kernel - support dummy reallocblks in devfs
[dragonfly.git] / contrib / gcc-5.0 / gcc / function.c
blob5059cdf634b23d59f484268a03ae9eca3f77e563
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "hash-set.h"
40 #include "machmode.h"
41 #include "vec.h"
42 #include "double-int.h"
43 #include "input.h"
44 #include "alias.h"
45 #include "symtab.h"
46 #include "wide-int.h"
47 #include "inchash.h"
48 #include "tree.h"
49 #include "fold-const.h"
50 #include "stor-layout.h"
51 #include "varasm.h"
52 #include "stringpool.h"
53 #include "flags.h"
54 #include "except.h"
55 #include "hashtab.h"
56 #include "hard-reg-set.h"
57 #include "function.h"
58 #include "rtl.h"
59 #include "statistics.h"
60 #include "real.h"
61 #include "fixed-value.h"
62 #include "insn-config.h"
63 #include "expmed.h"
64 #include "dojump.h"
65 #include "explow.h"
66 #include "calls.h"
67 #include "emit-rtl.h"
68 #include "stmt.h"
69 #include "expr.h"
70 #include "insn-codes.h"
71 #include "optabs.h"
72 #include "libfuncs.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "tm_p.h"
77 #include "langhooks.h"
78 #include "target.h"
79 #include "common/common-target.h"
80 #include "gimple-expr.h"
81 #include "gimplify.h"
82 #include "tree-pass.h"
83 #include "predict.h"
84 #include "dominance.h"
85 #include "cfg.h"
86 #include "cfgrtl.h"
87 #include "cfganal.h"
88 #include "cfgbuild.h"
89 #include "cfgcleanup.h"
90 #include "basic-block.h"
91 #include "df.h"
92 #include "params.h"
93 #include "bb-reorder.h"
94 #include "shrink-wrap.h"
95 #include "toplev.h"
96 #include "rtl-iter.h"
97 #include "tree-chkp.h"
98 #include "rtl-chkp.h"
100 /* So we can assign to cfun in this file. */
101 #undef cfun
103 #ifndef STACK_ALIGNMENT_NEEDED
104 #define STACK_ALIGNMENT_NEEDED 1
105 #endif
107 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
109 /* Round a value to the lowest integer less than it that is a multiple of
110 the required alignment. Avoid using division in case the value is
111 negative. Assume the alignment is a power of two. */
112 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
114 /* Similar, but round to the next highest integer that meets the
115 alignment. */
116 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
118 /* Nonzero once virtual register instantiation has been done.
119 assign_stack_local uses frame_pointer_rtx when this is nonzero.
120 calls.c:emit_library_call_value_1 uses it to set up
121 post-instantiation libcalls. */
122 int virtuals_instantiated;
124 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
125 static GTY(()) int funcdef_no;
127 /* These variables hold pointers to functions to create and destroy
128 target specific, per-function data structures. */
129 struct machine_function * (*init_machine_status) (void);
131 /* The currently compiled function. */
132 struct function *cfun = 0;
134 /* These hashes record the prologue and epilogue insns. */
136 struct insn_cache_hasher : ggc_cache_hasher<rtx>
138 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
139 static bool equal (rtx a, rtx b) { return a == b; }
142 static GTY((cache))
143 hash_table<insn_cache_hasher> *prologue_insn_hash;
144 static GTY((cache))
145 hash_table<insn_cache_hasher> *epilogue_insn_hash;
148 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
149 vec<tree, va_gc> *types_used_by_cur_var_decl;
151 /* Forward declarations. */
153 static struct temp_slot *find_temp_slot_from_address (rtx);
154 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
155 static void pad_below (struct args_size *, machine_mode, tree);
156 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
157 static int all_blocks (tree, tree *);
158 static tree *get_block_vector (tree, int *);
159 extern tree debug_find_var_in_block_tree (tree, tree);
160 /* We always define `record_insns' even if it's not used so that we
161 can always export `prologue_epilogue_contains'. */
162 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
163 ATTRIBUTE_UNUSED;
164 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
165 static void prepare_function_start (void);
166 static void do_clobber_return_reg (rtx, void *);
167 static void do_use_return_reg (rtx, void *);
169 /* Stack of nested functions. */
170 /* Keep track of the cfun stack. */
172 typedef struct function *function_p;
174 static vec<function_p> function_context_stack;
176 /* Save the current context for compilation of a nested function.
177 This is called from language-specific code. */
179 void
180 push_function_context (void)
182 if (cfun == 0)
183 allocate_struct_function (NULL, false);
185 function_context_stack.safe_push (cfun);
186 set_cfun (NULL);
189 /* Restore the last saved context, at the end of a nested function.
190 This function is called from language-specific code. */
192 void
193 pop_function_context (void)
195 struct function *p = function_context_stack.pop ();
196 set_cfun (p);
197 current_function_decl = p->decl;
199 /* Reset variables that have known state during rtx generation. */
200 virtuals_instantiated = 0;
201 generating_concat_p = 1;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been parsed, but not compiled, to let
206 garbage collection reclaim the memory. */
208 void
209 free_after_parsing (struct function *f)
211 f->language = 0;
214 /* Clear out all parts of the state in F that can safely be discarded
215 after the function has been compiled, to let garbage collection
216 reclaim the memory. */
218 void
219 free_after_compilation (struct function *f)
221 prologue_insn_hash = NULL;
222 epilogue_insn_hash = NULL;
224 free (crtl->emit.regno_pointer_align);
226 memset (crtl, 0, sizeof (struct rtl_data));
227 f->eh = NULL;
228 f->machine = NULL;
229 f->cfg = NULL;
231 regno_reg_rtx = NULL;
234 /* Return size needed for stack frame based on slots so far allocated.
235 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
236 the caller may have to do that. */
238 HOST_WIDE_INT
239 get_frame_size (void)
241 if (FRAME_GROWS_DOWNWARD)
242 return -frame_offset;
243 else
244 return frame_offset;
247 /* Issue an error message and return TRUE if frame OFFSET overflows in
248 the signed target pointer arithmetics for function FUNC. Otherwise
249 return FALSE. */
251 bool
252 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
254 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
256 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
257 /* Leave room for the fixed part of the frame. */
258 - 64 * UNITS_PER_WORD)
260 error_at (DECL_SOURCE_LOCATION (func),
261 "total size of local objects too large");
262 return TRUE;
265 return FALSE;
268 /* Return stack slot alignment in bits for TYPE and MODE. */
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
273 unsigned int alignment;
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
295 static bool
296 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
297 HOST_WIDE_INT size, unsigned int alignment,
298 HOST_WIDE_INT *poffset)
300 HOST_WIDE_INT this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309 /* Round the frame offset to the specified alignment. */
311 /* We must be careful here, since FRAME_OFFSET might be negative and
312 division with a negative dividend isn't as well defined as we might
313 like. So we instead assume that ALIGNMENT is a power of two and
314 use logical operations which are unambiguous. */
315 if (FRAME_GROWS_DOWNWARD)
316 this_frame_offset
317 = (FLOOR_ROUND (start + length - size - frame_phase,
318 (unsigned HOST_WIDE_INT) alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = (CEIL_ROUND (start - frame_phase,
323 (unsigned HOST_WIDE_INT) alignment)
324 + frame_phase);
326 /* See if it fits. If this space is at the edge of the frame,
327 consider extending the frame to make it fit. Our caller relies on
328 this when allocating a new slot. */
329 if (frame_offset == start && this_frame_offset < frame_offset)
330 frame_offset = this_frame_offset;
331 else if (this_frame_offset < start)
332 return false;
333 else if (start + length == frame_offset
334 && this_frame_offset + size > start + length)
335 frame_offset = this_frame_offset + size;
336 else if (this_frame_offset + size > start + length)
337 return false;
339 *poffset = this_frame_offset;
340 return true;
343 /* Create a new frame_space structure describing free space in the stack
344 frame beginning at START and ending at END, and chain it into the
345 function's frame_space_list. */
347 static void
348 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
350 struct frame_space *space = ggc_alloc<frame_space> ();
351 space->next = crtl->frame_space_list;
352 crtl->frame_space_list = space;
353 space->start = start;
354 space->length = end - start;
357 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
358 with machine mode MODE.
360 ALIGN controls the amount of alignment for the address of the slot:
361 0 means according to MODE,
362 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
363 -2 means use BITS_PER_UNIT,
364 positive specifies alignment boundary in bits.
366 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
367 alignment and ASLK_RECORD_PAD bit set if we should remember
368 extra space we allocated for alignment purposes. When we are
369 called from assign_stack_temp_for_type, it is not set so we don't
370 track the same stack slot in two independent lists.
372 We do not round to stack_boundary here. */
375 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
376 int align, int kind)
378 rtx x, addr;
379 int bigend_correction = 0;
380 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
381 unsigned int alignment, alignment_in_bits;
383 if (align == 0)
385 alignment = get_stack_local_alignment (NULL, mode);
386 alignment /= BITS_PER_UNIT;
388 else if (align == -1)
390 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
391 size = CEIL_ROUND (size, alignment);
393 else if (align == -2)
394 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
395 else
396 alignment = align / BITS_PER_UNIT;
398 alignment_in_bits = alignment * BITS_PER_UNIT;
400 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
401 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
403 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
404 alignment = alignment_in_bits / BITS_PER_UNIT;
407 if (SUPPORTS_STACK_ALIGNMENT)
409 if (crtl->stack_alignment_estimated < alignment_in_bits)
411 if (!crtl->stack_realign_processed)
412 crtl->stack_alignment_estimated = alignment_in_bits;
413 else
415 /* If stack is realigned and stack alignment value
416 hasn't been finalized, it is OK not to increase
417 stack_alignment_estimated. The bigger alignment
418 requirement is recorded in stack_alignment_needed
419 below. */
420 gcc_assert (!crtl->stack_realign_finalized);
421 if (!crtl->stack_realign_needed)
423 /* It is OK to reduce the alignment as long as the
424 requested size is 0 or the estimated stack
425 alignment >= mode alignment. */
426 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
427 || size == 0
428 || (crtl->stack_alignment_estimated
429 >= GET_MODE_ALIGNMENT (mode)));
430 alignment_in_bits = crtl->stack_alignment_estimated;
431 alignment = alignment_in_bits / BITS_PER_UNIT;
437 if (crtl->stack_alignment_needed < alignment_in_bits)
438 crtl->stack_alignment_needed = alignment_in_bits;
439 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
440 crtl->max_used_stack_slot_alignment = alignment_in_bits;
442 if (mode != BLKmode || size != 0)
444 if (kind & ASLK_RECORD_PAD)
446 struct frame_space **psp;
448 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
450 struct frame_space *space = *psp;
451 if (!try_fit_stack_local (space->start, space->length, size,
452 alignment, &slot_offset))
453 continue;
454 *psp = space->next;
455 if (slot_offset > space->start)
456 add_frame_space (space->start, slot_offset);
457 if (slot_offset + size < space->start + space->length)
458 add_frame_space (slot_offset + size,
459 space->start + space->length);
460 goto found_space;
464 else if (!STACK_ALIGNMENT_NEEDED)
466 slot_offset = frame_offset;
467 goto found_space;
470 old_frame_offset = frame_offset;
472 if (FRAME_GROWS_DOWNWARD)
474 frame_offset -= size;
475 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
477 if (kind & ASLK_RECORD_PAD)
479 if (slot_offset > frame_offset)
480 add_frame_space (frame_offset, slot_offset);
481 if (slot_offset + size < old_frame_offset)
482 add_frame_space (slot_offset + size, old_frame_offset);
485 else
487 frame_offset += size;
488 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
490 if (kind & ASLK_RECORD_PAD)
492 if (slot_offset > old_frame_offset)
493 add_frame_space (old_frame_offset, slot_offset);
494 if (slot_offset + size < frame_offset)
495 add_frame_space (slot_offset + size, frame_offset);
499 found_space:
500 /* On a big-endian machine, if we are allocating more space than we will use,
501 use the least significant bytes of those that are allocated. */
502 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
503 bigend_correction = size - GET_MODE_SIZE (mode);
505 /* If we have already instantiated virtual registers, return the actual
506 address relative to the frame pointer. */
507 if (virtuals_instantiated)
508 addr = plus_constant (Pmode, frame_pointer_rtx,
509 trunc_int_for_mode
510 (slot_offset + bigend_correction
511 + STARTING_FRAME_OFFSET, Pmode));
512 else
513 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
514 trunc_int_for_mode
515 (slot_offset + bigend_correction,
516 Pmode));
518 x = gen_rtx_MEM (mode, addr);
519 set_mem_align (x, alignment_in_bits);
520 MEM_NOTRAP_P (x) = 1;
522 stack_slot_list
523 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
525 if (frame_offset_overflow (frame_offset, current_function_decl))
526 frame_offset = 0;
528 return x;
531 /* Wrap up assign_stack_local_1 with last parameter as false. */
534 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
536 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
539 /* In order to evaluate some expressions, such as function calls returning
540 structures in memory, we need to temporarily allocate stack locations.
541 We record each allocated temporary in the following structure.
543 Associated with each temporary slot is a nesting level. When we pop up
544 one level, all temporaries associated with the previous level are freed.
545 Normally, all temporaries are freed after the execution of the statement
546 in which they were created. However, if we are inside a ({...}) grouping,
547 the result may be in a temporary and hence must be preserved. If the
548 result could be in a temporary, we preserve it if we can determine which
549 one it is in. If we cannot determine which temporary may contain the
550 result, all temporaries are preserved. A temporary is preserved by
551 pretending it was allocated at the previous nesting level. */
553 struct GTY(()) temp_slot {
554 /* Points to next temporary slot. */
555 struct temp_slot *next;
556 /* Points to previous temporary slot. */
557 struct temp_slot *prev;
558 /* The rtx to used to reference the slot. */
559 rtx slot;
560 /* The size, in units, of the slot. */
561 HOST_WIDE_INT size;
562 /* The type of the object in the slot, or zero if it doesn't correspond
563 to a type. We use this to determine whether a slot can be reused.
564 It can be reused if objects of the type of the new slot will always
565 conflict with objects of the type of the old slot. */
566 tree type;
567 /* The alignment (in bits) of the slot. */
568 unsigned int align;
569 /* Nonzero if this temporary is currently in use. */
570 char in_use;
571 /* Nesting level at which this slot is being used. */
572 int level;
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
581 /* Entry for the below hash table. */
582 struct GTY((for_user)) temp_slot_address_entry {
583 hashval_t hash;
584 rtx address;
585 struct temp_slot *temp_slot;
588 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
590 static hashval_t hash (temp_slot_address_entry *);
591 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
594 /* A table of addresses that represent a stack slot. The table is a mapping
595 from address RTXen to a temp slot. */
596 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
597 static size_t n_temp_slots_in_use;
599 /* Removes temporary slot TEMP from LIST. */
601 static void
602 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
604 if (temp->next)
605 temp->next->prev = temp->prev;
606 if (temp->prev)
607 temp->prev->next = temp->next;
608 else
609 *list = temp->next;
611 temp->prev = temp->next = NULL;
614 /* Inserts temporary slot TEMP to LIST. */
616 static void
617 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
619 temp->next = *list;
620 if (*list)
621 (*list)->prev = temp;
622 temp->prev = NULL;
623 *list = temp;
626 /* Returns the list of used temp slots at LEVEL. */
628 static struct temp_slot **
629 temp_slots_at_level (int level)
631 if (level >= (int) vec_safe_length (used_temp_slots))
632 vec_safe_grow_cleared (used_temp_slots, level + 1);
634 return &(*used_temp_slots)[level];
637 /* Returns the maximal temporary slot level. */
639 static int
640 max_slot_level (void)
642 if (!used_temp_slots)
643 return -1;
645 return used_temp_slots->length () - 1;
648 /* Moves temporary slot TEMP to LEVEL. */
650 static void
651 move_slot_to_level (struct temp_slot *temp, int level)
653 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
654 insert_slot_to_list (temp, temp_slots_at_level (level));
655 temp->level = level;
658 /* Make temporary slot TEMP available. */
660 static void
661 make_slot_available (struct temp_slot *temp)
663 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
664 insert_slot_to_list (temp, &avail_temp_slots);
665 temp->in_use = 0;
666 temp->level = -1;
667 n_temp_slots_in_use--;
670 /* Compute the hash value for an address -> temp slot mapping.
