2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.21 2004/11/12 00:09:56 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
83 #include <vm/vm_param.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #include <sys/thread2.h>
97 #define EASY_SCAN_FACTOR 8
99 #define MSYNC_FLUSH_HARDSEQ 0x01
100 #define MSYNC_FLUSH_SOFTSEQ 0x02
102 static int msync_flush_flags
= MSYNC_FLUSH_HARDSEQ
| MSYNC_FLUSH_SOFTSEQ
;
103 SYSCTL_INT(_vm
, OID_AUTO
, msync_flush_flags
,
104 CTLFLAG_RW
, &msync_flush_flags
, 0, "");
106 static void vm_object_qcollapse (vm_object_t object
);
107 static int vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
, int curgeneration
, int pagerflags
);
110 * Virtual memory objects maintain the actual data
111 * associated with allocated virtual memory. A given
112 * page of memory exists within exactly one object.
114 * An object is only deallocated when all "references"
115 * are given up. Only one "reference" to a given
116 * region of an object should be writeable.
118 * Associated with each object is a list of all resident
119 * memory pages belonging to that object; this list is
120 * maintained by the "vm_page" module, and locked by the object's
123 * Each object also records a "pager" routine which is
124 * used to retrieve (and store) pages to the proper backing
125 * storage. In addition, objects may be backed by other
126 * objects from which they were virtual-copied.
128 * The only items within the object structure which are
129 * modified after time of creation are:
130 * reference count locked by object's lock
131 * pager routine locked by object's lock
135 struct object_q vm_object_list
;
136 static long vm_object_count
; /* count of all objects */
137 vm_object_t kernel_object
;
138 vm_object_t kmem_object
;
139 static struct vm_object kernel_object_store
;
140 static struct vm_object kmem_object_store
;
141 extern int vm_pageout_page_count
;
143 static long object_collapses
;
144 static long object_bypasses
;
145 static int next_index
;
146 static vm_zone_t obj_zone
;
147 static struct vm_zone obj_zone_store
;
148 static int object_hash_rand
;
149 #define VM_OBJECTS_INIT 256
150 static struct vm_object vm_objects_init
[VM_OBJECTS_INIT
];
153 _vm_object_allocate(objtype_t type
, vm_size_t size
, vm_object_t object
)
156 TAILQ_INIT(&object
->memq
);
157 LIST_INIT(&object
->shadow_head
);
161 object
->ref_count
= 1;
163 if ((object
->type
== OBJT_DEFAULT
) || (object
->type
== OBJT_SWAP
))
164 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
165 object
->paging_in_progress
= 0;
166 object
->resident_page_count
= 0;
167 object
->shadow_count
= 0;
168 object
->pg_color
= next_index
;
169 if ( size
> (PQ_L2_SIZE
/ 3 + PQ_PRIME1
))
170 incr
= PQ_L2_SIZE
/ 3 + PQ_PRIME1
;
173 next_index
= (next_index
+ incr
) & PQ_L2_MASK
;
174 object
->handle
= NULL
;
175 object
->backing_object
= NULL
;
176 object
->backing_object_offset
= (vm_ooffset_t
) 0;
178 * Try to generate a number that will spread objects out in the
179 * hash table. We 'wipe' new objects across the hash in 128 page
180 * increments plus 1 more to offset it a little more by the time
183 object
->hash_rand
= object_hash_rand
- 129;
185 object
->generation
++;
188 TAILQ_INSERT_TAIL(&vm_object_list
, object
, object_list
);
190 object_hash_rand
= object
->hash_rand
;
197 * Initialize the VM objects module.
202 TAILQ_INIT(&vm_object_list
);
204 kernel_object
= &kernel_object_store
;
205 _vm_object_allocate(OBJT_DEFAULT
, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS
- VM_MIN_KERNEL_ADDRESS
),
208 kmem_object
= &kmem_object_store
;
209 _vm_object_allocate(OBJT_DEFAULT
, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS
- VM_MIN_KERNEL_ADDRESS
),
212 obj_zone
= &obj_zone_store
;
213 zbootinit(obj_zone
, "VM OBJECT", sizeof (struct vm_object
),
214 vm_objects_init
, VM_OBJECTS_INIT
);
218 vm_object_init2(void)
220 zinitna(obj_zone
, NULL
, NULL
, 0, 0, ZONE_PANICFAIL
, 1);
224 * vm_object_allocate:
226 * Returns a new object with the given size.
230 vm_object_allocate(objtype_t type
, vm_size_t size
)
234 result
= (vm_object_t
) zalloc(obj_zone
);
236 _vm_object_allocate(type
, size
, result
);
243 * vm_object_reference:
245 * Gets another reference to the given object.
248 vm_object_reference(vm_object_t object
)
254 /* object can be re-referenced during final cleaning */
255 KASSERT(!(object
->flags
& OBJ_DEAD
),
256 ("vm_object_reference: attempting to reference dead obj"));
260 if (object
->type
== OBJT_VNODE
) {
261 vref(object
->handle
);
262 /* XXX what if the vnode is being destroyed? */
264 while (vget((struct vnode
*) object
->handle
,
265 LK_RETRY
|LK_NOOBJ
, curthread
)) {
266 printf("vm_object_reference: delay in getting object\n");
273 vm_object_vndeallocate(vm_object_t object
)
275 struct vnode
*vp
= (struct vnode
*) object
->handle
;
277 KASSERT(object
->type
== OBJT_VNODE
,
278 ("vm_object_vndeallocate: not a vnode object"));
279 KASSERT(vp
!= NULL
, ("vm_object_vndeallocate: missing vp"));
281 if (object
->ref_count
== 0) {
282 vprint("vm_object_vndeallocate", vp
);
283 panic("vm_object_vndeallocate: bad object reference count");
288 if (object
->ref_count
== 0) {
289 vp
->v_flag
&= ~VTEXT
;
290 vm_object_clear_flag(object
, OBJ_OPT
);
296 * vm_object_deallocate:
298 * Release a reference to the specified object,
299 * gained either through a vm_object_allocate
300 * or a vm_object_reference call. When all references
301 * are gone, storage associated with this object
302 * may be relinquished.
