kernel - support dummy reallocblks in devfs
[dragonfly.git] / contrib / gcc-5.0 / gcc / vtable-verify.c
blob22b7b810d3b48105d27b8c91fd636f140170ba12
1 /* Copyright (C) 2013-2015 Free Software Foundation, Inc.
3 This file is part of GCC.
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 for more details.
15 You should have received a copy of the GNU General Public License
16 along with GCC; see the file COPYING3. If not see
17 <http://www.gnu.org/licenses/>. */
19 /* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20 before using them for virtual method dispatches. */
22 /* This file is part of the vtable security feature implementation.
23 The vtable security feature is designed to detect when a virtual
24 call is about to be made through an invalid vtable pointer
25 (possibly due to data corruption or malicious attacks). The
26 compiler finds every virtual call, and inserts a verification call
27 before the virtual call. The verification call takes the actual
28 vtable pointer value in the object through which the virtual call
29 is being made, and compares the vtable pointer against a set of all
30 valid vtable pointers that the object could contain (this set is
31 based on the declared type of the object). If the pointer is in
32 the valid set, execution is allowed to continue; otherwise the
33 program is halted.
35 There are several pieces needed in order to make this work: 1. For
36 every virtual class in the program (i.e. a class that contains
37 virtual methods), we need to build the set of all possible valid
38 vtables that an object of that class could point to. This includes
39 vtables for any class(es) that inherit from the class under
40 consideration. 2. For every such data set we build up, we need a
41 way to find and reference the data set. This is complicated by the
42 fact that the real vtable addresses are not known until runtime,
43 when the program is loaded into memory, but we need to reference the
44 sets at compile time when we are inserting verification calls into
45 the program. 3. We need to find every virtual call in the program,
46 and insert the verification call (with the appropriate arguments)
47 before the virtual call. 4. We need some runtime library pieces:
48 the code to build up the data sets at runtime; the code to actually
49 perform the verification using the data sets; and some code to set
50 protections on the data sets, so they themselves do not become
51 hacker targets.
53 To find and reference the set of valid vtable pointers for any given
54 virtual class, we create a special global variable for each virtual
55 class. We refer to this as the "vtable map variable" for that
56 class. The vtable map variable has the type "void *", and is
57 initialized by the compiler to NULL. At runtime when the set of
58 valid vtable pointers for a virtual class, e.g. class Foo, is built,
59 the vtable map variable for class Foo is made to point to the set.
60 During compile time, when the compiler is inserting verification
61 calls into the program, it passes the vtable map variable for the
62 appropriate class to the verification call, so that at runtime the
63 verification call can find the appropriate data set.
65 The actual set of valid vtable pointers for a virtual class,
66 e.g. class Foo, cannot be built until runtime, when the vtables get
67 loaded into memory and their addresses are known. But the knowledge
68 about which vtables belong in which class' hierarchy is only known
69 at compile time. Therefore at compile time we collect class
70 hierarchy and vtable information about every virtual class, and we
71 generate calls to build up the data sets at runtime. To build the
72 data sets, we call one of the functions we add to the runtime
73 library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
74 a vtable map variable and the address of a vtable. If the vtable
75 map variable is currently NULL, it creates a new data set (hash
76 table), makes the vtable map variable point to the new data set, and
77 inserts the vtable address into the data set. If the vtable map
78 variable is not NULL, it just inserts the vtable address into the
79 data set. In order to make sure that our data sets are built before
80 any verification calls happen, we create a special constructor
81 initialization function for each compilation unit, give it a very
82 high initialization priority, and insert all of our calls to
83 __VLTRegisterPair into our special constructor initialization
84 function.
86 The vtable verification feature is controlled by the flag
87 '-fvtable-verify='. There are three flavors of this:
88 '-fvtable-verify=std', '-fvtable-verify=preinit', and
89 '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
90 used, then our constructor initialization function gets put into the
91 preinit array. This is necessary if there are data sets that need
92 to be built very early in execution. If the constructor
93 initialization function gets put into the preinit array, the we also
94 add calls to __VLTChangePermission at the beginning and end of the
95 function. The call at the beginning sets the permissions on the
96 data sets and vtable map variables to read/write, and the one at the
97 end makes them read-only. If the '-fvtable-verify=std' option is
98 used, the constructor initialization functions are executed at their
99 normal time, and the __VLTChangePermission calls are handled
100 differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101 The option '-fvtable-verify=none' turns off vtable verification.