671 The value is cached on the mapping entry. */
672 static hashval_t
673 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
675 int do_not_record = 0;
676 return hash_rtx (t->address, GET_MODE (t->address),
677 &do_not_record, NULL, false);
680 /* Return the hash value for an address -> temp slot mapping. */
681 hashval_t
682 temp_address_hasher::hash (temp_slot_address_entry *t)
684 return t->hash;
687 /* Compare two address -> temp slot mapping entries. */
688 bool
689 temp_address_hasher::equal (temp_slot_address_entry *t1,
690 temp_slot_address_entry *t2)
692 return exp_equiv_p (t1->address, t2->address, 0, true);
695 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
696 static void
697 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
699 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
700 t->address = address;
701 t->temp_slot = temp_slot;
702 t->hash = temp_slot_address_compute_hash (t);
703 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
706 /* Remove an address -> temp slot mapping entry if the temp slot is
707 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
709 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
711 const struct temp_slot_address_entry *t = *slot;
712 if (! t->temp_slot->in_use)
713 temp_slot_address_table->clear_slot (slot);
714 return 1;
717 /* Remove all mappings of addresses to unused temp slots. */
718 static void
719 remove_unused_temp_slot_addresses (void)
721 /* Use quicker clearing if there aren't any active temp slots. */
722 if (n_temp_slots_in_use)
723 temp_slot_address_table->traverse
724 <void *, remove_unused_temp_slot_addresses_1> (NULL);
725 else
726 temp_slot_address_table->empty ();
729 /* Find the temp slot corresponding to the object at address X. */
731 static struct temp_slot *
732 find_temp_slot_from_address (rtx x)
734 struct temp_slot *p;
735 struct temp_slot_address_entry tmp, *t;
737 /* First try the easy way:
738 See if X exists in the address -> temp slot mapping. */
739 tmp.address = x;
740 tmp.temp_slot = NULL;
741 tmp.hash = temp_slot_address_compute_hash (&tmp);
742 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
743 if (t)
744 return t->temp_slot;
746 /* If we have a sum involving a register, see if it points to a temp
747 slot. */
748 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
749 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
750 return p;
751 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
752 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
753 return p;
755 /* Last resort: Address is a virtual stack var address. */
756 if (GET_CODE (x) == PLUS
757 && XEXP (x, 0) == virtual_stack_vars_rtx
758 && CONST_INT_P (XEXP (x, 1)))
760 int i;
761 for (i = max_slot_level (); i >= 0; i--)
762 for (p = *temp_slots_at_level (i); p; p = p->next)
764 if (INTVAL (XEXP (x, 1)) >= p->base_offset
765 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
766 return p;
770 return NULL;
773 /* Allocate a temporary stack slot and record it for possible later
774 reuse.
776 MODE is the machine mode to be given to the returned rtx.
778 SIZE is the size in units of the space required. We do no rounding here
779 since assign_stack_local will do any required rounding.
781 TYPE is the type that will be used for the stack slot. */
784 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
785 tree type)
787 unsigned int align;
788 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
789 rtx slot;
791 /* If SIZE is -1 it means that somebody tried to allocate a temporary
792 of a variable size. */
793 gcc_assert (size != -1);
795 align = get_stack_local_alignment (type, mode);
797 /* Try to find an available, already-allocated temporary of the proper
798 mode which meets the size and alignment requirements. Choose the
799 smallest one with the closest alignment.
801 If assign_stack_temp is called outside of the tree->rtl expansion,
802 we cannot reuse the stack slots (that may still refer to
803 VIRTUAL_STACK_VARS_REGNUM). */
804 if (!virtuals_instantiated)
806 for (p = avail_temp_slots; p; p = p->next)
808 if (p->align >= align && p->size >= size
809 && GET_MODE (p->slot) == mode
810 && objects_must_conflict_p (p->type, type)
811 && (best_p == 0 || best_p->size > p->size
812 || (best_p->size == p->size && best_p->align > p->align)))
814 if (p->align == align && p->size == size)
816 selected = p;
817 cut_slot_from_list (selected, &avail_temp_slots);
818 best_p = 0;
819 break;
821 best_p = p;
826 /* Make our best, if any, the one to use. */
827 if (best_p)
829 selected = best_p;
830 cut_slot_from_list (selected, &avail_temp_slots);
832 /* If there are enough aligned bytes left over, make them into a new
833 temp_slot so that the extra bytes don't get wasted. Do this only
834 for BLKmode slots, so that we can be sure of the alignment. */
835 if (GET_MODE (best_p->slot) == BLKmode)
837 int alignment = best_p->align / BITS_PER_UNIT;
838 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
840 if (best_p->size - rounded_size >= alignment)
842 p = ggc_alloc<temp_slot> ();
843 p->in_use = 0;
844 p->size = best_p->size - rounded_size;
845 p->base_offset = best_p->base_offset + rounded_size;
846 p->full_size = best_p->full_size - rounded_size;
847 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
848 p->align = best_p->align;
849 p->type = best_p->type;
850 insert_slot_to_list (p, &avail_temp_slots);
852 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
853 stack_slot_list);
855 best_p->size = rounded_size;
856 best_p->full_size = rounded_size;
861 /* If we still didn't find one, make a new temporary. */
862 if (selected == 0)
864 HOST_WIDE_INT frame_offset_old = frame_offset;
866 p = ggc_alloc<temp_slot> ();
868 /* We are passing an explicit alignment request to assign_stack_local.
869 One side effect of that is assign_stack_local will not round SIZE
870 to ensure the frame offset remains suitably aligned.
872 So for requests which depended on the rounding of SIZE, we go ahead
873 and round it now. We also make sure ALIGNMENT is at least
874 BIGGEST_ALIGNMENT. */
875 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
876 p->slot = assign_stack_local_1 (mode,
877 (mode == BLKmode
878 ? CEIL_ROUND (size,
879 (int) align
880 / BITS_PER_UNIT)
881 : size),
882 align, 0);
884 p->align = align;
886 /* The following slot size computation is necessary because we don't
887 know the actual size of the temporary slot until assign_stack_local
888 has performed all the frame alignment and size rounding for the
889 requested temporary. Note that extra space added for alignment
890 can be either above or below this stack slot depending on which
891 way the frame grows. We include the extra space if and only if it
892 is above this slot. */
893 if (FRAME_GROWS_DOWNWARD)
894 p->size = frame_offset_old - frame_offset;
895 else
896 p->size = size;
898 /* Now define the fields used by combine_temp_slots. */
899 if (FRAME_GROWS_DOWNWARD)
901 p->base_offset = frame_offset;
902 p->full_size = frame_offset_old - frame_offset;
904 else
906 p->base_offset = frame_offset_old;
907 p->full_size = frame_offset - frame_offset_old;
910 selected = p;
913 p = selected;
914 p->in_use = 1;
915 p->type = type;
916 p->level = temp_slot_level;
917 n_temp_slots_in_use++;
919 pp = temp_slots_at_level (p->level);
920 insert_slot_to_list (p, pp);
921 insert_temp_slot_address (XEXP (p->slot, 0), p);
923 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
924 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
925 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
927 /* If we know the alias set for the memory that will be used, use
928 it. If there's no TYPE, then we don't know anything about the
929 alias set for the memory. */
930 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
931 set_mem_align (slot, align);
933 /* If a type is specified, set the relevant flags. */
934 if (type != 0)
935 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
936 MEM_NOTRAP_P (slot) = 1;
938 return slot;
941 /* Allocate a temporary stack slot and record it for possible later
942 reuse. First two arguments are same as in preceding function. */
945 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
947 return assign_stack_temp_for_type (mode, size, NULL_TREE);
950 /* Assign a temporary.
951 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
952 and so that should be used in error messages. In either case, we
953 allocate of the given type.
954 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
955 it is 0 if a register is OK.
956 DONT_PROMOTE is 1 if we should not promote values in register
957 to wider modes. */
960 assign_temp (tree type_or_decl, int memory_required,
961 int dont_promote ATTRIBUTE_UNUSED)
963 tree type, decl;
964 machine_mode mode;
965 #ifdef PROMOTE_MODE
966 int unsignedp;
967 #endif
969 if (DECL_P (type_or_decl))
970 decl = type_or_decl, type = TREE_TYPE (decl);
971 else
972 decl = NULL, type = type_or_decl;
974 mode = TYPE_MODE (type);
975 #ifdef PROMOTE_MODE
976 unsignedp = TYPE_UNSIGNED (type);
977 #endif
979 if (mode == BLKmode || memory_required)
981 HOST_WIDE_INT size = int_size_in_bytes (type);
982 rtx tmp;
984 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
985 problems with allocating the stack space. */
986 if (size == 0)
987 size = 1;
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 else if (size == -1)
993 size = max_int_size_in_bytes (type);
995 /* The size of the temporary may be too large to fit into an integer. */
996 /* ??? Not sure this should happen except for user silliness, so limit
997 this to things that aren't compiler-generated temporaries. The
998 rest of the time we'll die in assign_stack_temp_for_type. */
999 if (decl && size == -1
1000 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1002 error ("size of variable %q+D is too large", decl);
1003 size = 1;
1006 tmp = assign_stack_temp_for_type (mode, size, type);
1007 return tmp;
1010 #ifdef PROMOTE_MODE
1011 if (! dont_promote)
1012 mode = promote_mode (type, mode, &unsignedp);
1013 #endif
1015 return gen_reg_rtx (mode);
1018 /* Combine temporary stack slots which are adjacent on the stack.
1020 This allows for better use of already allocated stack space. This is only
1021 done for BLKmode slots because we can be sure that we won't have alignment
1022 problems in this case. */
1024 static void
1025 combine_temp_slots (void)
1027 struct temp_slot *p, *q, *next, *next_q;
1028 int num_slots;
1030 /* We can't combine slots, because the information about which slot
1031 is in which alias set will be lost. */
1032 if (flag_strict_aliasing)
1033 return;
1035 /* If there are a lot of temp slots, don't do anything unless
1036 high levels of optimization. */
1037 if (! flag_expensive_optimizations)
1038 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1039 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1040 return;
1042 for (p = avail_temp_slots; p; p = next)
1044 int delete_p = 0;
1046 next = p->next;
1048 if (GET_MODE (p->slot) != BLKmode)
1049 continue;
1051 for (q = p->next; q; q = next_q)
1053 int delete_q = 0;
1055 next_q = q->next;
1057 if (GET_MODE (q->slot) != BLKmode)
1058 continue;
1060 if (p->base_offset + p->full_size == q->base_offset)
1062 /* Q comes after P; combine Q into P. */
1063 p->size += q->size;
1064 p->full_size += q->full_size;
1065 delete_q = 1;
1067 else if (q->base_offset + q->full_size == p->base_offset)
1069 /* P comes after Q; combine P into Q. */
1070 q->size += p->size;
1071 q->full_size += p->full_size;
1072 delete_p = 1;
1073 break;
1075 if (delete_q)
1076 cut_slot_from_list (q, &avail_temp_slots);
1079 /* Either delete P or advance past it. */
1080 if (delete_p)
1081 cut_slot_from_list (p, &avail_temp_slots);
1085 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1086 slot that previously was known by OLD_RTX. */
1088 void
1089 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1091 struct temp_slot *p;
1093 if (rtx_equal_p (old_rtx, new_rtx))
1094 return;
1096 p = find_temp_slot_from_address (old_rtx);
1098 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1099 NEW_RTX is a register, see if one operand of the PLUS is a
1100 temporary location. If so, NEW_RTX points into it. Otherwise,
1101 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1102 in common between them. If so, try a recursive call on those
1103 values. */
1104 if (p == 0)
1106 if (GET_CODE (old_rtx) != PLUS)
1107 return;
1109 if (REG_P (new_rtx))
1111 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1112 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1113 return;
1115 else if (GET_CODE (new_rtx) != PLUS)
1116 return;
1118 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1121 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1122 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1124 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1125 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1127 return;
1130 /* Otherwise add an alias for the temp's address. */
1131 insert_temp_slot_address (new_rtx, p);
1134 /* If X could be a reference to a temporary slot, mark that slot as
1135 belonging to the to one level higher than the current level. If X
1136 matched one of our slots, just mark that one. Otherwise, we can't
1137 easily predict which it is, so upgrade all of them.
1139 This is called when an ({...}) construct occurs and a statement
1140 returns a value in memory. */
1142 void
1143 preserve_temp_slots (rtx x)
1145 struct temp_slot *p = 0, *next;
1147 if (x == 0)
1148 return;
1150 /* If X is a register that is being used as a pointer, see if we have
1151 a temporary slot we know it points to. */
1152 if (REG_P (x) && REG_POINTER (x))
1153 p = find_temp_slot_from_address (x);
1155 /* If X is not in memory or is at a constant address, it cannot be in
1156 a temporary slot. */
1157 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1158 return;
1160 /* First see if we can find a match. */
1161 if (p == 0)
1162 p = find_temp_slot_from_address (XEXP (x, 0));
1164 if (p != 0)
1166 if (p->level == temp_slot_level)
1167 move_slot_to_level (p, temp_slot_level - 1);
1168 return;
1171 /* Otherwise, preserve all non-kept slots at this level. */
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 move_slot_to_level (p, temp_slot_level - 1);
1179 /* Free all temporaries used so far. This is normally called at the
1180 end of generating code for a statement. */
1182 void
1183 free_temp_slots (void)
1185 struct temp_slot *p, *next;
1186 bool some_available = false;
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1190 next = p->next;
1191 make_slot_available (p);
1192 some_available = true;
1195 if (some_available)
1197 remove_unused_temp_slot_addresses ();
1198 combine_temp_slots ();
1202 /* Push deeper into the nesting level for stack temporaries. */
1204 void
1205 push_temp_slots (void)
1207 temp_slot_level++;
1210 /* Pop a temporary nesting level. All slots in use in the current level
1211 are freed. */
1213 void
1214 pop_temp_slots (void)
1216 free_temp_slots ();
1217 temp_slot_level--;
1220 /* Initialize temporary slots. */
1222 void
1223 init_temp_slots (void)
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots = 0;
1227 vec_alloc (used_temp_slots, 0);
1228 temp_slot_level = 0;
1229 n_temp_slots_in_use = 0;
1231 /* Set up the table to map addresses to temp slots. */
1232 if (! temp_slot_address_table)
1233 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1234 else
1235 temp_slot_address_table->empty ();
1238 /* Functions and data structures to keep track of the values hard regs
1239 had at the start of the function. */
1241 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1242 and has_hard_reg_initial_val.. */
1243 typedef struct GTY(()) initial_value_pair {
1244 rtx hard_reg;
1245 rtx pseudo;
1246 } initial_value_pair;
1247 /* ??? This could be a VEC but there is currently no way to define an
1248 opaque VEC type. This could be worked around by defining struct
1249 initial_value_pair in function.h. */
1250 typedef struct GTY(()) initial_value_struct {
1251 int num_entries;
1252 int max_entries;
1253 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1254 } initial_value_struct;
1256 /* If a pseudo represents an initial hard reg (or expression), return
1257 it, else return NULL_RTX. */
1260 get_hard_reg_initial_reg (rtx reg)
1262 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1263 int i;
1265 if (ivs == 0)
1266 return NULL_RTX;
1268 for (i = 0; i < ivs->num_entries; i++)
1269 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1270 return ivs->entries[i].hard_reg;
1272 return NULL_RTX;
1275 /* Make sure that there's a pseudo register of mode MODE that stores the
1276 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1279 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1281 struct initial_value_struct *ivs;
1282 rtx rv;
1284 rv = has_hard_reg_initial_val (mode, regno);
1285 if (rv)
1286 return rv;
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs == 0)
1291 ivs = ggc_alloc<initial_value_struct> ();
1292 ivs->num_entries = 0;
1293 ivs->max_entries = 5;
1294 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1295 crtl->hard_reg_initial_vals = ivs;
1298 if (ivs->num_entries >= ivs->max_entries)
1300 ivs->max_entries += 5;
1301 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1302 ivs->max_entries);
1305 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1306 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1308 return ivs->entries[ivs->num_entries++].pseudo;
1311 /* See if get_hard_reg_initial_val has been used to create a pseudo
1312 for the initial value of hard register REGNO in mode MODE. Return
1313 the associated pseudo if so, otherwise return NULL. */
1316 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1318 struct initial_value_struct *ivs;
1319 int i;
1321 ivs = crtl->hard_reg_initial_vals;
1322 if (ivs != 0)
1323 for (i = 0; i < ivs->num_entries; i++)
1324 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1325 && REGNO (ivs->entries[i].hard_reg) == regno)
1326 return ivs->entries[i].pseudo;
1328 return NULL_RTX;
1331 unsigned int
1332 emit_initial_value_sets (void)
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 int i;
1336 rtx_insn *seq;
1338 if (ivs == 0)
1339 return 0;
1341 start_sequence ();
1342 for (i = 0; i < ivs->num_entries; i++)
1343 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1344 seq = get_insns ();
1345 end_sequence ();
1347 emit_insn_at_entry (seq);
1348 return 0;
1351 /* Return the hardreg-pseudoreg initial values pair entry I and
1352 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1353 bool
1354 initial_value_entry (int i, rtx *hreg, rtx *preg)
1356 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1357 if (!ivs || i >= ivs->num_entries)
1358 return false;
1360 *hreg = ivs->entries[i].hard_reg;
1361 *preg = ivs->entries[i].pseudo;
1362 return true;
1365 /* These routines are responsible for converting virtual register references
1366 to the actual hard register references once RTL generation is complete.