304 * No object may be locked.
307 vm_object_deallocate(vm_object_t object
)
311 while (object
!= NULL
) {
313 if (object
->type
== OBJT_VNODE
) {
314 vm_object_vndeallocate(object
);
318 if (object
->ref_count
== 0) {
319 panic("vm_object_deallocate: object deallocated too many times: %d", object
->type
);
320 } else if (object
->ref_count
> 2) {
326 * Here on ref_count of one or two, which are special cases for
329 if ((object
->ref_count
== 2) && (object
->shadow_count
== 0)) {
330 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
333 } else if ((object
->ref_count
== 2) && (object
->shadow_count
== 1)) {
335 if ((object
->handle
== NULL
) &&
336 (object
->type
== OBJT_DEFAULT
||
337 object
->type
== OBJT_SWAP
)) {
340 robject
= LIST_FIRST(&object
->shadow_head
);
341 KASSERT(robject
!= NULL
,
342 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
344 object
->shadow_count
));
345 if ((robject
->handle
== NULL
) &&
346 (robject
->type
== OBJT_DEFAULT
||
347 robject
->type
== OBJT_SWAP
)) {
349 robject
->ref_count
++;
352 robject
->paging_in_progress
||
353 object
->paging_in_progress
355 vm_object_pip_sleep(robject
, "objde1");
356 vm_object_pip_sleep(object
, "objde2");
359 if (robject
->ref_count
== 1) {
360 robject
->ref_count
--;
366 vm_object_collapse(object
);
375 if (object
->ref_count
!= 0)
381 temp
= object
->backing_object
;
383 LIST_REMOVE(object
, shadow_list
);
384 temp
->shadow_count
--;
385 if (temp
->ref_count
== 0)
386 vm_object_clear_flag(temp
, OBJ_OPT
);
388 object
->backing_object
= NULL
;
392 * Don't double-terminate, we could be in a termination
393 * recursion due to the terminate having to sync data
396 if ((object
->flags
& OBJ_DEAD
) == 0)
397 vm_object_terminate(object
);
403 * vm_object_terminate actually destroys the specified object, freeing
404 * up all previously used resources.
406 * The object must be locked.
407 * This routine may block.
410 vm_object_terminate(vm_object_t object
)
415 * Make sure no one uses us.
417 vm_object_set_flag(object
, OBJ_DEAD
);
420 * wait for the pageout daemon to be done with the object
422 vm_object_pip_wait(object
, "objtrm");
424 KASSERT(!object
->paging_in_progress
,
425 ("vm_object_terminate: pageout in progress"));
428 * Clean and free the pages, as appropriate. All references to the
429 * object are gone, so we don't need to lock it.
431 if (object
->type
== OBJT_VNODE
) {
435 * Freeze optimized copies.
437 vm_freeze_copyopts(object
, 0, object
->size
);
440 * Clean pages and flush buffers.
442 vm_object_page_clean(object
, 0, 0, OBJPC_SYNC
);
444 vp
= (struct vnode
*) object
->handle
;
445 vinvalbuf(vp
, V_SAVE
, NULL
, 0, 0);
449 * Wait for any I/O to complete, after which there had better not
450 * be any references left on the object.
452 vm_object_pip_wait(object
, "objtrm");
454 if (object
->ref_count
!= 0)
455 panic("vm_object_terminate: object with references, ref_count=%d", object
->ref_count
);
458 * Now free any remaining pages. For internal objects, this also
459 * removes them from paging queues. Don't free wired pages, just
460 * remove them from the object.
463 while ((p
= TAILQ_FIRST(&object
->memq
)) != NULL
) {
464 if (p
->busy
|| (p
->flags
& PG_BUSY
))
465 panic("vm_object_terminate: freeing busy page %p", p
);
466 if (p
->wire_count
== 0) {
469 mycpu
->gd_cnt
.v_pfree
++;
479 * Let the pager know object is dead.
481 vm_pager_deallocate(object
);
484 * Remove the object from the global object list.
487 TAILQ_REMOVE(&vm_object_list
, object
, object_list
);
492 if (object
->ref_count
!= 0)
493 panic("vm_object_terminate2: object with references, ref_count=%d", object
->ref_count
);
496 * Free the space for the object.
498 zfree(obj_zone
, object
);
502 * vm_object_page_clean
504 * Clean all dirty pages in the specified range of object. Leaves page
505 * on whatever queue it is currently on. If NOSYNC is set then do not
506 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
507 * leaving the object dirty.
509 * When stuffing pages asynchronously, allow clustering. XXX we need a
510 * synchronous clustering mode implementation.
512 * Odd semantics: if start == end, we clean everything.
516 vm_object_page_clean(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
520 vm_offset_t tstart
, tend
;
527 if (object
->type
!= OBJT_VNODE
||
528 (object
->flags
& OBJ_MIGHTBEDIRTY
) == 0)
531 pagerflags
= (flags
& (OBJPC_SYNC
| OBJPC_INVAL
)) ? VM_PAGER_PUT_SYNC
: VM_PAGER_CLUSTER_OK
;
532 pagerflags
|= (flags
& OBJPC_INVAL
) ? VM_PAGER_PUT_INVAL
: 0;
536 vm_object_set_flag(object
, OBJ_CLEANING
);
539 * Handle 'entire object' case
549 * If the caller is smart and only msync()s a range he knows is
550 * dirty, we may be able to avoid an object scan. This results in
551 * a phenominal improvement in performance. We cannot do this
552 * as a matter of course because the object may be huge - e.g.