103 This file contains code for the tree pass that goes through all the
104 statements in each basic block, looking for virtual calls, and
105 inserting a call to __VLTVerifyVtablePointer (with appropriate
106 arguments) before each one. It also contains the hash table
107 functions for the data structures used for collecting the class
108 hierarchy data and building/maintaining the vtable map variable data
109 are defined in gcc/vtable-verify.h. These data structures are
110 shared with the code in the C++ front end that collects the class
111 hierarchy & vtable information and generates the vtable map
112 variables (see cp/vtable-class-hierarchy.c). This tree pass should
113 run just before the gimple is converted to RTL.
115 Some implementation details for this pass:
117 To find all of the virtual calls, we iterate through all the
118 gimple statements in each basic block, looking for any call
119 statement with the code "OBJ_TYPE_REF". Once we have found the
120 virtual call, we need to find the vtable pointer through which the
121 call is being made, and the type of the object containing the
122 pointer (to find the appropriate vtable map variable). We then use
123 these to build a call to __VLTVerifyVtablePointer, passing the
124 vtable map variable, and the vtable pointer. We insert the
125 verification call just after the gimple statement that gets the
126 vtable pointer out of the object, and we update the next
127 statement to depend on the result returned from
128 __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129 subsequent compiler phases don't remove or reorder the call (it's no
130 good to have the verification occur after the virtual call, for
131 example). To find the vtable pointer being used (and the type of
132 the object) we search backwards through the def_stmts chain from the
133 virtual call (see verify_bb_vtables for more details). */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "hash-set.h"
139 #include "machmode.h"
140 #include "vec.h"
141 #include "double-int.h"
142 #include "input.h"
143 #include "alias.h"
144 #include "symtab.h"
145 #include "options.h"
146 #include "wide-int.h"
147 #include "inchash.h"
148 #include "tree.h"
149 #include "fold-const.h"
150 #include "predict.h"
151 #include "tm.h"
152 #include "hard-reg-set.h"
153 #include "input.h"
154 #include "function.h"
155 #include "dominance.h"
156 #include "cfg.h"
157 #include "basic-block.h"
158 #include "tree-ssa-alias.h"
159 #include "internal-fn.h"
160 #include "gimple-expr.h"
161 #include "is-a.h"
162 #include "gimple.h"
163 #include "gimple-iterator.h"
164 #include "gimple-ssa.h"
165 #include "tree-phinodes.h"
166 #include "ssa-iterators.h"
167 #include "stringpool.h"
168 #include "tree-ssanames.h"
169 #include "tree-pass.h"
170 #include "cfgloop.h"
172 #include "vtable-verify.h"
174 unsigned num_vtable_map_nodes = 0;
175 int total_num_virtual_calls = 0;
176 int total_num_verified_vcalls = 0;
178 extern GTY(()) tree verify_vtbl_ptr_fndecl;
179 tree verify_vtbl_ptr_fndecl = NULL_TREE;
181 /* Keep track of whether or not any virtual call were verified. */
182 static bool any_verification_calls_generated = false;
184 unsigned int vtable_verify_main (void);
187 /* The following few functions are for the vtbl pointer hash table
188 in the 'registered' field of the struct vtable_map_node. The hash
189 table keeps track of which vtable pointers have been used in
190 calls to __VLTRegisterPair with that particular vtable map variable. */