1368 The following four variables are used for communication between the
1369 routines. They contain the offsets of the virtual registers from their
1370 respective hard registers. */
1372 static int in_arg_offset;
1373 static int var_offset;
1374 static int dynamic_offset;
1375 static int out_arg_offset;
1376 static int cfa_offset;
1378 /* In most machines, the stack pointer register is equivalent to the bottom
1379 of the stack. */
1381 #ifndef STACK_POINTER_OFFSET
1382 #define STACK_POINTER_OFFSET 0
1383 #endif
1385 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1386 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1387 #endif
1389 /* If not defined, pick an appropriate default for the offset of dynamically
1390 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1391 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1393 #ifndef STACK_DYNAMIC_OFFSET
1395 /* The bottom of the stack points to the actual arguments. If
1396 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1397 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1398 stack space for register parameters is not pushed by the caller, but
1399 rather part of the fixed stack areas and hence not included in
1400 `crtl->outgoing_args_size'. Nevertheless, we must allow
1401 for it when allocating stack dynamic objects. */
1403 #ifdef INCOMING_REG_PARM_STACK_SPACE
1404 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1405 ((ACCUMULATE_OUTGOING_ARGS \
1406 ? (crtl->outgoing_args_size \
1407 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1408 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1409 : 0) + (STACK_POINTER_OFFSET))
1410 #else
1411 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1412 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1413 + (STACK_POINTER_OFFSET))
1414 #endif
1415 #endif
1418 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1419 is a virtual register, return the equivalent hard register and set the
1420 offset indirectly through the pointer. Otherwise, return 0. */
1422 static rtx
1423 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1425 rtx new_rtx;
1426 HOST_WIDE_INT offset;
1428 if (x == virtual_incoming_args_rtx)
1430 if (stack_realign_drap)
1432 /* Replace virtual_incoming_args_rtx with internal arg
1433 pointer if DRAP is used to realign stack. */
1434 new_rtx = crtl->args.internal_arg_pointer;
1435 offset = 0;
1437 else
1438 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1440 else if (x == virtual_stack_vars_rtx)
1441 new_rtx = frame_pointer_rtx, offset = var_offset;
1442 else if (x == virtual_stack_dynamic_rtx)
1443 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1444 else if (x == virtual_outgoing_args_rtx)
1445 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1446 else if (x == virtual_cfa_rtx)
1448 #ifdef FRAME_POINTER_CFA_OFFSET
1449 new_rtx = frame_pointer_rtx;
1450 #else
1451 new_rtx = arg_pointer_rtx;
1452 #endif
1453 offset = cfa_offset;
1455 else if (x == virtual_preferred_stack_boundary_rtx)
1457 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1458 offset = 0;
1460 else
1461 return NULL_RTX;
1463 *poffset = offset;
1464 return new_rtx;
1467 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1468 registers present inside of *LOC. The expression is simplified,
1469 as much as possible, but is not to be considered "valid" in any sense
1470 implied by the target. Return true if any change is made. */
1472 static bool
1473 instantiate_virtual_regs_in_rtx (rtx *loc)
1475 if (!*loc)
1476 return false;
1477 bool changed = false;
1478 subrtx_ptr_iterator::array_type array;
1479 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1481 rtx *loc = *iter;
1482 if (rtx x = *loc)
1484 rtx new_rtx;
1485 HOST_WIDE_INT offset;
1486 switch (GET_CODE (x))
1488 case REG:
1489 new_rtx = instantiate_new_reg (x, &offset);
1490 if (new_rtx)
1492 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1493 changed = true;
1495 iter.skip_subrtxes ();
1496 break;
1498 case PLUS:
1499 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1500 if (new_rtx)
1502 XEXP (x, 0) = new_rtx;
1503 *loc = plus_constant (GET_MODE (x), x, offset, true);
1504 changed = true;
1505 iter.skip_subrtxes ();
1506 break;
1509 /* FIXME -- from old code */
1510 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1511 we can commute the PLUS and SUBREG because pointers into the
1512 frame are well-behaved. */
1513 break;
1515 default:
1516 break;
1520 return changed;
1523 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1524 matches the predicate for insn CODE operand OPERAND. */
1526 static int
1527 safe_insn_predicate (int code, int operand, rtx x)
1529 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1532 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1533 registers present inside of insn. The result will be a valid insn. */
1535 static void
1536 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1538 HOST_WIDE_INT offset;
1539 int insn_code, i;
1540 bool any_change = false;
1541 rtx set, new_rtx, x;
1542 rtx_insn *seq;
1544 /* There are some special cases to be handled first. */
1545 set = single_set (insn);
1546 if (set)
1548 /* We're allowed to assign to a virtual register. This is interpreted
1549 to mean that the underlying register gets assigned the inverse
1550 transformation. This is used, for example, in the handling of
1551 non-local gotos. */
1552 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1553 if (new_rtx)
1555 start_sequence ();
1557 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1558 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1559 gen_int_mode (-offset, GET_MODE (new_rtx)));
1560 x = force_operand (x, new_rtx);
1561 if (x != new_rtx)
1562 emit_move_insn (new_rtx, x);
1564 seq = get_insns ();
1565 end_sequence ();
1567 emit_insn_before (seq, insn);
1568 delete_insn (insn);
1569 return;
1572 /* Handle a straight copy from a virtual register by generating a
1573 new add insn. The difference between this and falling through
1574 to the generic case is avoiding a new pseudo and eliminating a
1575 move insn in the initial rtl stream. */
1576 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1577 if (new_rtx && offset != 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1583 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1584 gen_int_mode (offset,
1585 GET_MODE (SET_DEST (set))),
1586 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1587 if (x != SET_DEST (set))
1588 emit_move_insn (SET_DEST (set), x);
1590 seq = get_insns ();
1591 end_sequence ();
1593 emit_insn_before (seq, insn);
1594 delete_insn (insn);
1595 return;
1598 extract_insn (insn);
1599 insn_code = INSN_CODE (insn);
1601 /* Handle a plus involving a virtual register by determining if the
1602 operands remain valid if they're modified in place. */
1603 if (GET_CODE (SET_SRC (set)) == PLUS
1604 && recog_data.n_operands >= 3
1605 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1606 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1607 && CONST_INT_P (recog_data.operand[2])
1608 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1610 offset += INTVAL (recog_data.operand[2]);
1612 /* If the sum is zero, then replace with a plain move. */
1613 if (offset == 0
1614 && REG_P (SET_DEST (set))
1615 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1617 start_sequence ();
1618 emit_move_insn (SET_DEST (set), new_rtx);
1619 seq = get_insns ();
1620 end_sequence ();
1622 emit_insn_before (seq, insn);
1623 delete_insn (insn);
1624 return;
1627 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1629 /* Using validate_change and apply_change_group here leaves
1630 recog_data in an invalid state. Since we know exactly what
1631 we want to check, do those two by hand. */
1632 if (safe_insn_predicate (insn_code, 1, new_rtx)
1633 && safe_insn_predicate (insn_code, 2, x))
1635 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1636 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1637 any_change = true;
1639 /* Fall through into the regular operand fixup loop in
1640 order to take care of operands other than 1 and 2. */
1644 else
1646 extract_insn (insn);
1647 insn_code = INSN_CODE (insn);
1650 /* In the general case, we expect virtual registers to appear only in
1651 operands, and then only as either bare registers or inside memories. */
1652 for (i = 0; i < recog_data.n_operands; ++i)
1654 x = recog_data.operand[i];
1655 switch (GET_CODE (x))
1657 case MEM:
1659 rtx addr = XEXP (x, 0);
1661 if (!instantiate_virtual_regs_in_rtx (&addr))
1662 continue;
1664 start_sequence ();
1665 x = replace_equiv_address (x, addr, true);
1666 /* It may happen that the address with the virtual reg
1667 was valid (e.g. based on the virtual stack reg, which might
1668 be acceptable to the predicates with all offsets), whereas
1669 the address now isn't anymore, for instance when the address
1670 is still offsetted, but the base reg isn't virtual-stack-reg
1671 anymore. Below we would do a force_reg on the whole operand,
1672 but this insn might actually only accept memory. Hence,
1673 before doing that last resort, try to reload the address into
1674 a register, so this operand stays a MEM. */
1675 if (!safe_insn_predicate (insn_code, i, x))
1677 addr = force_reg (GET_MODE (addr), addr);
1678 x = replace_equiv_address (x, addr, true);
1680 seq = get_insns ();
1681 end_sequence ();
1682 if (seq)
1683 emit_insn_before (seq, insn);
1685 break;
1687 case REG:
1688 new_rtx = instantiate_new_reg (x, &offset);
1689 if (new_rtx == NULL)
1690 continue;
1691 if (offset == 0)
1692 x = new_rtx;
1693 else
1695 start_sequence ();
1697 /* Careful, special mode predicates may have stuff in
1698 insn_data[insn_code].operand[i].mode that isn't useful
1699 to us for computing a new value. */
1700 /* ??? Recognize address_operand and/or "p" constraints
1701 to see if (plus new offset) is a valid before we put
1702 this through expand_simple_binop. */
1703 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1704 gen_int_mode (offset, GET_MODE (x)),
1705 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1706 seq = get_insns ();
1707 end_sequence ();
1708 emit_insn_before (seq, insn);
1710 break;
1712 case SUBREG:
1713 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1714 if (new_rtx == NULL)
1715 continue;
1716 if (offset != 0)
1718 start_sequence ();
1719 new_rtx = expand_simple_binop
1720 (GET_MODE (new_rtx), PLUS, new_rtx,
1721 gen_int_mode (offset, GET_MODE (new_rtx)),
1722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1723 seq = get_insns ();
1724 end_sequence ();
1725 emit_insn_before (seq, insn);
1727 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1728 GET_MODE (new_rtx), SUBREG_BYTE (x));
1729 gcc_assert (x);
1730 break;
1732 default:
1733 continue;
1736 /* At this point, X contains the new value for the operand.
1737 Validate the new value vs the insn predicate. Note that
1738 asm insns will have insn_code -1 here. */
1739 if (!safe_insn_predicate (insn_code, i, x))
1741 start_sequence ();
1742 if (REG_P (x))
1744 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1745 x = copy_to_reg (x);
1747 else
1748 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1749 seq = get_insns ();
1750 end_sequence ();
1751 if (seq)
1752 emit_insn_before (seq, insn);
1755 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1756 any_change = true;
1759 if (any_change)
1761 /* Propagate operand changes into the duplicates. */
1762 for (i = 0; i < recog_data.n_dups; ++i)
1763 *recog_data.dup_loc[i]
1764 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1766 /* Force re-recognition of the instruction for validation. */
1767 INSN_CODE (insn) = -1;
1770 if (asm_noperands (PATTERN (insn)) >= 0)
1772 if (!check_asm_operands (PATTERN (insn)))
1774 error_for_asm (insn, "impossible constraint in %<asm%>");
1775 /* For asm goto, instead of fixing up all the edges
1776 just clear the template and clear input operands
1777 (asm goto doesn't have any output operands). */
1778 if (JUMP_P (insn))
1780 rtx asm_op = extract_asm_operands (PATTERN (insn));
1781 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1782 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1783 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1785 else
1786 delete_insn (insn);
1789 else
1791 if (recog_memoized (insn) < 0)
1792 fatal_insn_not_found (insn);
1796 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1797 do any instantiation required. */
1799 void
1800 instantiate_decl_rtl (rtx x)
1802 rtx addr;
1804 if (x == 0)
1805 return;
1807 /* If this is a CONCAT, recurse for the pieces. */
1808 if (GET_CODE (x) == CONCAT)
1810 instantiate_decl_rtl (XEXP (x, 0));
1811 instantiate_decl_rtl (XEXP (x, 1));
1812 return;
1815 /* If this is not a MEM, no need to do anything. Similarly if the
1816 address is a constant or a register that is not a virtual register. */
1817 if (!MEM_P (x))
1818 return;
1820 addr = XEXP (x, 0);
1821 if (CONSTANT_P (addr)
1822 || (REG_P (addr)
1823 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1824 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1825 return;
1827 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1830 /* Helper for instantiate_decls called via walk_tree: Process all decls
1831 in the given DECL_VALUE_EXPR. */
1833 static tree
1834 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1836 tree t = *tp;
1837 if (! EXPR_P (t))
1839 *walk_subtrees = 0;
1840 if (DECL_P (t))
1842 if (DECL_RTL_SET_P (t))
1843 instantiate_decl_rtl (DECL_RTL (t));
1844 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1845 && DECL_INCOMING_RTL (t))
1846 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1847 if ((TREE_CODE (t) == VAR_DECL
1848 || TREE_CODE (t) == RESULT_DECL)
1849 && DECL_HAS_VALUE_EXPR_P (t))
1851 tree v = DECL_VALUE_EXPR (t);
1852 walk_tree (&v, instantiate_expr, NULL, NULL);
1856 return NULL;
1859 /* Subroutine of instantiate_decls: Process all decls in the given
1860 BLOCK node and all its subblocks. */
1862 static void
1863 instantiate_decls_1 (tree let)
1865 tree t;
1867 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1869 if (DECL_RTL_SET_P (t))
1870 instantiate_decl_rtl (DECL_RTL (t));
1871 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1873 tree v = DECL_VALUE_EXPR (t);
1874 walk_tree (&v, instantiate_expr, NULL, NULL);
1878 /* Process all subblocks. */
1879 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1880 instantiate_decls_1 (t);
1883 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1884 all virtual registers in their DECL_RTL's. */
1886 static void
1887 instantiate_decls (tree fndecl)
1889 tree decl;
1890 unsigned ix;
1892 /* Process all parameters of the function. */
1893 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1895 instantiate_decl_rtl (DECL_RTL (decl));
1896 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1897 if (DECL_HAS_VALUE_EXPR_P (decl))
1899 tree v = DECL_VALUE_EXPR (decl);
1900 walk_tree (&v, instantiate_expr, NULL, NULL);
1904 if ((decl = DECL_RESULT (fndecl))
1905 && TREE_CODE (decl) == RESULT_DECL)
1907 if (DECL_RTL_SET_P (decl))
1908 instantiate_decl_rtl (DECL_RTL (decl));
1909 if (DECL_HAS_VALUE_EXPR_P (decl))
1911 tree v = DECL_VALUE_EXPR (decl);
1912 walk_tree (&v, instantiate_expr, NULL, NULL);
1916 /* Process the saved static chain if it exists. */
1917 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1918 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1919 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1921 /* Now process all variables defined in the function or its subblocks. */
1922 instantiate_decls_1 (DECL_INITIAL (fndecl));
1924 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1925 if (DECL_RTL_SET_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (decl));
1927 vec_free (cfun->local_decls);
1930 /* Pass through the INSNS of function FNDECL and convert virtual register
1931 references to hard register references. */
1933 static unsigned int
1934 instantiate_virtual_regs (void)
1936 rtx_insn *insn;
1938 /* Compute the offsets to use for this function. */
1939 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1940 var_offset = STARTING_FRAME_OFFSET;
1941 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1942 out_arg_offset = STACK_POINTER_OFFSET;
1943 #ifdef FRAME_POINTER_CFA_OFFSET
1944 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1945 #else
1946 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1947 #endif
1949 /* Initialize recognition, indicating that volatile is OK. */
1950 init_recog ();
1952 /* Scan through all the insns, instantiating every virtual register still
1953 present. */
1954 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1955 if (INSN_P (insn))
1957 /* These patterns in the instruction stream can never be recognized.
1958 Fortunately, they shouldn't contain virtual registers either. */
1959 if (GET_CODE (PATTERN (insn)) == USE
1960 || GET_CODE (PATTERN (insn)) == CLOBBER
1961 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1962 continue;
1963 else if (DEBUG_INSN_P (insn))
1964 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1965 else
1966 instantiate_virtual_regs_in_insn (insn);
1968 if (insn->deleted ())
1969 continue;
1971 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1973 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1974 if (CALL_P (insn))
1975 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1978 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1979 instantiate_decls (current_function_decl);
1981 targetm.instantiate_decls ();
1983 /* Indicate that, from now on, assign_stack_local should use
1984 frame_pointer_rtx. */
1985 virtuals_instantiated = 1;
1987 return 0;
1990 namespace {
1992 const pass_data pass_data_instantiate_virtual_regs =
1994 RTL_PASS, /* type */
1995 "vregs", /* name */
1996 OPTGROUP_NONE, /* optinfo_flags */
1997 TV_NONE, /* tv_id */
1998 0, /* properties_required */
1999 0, /* properties_provided */
2000 0, /* properties_destroyed */
2001 0, /* todo_flags_start */
2002 0, /* todo_flags_finish */
2005 class pass_instantiate_virtual_regs : public rtl_opt_pass
2007 public:
2008 pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2012 /* opt_pass methods: */
2013 virtual unsigned int execute (function *)
2015 return instantiate_virtual_regs ();
2018 }; // class pass_instantiate_virtual_regs
2020 } // anon namespace
2022 rtl_opt_pass *
2023 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2025 return new pass_instantiate_virtual_regs (ctxt);
2029 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2030 This means a type for which function calls must pass an address to the
2031 function or get an address back from the function.