553 * the size might be in the gigabytes or terrabytes.
555 if (msync_flush_flags
& MSYNC_FLUSH_HARDSEQ
) {
560 scanreset
= object
->resident_page_count
/ EASY_SCAN_FACTOR
;
563 pagerflags
|= VM_PAGER_IGNORE_CLEANCHK
;
565 scanlimit
= scanreset
;
569 * spl protection is required despite the obj generation
570 * tracking because we cannot safely call vm_page_test_dirty()
571 * or avoid page field tests against an interrupt unbusy/free
572 * race that might occur prior to the busy check in
573 * vm_object_page_collect_flush().
576 while (tscan
< tend
) {
577 curgeneration
= object
->generation
;
578 p
= vm_page_lookup(object
, tscan
);
579 if (p
== NULL
|| p
->valid
== 0 ||
580 (p
->queue
- p
->pc
) == PQ_CACHE
) {
581 if (--scanlimit
== 0)
586 vm_page_test_dirty(p
);
587 if ((p
->dirty
& p
->valid
) == 0) {
588 if (--scanlimit
== 0)
594 * If we have been asked to skip nosync pages and
595 * this is a nosync page, we can't continue.
597 if ((flags
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
)) {
598 if (--scanlimit
== 0)
603 scanlimit
= scanreset
;
606 * This returns 0 if it was unable to busy the first
607 * page (i.e. had to sleep).
609 tscan
+= vm_object_page_collect_flush(object
, p
,
610 curgeneration
, pagerflags
);
615 * If everything was dirty and we flushed it successfully,
616 * and the requested range is not the entire object, we
617 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
618 * return immediately.
620 if (tscan
>= tend
&& (tstart
|| tend
< object
->size
)) {
621 vm_object_clear_flag(object
, OBJ_CLEANING
);
624 pagerflags
&= ~VM_PAGER_IGNORE_CLEANCHK
;
628 * Generally set CLEANCHK interlock and make the page read-only so
629 * we can then clear the object flags.
631 * However, if this is a nosync mmap then the object is likely to
632 * stay dirty so do not mess with the page and do not clear the
635 * spl protection is required because an interrupt can remove page
641 for (p
= TAILQ_FIRST(&object
->memq
); p
; p
= TAILQ_NEXT(p
, listq
)) {
642 vm_page_flag_set(p
, PG_CLEANCHK
);
643 if ((flags
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
))
646 vm_page_protect(p
, VM_PROT_READ
);
650 if (clearobjflags
&& (tstart
== 0) && (tend
== object
->size
)) {
653 vm_object_clear_flag(object
, OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
654 if (object
->type
== OBJT_VNODE
&&
655 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
656 if (vp
->v_flag
& VOBJDIRTY
)
657 vclrflags(vp
, VOBJDIRTY
);
662 * spl protection is required both to avoid an interrupt unbusy/free
663 * race against a vm_page_lookup(), and also to ensure that the
664 * memq is consistent. We do not want a busy page to be ripped out
671 curgeneration
= object
->generation
;
673 for (p
= TAILQ_FIRST(&object
->memq
); p
; p
= np
) {
676 np
= TAILQ_NEXT(p
, listq
);
680 if (((p
->flags
& PG_CLEANCHK
) == 0) ||
681 (pi
< tstart
) || (pi
>= tend
) ||
683 ((p
->queue
- p
->pc
) == PQ_CACHE
)) {
684 vm_page_flag_clear(p
, PG_CLEANCHK
);
688 vm_page_test_dirty(p
);
689 if ((p
->dirty
& p
->valid
) == 0) {
690 vm_page_flag_clear(p
, PG_CLEANCHK
);
695 * If we have been asked to skip nosync pages and this is a
696 * nosync page, skip it. Note that the object flags were
697 * not cleared in this case so we do not have to set them.
699 if ((flags
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
)) {
700 vm_page_flag_clear(p
, PG_CLEANCHK
);
704 n
= vm_object_page_collect_flush(object
, p
,
705 curgeneration
, pagerflags
);
708 if (object
->generation
!= curgeneration
)
712 * Try to optimize the next page. If we can't we pick up
713 * our (random) scan where we left off.
715 if (msync_flush_flags
& MSYNC_FLUSH_SOFTSEQ
) {
716 if ((p
= vm_page_lookup(object
, pi
+ n
)) != NULL
)
723 VOP_FSYNC(vp
, NULL
, (pagerflags
& VM_PAGER_PUT_SYNC
)?MNT_WAIT
:0, curproc
);
726 vm_object_clear_flag(object
, OBJ_CLEANING
);
731 * This routine must be called within a critical section to properly avoid
732 * an interrupt unbusy/free race that can occur prior to the busy check.
734 * Using the object generation number here to detect page ripout is not
735 * the best idea in the world. XXX
737 * NOTE: we operate under the assumption that a page found to not be busy
738 * will not be ripped out from under us by an interrupt. XXX we should
739 * recode this to explicitly busy the pages.