192 /* This function checks to see if a particular VTABLE_DECL and OFFSET are
193 already in the 'registered' hash table for NODE. */
195 bool
196 vtbl_map_node_registration_find (struct vtbl_map_node *node,
197 tree vtable_decl,
198 unsigned offset)
200 struct vtable_registration key;
201 struct vtable_registration **slot;
203 gcc_assert (node && node->registered);
205 key.vtable_decl = vtable_decl;
206 slot = node->registered->find_slot (&key, NO_INSERT);
208 if (slot && (*slot))
210 unsigned i;
211 for (i = 0; i < ((*slot)->offsets).length (); ++i)
212 if ((*slot)->offsets[i] == offset)
213 return true;
216 return false;
219 /* This function inserts VTABLE_DECL and OFFSET into the 'registered'
220 hash table for NODE. It returns a boolean indicating whether or not
221 it actually inserted anything. */
223 bool
224 vtbl_map_node_registration_insert (struct vtbl_map_node *node,
225 tree vtable_decl,
226 unsigned offset)
228 struct vtable_registration key;
229 struct vtable_registration **slot;
230 bool inserted_something = false;
232 if (!node || !node->registered)
233 return false;
235 key.vtable_decl = vtable_decl;
236 slot = node->registered->find_slot (&key, INSERT);
238 if (! *slot)
240 struct vtable_registration *node;
241 node = XNEW (struct vtable_registration);
242 node->vtable_decl = vtable_decl;
244 (node->offsets).create (10);
245 (node->offsets).safe_push (offset);
246 *slot = node;
247 inserted_something = true;
249 else
251 /* We found the vtable_decl slot; we need to see if it already
252 contains the offset. If not, we need to add the offset. */
253 unsigned i;
254 bool found = false;
255 for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
256 if ((*slot)->offsets[i] == offset)
257 found = true;
259 if (!found)
261 ((*slot)->offsets).safe_push (offset);
262 inserted_something = true;
265 return inserted_something;
268 /* Hashtable functions for vtable_registration hashtables. */
270 inline hashval_t
271 registration_hasher::hash (const value_type *p)
273 const struct vtable_registration *n = (const struct vtable_registration *) p;
274 return (hashval_t) (DECL_UID (n->vtable_decl));
277 inline bool
278 registration_hasher::equal (const value_type *p1, const compare_type *p2)
280 const struct vtable_registration *n1 =
281 (const struct vtable_registration *) p1;
282 const struct vtable_registration *n2 =
283 (const struct vtable_registration *) p2;
284 return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
287 /* End of hashtable functions for "registered" hashtables. */
291 /* Hashtable definition and functions for vtbl_map_hash. */
293 struct vtbl_map_hasher : typed_noop_remove <struct vtbl_map_node>
295 typedef struct vtbl_map_node value_type;
296 typedef struct vtbl_map_node compare_type;
297 static inline hashval_t hash (const value_type *);
298 static inline bool equal (const value_type *, const compare_type *);
301 /* Returns a hash code for P. */
303 inline hashval_t
304 vtbl_map_hasher::hash (const value_type *p)
306 const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
307 return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
310 /* Returns nonzero if P1 and P2 are equal. */
312 inline bool
313 vtbl_map_hasher::equal (const value_type *p1, const compare_type *p2)
315 const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
316 const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
317 return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
318 IDENTIFIER_HASH_VALUE (n2.class_name));
321 /* Here are the two structures into which we insert vtable map nodes.