2032 EXP may be a type node or an expression (whose type is tested). */
2035 aggregate_value_p (const_tree exp, const_tree fntype)
2037 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2038 int i, regno, nregs;
2039 rtx reg;
2041 if (fntype)
2042 switch (TREE_CODE (fntype))
2044 case CALL_EXPR:
2046 tree fndecl = get_callee_fndecl (fntype);
2047 if (fndecl)
2048 fntype = TREE_TYPE (fndecl);
2049 else if (CALL_EXPR_FN (fntype))
2050 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2051 else
2052 /* For internal functions, assume nothing needs to be
2053 returned in memory. */
2054 return 0;
2056 break;
2057 case FUNCTION_DECL:
2058 fntype = TREE_TYPE (fntype);
2059 break;
2060 case FUNCTION_TYPE:
2061 case METHOD_TYPE:
2062 break;
2063 case IDENTIFIER_NODE:
2064 fntype = NULL_TREE;
2065 break;
2066 default:
2067 /* We don't expect other tree types here. */
2068 gcc_unreachable ();
2071 if (VOID_TYPE_P (type))
2072 return 0;
2074 /* If a record should be passed the same as its first (and only) member
2075 don't pass it as an aggregate. */
2076 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2077 return aggregate_value_p (first_field (type), fntype);
2079 /* If the front end has decided that this needs to be passed by
2080 reference, do so. */
2081 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2082 && DECL_BY_REFERENCE (exp))
2083 return 1;
2085 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2086 if (fntype && TREE_ADDRESSABLE (fntype))
2087 return 1;
2089 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2090 and thus can't be returned in registers. */
2091 if (TREE_ADDRESSABLE (type))
2092 return 1;
2094 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2095 return 1;
2097 if (targetm.calls.return_in_memory (type, fntype))
2098 return 1;
2100 /* Make sure we have suitable call-clobbered regs to return
2101 the value in; if not, we must return it in memory. */
2102 reg = hard_function_value (type, 0, fntype, 0);
2104 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2105 it is OK. */
2106 if (!REG_P (reg))
2107 return 0;
2109 regno = REGNO (reg);
2110 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2111 for (i = 0; i < nregs; i++)
2112 if (! call_used_regs[regno + i])
2113 return 1;
2115 return 0;
2118 /* Return true if we should assign DECL a pseudo register; false if it
2119 should live on the local stack. */
2121 bool
2122 use_register_for_decl (const_tree decl)
2124 if (!targetm.calls.allocate_stack_slots_for_args ())
2125 return true;
2127 /* Honor volatile. */
2128 if (TREE_SIDE_EFFECTS (decl))
2129 return false;
2131 /* Honor addressability. */
2132 if (TREE_ADDRESSABLE (decl))
2133 return false;
2135 /* Decl is implicitly addressible by bound stores and loads
2136 if it is an aggregate holding bounds. */
2137 if (chkp_function_instrumented_p (current_function_decl)
2138 && TREE_TYPE (decl)
2139 && !BOUNDED_P (decl)
2140 && chkp_type_has_pointer (TREE_TYPE (decl)))
2141 return false;
2143 /* Only register-like things go in registers. */
2144 if (DECL_MODE (decl) == BLKmode)
2145 return false;
2147 /* If -ffloat-store specified, don't put explicit float variables
2148 into registers. */
2149 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2150 propagates values across these stores, and it probably shouldn't. */
2151 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2152 return false;
2154 /* If we're not interested in tracking debugging information for
2155 this decl, then we can certainly put it in a register. */
2156 if (DECL_IGNORED_P (decl))
2157 return true;
2159 if (optimize)
2160 return true;
2162 if (!DECL_REGISTER (decl))
2163 return false;
2165 switch (TREE_CODE (TREE_TYPE (decl)))
2167 case RECORD_TYPE:
2168 case UNION_TYPE:
2169 case QUAL_UNION_TYPE:
2170 /* When not optimizing, disregard register keyword for variables with
2171 types containing methods, otherwise the methods won't be callable
2172 from the debugger. */
2173 if (TYPE_METHODS (TREE_TYPE (decl)))
2174 return false;
2175 break;
2176 default:
2177 break;
2180 return true;
2183 /* Return true if TYPE should be passed by invisible reference. */
2185 bool
2186 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2187 tree type, bool named_arg)
2189 if (type)
2191 /* If this type contains non-trivial constructors, then it is
2192 forbidden for the middle-end to create any new copies. */
2193 if (TREE_ADDRESSABLE (type))
2194 return true;
2196 /* GCC post 3.4 passes *all* variable sized types by reference. */
2197 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2198 return true;
2200 /* If a record type should be passed the same as its first (and only)
2201 member, use the type and mode of that member. */
2202 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2204 type = TREE_TYPE (first_field (type));
2205 mode = TYPE_MODE (type);
2209 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2210 type, named_arg);
2213 /* Return true if TYPE, which is passed by reference, should be callee
2214 copied instead of caller copied. */
2216 bool
2217 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2218 tree type, bool named_arg)
2220 if (type && TREE_ADDRESSABLE (type))
2221 return false;
2222 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2223 named_arg);
2226 /* Structures to communicate between the subroutines of assign_parms.
2227 The first holds data persistent across all parameters, the second
2228 is cleared out for each parameter. */
2230 struct assign_parm_data_all
2232 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2233 should become a job of the target or otherwise encapsulated. */
2234 CUMULATIVE_ARGS args_so_far_v;
2235 cumulative_args_t args_so_far;
2236 struct args_size stack_args_size;
2237 tree function_result_decl;
2238 tree orig_fnargs;
2239 rtx_insn *first_conversion_insn;
2240 rtx_insn *last_conversion_insn;
2241 HOST_WIDE_INT pretend_args_size;
2242 HOST_WIDE_INT extra_pretend_bytes;
2243 int reg_parm_stack_space;
2246 struct assign_parm_data_one
2248 tree nominal_type;
2249 tree passed_type;
2250 rtx entry_parm;
2251 rtx stack_parm;
2252 machine_mode nominal_mode;
2253 machine_mode passed_mode;
2254 machine_mode promoted_mode;
2255 struct locate_and_pad_arg_data locate;
2256 int partial;
2257 BOOL_BITFIELD named_arg : 1;
2258 BOOL_BITFIELD passed_pointer : 1;
2259 BOOL_BITFIELD on_stack : 1;
2260 BOOL_BITFIELD loaded_in_reg : 1;
2263 struct bounds_parm_data
2265 assign_parm_data_one parm_data;
2266 tree bounds_parm;
2267 tree ptr_parm;
2268 rtx ptr_entry;
2269 int bound_no;
2272 /* A subroutine of assign_parms. Initialize ALL. */
2274 static void
2275 assign_parms_initialize_all (struct assign_parm_data_all *all)
2277 tree fntype ATTRIBUTE_UNUSED;
2279 memset (all, 0, sizeof (*all));
2281 fntype = TREE_TYPE (current_function_decl);
2283 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2284 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2285 #else
2286 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2287 current_function_decl, -1);
2288 #endif
2289 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2291 #ifdef INCOMING_REG_PARM_STACK_SPACE
2292 all->reg_parm_stack_space
2293 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2294 #endif
2297 /* If ARGS contains entries with complex types, split the entry into two
2298 entries of the component type. Return a new list of substitutions are
2299 needed, else the old list. */
2301 static void
2302 split_complex_args (vec<tree> *args)
2304 unsigned i;
2305 tree p;
2307 FOR_EACH_VEC_ELT (*args, i, p)
2309 tree type = TREE_TYPE (p);
2310 if (TREE_CODE (type) == COMPLEX_TYPE
2311 && targetm.calls.split_complex_arg (type))
2313 tree decl;
2314 tree subtype = TREE_TYPE (type);
2315 bool addressable = TREE_ADDRESSABLE (p);
2317 /* Rewrite the PARM_DECL's type with its component. */
2318 p = copy_node (p);
2319 TREE_TYPE (p) = subtype;
2320 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2321 DECL_MODE (p) = VOIDmode;
2322 DECL_SIZE (p) = NULL;
2323 DECL_SIZE_UNIT (p) = NULL;
2324 /* If this arg must go in memory, put it in a pseudo here.
2325 We can't allow it to go in memory as per normal parms,
2326 because the usual place might not have the imag part
2327 adjacent to the real part. */
2328 DECL_ARTIFICIAL (p) = addressable;
2329 DECL_IGNORED_P (p) = addressable;
2330 TREE_ADDRESSABLE (p) = 0;
2331 layout_decl (p, 0);
2332 (*args)[i] = p;
2334 /* Build a second synthetic decl. */
2335 decl = build_decl (EXPR_LOCATION (p),
2336 PARM_DECL, NULL_TREE, subtype);
2337 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2338 DECL_ARTIFICIAL (decl) = addressable;
2339 DECL_IGNORED_P (decl) = addressable;
2340 layout_decl (decl, 0);
2341 args->safe_insert (++i, decl);
2346 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2347 the hidden struct return argument, and (abi willing) complex args.
2348 Return the new parameter list. */
2350 static vec<tree>
2351 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2353 tree fndecl = current_function_decl;
2354 tree fntype = TREE_TYPE (fndecl);
2355 vec<tree> fnargs = vNULL;
2356 tree arg;
2358 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2359 fnargs.safe_push (arg);
2361 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2363 /* If struct value address is treated as the first argument, make it so. */
2364 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2365 && ! cfun->returns_pcc_struct
2366 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2368 tree type = build_pointer_type (TREE_TYPE (fntype));
2369 tree decl;
2371 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2372 PARM_DECL, get_identifier (".result_ptr"), type);
2373 DECL_ARG_TYPE (decl) = type;
2374 DECL_ARTIFICIAL (decl) = 1;
2375 DECL_NAMELESS (decl) = 1;
2376 TREE_CONSTANT (decl) = 1;
2378 DECL_CHAIN (decl) = all->orig_fnargs;
2379 all->orig_fnargs = decl;
2380 fnargs.safe_insert (0, decl);
2382 all->function_result_decl = decl;
2384 /* If function is instrumented then bounds of the
2385 passed structure address is the second argument. */
2386 if (chkp_function_instrumented_p (fndecl))
2388 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2389 PARM_DECL, get_identifier (".result_bnd"),
2390 pointer_bounds_type_node);
2391 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2392 DECL_ARTIFICIAL (decl) = 1;
2393 DECL_NAMELESS (decl) = 1;
2394 TREE_CONSTANT (decl) = 1;
2396 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2397 DECL_CHAIN (all->orig_fnargs) = decl;
2398 fnargs.safe_insert (1, decl);
2402 /* If the target wants to split complex arguments into scalars, do so. */
2403 if (targetm.calls.split_complex_arg)
2404 split_complex_args (&fnargs);
2406 return fnargs;
2409 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2410 data for the parameter. Incorporate ABI specifics such as pass-by-
2411 reference and type promotion. */
2413 static void
2414 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2415 struct assign_parm_data_one *data)
2417 tree nominal_type, passed_type;
2418 machine_mode nominal_mode, passed_mode, promoted_mode;
2419 int unsignedp;
2421 memset (data, 0, sizeof (*data));
2423 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2424 if (!cfun->stdarg)
2425 data->named_arg = 1; /* No variadic parms. */
2426 else if (DECL_CHAIN (parm))
2427 data->named_arg = 1; /* Not the last non-variadic parm. */
2428 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2429 data->named_arg = 1; /* Only variadic ones are unnamed. */
2430 else
2431 data->named_arg = 0; /* Treat as variadic. */
2433 nominal_type = TREE_TYPE (parm);
2434 passed_type = DECL_ARG_TYPE (parm);
2436 /* Look out for errors propagating this far. Also, if the parameter's
2437 type is void then its value doesn't matter. */
2438 if (TREE_TYPE (parm) == error_mark_node
2439 /* This can happen after weird syntax errors
2440 or if an enum type is defined among the parms. */
2441 || TREE_CODE (parm) != PARM_DECL
2442 || passed_type == NULL
2443 || VOID_TYPE_P (nominal_type))
2445 nominal_type = passed_type = void_type_node;
2446 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2447 goto egress;
2450 /* Find mode of arg as it is passed, and mode of arg as it should be
2451 during execution of this function. */
2452 passed_mode = TYPE_MODE (passed_type);
2453 nominal_mode = TYPE_MODE (nominal_type);
2455 /* If the parm is to be passed as a transparent union or record, use the
2456 type of the first field for the tests below. We have already verified
2457 that the modes are the same. */
2458 if ((TREE_CODE (passed_type) == UNION_TYPE
2459 || TREE_CODE (passed_type) == RECORD_TYPE)
2460 && TYPE_TRANSPARENT_AGGR (passed_type))
2461 passed_type = TREE_TYPE (first_field (passed_type));
2463 /* See if this arg was passed by invisible reference. */
2464 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2465 passed_type, data->named_arg))
2467 passed_type = nominal_type = build_pointer_type (passed_type);
2468 data->passed_pointer = true;
2469 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2472 /* Find mode as it is passed by the ABI. */
2473 unsignedp = TYPE_UNSIGNED (passed_type);
2474 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2475 TREE_TYPE (current_function_decl), 0);
2477 egress:
2478 data->nominal_type = nominal_type;
2479 data->passed_type = passed_type;
2480 data->nominal_mode = nominal_mode;
2481 data->passed_mode = passed_mode;
2482 data->promoted_mode = promoted_mode;
2485 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2487 static void
2488 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2489 struct assign_parm_data_one *data, bool no_rtl)
2491 int varargs_pretend_bytes = 0;
2493 targetm.calls.setup_incoming_varargs (all->args_so_far,
2494 data->promoted_mode,
2495 data->passed_type,
2496 &varargs_pretend_bytes, no_rtl);
2498 /* If the back-end has requested extra stack space, record how much is
2499 needed. Do not change pretend_args_size otherwise since it may be
2500 nonzero from an earlier partial argument. */
2501 if (varargs_pretend_bytes > 0)
2502 all->pretend_args_size = varargs_pretend_bytes;
2505 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2506 the incoming location of the current parameter. */
2508 static void
2509 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2510 struct assign_parm_data_one *data)
2512 HOST_WIDE_INT pretend_bytes = 0;
2513 rtx entry_parm;
2514 bool in_regs;
2516 if (data->promoted_mode == VOIDmode)
2518 data->entry_parm = data->stack_parm = const0_rtx;
2519 return;
2522 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2523 data->promoted_mode,
2524 data->passed_type,
2525 data->named_arg);
2527 if (entry_parm == 0)
2528 data->promoted_mode = data->passed_mode;
2530 /* Determine parm's home in the stack, in case it arrives in the stack
2531 or we should pretend it did. Compute the stack position and rtx where
2532 the argument arrives and its size.
2534 There is one complexity here: If this was a parameter that would
2535 have been passed in registers, but wasn't only because it is
2536 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2537 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2538 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2539 as it was the previous time. */
2540 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2541 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2542 in_regs = true;
2543 #endif
2544 if (!in_regs && !data->named_arg)
2546 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2548 rtx tem;
2549 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2550 data->promoted_mode,
2551 data->passed_type, true);
2552 in_regs = tem != NULL;
2556 /* If this parameter was passed both in registers and in the stack, use
2557 the copy on the stack. */
2558 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2559 data->passed_type))
2560 entry_parm = 0;
2562 if (entry_parm)
2564 int partial;
2566 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2567 data->promoted_mode,
2568 data->passed_type,
2569 data->named_arg);
2570 data->partial = partial;
2572 /* The caller might already have allocated stack space for the
2573 register parameters. */
2574 if (partial != 0 && all->reg_parm_stack_space == 0)
2576 /* Part of this argument is passed in registers and part
2577 is passed on the stack. Ask the prologue code to extend
2578 the stack part so that we can recreate the full value.
2580 PRETEND_BYTES is the size of the registers we need to store.
2581 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2582 stack space that the prologue should allocate.
2584 Internally, gcc assumes that the argument pointer is aligned
2585 to STACK_BOUNDARY bits. This is used both for alignment
2586 optimizations (see init_emit) and to locate arguments that are
2587 aligned to more than PARM_BOUNDARY bits. We must preserve this
2588 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2589 a stack boundary. */
2591 /* We assume at most one partial arg, and it must be the first
2592 argument on the stack. */
2593 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2595 pretend_bytes = partial;
2596 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2598 /* We want to align relative to the actual stack pointer, so
2599 don't include this in the stack size until later. */
2600 all->extra_pretend_bytes = all->pretend_args_size;
2604 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2605 all->reg_parm_stack_space,
2606 entry_parm ? data->partial : 0, current_function_decl,
2607 &all->stack_args_size, &data->locate);
2609 /* Update parm_stack_boundary if this parameter is passed in the
2610 stack. */
2611 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2612 crtl->parm_stack_boundary = data->locate.boundary;
2614 /* Adjust offsets to include the pretend args. */
2615 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2616 data->locate.slot_offset.constant += pretend_bytes;
2617 data->locate.offset.constant += pretend_bytes;
2619 data->entry_parm = entry_parm;
2622 /* A subroutine of assign_parms. If there is actually space on the stack
2623 for this parm, count it in stack_args_size and return true. */
2625 static bool
2626 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2627 struct assign_parm_data_one *data)
2629 /* Bounds are never passed on the stack to keep compatibility
2630 with not instrumented code. */
2631 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2632 return false;
2633 /* Trivially true if we've no incoming register. */
2634 else if (data->entry_parm == NULL)
2636 /* Also true if we're partially in registers and partially not,
2637 since we've arranged to drop the entire argument on the stack. */
2638 else if (data->partial != 0)
2640 /* Also true if the target says that it's passed in both registers
2641 and on the stack. */
2642 else if (GET_CODE (data->entry_parm) == PARALLEL
2643 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2645 /* Also true if the target says that there's stack allocated for
2646 all register parameters. */
2647 else if (all->reg_parm_stack_space > 0)
2649 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2650 else
2651 return false;
2653 all->stack_args_size.constant += data->locate.size.constant;
2654 if (data->locate.size.var)
2655 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2657 return true;
2660 /* A subroutine of assign_parms. Given that this parameter is allocated
2661 stack space by the ABI, find it. */
2663 static void
2664 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2666 rtx offset_rtx, stack_parm;
2667 unsigned int align, boundary;
2669 /* If we're passing this arg using a reg, make its stack home the
2670 aligned stack slot. */
2671 if (data->entry_parm)
2672 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2673 else
2674 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2676 stack_parm = crtl->args.internal_arg_pointer;
2677 if (offset_rtx != const0_rtx)
2678 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2679 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2681 if (!data->passed_pointer)
2683 set_mem_attributes (stack_parm, parm, 1);
2684 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2685 while promoted mode's size is needed. */
2686 if (data->promoted_mode != BLKmode
2687 && data->promoted_mode != DECL_MODE (parm))
2689 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2690 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2692 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2693 data->promoted_mode);
2694 if (offset)
2695 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2700 boundary = data->locate.boundary;
2701 align = BITS_PER_UNIT;
2703 /* If we're padding upward, we know that the alignment of the slot
2704 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2705 intentionally forcing upward padding. Otherwise we have to come
2706 up with a guess at the alignment based on OFFSET_RTX. */
2707 if (data->locate.where_pad != downward || data->entry_parm)
2708 align = boundary;
2709 else if (CONST_INT_P (offset_rtx))
2711 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2712 align = align & -align;
2714 set_mem_align (stack_parm, align);
2716 if (data->entry_parm)
2717 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2719 data->stack_parm = stack_parm;
2722 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2723 always valid and contiguous. */
2725 static void
2726 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2728 rtx entry_parm = data->entry_parm;
2729 rtx stack_parm = data->stack_parm;
2731 /* If this parm was passed part in regs and part in memory, pretend it
2732 arrived entirely in memory by pushing the register-part onto the stack.