742 vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
, int curgeneration
, int pagerflags
)
750 vm_page_t maf
[vm_pageout_page_count
];
751 vm_page_t mab
[vm_pageout_page_count
];
752 vm_page_t ma
[vm_pageout_page_count
];
755 while (vm_page_sleep_busy(p
, TRUE
, "vpcwai")) {
756 if (object
->generation
!= curgeneration
) {
762 for(i
= 1; i
< vm_pageout_page_count
; i
++) {
765 if ((tp
= vm_page_lookup(object
, pi
+ i
)) != NULL
) {
766 if ((tp
->flags
& PG_BUSY
) ||
767 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
768 (tp
->flags
& PG_CLEANCHK
) == 0) ||
771 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
772 vm_page_flag_clear(tp
, PG_CLEANCHK
);
775 vm_page_test_dirty(tp
);
776 if ((tp
->dirty
& tp
->valid
) == 0) {
777 vm_page_flag_clear(tp
, PG_CLEANCHK
);
788 chkb
= vm_pageout_page_count
- maxf
;
790 for(i
= 1; i
< chkb
;i
++) {
793 if ((tp
= vm_page_lookup(object
, pi
- i
)) != NULL
) {
794 if ((tp
->flags
& PG_BUSY
) ||
795 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
796 (tp
->flags
& PG_CLEANCHK
) == 0) ||
799 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
800 vm_page_flag_clear(tp
, PG_CLEANCHK
);
803 vm_page_test_dirty(tp
);
804 if ((tp
->dirty
& tp
->valid
) == 0) {
805 vm_page_flag_clear(tp
, PG_CLEANCHK
);
816 for(i
= 0; i
< maxb
; i
++) {
817 int index
= (maxb
- i
) - 1;
819 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
821 vm_page_flag_clear(p
, PG_CLEANCHK
);
823 for(i
= 0; i
< maxf
; i
++) {
824 int index
= (maxb
+ i
) + 1;
826 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
828 runlen
= maxb
+ maxf
+ 1;
830 vm_pageout_flush(ma
, runlen
, pagerflags
);
831 for (i
= 0; i
< runlen
; i
++) {
832 if (ma
[i
]->valid
& ma
[i
]->dirty
) {
833 vm_page_protect(ma
[i
], VM_PROT_READ
);
834 vm_page_flag_set(ma
[i
], PG_CLEANCHK
);
837 * maxf will end up being the actual number of pages
838 * we wrote out contiguously, non-inclusive of the
839 * first page. We do not count look-behind pages.
841 if (i
>= maxb
+ 1 && (maxf
> i
- maxb
- 1))
849 /* XXX I cannot tell if this should be an exported symbol */
851 * vm_object_deactivate_pages
853 * Deactivate all pages in the specified object. (Keep its pages
854 * in memory even though it is no longer referenced.)
856 * The object must be locked.
859 vm_object_deactivate_pages(vm_object_t object
)
865 for (p
= TAILQ_FIRST(&object
->memq
); p
!= NULL
; p
= next
) {
866 next
= TAILQ_NEXT(p
, listq
);
867 vm_page_deactivate(p
);
874 * Same as vm_object_pmap_copy, except range checking really
875 * works, and is meant for small sections of an object.
877 * This code protects resident pages by making them read-only
878 * and is typically called on a fork or split when a page
879 * is converted to copy-on-write.
881 * NOTE: If the page is already at VM_PROT_NONE, calling
882 * vm_page_protect will have no effect.
885 vm_object_pmap_copy_1(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
890 if (object
== NULL
|| (object
->flags
& OBJ_WRITEABLE
) == 0)
894 * spl protection needed to prevent races between the lookup,
895 * an interrupt unbusy/free, and our protect call.
898 for (idx
= start
; idx
< end
; idx
++) {
899 p
= vm_page_lookup(object
, idx
);
902 vm_page_protect(p
, VM_PROT_READ
);
908 * vm_object_pmap_remove:
910 * Removes all physical pages in the specified
911 * object range from all physical maps.
913 * The object must *not* be locked.
916 vm_object_pmap_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
924 * spl protection is required because an interrupt can unbusy/free
928 for (p
= TAILQ_FIRST(&object
->memq
);
930 p
= TAILQ_NEXT(p
, listq
)
932 if (p
->pindex
>= start
&& p
->pindex
< end
)
933 vm_page_protect(p
, VM_PROT_NONE
);
936 if ((start
== 0) && (object
->size
== end
))
937 vm_object_clear_flag(object
, OBJ_WRITEABLE
);
943 * Implements the madvise function at the object/page level.
945 * MADV_WILLNEED (any object)
947 * Activate the specified pages if they are resident.
949 * MADV_DONTNEED (any object)
951 * Deactivate the specified pages if they are resident.
953 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
954 * OBJ_ONEMAPPING only)
956 * Deactivate and clean the specified pages if they are
957 * resident. This permits the process to reuse the pages
958 * without faulting or the kernel to reclaim the pages
962 vm_object_madvise(vm_object_t object
, vm_pindex_t pindex
, int count
, int advise
)
964 vm_pindex_t end
, tpindex
;
971 end
= pindex
+ count
;
974 * Locate and adjust resident pages
977 for (; pindex
< end
; pindex
+= 1) {
983 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
984 * and those pages must be OBJ_ONEMAPPING.
986 if (advise
== MADV_FREE
) {
987 if ((tobject
->type
!= OBJT_DEFAULT
&&
988 tobject
->type
!= OBJT_SWAP
) ||
989 (tobject
->flags
& OBJ_ONEMAPPING
) == 0) {
995 * spl protection is required to avoid a race between the
996 * lookup, an interrupt unbusy/free, and our busy check.
1000 m
= vm_page_lookup(tobject
, tpindex
);
1004 * There may be swap even if there is no backing page
1006 if (advise
== MADV_FREE
&& tobject
->type
== OBJT_SWAP
)
1007 swap_pager_freespace(tobject
, tpindex
, 1);
1013 if (tobject
->backing_object
== NULL
)
1015 tpindex
+= OFF_TO_IDX(tobject
->backing_object_offset
);
1016 tobject
= tobject
->backing_object
;
1021 * If the page is busy or not in a normal active state,
1022 * we skip it. If the page is not managed there are no
1023 * page queues to mess with. Things can break if we mess
1024 * with pages in any of the below states.