322 We use two data structures because of the vastly different ways we need
323 to find the nodes for various tasks (see comments in vtable-verify.h
324 for more details. */
326 typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
327 typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
329 /* Vtable map variable nodes stored in a hash table. */
330 static vtbl_map_table_type *vtbl_map_hash;
332 /* Vtable map variable nodes stored in a vector. */
333 vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
335 /* Return vtbl_map node for CLASS_NAME without creating a new one. */
337 struct vtbl_map_node *
338 vtbl_map_get_node (tree class_type)
340 struct vtbl_map_node key;
341 struct vtbl_map_node **slot;
343 tree class_type_decl;
344 tree class_name;
345 unsigned int type_quals;
347 if (!vtbl_map_hash)
348 return NULL;
350 gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
353 /* Find the TYPE_DECL for the class. */
354 class_type_decl = TYPE_NAME (class_type);
356 /* Verify that there aren't any qualifiers on the type. */
357 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
358 gcc_assert (type_quals == TYPE_UNQUALIFIED);
360 /* Get the mangled name for the unqualified type. */
361 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
362 class_name = DECL_ASSEMBLER_NAME (class_type_decl);
364 key.class_name = class_name;
365 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
366 if (!slot)
367 return NULL;
368 return *slot;
371 /* Return vtbl_map node assigned to BASE_CLASS_TYPE. Create new one
372 when needed. */
374 struct vtbl_map_node *
375 find_or_create_vtbl_map_node (tree base_class_type)
377 struct vtbl_map_node key;
378 struct vtbl_map_node *node;
379 struct vtbl_map_node **slot;
380 tree class_type_decl;
381 unsigned int type_quals;
383 if (!vtbl_map_hash)
384 vtbl_map_hash = new vtbl_map_table_type (10);
386 /* Find the TYPE_DECL for the class. */
387 class_type_decl = TYPE_NAME (base_class_type);
389 /* Verify that there aren't any type qualifiers on type. */
390 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
391 gcc_assert (type_quals == TYPE_UNQUALIFIED);
393 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
394 key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
395 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
397 if (*slot)
398 return *slot;
400 node = XNEW (struct vtbl_map_node);
401 node->vtbl_map_decl = NULL_TREE;
402 node->class_name = key.class_name;
403 node->uid = num_vtable_map_nodes++;
405 node->class_info = XNEW (struct vtv_graph_node);
406 node->class_info->class_type = base_class_type;
407 node->class_info->class_uid = node->uid;
408 node->class_info->num_processed_children = 0;
410 (node->class_info->parents).create (4);
411 (node->class_info->children).create (4);
413 node->registered = new register_table_type (16);
415 node->is_used = false;
417 vtbl_map_nodes_vec.safe_push (node);
418 gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
420 *slot = node;
421 return node;
424 /* End of hashtable functions for vtable_map variables hash table. */
426 /* Given a gimple STMT, this function checks to see if the statement
427 is an assignment, the rhs of which is getting the vtable pointer
428 value out of an object. (i.e. it's the value we need to verify
429 because its the vtable pointer that will be used for a virtual
430 call). */
432 static bool
433 is_vtable_assignment_stmt (gimple stmt)
436 if (gimple_code (stmt) != GIMPLE_ASSIGN)
437 return false;
438 else
440 tree lhs = gimple_assign_lhs (stmt);
441 tree rhs = gimple_assign_rhs1 (stmt);
443 if (TREE_CODE (lhs) != SSA_NAME)
444 return false;
446 if (TREE_CODE (rhs) != COMPONENT_REF)
447 return false;
449 if (! (TREE_OPERAND (rhs, 1))
450 || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
451 return false;
453 if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
454 return false;
457 return true;
460 /* This function attempts to recover the declared class of an object
461 that is used in making a virtual call. We try to get the type from
462 the type cast in the gimple assignment statement that extracts the
463 vtable pointer from the object (DEF_STMT). The gimple statement
464 usually looks something like this:
466 D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event */
468 static tree
469 extract_object_class_type (tree rhs)
471 tree result = NULL_TREE;