2733 In the special case of a DImode or DFmode that is split, we could put
2734 it together in a pseudoreg directly, but for now that's not worth
2735 bothering with. */
2736 if (data->partial != 0)
2738 /* Handle calls that pass values in multiple non-contiguous
2739 locations. The Irix 6 ABI has examples of this. */
2740 if (GET_CODE (entry_parm) == PARALLEL)
2741 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2742 data->passed_type,
2743 int_size_in_bytes (data->passed_type));
2744 else
2746 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2747 move_block_from_reg (REGNO (entry_parm),
2748 validize_mem (copy_rtx (stack_parm)),
2749 data->partial / UNITS_PER_WORD);
2752 entry_parm = stack_parm;
2755 /* If we didn't decide this parm came in a register, by default it came
2756 on the stack. */
2757 else if (entry_parm == NULL)
2758 entry_parm = stack_parm;
2760 /* When an argument is passed in multiple locations, we can't make use
2761 of this information, but we can save some copying if the whole argument
2762 is passed in a single register. */
2763 else if (GET_CODE (entry_parm) == PARALLEL
2764 && data->nominal_mode != BLKmode
2765 && data->passed_mode != BLKmode)
2767 size_t i, len = XVECLEN (entry_parm, 0);
2769 for (i = 0; i < len; i++)
2770 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2771 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2772 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2773 == data->passed_mode)
2774 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2776 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2777 break;
2781 data->entry_parm = entry_parm;
2784 /* A subroutine of assign_parms. Reconstitute any values which were
2785 passed in multiple registers and would fit in a single register. */
2787 static void
2788 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2790 rtx entry_parm = data->entry_parm;
2792 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2793 This can be done with register operations rather than on the
2794 stack, even if we will store the reconstituted parameter on the
2795 stack later. */
2796 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2798 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2799 emit_group_store (parmreg, entry_parm, data->passed_type,
2800 GET_MODE_SIZE (GET_MODE (entry_parm)));
2801 entry_parm = parmreg;
2804 data->entry_parm = entry_parm;
2807 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2808 always valid and properly aligned. */
2810 static void
2811 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2813 rtx stack_parm = data->stack_parm;
2815 /* If we can't trust the parm stack slot to be aligned enough for its
2816 ultimate type, don't use that slot after entry. We'll make another
2817 stack slot, if we need one. */
2818 if (stack_parm
2819 && ((STRICT_ALIGNMENT
2820 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2821 || (data->nominal_type
2822 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2823 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2824 stack_parm = NULL;
2826 /* If parm was passed in memory, and we need to convert it on entry,
2827 don't store it back in that same slot. */
2828 else if (data->entry_parm == stack_parm
2829 && data->nominal_mode != BLKmode
2830 && data->nominal_mode != data->passed_mode)
2831 stack_parm = NULL;
2833 /* If stack protection is in effect for this function, don't leave any
2834 pointers in their passed stack slots. */
2835 else if (crtl->stack_protect_guard
2836 && (flag_stack_protect == 2
2837 || data->passed_pointer
2838 || POINTER_TYPE_P (data->nominal_type)))
2839 stack_parm = NULL;
2841 data->stack_parm = stack_parm;
2844 /* A subroutine of assign_parms. Return true if the current parameter
2845 should be stored as a BLKmode in the current frame. */
2847 static bool
2848 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2850 if (data->nominal_mode == BLKmode)
2851 return true;
2852 if (GET_MODE (data->entry_parm) == BLKmode)
2853 return true;
2855 #ifdef BLOCK_REG_PADDING
2856 /* Only assign_parm_setup_block knows how to deal with register arguments
2857 that are padded at the least significant end. */
2858 if (REG_P (data->entry_parm)
2859 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2860 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2861 == (BYTES_BIG_ENDIAN ? upward : downward)))
2862 return true;
2863 #endif
2865 return false;
2868 /* A subroutine of assign_parms. Arrange for the parameter to be
2869 present and valid in DATA->STACK_RTL. */
2871 static void
2872 assign_parm_setup_block (struct assign_parm_data_all *all,
2873 tree parm, struct assign_parm_data_one *data)
2875 rtx entry_parm = data->entry_parm;
2876 rtx stack_parm = data->stack_parm;
2877 HOST_WIDE_INT size;
2878 HOST_WIDE_INT size_stored;
2880 if (GET_CODE (entry_parm) == PARALLEL)
2881 entry_parm = emit_group_move_into_temps (entry_parm);
2883 size = int_size_in_bytes (data->passed_type);
2884 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2885 if (stack_parm == 0)
2887 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2888 stack_parm = assign_stack_local (BLKmode, size_stored,
2889 DECL_ALIGN (parm));
2890 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2891 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2892 set_mem_attributes (stack_parm, parm, 1);
2895 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2896 calls that pass values in multiple non-contiguous locations. */
2897 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2899 rtx mem;
2901 /* Note that we will be storing an integral number of words.
2902 So we have to be careful to ensure that we allocate an
2903 integral number of words. We do this above when we call
2904 assign_stack_local if space was not allocated in the argument
2905 list. If it was, this will not work if PARM_BOUNDARY is not
2906 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2907 if it becomes a problem. Exception is when BLKmode arrives
2908 with arguments not conforming to word_mode. */
2910 if (data->stack_parm == 0)
2912 else if (GET_CODE (entry_parm) == PARALLEL)
2914 else
2915 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2917 mem = validize_mem (copy_rtx (stack_parm));
2919 /* Handle values in multiple non-contiguous locations. */
2920 if (GET_CODE (entry_parm) == PARALLEL)
2922 push_to_sequence2 (all->first_conversion_insn,
2923 all->last_conversion_insn);
2924 emit_group_store (mem, entry_parm, data->passed_type, size);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2930 else if (size == 0)
2933 /* If SIZE is that of a mode no bigger than a word, just use
2934 that mode's store operation. */
2935 else if (size <= UNITS_PER_WORD)
2937 machine_mode mode
2938 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2940 if (mode != BLKmode
2941 #ifdef BLOCK_REG_PADDING
2942 && (size == UNITS_PER_WORD
2943 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2944 != (BYTES_BIG_ENDIAN ? upward : downward)))
2945 #endif
2948 rtx reg;
2950 /* We are really truncating a word_mode value containing
2951 SIZE bytes into a value of mode MODE. If such an
2952 operation requires no actual instructions, we can refer
2953 to the value directly in mode MODE, otherwise we must
2954 start with the register in word_mode and explicitly
2955 convert it. */
2956 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2957 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2958 else
2960 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2961 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2963 emit_move_insn (change_address (mem, mode, 0), reg);
2966 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2967 machine must be aligned to the left before storing
2968 to memory. Note that the previous test doesn't
2969 handle all cases (e.g. SIZE == 3). */
2970 else if (size != UNITS_PER_WORD
2971 #ifdef BLOCK_REG_PADDING
2972 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2973 == downward)
2974 #else
2975 && BYTES_BIG_ENDIAN
2976 #endif
2979 rtx tem, x;
2980 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2981 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2983 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2984 tem = change_address (mem, word_mode, 0);
2985 emit_move_insn (tem, x);
2987 else
2988 move_block_from_reg (REGNO (entry_parm), mem,
2989 size_stored / UNITS_PER_WORD);
2991 else
2992 move_block_from_reg (REGNO (entry_parm), mem,
2993 size_stored / UNITS_PER_WORD);
2995 else if (data->stack_parm == 0)
2997 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2998 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2999 BLOCK_OP_NORMAL);
3000 all->first_conversion_insn = get_insns ();
3001 all->last_conversion_insn = get_last_insn ();
3002 end_sequence ();
3005 data->stack_parm = stack_parm;
3006 SET_DECL_RTL (parm, stack_parm);
3009 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3010 parameter. Get it there. Perform all ABI specified conversions. */
3012 static void
3013 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3014 struct assign_parm_data_one *data)
3016 rtx parmreg, validated_mem;
3017 rtx equiv_stack_parm;
3018 machine_mode promoted_nominal_mode;
3019 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3020 bool did_conversion = false;
3021 bool need_conversion, moved;
3023 /* Store the parm in a pseudoregister during the function, but we may
3024 need to do it in a wider mode. Using 2 here makes the result
3025 consistent with promote_decl_mode and thus expand_expr_real_1. */
3026 promoted_nominal_mode
3027 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3028 TREE_TYPE (current_function_decl), 2);
3030 parmreg = gen_reg_rtx (promoted_nominal_mode);
3032 if (!DECL_ARTIFICIAL (parm))
3033 mark_user_reg (parmreg);
3035 /* If this was an item that we received a pointer to,
3036 set DECL_RTL appropriately. */
3037 if (data->passed_pointer)
3039 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3040 set_mem_attributes (x, parm, 1);
3041 SET_DECL_RTL (parm, x);
3043 else
3044 SET_DECL_RTL (parm, parmreg);
3046 assign_parm_remove_parallels (data);
3048 /* Copy the value into the register, thus bridging between
3049 assign_parm_find_data_types and expand_expr_real_1. */
3051 equiv_stack_parm = data->stack_parm;
3052 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3054 need_conversion = (data->nominal_mode != data->passed_mode
3055 || promoted_nominal_mode != data->promoted_mode);
3056 moved = false;
3058 if (need_conversion
3059 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3060 && data->nominal_mode == data->passed_mode
3061 && data->nominal_mode == GET_MODE (data->entry_parm))
3063 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3064 mode, by the caller. We now have to convert it to
3065 NOMINAL_MODE, if different. However, PARMREG may be in
3066 a different mode than NOMINAL_MODE if it is being stored
3067 promoted.
3069 If ENTRY_PARM is a hard register, it might be in a register
3070 not valid for operating in its mode (e.g., an odd-numbered
3071 register for a DFmode). In that case, moves are the only
3072 thing valid, so we can't do a convert from there. This
3073 occurs when the calling sequence allow such misaligned
3074 usages.
3076 In addition, the conversion may involve a call, which could
3077 clobber parameters which haven't been copied to pseudo
3078 registers yet.
3080 First, we try to emit an insn which performs the necessary
3081 conversion. We verify that this insn does not clobber any
3082 hard registers. */
3084 enum insn_code icode;
3085 rtx op0, op1;
3087 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3088 unsignedp);
3090 op0 = parmreg;
3091 op1 = validated_mem;
3092 if (icode != CODE_FOR_nothing
3093 && insn_operand_matches (icode, 0, op0)
3094 && insn_operand_matches (icode, 1, op1))
3096 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3097 rtx_insn *insn, *insns;
3098 rtx t = op1;
3099 HARD_REG_SET hardregs;
3101 start_sequence ();
3102 /* If op1 is a hard register that is likely spilled, first
3103 force it into a pseudo, otherwise combiner might extend
3104 its lifetime too much. */
3105 if (GET_CODE (t) == SUBREG)
3106 t = SUBREG_REG (t);
3107 if (REG_P (t)
3108 && HARD_REGISTER_P (t)
3109 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3110 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3112 t = gen_reg_rtx (GET_MODE (op1));
3113 emit_move_insn (t, op1);
3115 else
3116 t = op1;
3117 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3118 data->passed_mode, unsignedp);
3119 emit_insn (pat);
3120 insns = get_insns ();
3122 moved = true;
3123 CLEAR_HARD_REG_SET (hardregs);
3124 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3126 if (INSN_P (insn))
3127 note_stores (PATTERN (insn), record_hard_reg_sets,
3128 &hardregs);
3129 if (!hard_reg_set_empty_p (hardregs))
3130 moved = false;
3133 end_sequence ();
3135 if (moved)
3137 emit_insn (insns);
3138 if (equiv_stack_parm != NULL_RTX)
3139 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3140 equiv_stack_parm);
3145 if (moved)
3146 /* Nothing to do. */
3148 else if (need_conversion)
3150 /* We did not have an insn to convert directly, or the sequence
3151 generated appeared unsafe. We must first copy the parm to a
3152 pseudo reg, and save the conversion until after all
3153 parameters have been moved. */
3155 int save_tree_used;
3156 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3158 emit_move_insn (tempreg, validated_mem);
3160 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3161 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3163 if (GET_CODE (tempreg) == SUBREG
3164 && GET_MODE (tempreg) == data->nominal_mode
3165 && REG_P (SUBREG_REG (tempreg))
3166 && data->nominal_mode == data->passed_mode
3167 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3168 && GET_MODE_SIZE (GET_MODE (tempreg))
3169 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3171 /* The argument is already sign/zero extended, so note it
3172 into the subreg. */
3173 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3174 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3177 /* TREE_USED gets set erroneously during expand_assignment. */
3178 save_tree_used = TREE_USED (parm);
3179 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3180 TREE_USED (parm) = save_tree_used;
3181 all->first_conversion_insn = get_insns ();
3182 all->last_conversion_insn = get_last_insn ();
3183 end_sequence ();
3185 did_conversion = true;
3187 else
3188 emit_move_insn (parmreg, validated_mem);
3190 /* If we were passed a pointer but the actual value can safely live
3191 in a register, retrieve it and use it directly. */
3192 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3194 /* We can't use nominal_mode, because it will have been set to
3195 Pmode above. We must use the actual mode of the parm. */
3196 if (use_register_for_decl (parm))
3198 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3199 mark_user_reg (parmreg);
3201 else
3203 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3204 TYPE_MODE (TREE_TYPE (parm)),
3205 TYPE_ALIGN (TREE_TYPE (parm)));
3206 parmreg
3207 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3208 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3209 align);
3210 set_mem_attributes (parmreg, parm, 1);
3213 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3215 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3216 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3218 push_to_sequence2 (all->first_conversion_insn,
3219 all->last_conversion_insn);
3220 emit_move_insn (tempreg, DECL_RTL (parm));
3221 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3222 emit_move_insn (parmreg, tempreg);
3223 all->first_conversion_insn = get_insns ();
3224 all->last_conversion_insn = get_last_insn ();
3225 end_sequence ();
3227 did_conversion = true;
3229 else
3230 emit_move_insn (parmreg, DECL_RTL (parm));
3232 SET_DECL_RTL (parm, parmreg);
3234 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3235 now the parm. */
3236 data->stack_parm = NULL;
3239 /* Mark the register as eliminable if we did no conversion and it was
3240 copied from memory at a fixed offset, and the arg pointer was not
3241 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3242 offset formed an invalid address, such memory-equivalences as we
3243 make here would screw up life analysis for it. */
3244 if (data->nominal_mode == data->passed_mode
3245 && !did_conversion
3246 && data->stack_parm != 0
3247 && MEM_P (data->stack_parm)
3248 && data->locate.offset.var == 0
3249 && reg_mentioned_p (virtual_incoming_args_rtx,
3250 XEXP (data->stack_parm, 0)))
3252 rtx_insn *linsn = get_last_insn ();
3253 rtx_insn *sinsn;
3254 rtx set;
3256 /* Mark complex types separately. */
3257 if (GET_CODE (parmreg) == CONCAT)
3259 machine_mode submode
3260 = GET_MODE_INNER (GET_MODE (parmreg));
3261 int regnor = REGNO (XEXP (parmreg, 0));
3262 int regnoi = REGNO (XEXP (parmreg, 1));
3263 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3264 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3265 GET_MODE_SIZE (submode));
3267 /* Scan backwards for the set of the real and
3268 imaginary parts. */
3269 for (sinsn = linsn; sinsn != 0;
3270 sinsn = prev_nonnote_insn (sinsn))
3272 set = single_set (sinsn);
3273 if (set == 0)
3274 continue;
3276 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3277 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3278 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3279 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3282 else
3283 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3286 /* For pointer data type, suggest pointer register. */
3287 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3288 mark_reg_pointer (parmreg,
3289 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3292 /* A subroutine of assign_parms. Allocate stack space to hold the current
3293 parameter. Get it there. Perform all ABI specified conversions. */
3295 static void
3296 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3297 struct assign_parm_data_one *data)
3299 /* Value must be stored in the stack slot STACK_PARM during function
3300 execution. */
3301 bool to_conversion = false;
3303 assign_parm_remove_parallels (data);
3305 if (data->promoted_mode != data->nominal_mode)
3307 /* Conversion is required. */
3308 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3310 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3312 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3313 to_conversion = true;
3315 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3316 TYPE_UNSIGNED (TREE_TYPE (parm)));
3318 if (data->stack_parm)
3320 int offset = subreg_lowpart_offset (data->nominal_mode,
3321 GET_MODE (data->stack_parm));
3322 /* ??? This may need a big-endian conversion on sparc64. */
3323 data->stack_parm
3324 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3325 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3326 set_mem_offset (data->stack_parm,