1029 (m
->flags
& PG_UNMANAGED
) ||
1030 m
->valid
!= VM_PAGE_BITS_ALL
1036 if (vm_page_sleep_busy(m
, TRUE
, "madvpo")) {
1043 * Theoretically once a page is known not to be busy, an
1044 * interrupt cannot come along and rip it out from under us.
1047 if (advise
== MADV_WILLNEED
) {
1048 vm_page_activate(m
);
1049 } else if (advise
== MADV_DONTNEED
) {
1050 vm_page_dontneed(m
);
1051 } else if (advise
== MADV_FREE
) {
1053 * Mark the page clean. This will allow the page
1054 * to be freed up by the system. However, such pages
1055 * are often reused quickly by malloc()/free()
1056 * so we do not do anything that would cause
1057 * a page fault if we can help it.
1059 * Specifically, we do not try to actually free
1060 * the page now nor do we try to put it in the
1061 * cache (which would cause a page fault on reuse).
1063 * But we do make the page is freeable as we
1064 * can without actually taking the step of unmapping
1067 pmap_clear_modify(m
);
1070 vm_page_dontneed(m
);
1071 if (tobject
->type
== OBJT_SWAP
)
1072 swap_pager_freespace(tobject
, tpindex
, 1);
1080 * Create a new object which is backed by the
1081 * specified existing object range. The source
1082 * object reference is deallocated.
1084 * The new object and offset into that object
1085 * are returned in the source parameters.
1089 vm_object_shadow(vm_object_t
*object
, /* IN/OUT */
1090 vm_ooffset_t
*offset
, /* IN/OUT */
1099 * Don't create the new object if the old object isn't shared.
1102 if (source
!= NULL
&&
1103 source
->ref_count
== 1 &&
1104 source
->handle
== NULL
&&
1105 (source
->type
== OBJT_DEFAULT
||
1106 source
->type
== OBJT_SWAP
))
1110 * Allocate a new object with the given length
1113 if ((result
= vm_object_allocate(OBJT_DEFAULT
, length
)) == NULL
)
1114 panic("vm_object_shadow: no object for shadowing");
1117 * The new object shadows the source object, adding a reference to it.
1118 * Our caller changes his reference to point to the new object,
1119 * removing a reference to the source object. Net result: no change
1120 * of reference count.
1122 * Try to optimize the result object's page color when shadowing
1123 * in order to maintain page coloring consistency in the combined
1126 result
->backing_object
= source
;
1128 LIST_INSERT_HEAD(&source
->shadow_head
, result
, shadow_list
);
1129 source
->shadow_count
++;
1130 source
->generation
++;
1131 result
->pg_color
= (source
->pg_color
+ OFF_TO_IDX(*offset
)) & PQ_L2_MASK
;
1135 * Store the offset into the source object, and fix up the offset into
1139 result
->backing_object_offset
= *offset
;
1142 * Return the new things
1149 #define OBSC_TEST_ALL_SHADOWED 0x0001
1150 #define OBSC_COLLAPSE_NOWAIT 0x0002
1151 #define OBSC_COLLAPSE_WAIT 0x0004
1154 vm_object_backing_scan(vm_object_t object
, int op
)
1158 vm_object_t backing_object
;
1159 vm_pindex_t backing_offset_index
;
1162 * spl protection is required to avoid races between the memq/lookup,
1163 * an interrupt doing an unbusy/free, and our busy check. Amoung
1168 backing_object
= object
->backing_object
;
1169 backing_offset_index
= OFF_TO_IDX(object
->backing_object_offset
);
1172 * Initial conditions
1175 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1177 * We do not want to have to test for the existence of
1178 * swap pages in the backing object. XXX but with the
1179 * new swapper this would be pretty easy to do.
1181 * XXX what about anonymous MAP_SHARED memory that hasn't
1182 * been ZFOD faulted yet? If we do not test for this, the
1183 * shadow test may succeed! XXX
1185 if (backing_object
->type
!= OBJT_DEFAULT
) {
1190 if (op
& OBSC_COLLAPSE_WAIT
) {
1191 KKASSERT((backing_object
->flags
& OBJ_DEAD
) == 0);
1192 vm_object_set_flag(backing_object
, OBJ_DEAD
);
1199 p
= TAILQ_FIRST(&backing_object
->memq
);
1201 vm_page_t next
= TAILQ_NEXT(p
, listq
);
1202 vm_pindex_t new_pindex
= p
->pindex
- backing_offset_index
;
1204 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1208 * Ignore pages outside the parent object's range
1209 * and outside the parent object's mapping of the
1212 * note that we do not busy the backing object's
1217 p
->pindex
< backing_offset_index
||
1218 new_pindex
>= object
->size
1225 * See if the parent has the page or if the parent's
1226 * object pager has the page. If the parent has the
1227 * page but the page is not valid, the parent's
1228 * object pager must have the page.
1230 * If this fails, the parent does not completely shadow
1231 * the object and we might as well give up now.
1234 pp
= vm_page_lookup(object
, new_pindex
);
1236 (pp
== NULL
|| pp
->valid
== 0) &&
1237 !vm_pager_has_page(object
, new_pindex
, NULL
, NULL
)
1245 * Check for busy page
1248 if (op
& (OBSC_COLLAPSE_WAIT
| OBSC_COLLAPSE_NOWAIT
)) {
1251 if (op
& OBSC_COLLAPSE_NOWAIT
) {
1253 (p
->flags
& PG_BUSY
) ||
1262 } else if (op
& OBSC_COLLAPSE_WAIT
) {
1263 if (vm_page_sleep_busy(p
, TRUE
, "vmocol")) {
1265 * If we slept, anything could have
1266 * happened. Since the object is
1267 * marked dead, the backing offset
1268 * should not have changed so we
1269 * just restart our scan.