473 /* Try to find and extract the type cast from that stmt. */
474 if (TREE_CODE (rhs) == COMPONENT_REF)
476 tree op0 = TREE_OPERAND (rhs, 0);
477 tree op1 = TREE_OPERAND (rhs, 1);
479 if (TREE_CODE (op1) == FIELD_DECL
480 && DECL_VIRTUAL_P (op1))
482 if (TREE_CODE (op0) == COMPONENT_REF
483 && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
484 && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
485 result = TREE_TYPE (TREE_OPERAND (op0, 0));
486 else
487 result = TREE_TYPE (op0);
489 else if (TREE_CODE (op0) == COMPONENT_REF)
491 result = extract_object_class_type (op0);
492 if (result == NULL_TREE
493 && TREE_CODE (op1) == COMPONENT_REF)
494 result = extract_object_class_type (op1);
498 return result;
501 /* This function traces forward through the def-use chain of an SSA
502 variable to see if it ever gets used in a virtual function call. It
503 returns a boolean indicating whether or not it found a virtual call in
504 the use chain. */
506 static bool
507 var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth)
509 imm_use_iterator imm_iter;
510 bool found_vcall = false;
511 use_operand_p use_p;
513 if (TREE_CODE (lhs) != SSA_NAME)
514 return false;
516 if (*mem_ref_depth > 2)
517 return false;
519 /* Iterate through the immediate uses of the current variable. If
520 it's a virtual function call, we're done. Otherwise, if there's
521 an LHS for the use stmt, add the ssa var to the work list
522 (assuming it's not already in the list and is not a variable
523 we've already examined. */
525 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
527 gimple stmt2 = USE_STMT (use_p);
529 if (is_gimple_call (stmt2))
531 tree fncall = gimple_call_fn (stmt2);
532 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
533 found_vcall = true;
534 else
535 return false;
537 else if (gimple_code (stmt2) == GIMPLE_PHI)
539 found_vcall = var_is_used_for_virtual_call_p
540 (gimple_phi_result (stmt2),
541 mem_ref_depth);
543 else if (is_gimple_assign (stmt2))
545 tree rhs = gimple_assign_rhs1 (stmt2);
546 if (TREE_CODE (rhs) == ADDR_EXPR
547 || TREE_CODE (rhs) == MEM_REF)
548 *mem_ref_depth = *mem_ref_depth + 1;
550 if (TREE_CODE (rhs) == COMPONENT_REF)
552 while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
553 rhs = TREE_OPERAND (rhs, 0);
555 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
556 || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
557 *mem_ref_depth = *mem_ref_depth + 1;
560 if (*mem_ref_depth < 3)
561 found_vcall = var_is_used_for_virtual_call_p
562 (gimple_assign_lhs (stmt2),
563 mem_ref_depth);
566 else
567 break;
569 if (found_vcall)
570 return true;
573 return false;
576 /* Search through all the statements in a basic block (BB), searching
577 for virtual method calls. For each virtual method dispatch, find
578 the vptr value used, and the statically declared type of the
579 object; retrieve the vtable map variable for the type of the
580 object; generate a call to __VLTVerifyVtablePointer; and insert the
581 generated call into the basic block, after the point where the vptr
582 value is gotten out of the object and before the virtual method
583 dispatch. Make the virtual method dispatch depend on the return
584 value from the verification call, so that subsequent optimizations
585 cannot reorder the two calls. */
587 static void
588 verify_bb_vtables (basic_block bb)
590 gimple_seq stmts;
591 gimple stmt = NULL;
592 gimple_stmt_iterator gsi_vtbl_assign;
593 gimple_stmt_iterator gsi_virtual_call;
595 stmts = bb_seq (bb);
596 gsi_virtual_call = gsi_start (stmts);
597 for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
599 stmt = gsi_stmt (gsi_virtual_call);
601 /* Count virtual calls. */
602 if (is_gimple_call (stmt))
604 tree fncall = gimple_call_fn (stmt);
605 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
606 total_num_virtual_calls++;
609 if (is_vtable_assignment_stmt (stmt))
611 tree lhs = gimple_assign_lhs (stmt);
612 tree vtbl_var_decl = NULL_TREE;
613 struct vtbl_map_node *vtable_map_node;
614 tree vtbl_decl = NULL_TREE;
615 gcall *call_stmt;
616 const char *vtable_name = "<unknown>";
617 tree tmp0;
618 bool found;
619 int mem_ref_depth = 0;
621 /* Make sure this vptr field access is for a virtual call. */
622 if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth))
623 continue;
625 /* Now we have found the virtual method dispatch and