3327 MEM_OFFSET (data->stack_parm) + offset);
3331 if (data->entry_parm != data->stack_parm)
3333 rtx src, dest;
3335 if (data->stack_parm == 0)
3337 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3338 GET_MODE (data->entry_parm),
3339 TYPE_ALIGN (data->passed_type));
3340 data->stack_parm
3341 = assign_stack_local (GET_MODE (data->entry_parm),
3342 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3343 align);
3344 set_mem_attributes (data->stack_parm, parm, 1);
3347 dest = validize_mem (copy_rtx (data->stack_parm));
3348 src = validize_mem (copy_rtx (data->entry_parm));
3350 if (MEM_P (src))
3352 /* Use a block move to handle potentially misaligned entry_parm. */
3353 if (!to_conversion)
3354 push_to_sequence2 (all->first_conversion_insn,
3355 all->last_conversion_insn);
3356 to_conversion = true;
3358 emit_block_move (dest, src,
3359 GEN_INT (int_size_in_bytes (data->passed_type)),
3360 BLOCK_OP_NORMAL);
3362 else
3363 emit_move_insn (dest, src);
3366 if (to_conversion)
3368 all->first_conversion_insn = get_insns ();
3369 all->last_conversion_insn = get_last_insn ();
3370 end_sequence ();
3373 SET_DECL_RTL (parm, data->stack_parm);
3376 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3377 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3379 static void
3380 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3381 vec<tree> fnargs)
3383 tree parm;
3384 tree orig_fnargs = all->orig_fnargs;
3385 unsigned i = 0;
3387 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3389 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3390 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3392 rtx tmp, real, imag;
3393 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3395 real = DECL_RTL (fnargs[i]);
3396 imag = DECL_RTL (fnargs[i + 1]);
3397 if (inner != GET_MODE (real))
3399 real = gen_lowpart_SUBREG (inner, real);
3400 imag = gen_lowpart_SUBREG (inner, imag);
3403 if (TREE_ADDRESSABLE (parm))
3405 rtx rmem, imem;
3406 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3407 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3408 DECL_MODE (parm),
3409 TYPE_ALIGN (TREE_TYPE (parm)));
3411 /* split_complex_arg put the real and imag parts in
3412 pseudos. Move them to memory. */
3413 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3414 set_mem_attributes (tmp, parm, 1);
3415 rmem = adjust_address_nv (tmp, inner, 0);
3416 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3417 push_to_sequence2 (all->first_conversion_insn,
3418 all->last_conversion_insn);
3419 emit_move_insn (rmem, real);
3420 emit_move_insn (imem, imag);
3421 all->first_conversion_insn = get_insns ();
3422 all->last_conversion_insn = get_last_insn ();
3423 end_sequence ();
3425 else
3426 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3427 SET_DECL_RTL (parm, tmp);
3429 real = DECL_INCOMING_RTL (fnargs[i]);
3430 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3431 if (inner != GET_MODE (real))
3433 real = gen_lowpart_SUBREG (inner, real);
3434 imag = gen_lowpart_SUBREG (inner, imag);
3436 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3437 set_decl_incoming_rtl (parm, tmp, false);
3438 i++;
3443 /* Load bounds of PARM from bounds table. */
3444 static void
3445 assign_parm_load_bounds (struct assign_parm_data_one *data,
3446 tree parm,
3447 rtx entry,
3448 unsigned bound_no)
3450 bitmap_iterator bi;
3451 unsigned i, offs = 0;
3452 int bnd_no = -1;
3453 rtx slot = NULL, ptr = NULL;
3455 if (parm)
3457 bitmap slots;
3458 bitmap_obstack_initialize (NULL);
3459 slots = BITMAP_ALLOC (NULL);
3460 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3461 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3463 if (bound_no)
3464 bound_no--;
3465 else
3467 bnd_no = i;
3468 break;
3471 BITMAP_FREE (slots);
3472 bitmap_obstack_release (NULL);
3475 /* We may have bounds not associated with any pointer. */
3476 if (bnd_no != -1)
3477 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3479 /* Find associated pointer. */
3480 if (bnd_no == -1)
3482 /* If bounds are not associated with any bounds,
3483 then it is passed in a register or special slot. */
3484 gcc_assert (data->entry_parm);
3485 ptr = const0_rtx;
3487 else if (MEM_P (entry))
3488 slot = adjust_address (entry, Pmode, offs);
3489 else if (REG_P (entry))
3490 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3491 else if (GET_CODE (entry) == PARALLEL)
3492 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3493 else
3494 gcc_unreachable ();
3495 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3496 data->entry_parm);
3499 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3501 static void
3502 assign_bounds (vec<bounds_parm_data> &bndargs,
3503 struct assign_parm_data_all &all,
3504 bool assign_regs, bool assign_special,
3505 bool assign_bt)
3507 unsigned i, pass;
3508 bounds_parm_data *pbdata;
3510 if (!bndargs.exists ())
3511 return;
3513 /* We make few passes to store input bounds. Firstly handle bounds
3514 passed in registers. After that we load bounds passed in special
3515 slots. Finally we load bounds from Bounds Table. */
3516 for (pass = 0; pass < 3; pass++)
3517 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3519 /* Pass 0 => regs only. */
3520 if (pass == 0
3521 && (!assign_regs
3522 ||(!pbdata->parm_data.entry_parm
3523 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3524 continue;
3525 /* Pass 1 => slots only. */
3526 else if (pass == 1
3527 && (!assign_special
3528 || (!pbdata->parm_data.entry_parm
3529 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3530 continue;
3531 /* Pass 2 => BT only. */
3532 else if (pass == 2
3533 && (!assign_bt
3534 || pbdata->parm_data.entry_parm))
3535 continue;
3537 if (!pbdata->parm_data.entry_parm
3538 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3539 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3540 pbdata->ptr_entry, pbdata->bound_no);
3542 set_decl_incoming_rtl (pbdata->bounds_parm,
3543 pbdata->parm_data.entry_parm, false);
3545 if (assign_parm_setup_block_p (&pbdata->parm_data))
3546 assign_parm_setup_block (&all, pbdata->bounds_parm,
3547 &pbdata->parm_data);
3548 else if (pbdata->parm_data.passed_pointer
3549 || use_register_for_decl (pbdata->bounds_parm))
3550 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3551 &pbdata->parm_data);
3552 else
3553 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3554 &pbdata->parm_data);
3558 /* Assign RTL expressions to the function's parameters. This may involve
3559 copying them into registers and using those registers as the DECL_RTL. */
3561 static void
3562 assign_parms (tree fndecl)
3564 struct assign_parm_data_all all;
3565 tree parm;
3566 vec<tree> fnargs;
3567 unsigned i, bound_no = 0;
3568 tree last_arg = NULL;
3569 rtx last_arg_entry = NULL;
3570 vec<bounds_parm_data> bndargs = vNULL;
3571 bounds_parm_data bdata;
3573 crtl->args.internal_arg_pointer
3574 = targetm.calls.internal_arg_pointer ();
3576 assign_parms_initialize_all (&all);
3577 fnargs = assign_parms_augmented_arg_list (&all);
3579 FOR_EACH_VEC_ELT (fnargs, i, parm)
3581 struct assign_parm_data_one data;
3583 /* Extract the type of PARM; adjust it according to ABI. */
3584 assign_parm_find_data_types (&all, parm, &data);
3586 /* Early out for errors and void parameters. */
3587 if (data.passed_mode == VOIDmode)
3589 SET_DECL_RTL (parm, const0_rtx);
3590 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3591 continue;
3594 /* Estimate stack alignment from parameter alignment. */
3595 if (SUPPORTS_STACK_ALIGNMENT)
3597 unsigned int align
3598 = targetm.calls.function_arg_boundary (data.promoted_mode,
3599 data.passed_type);
3600 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3601 align);
3602 if (TYPE_ALIGN (data.nominal_type) > align)
3603 align = MINIMUM_ALIGNMENT (data.nominal_type,
3604 TYPE_MODE (data.nominal_type),
3605 TYPE_ALIGN (data.nominal_type));
3606 if (crtl->stack_alignment_estimated < align)
3608 gcc_assert (!crtl->stack_realign_processed);
3609 crtl->stack_alignment_estimated = align;
3613 /* Find out where the parameter arrives in this function. */
3614 assign_parm_find_entry_rtl (&all, &data);
3616 /* Find out where stack space for this parameter might be. */
3617 if (assign_parm_is_stack_parm (&all, &data))
3619 assign_parm_find_stack_rtl (parm, &data);
3620 assign_parm_adjust_entry_rtl (&data);
3622 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3624 /* Remember where last non bounds arg was passed in case
3625 we have to load associated bounds for it from Bounds
3626 Table. */
3627 last_arg = parm;
3628 last_arg_entry = data.entry_parm;
3629 bound_no = 0;
3631 /* Record permanently how this parm was passed. */
3632 if (data.passed_pointer)
3634 rtx incoming_rtl
3635 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3636 data.entry_parm);
3637 set_decl_incoming_rtl (parm, incoming_rtl, true);
3639 else
3640 set_decl_incoming_rtl (parm, data.entry_parm, false);
3642 /* Boudns should be loaded in the particular order to
3643 have registers allocated correctly. Collect info about
3644 input bounds and load them later. */
3645 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3647 /* Expect bounds in instrumented functions only. */
3648 gcc_assert (chkp_function_instrumented_p (fndecl));
3650 bdata.parm_data = data;
3651 bdata.bounds_parm = parm;
3652 bdata.ptr_parm = last_arg;
3653 bdata.ptr_entry = last_arg_entry;
3654 bdata.bound_no = bound_no;
3655 bndargs.safe_push (bdata);
3657 else
3659 assign_parm_adjust_stack_rtl (&data);
3661 if (assign_parm_setup_block_p (&data))
3662 assign_parm_setup_block (&all, parm, &data);
3663 else if (data.passed_pointer || use_register_for_decl (parm))
3664 assign_parm_setup_reg (&all, parm, &data);
3665 else
3666 assign_parm_setup_stack (&all, parm, &data);
3669 if (cfun->stdarg && !DECL_CHAIN (parm))
3671 int pretend_bytes = 0;
3673 assign_parms_setup_varargs (&all, &data, false);
3675 if (chkp_function_instrumented_p (fndecl))
3677 /* We expect this is the last parm. Otherwise it is wrong
3678 to assign bounds right now. */
3679 gcc_assert (i == (fnargs.length () - 1));
3680 assign_bounds (bndargs, all, true, false, false);
3681 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3682 data.promoted_mode,
3683 data.passed_type,
3684 &pretend_bytes,
3685 false);
3686 assign_bounds (bndargs, all, false, true, true);
3687 bndargs.release ();
3691 /* Update info on where next arg arrives in registers. */
3692 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3693 data.passed_type, data.named_arg);
3695 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3696 bound_no++;
3699 assign_bounds (bndargs, all, true, true, true);
3700 bndargs.release ();
3702 if (targetm.calls.split_complex_arg)
3703 assign_parms_unsplit_complex (&all, fnargs);
3705 fnargs.release ();
3707 /* Output all parameter conversion instructions (possibly including calls)
3708 now that all parameters have been copied out of hard registers. */
3709 emit_insn (all.first_conversion_insn);
3711 /* Estimate reload stack alignment from scalar return mode. */
3712 if (SUPPORTS_STACK_ALIGNMENT)
3714 if (DECL_RESULT (fndecl))
3716 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3717 machine_mode mode = TYPE_MODE (type);
3719 if (mode != BLKmode
3720 && mode != VOIDmode
3721 && !AGGREGATE_TYPE_P (type))
3723 unsigned int align = GET_MODE_ALIGNMENT (mode);
3724 if (crtl->stack_alignment_estimated < align)
3726 gcc_assert (!crtl->stack_realign_processed);
3727 crtl->stack_alignment_estimated = align;
3733 /* If we are receiving a struct value address as the first argument, set up
3734 the RTL for the function result. As this might require code to convert
3735 the transmitted address to Pmode, we do this here to ensure that possible
3736 preliminary conversions of the address have been emitted already. */
3737 if (all.function_result_decl)
3739 tree result = DECL_RESULT (current_function_decl);
3740 rtx addr = DECL_RTL (all.function_result_decl);
3741 rtx x;
3743 if (DECL_BY_REFERENCE (result))
3745 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3746 x = addr;
3748 else
3750 SET_DECL_VALUE_EXPR (result,
3751 build1 (INDIRECT_REF, TREE_TYPE (result),
3752 all.function_result_decl));
3753 addr = convert_memory_address (Pmode, addr);
3754 x = gen_rtx_MEM (DECL_MODE (result), addr);
3755 set_mem_attributes (x, result, 1);
3758 DECL_HAS_VALUE_EXPR_P (result) = 1;
3760 SET_DECL_RTL (result, x);
3763 /* We have aligned all the args, so add space for the pretend args. */
3764 crtl->args.pretend_args_size = all.pretend_args_size;
3765 all.stack_args_size.constant += all.extra_pretend_bytes;
3766 crtl->args.size = all.stack_args_size.constant;
3768 /* Adjust function incoming argument size for alignment and
3769 minimum length. */
3771 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3772 crtl->args.size = CEIL_ROUND (crtl->args.size,
3773 PARM_BOUNDARY / BITS_PER_UNIT);
3775 #ifdef ARGS_GROW_DOWNWARD
3776 crtl->args.arg_offset_rtx
3777 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3778 : expand_expr (size_diffop (all.stack_args_size.var,
3779 size_int (-all.stack_args_size.constant)),
3780 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3781 #else
3782 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3783 #endif
3785 /* See how many bytes, if any, of its args a function should try to pop
3786 on return. */
3788 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3789 TREE_TYPE (fndecl),
3790 crtl->args.size);
3792 /* For stdarg.h function, save info about
3793 regs and stack space used by the named args. */
3795 crtl->args.info = all.args_so_far_v;
3797 /* Set the rtx used for the function return value. Put this in its
3798 own variable so any optimizers that need this information don't have
3799 to include tree.h. Do this here so it gets done when an inlined
3800 function gets output. */
3802 crtl->return_rtx
3803 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3804 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3806 /* If scalar return value was computed in a pseudo-reg, or was a named
3807 return value that got dumped to the stack, copy that to the hard
3808 return register. */
3809 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3811 tree decl_result = DECL_RESULT (fndecl);
3812 rtx decl_rtl = DECL_RTL (decl_result);
3814 if (REG_P (decl_rtl)
3815 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3816 : DECL_REGISTER (decl_result))
3818 rtx real_decl_rtl;
3820 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3821 fndecl, true);
3822 if (chkp_function_instrumented_p (fndecl))
3823 crtl->return_bnd
3824 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3825 fndecl, true);
3826 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3827 /* The delay slot scheduler assumes that crtl->return_rtx
3828 holds the hard register containing the return value, not a
3829 temporary pseudo. */
3830 crtl->return_rtx = real_decl_rtl;
3835 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3836 For all seen types, gimplify their sizes. */
3838 static tree
3839 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3841 tree t = *tp;
3843 *walk_subtrees = 0;
3844 if (TYPE_P (t))
3846 if (POINTER_TYPE_P (t))
3847 *walk_subtrees = 1;
3848 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3849 && !TYPE_SIZES_GIMPLIFIED (t))
3851 gimplify_type_sizes (t, (gimple_seq *) data);
3852 *walk_subtrees = 1;
3856 return NULL;
3859 /* Gimplify the parameter list for current_function_decl. This involves
3860 evaluating SAVE_EXPRs of variable sized parameters and generating code
3861 to implement callee-copies reference parameters. Returns a sequence of
3862 statements to add to the beginning of the function. */
3864 gimple_seq
3865 gimplify_parameters (void)
3867 struct assign_parm_data_all all;
3868 tree parm;
3869 gimple_seq stmts = NULL;
3870 vec<tree> fnargs;
3871 unsigned i;
3873 assign_parms_initialize_all (&all);
3874 fnargs = assign_parms_augmented_arg_list (&all);
3876 FOR_EACH_VEC_ELT (fnargs, i, parm)
3878 struct assign_parm_data_one data;
3880 /* Extract the type of PARM; adjust it according to ABI. */
3881 assign_parm_find_data_types (&all, parm, &data);
3883 /* Early out for errors and void parameters. */
3884 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3885 continue;
3887 /* Update info on where next arg arrives in registers. */
3888 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3889 data.passed_type, data.named_arg);
3891 /* ??? Once upon a time variable_size stuffed parameter list
3892 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3893 turned out to be less than manageable in the gimple world.
3894 Now we have to hunt them down ourselves. */
3895 walk_tree_without_duplicates (&data.passed_type,
3896 gimplify_parm_type, &stmts);
3898 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3900 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3901 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3904 if (data.passed_pointer)
3906 tree type = TREE_TYPE (data.passed_type);
3907 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3908 type, data.named_arg))
3910 tree local, t;
3912 /* For constant-sized objects, this is trivial; for
3913 variable-sized objects, we have to play games. */
3914 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3915 && !(flag_stack_check == GENERIC_STACK_CHECK
3916 && compare_tree_int (DECL_SIZE_UNIT (parm),
3917 STACK_CHECK_MAX_VAR_SIZE) > 0))
3919 local = create_tmp_var (type, get_name (parm));
3920 DECL_IGNORED_P (local) = 0;
3921 /* If PARM was addressable, move that flag over
3922 to the local copy, as its address will be taken,
3923 not the PARMs. Keep the parms address taken
3924 as we'll query that flag during gimplification. */
3925 if (TREE_ADDRESSABLE (parm))
3926 TREE_ADDRESSABLE (local) = 1;
3927 else if (TREE_CODE (type) == COMPLEX_TYPE
3928 || TREE_CODE (type) == VECTOR_TYPE)
3929 DECL_GIMPLE_REG_P (local) = 1;
3931 else
3933 tree ptr_type, addr;
3935 ptr_type = build_pointer_type (type);
3936 addr = create_tmp_reg (ptr_type, get_name (parm));
3937 DECL_IGNORED_P (addr) = 0;
3938 local = build_fold_indirect_ref (addr);
3940 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3941 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3942 size_int (DECL_ALIGN (parm)));
3944 /* The call has been built for a variable-sized object. */
3945 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3946 t = fold_convert (ptr_type, t);
3947 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3948 gimplify_and_add (t, &stmts);
3951 gimplify_assign (local, parm, &stmts);
3953 SET_DECL_VALUE_EXPR (parm, local);
3954 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3959 fnargs.release ();
3961 return stmts;
3964 /* Compute the size and offset from the start of the stacked arguments for a
3965 parm passed in mode PASSED_MODE and with type TYPE.