1271 p
= TAILQ_FIRST(&backing_object
->memq
);
1282 p
->object
== backing_object
,
1283 ("vm_object_qcollapse(): object mismatch")
1287 * Destroy any associated swap
1289 if (backing_object
->type
== OBJT_SWAP
) {
1290 swap_pager_freespace(
1298 p
->pindex
< backing_offset_index
||
1299 new_pindex
>= object
->size
1302 * Page is out of the parent object's range, we
1303 * can simply destroy it.
1305 vm_page_protect(p
, VM_PROT_NONE
);
1311 pp
= vm_page_lookup(object
, new_pindex
);
1314 vm_pager_has_page(object
, new_pindex
, NULL
, NULL
)
1317 * page already exists in parent OR swap exists
1318 * for this location in the parent. Destroy
1319 * the original page from the backing object.
1321 * Leave the parent's page alone
1323 vm_page_protect(p
, VM_PROT_NONE
);
1330 * Page does not exist in parent, rename the
1331 * page from the backing object to the main object.
1333 * If the page was mapped to a process, it can remain
1334 * mapped through the rename.
1336 if ((p
->queue
- p
->pc
) == PQ_CACHE
)
1337 vm_page_deactivate(p
);
1339 vm_page_rename(p
, object
, new_pindex
);
1340 /* page automatically made dirty by rename */
1350 * this version of collapse allows the operation to occur earlier and
1351 * when paging_in_progress is true for an object... This is not a complete
1352 * operation, but should plug 99.9% of the rest of the leaks.
1355 vm_object_qcollapse(vm_object_t object
)
1357 vm_object_t backing_object
= object
->backing_object
;
1359 if (backing_object
->ref_count
!= 1)
1362 backing_object
->ref_count
+= 2;
1364 vm_object_backing_scan(object
, OBSC_COLLAPSE_NOWAIT
);
1366 backing_object
->ref_count
-= 2;
1370 * vm_object_collapse:
1372 * Collapse an object with the object backing it.
1373 * Pages in the backing object are moved into the
1374 * parent, and the backing object is deallocated.
1377 vm_object_collapse(vm_object_t object
)
1380 vm_object_t backing_object
;
1383 * Verify that the conditions are right for collapse:
1385 * The object exists and the backing object exists.
1390 if ((backing_object
= object
->backing_object
) == NULL
)
1394 * we check the backing object first, because it is most likely
1397 if (backing_object
->handle
!= NULL
||
1398 (backing_object
->type
!= OBJT_DEFAULT
&&
1399 backing_object
->type
!= OBJT_SWAP
) ||
1400 (backing_object
->flags
& OBJ_DEAD
) ||
1401 object
->handle
!= NULL
||
1402 (object
->type
!= OBJT_DEFAULT
&&
1403 object
->type
!= OBJT_SWAP
) ||
1404 (object
->flags
& OBJ_DEAD
)) {
1409 object
->paging_in_progress
!= 0 ||
1410 backing_object
->paging_in_progress
!= 0
1412 vm_object_qcollapse(object
);
1417 * We know that we can either collapse the backing object (if
1418 * the parent is the only reference to it) or (perhaps) have
1419 * the parent bypass the object if the parent happens to shadow
1420 * all the resident pages in the entire backing object.
1422 * This is ignoring pager-backed pages such as swap pages.
1423 * vm_object_backing_scan fails the shadowing test in this
1427 if (backing_object
->ref_count
== 1) {
1429 * If there is exactly one reference to the backing
1430 * object, we can collapse it into the parent.
1432 vm_object_backing_scan(object
, OBSC_COLLAPSE_WAIT
);
1435 * Move the pager from backing_object to object.
1438 if (backing_object
->type
== OBJT_SWAP
) {
1439 vm_object_pip_add(backing_object
, 1);
1442 * scrap the paging_offset junk and do a
1443 * discrete copy. This also removes major
1444 * assumptions about how the swap-pager
1445 * works from where it doesn't belong. The
1446 * new swapper is able to optimize the
1447 * destroy-source case.
1450 vm_object_pip_add(object
, 1);
1454 OFF_TO_IDX(object
->backing_object_offset
), TRUE
);
1455 vm_object_pip_wakeup(object
);
1457 vm_object_pip_wakeup(backing_object
);
1460 * Object now shadows whatever backing_object did.
1461 * Note that the reference to
1462 * backing_object->backing_object moves from within
1463 * backing_object to within object.
1466 LIST_REMOVE(object
, shadow_list
);
1467 object
->backing_object
->shadow_count
--;
1468 object
->backing_object
->generation
++;
1469 if (backing_object
->backing_object
) {
1470 LIST_REMOVE(backing_object
, shadow_list
);
1471 backing_object
->backing_object
->shadow_count
--;
1472 backing_object
->backing_object
->generation
++;
1474 object
->backing_object
= backing_object
->backing_object
;
1475 if (object
->backing_object
) {
1477 &object
->backing_object
->shadow_head
,
1481 object
->backing_object
->shadow_count
++;
1482 object
->backing_object
->generation
++;
1485 object
->backing_object_offset
+=
1486 backing_object
->backing_object_offset
;
1489 * Discard backing_object.
1491 * Since the backing object has no pages, no pager left,
1492 * and no object references within it, all that is
1493 * necessary is to dispose of it.
1496 KASSERT(backing_object
->ref_count
== 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object
));
1497 KASSERT(TAILQ_FIRST(&backing_object
->memq
) == NULL
, ("backing_object %p somehow has left over pages during collapse!", backing_object
));
1507 zfree(obj_zone
, backing_object
);
1511 vm_object_t new_backing_object
;
1514 * If we do not entirely shadow the backing object,
1515 * there is nothing we can do so we give up.