626 the preceding access of the _vptr.* field... Next
627 we need to find the statically declared type of
628 the object, so we can find and use the right
629 vtable map variable in the verification call. */
630 tree class_type = extract_object_class_type
631 (gimple_assign_rhs1 (stmt));
633 gsi_vtbl_assign = gsi_for_stmt (stmt);
635 if (class_type
636 && (TREE_CODE (class_type) == RECORD_TYPE)
637 && TYPE_BINFO (class_type))
639 /* Get the vtable VAR_DECL for the type. */
640 vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
642 if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
643 vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
646 gcc_assert (vtbl_var_decl);
648 vtbl_decl = vtbl_var_decl;
649 vtable_map_node = vtbl_map_get_node
650 (TYPE_MAIN_VARIANT (class_type));
652 gcc_assert (verify_vtbl_ptr_fndecl);
654 /* Given the vtable pointer for the base class of the
655 object, build the call to __VLTVerifyVtablePointer to
656 verify that the object's vtable pointer (contained in
657 lhs) is in the set of valid vtable pointers for the
658 base class. */
660 if (vtable_map_node && vtable_map_node->vtbl_map_decl)
662 vtable_map_node->is_used = true;
663 vtbl_var_decl = vtable_map_node->vtbl_map_decl;
665 if (TREE_CODE (vtbl_decl) == VAR_DECL)
666 vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
668 /* Call different routines if we are interested in
669 trace information to debug problems. */
670 if (flag_vtv_debug)
672 int len1 = IDENTIFIER_LENGTH
673 (DECL_NAME (vtbl_var_decl));
674 int len2 = strlen (vtable_name);
676 call_stmt = gimple_build_call
677 (verify_vtbl_ptr_fndecl, 4,
678 build1 (ADDR_EXPR,
679 TYPE_POINTER_TO
680 (TREE_TYPE (vtbl_var_decl)),
681 vtbl_var_decl),
682 lhs,
683 build_string_literal
684 (len1 + 1,
685 IDENTIFIER_POINTER
686 (DECL_NAME
687 (vtbl_var_decl))),
688 build_string_literal (len2 + 1,
689 vtable_name));
691 else
692 call_stmt = gimple_build_call
693 (verify_vtbl_ptr_fndecl, 2,
694 build1 (ADDR_EXPR,
695 TYPE_POINTER_TO
696 (TREE_TYPE (vtbl_var_decl)),
697 vtbl_var_decl),
698 lhs);
701 /* Create a new SSA_NAME var to hold the call's
702 return value, and make the call_stmt use the
703 variable for that purpose. */
704 tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
705 gimple_call_set_lhs (call_stmt, tmp0);
706 update_stmt (call_stmt);
708 /* Replace all uses of lhs with tmp0. */
709 found = false;
710 imm_use_iterator iterator;
711 gimple use_stmt;
712 FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
714 use_operand_p use_p;
715 if (use_stmt == call_stmt)
716 continue;
717 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
718 SET_USE (use_p, tmp0);
719 update_stmt (use_stmt);
720 found = true;
723 gcc_assert (found);
725 /* Insert the new verification call just after the
726 statement that gets the vtable pointer out of the
727 object. */
728 gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
729 gsi_insert_after (&gsi_vtbl_assign, call_stmt,
730 GSI_NEW_STMT);
732 any_verification_calls_generated = true;
733 total_num_verified_vcalls++;
740 /* Definition of this optimization pass. */
742 namespace {
744 const pass_data pass_data_vtable_verify =
746 GIMPLE_PASS, /* type */
747 "vtable-verify", /* name */
748 OPTGROUP_NONE, /* optinfo_flags */
749 TV_VTABLE_VERIFICATION, /* tv_id */
750 ( PROP_cfg | PROP_ssa ), /* properties_required */
751 0, /* properties_provided */
752 0, /* properties_destroyed */
753 0, /* todo_flags_start */
754 TODO_update_ssa, /* todo_flags_finish */
757 class pass_vtable_verify : public gimple_opt_pass
759 public:
760 pass_vtable_verify (gcc::context *ctxt)
761 : gimple_opt_pass (pass_data_vtable_verify, ctxt)
764 /* opt_pass methods: */
765 virtual bool gate (function *) { return (flag_vtable_verify); }
766 virtual unsigned int execute (function *);
768 }; // class pass_vtable_verify
770 /* Loop through all the basic blocks in the current function, passing them to
771 verify_bb_vtables, which searches for virtual calls, and inserts
772 calls to __VLTVerifyVtablePointer. */
774 unsigned int
775 pass_vtable_verify::execute (function *fun)
777 unsigned int ret = 1;
778 basic_block bb;
780 FOR_ALL_BB_FN (bb, fun)
781 verify_bb_vtables (bb);
783 return ret;
786 } // anon namespace
788 gimple_opt_pass *
789 make_pass_vtable_verify (gcc::context *ctxt)
791 return new pass_vtable_verify (ctxt);
794 #include "gt-vtable-verify.h"