3967 INITIAL_OFFSET_PTR points to the current offset into the stacked
3968 arguments.
3970 The starting offset and size for this parm are returned in
3971 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3972 nonzero, the offset is that of stack slot, which is returned in
3973 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3974 padding required from the initial offset ptr to the stack slot.
3976 IN_REGS is nonzero if the argument will be passed in registers. It will
3977 never be set if REG_PARM_STACK_SPACE is not defined.
3979 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3980 for arguments which are passed in registers.
3982 FNDECL is the function in which the argument was defined.
3984 There are two types of rounding that are done. The first, controlled by
3985 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3986 argument list to be aligned to the specific boundary (in bits). This
3987 rounding affects the initial and starting offsets, but not the argument
3988 size.
3990 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3991 optionally rounds the size of the parm to PARM_BOUNDARY. The
3992 initial offset is not affected by this rounding, while the size always
3993 is and the starting offset may be. */
3995 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3996 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3997 callers pass in the total size of args so far as
3998 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4000 void
4001 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4002 int reg_parm_stack_space, int partial,
4003 tree fndecl ATTRIBUTE_UNUSED,
4004 struct args_size *initial_offset_ptr,
4005 struct locate_and_pad_arg_data *locate)
4007 tree sizetree;
4008 enum direction where_pad;
4009 unsigned int boundary, round_boundary;
4010 int part_size_in_regs;
4012 /* If we have found a stack parm before we reach the end of the
4013 area reserved for registers, skip that area. */
4014 if (! in_regs)
4016 if (reg_parm_stack_space > 0)
4018 if (initial_offset_ptr->var)
4020 initial_offset_ptr->var
4021 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4022 ssize_int (reg_parm_stack_space));
4023 initial_offset_ptr->constant = 0;
4025 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4026 initial_offset_ptr->constant = reg_parm_stack_space;
4030 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4032 sizetree
4033 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4034 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4035 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4036 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4037 type);
4038 locate->where_pad = where_pad;
4040 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4041 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4042 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4044 locate->boundary = boundary;
4046 if (SUPPORTS_STACK_ALIGNMENT)
4048 /* stack_alignment_estimated can't change after stack has been
4049 realigned. */
4050 if (crtl->stack_alignment_estimated < boundary)
4052 if (!crtl->stack_realign_processed)
4053 crtl->stack_alignment_estimated = boundary;
4054 else
4056 /* If stack is realigned and stack alignment value
4057 hasn't been finalized, it is OK not to increase
4058 stack_alignment_estimated. The bigger alignment
4059 requirement is recorded in stack_alignment_needed
4060 below. */
4061 gcc_assert (!crtl->stack_realign_finalized
4062 && crtl->stack_realign_needed);
4067 /* Remember if the outgoing parameter requires extra alignment on the
4068 calling function side. */
4069 if (crtl->stack_alignment_needed < boundary)
4070 crtl->stack_alignment_needed = boundary;
4071 if (crtl->preferred_stack_boundary < boundary)
4072 crtl->preferred_stack_boundary = boundary;
4074 #ifdef ARGS_GROW_DOWNWARD
4075 locate->slot_offset.constant = -initial_offset_ptr->constant;
4076 if (initial_offset_ptr->var)
4077 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4078 initial_offset_ptr->var);
4081 tree s2 = sizetree;
4082 if (where_pad != none
4083 && (!tree_fits_uhwi_p (sizetree)
4084 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4085 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4086 SUB_PARM_SIZE (locate->slot_offset, s2);
4089 locate->slot_offset.constant += part_size_in_regs;
4091 if (!in_regs || reg_parm_stack_space > 0)
4092 pad_to_arg_alignment (&locate->slot_offset, boundary,
4093 &locate->alignment_pad);
4095 locate->size.constant = (-initial_offset_ptr->constant
4096 - locate->slot_offset.constant);
4097 if (initial_offset_ptr->var)
4098 locate->size.var = size_binop (MINUS_EXPR,
4099 size_binop (MINUS_EXPR,
4100 ssize_int (0),
4101 initial_offset_ptr->var),
4102 locate->slot_offset.var);
4104 /* Pad_below needs the pre-rounded size to know how much to pad
4105 below. */
4106 locate->offset = locate->slot_offset;
4107 if (where_pad == downward)
4108 pad_below (&locate->offset, passed_mode, sizetree);
4110 #else /* !ARGS_GROW_DOWNWARD */
4111 if (!in_regs || reg_parm_stack_space > 0)
4112 pad_to_arg_alignment (initial_offset_ptr, boundary,
4113 &locate->alignment_pad);
4114 locate->slot_offset = *initial_offset_ptr;
4116 #ifdef PUSH_ROUNDING
4117 if (passed_mode != BLKmode)
4118 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4119 #endif
4121 /* Pad_below needs the pre-rounded size to know how much to pad below
4122 so this must be done before rounding up. */
4123 locate->offset = locate->slot_offset;
4124 if (where_pad == downward)
4125 pad_below (&locate->offset, passed_mode, sizetree);
4127 if (where_pad != none
4128 && (!tree_fits_uhwi_p (sizetree)
4129 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4130 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4132 ADD_PARM_SIZE (locate->size, sizetree);
4134 locate->size.constant -= part_size_in_regs;
4135 #endif /* ARGS_GROW_DOWNWARD */
4137 #ifdef FUNCTION_ARG_OFFSET
4138 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4139 #endif
4142 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4143 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4145 static void
4146 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4147 struct args_size *alignment_pad)
4149 tree save_var = NULL_TREE;
4150 HOST_WIDE_INT save_constant = 0;
4151 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4152 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4154 #ifdef SPARC_STACK_BOUNDARY_HACK
4155 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4156 the real alignment of %sp. However, when it does this, the
4157 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4158 if (SPARC_STACK_BOUNDARY_HACK)
4159 sp_offset = 0;
4160 #endif
4162 if (boundary > PARM_BOUNDARY)
4164 save_var = offset_ptr->var;
4165 save_constant = offset_ptr->constant;
4168 alignment_pad->var = NULL_TREE;
4169 alignment_pad->constant = 0;
4171 if (boundary > BITS_PER_UNIT)
4173 if (offset_ptr->var)
4175 tree sp_offset_tree = ssize_int (sp_offset);
4176 tree offset = size_binop (PLUS_EXPR,
4177 ARGS_SIZE_TREE (*offset_ptr),
4178 sp_offset_tree);
4179 #ifdef ARGS_GROW_DOWNWARD
4180 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
4181 #else
4182 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
4183 #endif
4185 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4186 /* ARGS_SIZE_TREE includes constant term. */
4187 offset_ptr->constant = 0;
4188 if (boundary > PARM_BOUNDARY)
4189 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4190 save_var);
4192 else
4194 offset_ptr->constant = -sp_offset +
4195 #ifdef ARGS_GROW_DOWNWARD
4196 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4197 #else
4198 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4199 #endif
4200 if (boundary > PARM_BOUNDARY)
4201 alignment_pad->constant = offset_ptr->constant - save_constant;
4206 static void
4207 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4209 if (passed_mode != BLKmode)
4211 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4212 offset_ptr->constant
4213 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4214 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4215 - GET_MODE_SIZE (passed_mode));
4217 else
4219 if (TREE_CODE (sizetree) != INTEGER_CST
4220 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4222 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4223 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4224 /* Add it in. */
4225 ADD_PARM_SIZE (*offset_ptr, s2);
4226 SUB_PARM_SIZE (*offset_ptr, sizetree);
4232 /* True if register REGNO was alive at a place where `setjmp' was
4233 called and was set more than once or is an argument. Such regs may
4234 be clobbered by `longjmp'. */
4236 static bool
4237 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4239 /* There appear to be cases where some local vars never reach the
4240 backend but have bogus regnos. */
4241 if (regno >= max_reg_num ())
4242 return false;
4244 return ((REG_N_SETS (regno) > 1
4245 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4246 regno))
4247 && REGNO_REG_SET_P (setjmp_crosses, regno));
4250 /* Walk the tree of blocks describing the binding levels within a
4251 function and warn about variables the might be killed by setjmp or
4252 vfork. This is done after calling flow_analysis before register
4253 allocation since that will clobber the pseudo-regs to hard
4254 regs. */
4256 static void
4257 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4259 tree decl, sub;
4261 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4263 if (TREE_CODE (decl) == VAR_DECL
4264 && DECL_RTL_SET_P (decl)
4265 && REG_P (DECL_RTL (decl))
4266 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4267 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4268 " %<longjmp%> or %<vfork%>", decl);
4271 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4272 setjmp_vars_warning (setjmp_crosses, sub);
4275 /* Do the appropriate part of setjmp_vars_warning
4276 but for arguments instead of local variables. */
4278 static void
4279 setjmp_args_warning (bitmap setjmp_crosses)
4281 tree decl;
4282 for (decl = DECL_ARGUMENTS (current_function_decl);
4283 decl; decl = DECL_CHAIN (decl))
4284 if (DECL_RTL (decl) != 0
4285 && REG_P (DECL_RTL (decl))
4286 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4287 warning (OPT_Wclobbered,
4288 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4289 decl);
4292 /* Generate warning messages for variables live across setjmp. */
4294 void
4295 generate_setjmp_warnings (void)
4297 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4299 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4300 || bitmap_empty_p (setjmp_crosses))
4301 return;
4303 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4304 setjmp_args_warning (setjmp_crosses);
4308 /* Reverse the order of elements in the fragment chain T of blocks,
4309 and return the new head of the chain (old last element).
4310 In addition to that clear BLOCK_SAME_RANGE flags when needed
4311 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4312 its super fragment origin. */
4314 static tree
4315 block_fragments_nreverse (tree t)
4317 tree prev = 0, block, next, prev_super = 0;
4318 tree super = BLOCK_SUPERCONTEXT (t);
4319 if (BLOCK_FRAGMENT_ORIGIN (super))
4320 super = BLOCK_FRAGMENT_ORIGIN (super);
4321 for (block = t; block; block = next)
4323 next = BLOCK_FRAGMENT_CHAIN (block);
4324 BLOCK_FRAGMENT_CHAIN (block) = prev;
4325 if ((prev && !BLOCK_SAME_RANGE (prev))
4326 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4327 != prev_super))
4328 BLOCK_SAME_RANGE (block) = 0;
4329 prev_super = BLOCK_SUPERCONTEXT (block);
4330 BLOCK_SUPERCONTEXT (block) = super;
4331 prev = block;
4333 t = BLOCK_FRAGMENT_ORIGIN (t);
4334 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4335 != prev_super)
4336 BLOCK_SAME_RANGE (t) = 0;
4337 BLOCK_SUPERCONTEXT (t) = super;
4338 return prev;
4341 /* Reverse the order of elements in the chain T of blocks,
4342 and return the new head of the chain (old last element).
4343 Also do the same on subblocks and reverse the order of elements
4344 in BLOCK_FRAGMENT_CHAIN as well. */
4346 static tree
4347 blocks_nreverse_all (tree t)
4349 tree prev = 0, block, next;
4350 for (block = t; block; block = next)
4352 next = BLOCK_CHAIN (block);
4353 BLOCK_CHAIN (block) = prev;
4354 if (BLOCK_FRAGMENT_CHAIN (block)
4355 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4357 BLOCK_FRAGMENT_CHAIN (block)
4358 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4359 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4360 BLOCK_SAME_RANGE (block) = 0;
4362 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4363 prev = block;
4365 return prev;
4369 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4370 and create duplicate blocks. */
4371 /* ??? Need an option to either create block fragments or to create
4372 abstract origin duplicates of a source block. It really depends
4373 on what optimization has been performed. */
4375 void
4376 reorder_blocks (void)
4378 tree block = DECL_INITIAL (current_function_decl);
4380 if (block == NULL_TREE)
4381 return;
4383 auto_vec<tree, 10> block_stack;
4385 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4386 clear_block_marks (block);
4388 /* Prune the old trees away, so that they don't get in the way. */
4389 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4390 BLOCK_CHAIN (block) = NULL_TREE;
4392 /* Recreate the block tree from the note nesting. */
4393 reorder_blocks_1 (get_insns (), block, &block_stack);
4394 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4397 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4399 void
4400 clear_block_marks (tree block)
4402 while (block)
4404 TREE_ASM_WRITTEN (block) = 0;
4405 clear_block_marks (BLOCK_SUBBLOCKS (block));
4406 block = BLOCK_CHAIN (block);
4410 static void
4411 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4412 vec<tree> *p_block_stack)
4414 rtx_insn *insn;
4415 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4417 for (insn = insns; insn; insn = NEXT_INSN (insn))
4419 if (NOTE_P (insn))
4421 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4423 tree block = NOTE_BLOCK (insn);
4424 tree origin;
4426 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4427 origin = block;
4429 if (prev_end)
4430 BLOCK_SAME_RANGE (prev_end) = 0;
4431 prev_end = NULL_TREE;
4433 /* If we have seen this block before, that means it now
4434 spans multiple address regions. Create a new fragment. */
4435 if (TREE_ASM_WRITTEN (block))
4437 tree new_block = copy_node (block);
4439 BLOCK_SAME_RANGE (new_block) = 0;
4440 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4441 BLOCK_FRAGMENT_CHAIN (new_block)
4442 = BLOCK_FRAGMENT_CHAIN (origin);
4443 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4445 NOTE_BLOCK (insn) = new_block;
4446 block = new_block;
4449 if (prev_beg == current_block && prev_beg)
4450 BLOCK_SAME_RANGE (block) = 1;
4452 prev_beg = origin;
4454 BLOCK_SUBBLOCKS (block) = 0;
4455 TREE_ASM_WRITTEN (block) = 1;
4456 /* When there's only one block for the entire function,
4457 current_block == block and we mustn't do this, it
4458 will cause infinite recursion. */
4459 if (block != current_block)
4461 tree super;
4462 if (block != origin)
4463 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4464 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4465 (origin))
4466 == current_block);
4467 if (p_block_stack->is_empty ())
4468 super = current_block;
4469 else
4471 super = p_block_stack->last ();
4472 gcc_assert (super == current_block
4473 || BLOCK_FRAGMENT_ORIGIN (super)
4474 == current_block);
4476 BLOCK_SUPERCONTEXT (block) = super;
4477 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4478 BLOCK_SUBBLOCKS (current_block) = block;
4479 current_block = origin;
4481 p_block_stack->safe_push (block);
4483 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4485 NOTE_BLOCK (insn) = p_block_stack->pop ();
4486 current_block = BLOCK_SUPERCONTEXT (current_block);
4487 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4488 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4489 prev_beg = NULL_TREE;
4490 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4491 ? NOTE_BLOCK (insn) : NULL_TREE;
4494 else
4496 prev_beg = NULL_TREE;
4497 if (prev_end)
4498 BLOCK_SAME_RANGE (prev_end) = 0;
4499 prev_end = NULL_TREE;
4504 /* Reverse the order of elements in the chain T of blocks,
4505 and return the new head of the chain (old last element). */
4507 tree
4508 blocks_nreverse (tree t)
4510 tree prev = 0, block, next;
4511 for (block = t; block; block = next)
4513 next = BLOCK_CHAIN (block);
4514 BLOCK_CHAIN (block) = prev;
4515 prev = block;
4517 return prev;
4520 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4521 by modifying the last node in chain 1 to point to chain 2. */
4523 tree
4524 block_chainon (tree op1, tree op2)
4526 tree t1;
4528 if (!op1)
4529 return op2;
4530 if (!op2)
4531 return op1;
4533 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4534 continue;
4535 BLOCK_CHAIN (t1) = op2;
4537 #ifdef ENABLE_TREE_CHECKING
4539 tree t2;
4540 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4541 gcc_assert (t2 != t1);
4543 #endif
4545 return op1;
4548 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4549 non-NULL, list them all into VECTOR, in a depth-first preorder
4550 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4551 blocks. */
4553 static int
4554 all_blocks (tree block, tree *vector)
4556 int n_blocks = 0;
4558 while (block)
4560 TREE_ASM_WRITTEN (block) = 0;
4562 /* Record this block. */
4563 if (vector)
4564 vector[n_blocks] = block;
4566 ++n_blocks;
4568 /* Record the subblocks, and their subblocks... */
4569 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4570 vector ? vector + n_blocks : 0);
4571 block = BLOCK_CHAIN (block);
4574 return n_blocks;
4577 /* Return a vector containing all the blocks rooted at BLOCK. The
4578 number of elements in the vector is stored in N_BLOCKS_P. The
4579 vector is dynamically allocated; it is the caller's responsibility
4580 to call `free' on the pointer returned. */
4582 static tree *
4583 get_block_vector (tree block, int *n_blocks_p)
4585 tree *block_vector;
4587 *n_blocks_p = all_blocks (block, NULL);
4588 block_vector = XNEWVEC (tree, *n_blocks_p);
4589 all_blocks (block, block_vector);
4591 return block_vector;
4594 static GTY(()) int next_block_index = 2;
4596 /* Set BLOCK_NUMBER for all the blocks in FN. */
4598 void
4599 number_blocks (tree fn)
4601 int i;
4602 int n_blocks;
4603 tree *block_vector;
4605 /* For SDB and XCOFF debugging output, we start numbering the blocks
4606 from 1 within each function, rather than keeping a running
4607 count. */
4608 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4609 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4610 next_block_index = 1;
4611 #endif
4613 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4615 /* The top-level BLOCK isn't numbered at all. */
4616 for (i = 1; i < n_blocks; ++i)
4617 /* We number the blocks from two. */
4618 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4620 free (block_vector);
4622 return;
4625 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4627 DEBUG_FUNCTION tree
4628 debug_find_var_in_block_tree (tree var, tree block)
4630 tree t;
4632 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4633 if (t == var)
4634 return block;
4636 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4638 tree ret = debug_find_var_in_block_tree (var, t);
4639 if (ret)
4640 return ret;
4643 return NULL_TREE;
4646 /* Keep track of whether we're in a dummy function context. If we are,
4647 we don't want to invoke the set_current_function hook, because we'll
4648 get into trouble if the hook calls target_reinit () recursively or
4649 when the initial initialization is not yet complete. */
4651 static bool in_dummy_function;
4653 /* Invoke the target hook when setting cfun. Update the optimization options
4654 if the function uses different options than the default. */
4656 static void
4657 invoke_set_current_function_hook (tree fndecl)
4659 if (!in_dummy_function)
4661 tree opts = ((fndecl)
4662 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4663 : optimization_default_node);
4665 if (!opts)
4666 opts = optimization_default_node;
4668 /* Change optimization options if needed. */
4669 if (optimization_current_node != opts)
4671 optimization_current_node = opts;
4672 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4675 targetm.set_current_function (fndecl);
4676 this_fn_optabs = this_target_optabs;
4678 if (opts != optimization_default_node)
4680 init_tree_optimization_optabs (opts);
4681 if (TREE_OPTIMIZATION_OPTABS (opts))
4682 this_fn_optabs = (struct target_optabs *)
4683 TREE_OPTIMIZATION_OPTABS (opts);
4688 /* cfun should never be set directly; use this function. */
4690 void
4691 set_cfun (struct function *new_cfun)
4693 if (cfun != new_cfun)
4695 cfun = new_cfun;
4696 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4700 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4702 static vec<function_p> cfun_stack;
4704 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4705 current_function_decl accordingly. */
4707 void
4708 push_cfun (struct function *new_cfun)
4710 gcc_assert ((!cfun && !current_function_decl)
4711 || (cfun && current_function_decl == cfun->decl));
4712 cfun_stack.safe_push (cfun);
4713 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4714 set_cfun (new_cfun);
4717 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4719 void
4720 pop_cfun (void)
4722 struct function *new_cfun = cfun_stack.pop ();
4723 /* When in_dummy_function, we do have a cfun but current_function_decl is
4724 NULL. We also allow pushing NULL cfun and subsequently changing
4725 current_function_decl to something else and have both restored by
4726 pop_cfun. */
4727 gcc_checking_assert (in_dummy_function
4728 || !cfun
4729 || current_function_decl == cfun->decl);
4730 set_cfun (new_cfun);
4731 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4734 /* Return value of funcdef and increase it. */
4736 get_next_funcdef_no (void)
4738 return funcdef_no++;
4741 /* Return value of funcdef. */
4743 get_last_funcdef_no (void)
4745 return funcdef_no;
4748 /* Allocate a function structure for FNDECL and set its contents
4749 to the defaults. Set cfun to the newly-allocated object.