1518 if (vm_object_backing_scan(object
, OBSC_TEST_ALL_SHADOWED
) == 0) {
1523 * Make the parent shadow the next object in the
1524 * chain. Deallocating backing_object will not remove
1525 * it, since its reference count is at least 2.
1528 LIST_REMOVE(object
, shadow_list
);
1529 backing_object
->shadow_count
--;
1530 backing_object
->generation
++;
1532 new_backing_object
= backing_object
->backing_object
;
1533 if ((object
->backing_object
= new_backing_object
) != NULL
) {
1534 vm_object_reference(new_backing_object
);
1536 &new_backing_object
->shadow_head
,
1540 new_backing_object
->shadow_count
++;
1541 new_backing_object
->generation
++;
1542 object
->backing_object_offset
+=
1543 backing_object
->backing_object_offset
;
1547 * Drop the reference count on backing_object. Since
1548 * its ref_count was at least 2, it will not vanish;
1549 * so we don't need to call vm_object_deallocate, but
1552 vm_object_deallocate(backing_object
);
1557 * Try again with this object's new backing object.
1563 * vm_object_page_remove: [internal]
1565 * Removes all physical pages in the specified
1566 * object range from the object's list of pages.
1569 vm_object_page_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
1570 boolean_t clean_only
)
1576 if (object
== NULL
|| object
->resident_page_count
== 0)
1579 all
= ((end
== 0) && (start
== 0));
1582 * Since physically-backed objects do not use managed pages, we can't
1583 * remove pages from the object (we must instead remove the page
1584 * references, and then destroy the object).
1586 KASSERT(object
->type
!= OBJT_PHYS
,
1587 ("attempt to remove pages from a physical object"));
1590 * Indicating that the object is undergoing paging.
1592 * spl protection is required to avoid a race between the memq scan,
1593 * an interrupt unbusy/free, and the busy check.
1595 vm_object_pip_add(object
, 1);
1599 if (all
|| size
> object
->resident_page_count
/ 4) {
1600 for (p
= TAILQ_FIRST(&object
->memq
); p
!= NULL
; p
= next
) {
1601 next
= TAILQ_NEXT(p
, listq
);
1602 if (all
|| ((start
<= p
->pindex
) && (p
->pindex
< end
))) {
1603 if (p
->wire_count
!= 0) {
1604 vm_page_protect(p
, VM_PROT_NONE
);
1611 * The busy flags are only cleared at
1612 * interrupt -- minimize the spl transitions
1615 if (vm_page_sleep_busy(p
, TRUE
, "vmopar"))
1618 if (clean_only
&& p
->valid
) {
1619 vm_page_test_dirty(p
);
1620 if (p
->valid
& p
->dirty
)
1625 vm_page_protect(p
, VM_PROT_NONE
);
1631 if ((p
= vm_page_lookup(object
, start
)) != 0) {
1632 if (p
->wire_count
!= 0) {
1633 vm_page_protect(p
, VM_PROT_NONE
);
1642 * The busy flags are only cleared at
1643 * interrupt -- minimize the spl transitions
1645 if (vm_page_sleep_busy(p
, TRUE
, "vmopar"))
1648 if (clean_only
&& p
->valid
) {
1649 vm_page_test_dirty(p
);
1650 if (p
->valid
& p
->dirty
) {
1658 vm_page_protect(p
, VM_PROT_NONE
);
1666 vm_object_pip_wakeup(object
);
1670 * Routine: vm_object_coalesce
1671 * Function: Coalesces two objects backing up adjoining
1672 * regions of memory into a single object.
1674 * returns TRUE if objects were combined.
1676 * NOTE: Only works at the moment if the second object is NULL -
1677 * if it's not, which object do we lock first?
1680 * prev_object First object to coalesce
1681 * prev_offset Offset into prev_object
1682 * next_object Second object into coalesce
1683 * next_offset Offset into next_object
1685 * prev_size Size of reference to prev_object
1686 * next_size Size of reference to next_object
1689 * The object must *not* be locked.
1692 vm_object_coalesce(vm_object_t prev_object
, vm_pindex_t prev_pindex
,
1693 vm_size_t prev_size
, vm_size_t next_size
)
1695 vm_pindex_t next_pindex
;
1697 if (prev_object
== NULL
) {
1701 if (prev_object
->type
!= OBJT_DEFAULT
&&
1702 prev_object
->type
!= OBJT_SWAP
) {
1707 * Try to collapse the object first
1709 vm_object_collapse(prev_object
);
1712 * Can't coalesce if: . more than one reference . paged out . shadows
1713 * another object . has a copy elsewhere (any of which mean that the
1714 * pages not mapped to prev_entry may be in use anyway)
1717 if (prev_object
->backing_object
!= NULL
) {
1721 prev_size
>>= PAGE_SHIFT
;
1722 next_size
>>= PAGE_SHIFT
;
1723 next_pindex
= prev_pindex
+ prev_size
;
1725 if ((prev_object
->ref_count
> 1) &&
1726 (prev_object
->size
!= next_pindex
)) {
1731 * Remove any pages that may still be in the object from a previous
1734 if (next_pindex
< prev_object
->size
) {
1735 vm_object_page_remove(prev_object
,
1737 next_pindex
+ next_size
, FALSE
);
1738 if (prev_object
->type
== OBJT_SWAP
)
1739 swap_pager_freespace(prev_object
,
1740 next_pindex
, next_size
);
1744 * Extend the object if necessary.
