0;
1838 DB_SHOW_COMMAND(vmochk, vm_object_check)
1840 vm_object_t object;
1843 * make sure that internal objs are in a map somewhere
1844 * and none have zero ref counts.
1846 for (object = TAILQ_FIRST(&vm_object_list);
1847 object != NULL;
1848 object = TAILQ_NEXT(object, object_list)) {
1849 if (object->handle == NULL &&
1850 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1851 if (object->ref_count == 0) {
1852 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1853 (long)object->size);
1855 if (!vm_object_in_map(object)) {
1856 db_printf(
1857 "vmochk: internal obj is not in a map: "
1858 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1859 object->ref_count, (u_long)object->size,
1860 (u_long)object->size,
1861 (void *)object->backing_object);
1868 * vm_object_print: [ debug ]
1870 DB_SHOW_COMMAND(object, vm_object_print_static)
1872 /* XXX convert args. */
1873 vm_object_t object = (vm_object_t)addr;
1874 boolean_t full = have_addr;
1876 vm_page_t p;
1878 /* XXX count is an (unused) arg. Avoid shadowing it. */
1879 #define count was_count
1881 int count;
1883 if (object == NULL)
1884 return;
1886 db_iprintf(
1887 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1888 object, (int)object->type, (u_long)object->size,
1889 object->resident_page_count, object->ref_count, object->flags);
1891 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1893 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1894 object->shadow_count,
1895 object->backing_object ? object->backing_object->ref_count : 0,
1896 object->backing_object, (long)object->backing_object_offset);
1898 if (!full)
1899 return;
1901 db_indent += 2;
1902 count = 0;
1903 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1904 if (count == 0)
1905 db_iprintf("memory:=");
1906 else if (count == 6) {
1907 db_printf("\n");
1908 db_iprintf(" ...");
1909 count = 0;
1910 } else
1911 db_printf(",");
1912 count++;
1914 db_printf("(off=0x%lx,page=0x%lx)",
1915 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1917 if (count != 0)
1918 db_printf("\n");
1919 db_indent -= 2;
1922 /* XXX. */
1923 #undef count
1925 /* XXX need this non-static entry for calling from vm_map_print. */
1926 void
1927 vm_object_print(/* db_expr_t */ long addr,
1928 boolean_t have_addr,
1929 /* db_expr_t */ long count,
1930 char *modif)
1932 vm_object_print_static(addr, have_addr, count, modif);
1935 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1937 vm_object_t object;
1938 int nl = 0;
1939 int c;
1940 for (object = TAILQ_FIRST(&vm_object_list);
1941 object != NULL;
1942 object = TAILQ_NEXT(object, object_list)) {
1943 vm_pindex_t idx, fidx;
1944 vm_pindex_t osize;
1945 vm_paddr_t pa = -1, padiff;
1946 int rcount;
1947 vm_page_t m;
1949 db_printf("new object: %p\n", (void *)object);
1950 if ( nl > 18) {
1951 c = cngetc();
1952 if (c != ' ')
1953 return;
1954 nl = 0;
1956 nl++;
1957 rcount = 0;
1958 fidx = 0;
1959 osize = object->size;
1960 if (osize > 128)
1961 osize = 128;
1962 for (idx = 0; idx < osize; idx++) {
1963 m = vm_page_lookup(object, idx);
1964 if (m == NULL) {
1965 if (rcount) {
1966 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1967 (long)fidx, rcount, (long)pa);
1968 if ( nl > 18) {
1969 c = cngetc();
1970 if (c != ' ')
1971 return;
1972 nl = 0;
1974 nl++;
1975 rcount = 0;
1977 continue;
1981 if (rcount &&
1982 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1983 ++rcount;
1984 continue;
1986 if (rcount) {
1987 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1988 padiff >>= PAGE_SHIFT;
1989 padiff &= PQ_L2_MASK;
1990 if (padiff == 0) {
1991 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1992 ++rcount;
1993 continue;
1995 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1996 (long)fidx, rcount, (long)pa);
1997 db_printf("pd(%ld)\n", (long)padiff);
1998 if ( nl > 18) {
1999 c = cngetc();
2000 if (c != ' ')
2001 return;
2002 nl = 0;
2004 nl++;
2006 fidx = idx;
2007 pa = VM_PAGE_TO_PHYS(m);
2008 rcount = 1;
2010 if (rcount) {
2011 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2012 (long)fidx, rcount, (long)pa);
2013 if ( nl > 18) {
2014 c = cngetc();
2015 if (c != ' ')
2016 return;
2017 nl = 0;
2019 nl++;
2023 #endif /* DDB */