1746 if (next_pindex
+ next_size
> prev_object
->size
)
1747 prev_object
->size
= next_pindex
+ next_size
;
1753 vm_object_set_writeable_dirty(vm_object_t object
)
1757 vm_object_set_flag(object
, OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
1758 if (object
->type
== OBJT_VNODE
&&
1759 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
1760 if ((vp
->v_flag
& VOBJDIRTY
) == 0) {
1761 vsetflags(vp
, VOBJDIRTY
);
1768 #include "opt_ddb.h"
1770 #include <sys/kernel.h>
1772 #include <sys/cons.h>
1774 #include <ddb/ddb.h>
1776 static int _vm_object_in_map (vm_map_t map
, vm_object_t object
,
1777 vm_map_entry_t entry
);
1778 static int vm_object_in_map (vm_object_t object
);
1781 _vm_object_in_map(vm_map_t map
, vm_object_t object
, vm_map_entry_t entry
)
1784 vm_map_entry_t tmpe
;
1792 tmpe
= map
->header
.next
;
1793 entcount
= map
->nentries
;
1794 while (entcount
-- && (tmpe
!= &map
->header
)) {
1795 if( _vm_object_in_map(map
, object
, tmpe
)) {
1800 } else if (entry
->eflags
& MAP_ENTRY_IS_SUB_MAP
) {
1801 tmpm
= entry
->object
.sub_map
;
1802 tmpe
= tmpm
->header
.next
;
1803 entcount
= tmpm
->nentries
;
1804 while (entcount
-- && tmpe
!= &tmpm
->header
) {
1805 if( _vm_object_in_map(tmpm
, object
, tmpe
)) {
1810 } else if ((obj
= entry
->object
.vm_object
) != NULL
) {
1811 for(; obj
; obj
=obj
->backing_object
)
1812 if( obj
== object
) {
1820 vm_object_in_map(vm_object_t object
)
1823 for (p
= allproc
.lh_first
; p
!= 0; p
= p
->p_list
.le_next
) {
1824 if( !p
->p_vmspace
/* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1826 if( _vm_object_in_map(&p
->p_vmspace
->vm_map
, object
, 0))
1829 if( _vm_object_in_map( kernel_map
, object
, 0))
1831 if( _vm_object_in_map( pager_map
, object
, 0))
1833 if( _vm_object_in_map( buffer_map
, object
, 0))
1838 DB_SHOW_COMMAND(vmochk
, vm_object_check
)
1843 * make sure that internal objs are in a map somewhere
1844 * and none have zero ref counts.
1846 for (object
= TAILQ_FIRST(&vm_object_list
);
1848 object
= TAILQ_NEXT(object
, object_list
)) {
1849 if (object
->handle
== NULL
&&
1850 (object
->type
== OBJT_DEFAULT
|| object
->type
== OBJT_SWAP
)) {
1851 if (object
->ref_count
== 0) {
1852 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1853 (long)object
->size
);
1855 if (!vm_object_in_map(object
)) {
1857 "vmochk: internal obj is not in a map: "
1858 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1859 object
->ref_count
, (u_long
)object
->size
,
1860 (u_long
)object
->size
,
1861 (void *)object
->backing_object
);
1868 * vm_object_print: [ debug ]
1870 DB_SHOW_COMMAND(object
, vm_object_print_static
)
1872 /* XXX convert args. */
1873 vm_object_t object
= (vm_object_t
)addr
;
1874 boolean_t full
= have_addr
;
1878 /* XXX count is an (unused) arg. Avoid shadowing it. */
1879 #define count was_count
1887 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1888 object
, (int)object
->type
, (u_long
)object
->size
,
1889 object
->resident_page_count
, object
->ref_count
, object
->flags
);
1891 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1893 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1894 object
->shadow_count
,
1895 object
->backing_object
? object
->backing_object
->ref_count
: 0,
1896 object
->backing_object
, (long)object
->backing_object_offset
);
1903 for (p
= TAILQ_FIRST(&object
->memq
); p
!= NULL
; p
= TAILQ_NEXT(p
, listq
)) {
1905 db_iprintf("memory:=");
1906 else if (count
== 6) {
1914 db_printf("(off=0x%lx,page=0x%lx)",
1915 (u_long
) p
->pindex
, (u_long
) VM_PAGE_TO_PHYS(p
));
1925 /* XXX need this non-static entry for calling from vm_map_print. */
1927 vm_object_print(/* db_expr_t */ long addr
,
1928 boolean_t have_addr
,
1929 /* db_expr_t */ long count
,
1932 vm_object_print_static(addr
, have_addr
, count
, modif
);
1935 DB_SHOW_COMMAND(vmopag
, vm_object_print_pages
)
1940 for (object
= TAILQ_FIRST(&vm_object_list
);
1942 object
= TAILQ_NEXT(object
, object_list
)) {
1943 vm_pindex_t idx
, fidx
;
1945 vm_paddr_t pa
= -1, padiff
;
1949 db_printf("new object: %p\n", (void *)object
);
1959 osize
= object
->size
;
1962 for (idx
= 0; idx
< osize
; idx
++) {
1963 m
= vm_page_lookup(object
, idx
);
1966 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1967 (long)fidx
, rcount
, (long)pa
);
1982 (VM_PAGE_TO_PHYS(m
) == pa
+ rcount
* PAGE_SIZE
)) {
1987 padiff
= pa
+ rcount
* PAGE_SIZE
- VM_PAGE_TO_PHYS(m
);
1988 padiff
>>= PAGE_SHIFT
;
1989 padiff
&= PQ_L2_MASK
;
1991 pa
= VM_PAGE_TO_PHYS(m
) - rcount
* PAGE_SIZE
;
1995 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1996 (long)fidx
, rcount
, (long)pa
);
1997 db_printf("pd(%ld)\n", (long)padiff
);
2007 pa
= VM_PAGE_TO_PHYS(m
);
2011 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2012 (long)fidx
, rcount
, (long)pa
);