4750 Some of the helper functions invoked during initialization assume
4751 that cfun has already been set. Therefore, assign the new object
4752 directly into cfun and invoke the back end hook explicitly at the
4753 very end, rather than initializing a temporary and calling set_cfun
4754 on it.
4756 ABSTRACT_P is true if this is a function that will never be seen by
4757 the middle-end. Such functions are front-end concepts (like C++
4758 function templates) that do not correspond directly to functions
4759 placed in object files. */
4761 void
4762 allocate_struct_function (tree fndecl, bool abstract_p)
4764 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4766 cfun = ggc_cleared_alloc<function> ();
4768 init_eh_for_function ();
4770 if (init_machine_status)
4771 cfun->machine = (*init_machine_status) ();
4773 #ifdef OVERRIDE_ABI_FORMAT
4774 OVERRIDE_ABI_FORMAT (fndecl);
4775 #endif
4777 if (fndecl != NULL_TREE)
4779 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4780 cfun->decl = fndecl;
4781 current_function_funcdef_no = get_next_funcdef_no ();
4784 invoke_set_current_function_hook (fndecl);
4786 if (fndecl != NULL_TREE)
4788 tree result = DECL_RESULT (fndecl);
4789 if (!abstract_p && aggregate_value_p (result, fndecl))
4791 #ifdef PCC_STATIC_STRUCT_RETURN
4792 cfun->returns_pcc_struct = 1;
4793 #endif
4794 cfun->returns_struct = 1;
4797 cfun->stdarg = stdarg_p (fntype);
4799 /* Assume all registers in stdarg functions need to be saved. */
4800 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4801 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4803 /* ??? This could be set on a per-function basis by the front-end
4804 but is this worth the hassle? */
4805 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4806 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4808 if (!profile_flag && !flag_instrument_function_entry_exit)
4809 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4813 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4814 instead of just setting it. */
4816 void
4817 push_struct_function (tree fndecl)
4819 /* When in_dummy_function we might be in the middle of a pop_cfun and
4820 current_function_decl and cfun may not match. */
4821 gcc_assert (in_dummy_function
4822 || (!cfun && !current_function_decl)
4823 || (cfun && current_function_decl == cfun->decl));
4824 cfun_stack.safe_push (cfun);
4825 current_function_decl = fndecl;
4826 allocate_struct_function (fndecl, false);
4829 /* Reset crtl and other non-struct-function variables to defaults as
4830 appropriate for emitting rtl at the start of a function. */
4832 static void
4833 prepare_function_start (void)
4835 gcc_assert (!crtl->emit.x_last_insn);
4836 init_temp_slots ();
4837 init_emit ();
4838 init_varasm_status ();
4839 init_expr ();
4840 default_rtl_profile ();
4842 if (flag_stack_usage_info)
4844 cfun->su = ggc_cleared_alloc<stack_usage> ();
4845 cfun->su->static_stack_size = -1;
4848 cse_not_expected = ! optimize;
4850 /* Caller save not needed yet. */
4851 caller_save_needed = 0;
4853 /* We haven't done register allocation yet. */
4854 reg_renumber = 0;
4856 /* Indicate that we have not instantiated virtual registers yet. */
4857 virtuals_instantiated = 0;
4859 /* Indicate that we want CONCATs now. */
4860 generating_concat_p = 1;
4862 /* Indicate we have no need of a frame pointer yet. */
4863 frame_pointer_needed = 0;
4866 /* Initialize the rtl expansion mechanism so that we can do simple things
4867 like generate sequences. This is used to provide a context during global
4868 initialization of some passes. You must call expand_dummy_function_end
4869 to exit this context. */
4871 void
4872 init_dummy_function_start (void)
4874 gcc_assert (!in_dummy_function);
4875 in_dummy_function = true;
4876 push_struct_function (NULL_TREE);
4877 prepare_function_start ();
4880 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4881 and initialize static variables for generating RTL for the statements
4882 of the function. */
4884 void
4885 init_function_start (tree subr)
4887 if (subr && DECL_STRUCT_FUNCTION (subr))
4888 set_cfun (DECL_STRUCT_FUNCTION (subr));
4889 else
4890 allocate_struct_function (subr, false);
4892 /* Initialize backend, if needed. */
4893 initialize_rtl ();
4895 prepare_function_start ();
4896 decide_function_section (subr);
4898 /* Warn if this value is an aggregate type,
4899 regardless of which calling convention we are using for it. */
4900 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4901 warning (OPT_Waggregate_return, "function returns an aggregate");
4904 /* Expand code to verify the stack_protect_guard. This is invoked at
4905 the end of a function to be protected. */
4907 #ifndef HAVE_stack_protect_test
4908 # define HAVE_stack_protect_test 0
4909 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4910 #endif
4912 void
4913 stack_protect_epilogue (void)
4915 tree guard_decl = targetm.stack_protect_guard ();
4916 rtx_code_label *label = gen_label_rtx ();
4917 rtx x, y, tmp;
4919 x = expand_normal (crtl->stack_protect_guard);
4920 y = expand_normal (guard_decl);
4922 /* Allow the target to compare Y with X without leaking either into
4923 a register. */
4924 switch ((int) (HAVE_stack_protect_test != 0))
4926 case 1:
4927 tmp = gen_stack_protect_test (x, y, label);
4928 if (tmp)
4930 emit_insn (tmp);
4931 break;
4933 /* FALLTHRU */
4935 default:
4936 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4937 break;
4940 /* The noreturn predictor has been moved to the tree level. The rtl-level
4941 predictors estimate this branch about 20%, which isn't enough to get
4942 things moved out of line. Since this is the only extant case of adding
4943 a noreturn function at the rtl level, it doesn't seem worth doing ought
4944 except adding the prediction by hand. */
4945 tmp = get_last_insn ();
4946 if (JUMP_P (tmp))
4947 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4949 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4950 free_temp_slots ();
4951 emit_label (label);
4954 /* Start the RTL for a new function, and set variables used for
4955 emitting RTL.
4956 SUBR is the FUNCTION_DECL node.
4957 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4958 the function's parameters, which must be run at any return statement. */
4960 void
4961 expand_function_start (tree subr)
4963 /* Make sure volatile mem refs aren't considered
4964 valid operands of arithmetic insns. */
4965 init_recog_no_volatile ();
4967 crtl->profile
4968 = (profile_flag
4969 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4971 crtl->limit_stack
4972 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4974 /* Make the label for return statements to jump to. Do not special
4975 case machines with special return instructions -- they will be
4976 handled later during jump, ifcvt, or epilogue creation. */
4977 return_label = gen_label_rtx ();
4979 /* Initialize rtx used to return the value. */
4980 /* Do this before assign_parms so that we copy the struct value address
4981 before any library calls that assign parms might generate. */
4983 /* Decide whether to return the value in memory or in a register. */
4984 if (aggregate_value_p (DECL_RESULT (subr), subr))
4986 /* Returning something that won't go in a register. */
4987 rtx value_address = 0;
4989 #ifdef PCC_STATIC_STRUCT_RETURN
4990 if (cfun->returns_pcc_struct)
4992 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4993 value_address = assemble_static_space (size);
4995 else
4996 #endif
4998 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4999 /* Expect to be passed the address of a place to store the value.
5000 If it is passed as an argument, assign_parms will take care of
5001 it. */
5002 if (sv)
5004 value_address = gen_reg_rtx (Pmode);
5005 emit_move_insn (value_address, sv);
5008 if (value_address)
5010 rtx x = value_address;
5011 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
5013 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
5014 set_mem_attributes (x, DECL_RESULT (subr), 1);
5016 SET_DECL_RTL (DECL_RESULT (subr), x);
5019 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5020 /* If return mode is void, this decl rtl should not be used. */
5021 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5022 else
5024 /* Compute the return values into a pseudo reg, which we will copy
5025 into the true return register after the cleanups are done. */
5026 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5027 if (TYPE_MODE (return_type) != BLKmode
5028 && targetm.calls.return_in_msb (return_type))
5029 /* expand_function_end will insert the appropriate padding in
5030 this case. Use the return value's natural (unpadded) mode
5031 within the function proper. */
5032 SET_DECL_RTL (DECL_RESULT (subr),
5033 gen_reg_rtx (TYPE_MODE (return_type)));
5034 else
5036 /* In order to figure out what mode to use for the pseudo, we
5037 figure out what the mode of the eventual return register will
5038 actually be, and use that. */
5039 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5041 /* Structures that are returned in registers are not
5042 aggregate_value_p, so we may see a PARALLEL or a REG. */
5043 if (REG_P (hard_reg))
5044 SET_DECL_RTL (DECL_RESULT (subr),
5045 gen_reg_rtx (GET_MODE (hard_reg)));
5046 else
5048 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5049 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5053 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5054 result to the real return register(s). */
5055 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5057 if (chkp_function_instrumented_p (current_function_decl))
5059 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5060 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5061 subr, 1);
5062 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5066 /* Initialize rtx for parameters and local variables.
5067 In some cases this requires emitting insns. */
5068 assign_parms (subr);
5070 /* If function gets a static chain arg, store it. */
5071 if (cfun->static_chain_decl)
5073 tree parm = cfun->static_chain_decl;
5074 rtx local, chain, insn;
5076 local = gen_reg_rtx (Pmode);
5077 chain = targetm.calls.static_chain (current_function_decl, true);
5079 set_decl_incoming_rtl (parm, chain, false);
5080 SET_DECL_RTL (parm, local);
5081 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5083 insn = emit_move_insn (local, chain);
5085 /* Mark the register as eliminable, similar to parameters. */
5086 if (MEM_P (chain)
5087 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5088 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5090 /* If we aren't optimizing, save the static chain onto the stack. */
5091 if (!optimize)
5093 tree saved_static_chain_decl
5094 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5095 DECL_NAME (parm), TREE_TYPE (parm));
5096 rtx saved_static_chain_rtx
5097 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5098 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5099 emit_move_insn (saved_static_chain_rtx, chain);
5100 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5101 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5105 /* If the function receives a non-local goto, then store the
5106 bits we need to restore the frame pointer. */
5107 if (cfun->nonlocal_goto_save_area)
5109 tree t_save;
5110 rtx r_save;
5112 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5113 gcc_assert (DECL_RTL_SET_P (var));
5115 t_save = build4 (ARRAY_REF,
5116 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5117 cfun->nonlocal_goto_save_area,
5118 integer_zero_node, NULL_TREE, NULL_TREE);
5119 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5120 gcc_assert (GET_MODE (r_save) == Pmode);
5122 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5123 update_nonlocal_goto_save_area ();
5126 /* The following was moved from init_function_start.
5127 The move is supposed to make sdb output more accurate. */
5128 /* Indicate the beginning of the function body,
5129 as opposed to parm setup. */
5130 emit_note (NOTE_INSN_FUNCTION_BEG);
5132 gcc_assert (NOTE_P (get_last_insn ()));
5134 parm_birth_insn = get_last_insn ();
5136 if (crtl->profile)
5138 #ifdef PROFILE_HOOK
5139 PROFILE_HOOK (current_function_funcdef_no);
5140 #endif
5143 /* If we are doing generic stack checking, the probe should go here. */
5144 if (flag_stack_check == GENERIC_STACK_CHECK)
5145 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5148 /* Undo the effects of init_dummy_function_start. */
5149 void
5150 expand_dummy_function_end (void)
5152 gcc_assert (in_dummy_function);
5154 /* End any sequences that failed to be closed due to syntax errors. */
5155 while (in_sequence_p ())
5156 end_sequence ();
5158 /* Outside function body, can't compute type's actual size
5159 until next function's body starts. */
5161 free_after_parsing (cfun);
5162 free_after_compilation (cfun);
5163 pop_cfun ();
5164 in_dummy_function = false;
5167 /* Helper for diddle_return_value. */
5169 void
5170 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5172 if (! outgoing)
5173 return;
5175 if (REG_P (outgoing))
5176 (*doit) (outgoing, arg);
5177 else if (GET_CODE (outgoing) == PARALLEL)
5179 int i;
5181 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5183 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5185 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5186 (*doit) (x, arg);
5191 /* Call DOIT for each hard register used as a return value from
5192 the current function. */
5194 void
5195 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5197 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5198 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5201 static void
5202 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5204 emit_clobber (reg);
5207 void
5208 clobber_return_register (void)
5210 diddle_return_value (do_clobber_return_reg, NULL);
5212 /* In case we do use pseudo to return value, clobber it too. */
5213 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5215 tree decl_result = DECL_RESULT (current_function_decl);
5216 rtx decl_rtl = DECL_RTL (decl_result);
5217 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5219 do_clobber_return_reg (decl_rtl, NULL);
5224 static void
5225 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5227 emit_use (reg);
5230 static void
5231 use_return_register (void)
5233 diddle_return_value (do_use_return_reg, NULL);
5236 /* Possibly warn about unused parameters. */
5237 void
5238 do_warn_unused_parameter (tree fn)
5240 tree decl;
5242 for (decl = DECL_ARGUMENTS (fn);
5243 decl; decl = DECL_CHAIN (decl))
5244 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5245 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5246 && !TREE_NO_WARNING (decl))
5247 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5250 /* Set the location of the insn chain starting at INSN to LOC. */
5252 static void
5253 set_insn_locations (rtx_insn *insn, int loc)
5255 while (insn != NULL)
5257 if (INSN_P (insn))
5258 INSN_LOCATION (insn) = loc;
5259 insn = NEXT_INSN (insn);
5263 /* Generate RTL for the end of the current function. */
5265 void
5266 expand_function_end (void)
5268 rtx clobber_after;
5270 /* If arg_pointer_save_area was referenced only from a nested
5271 function, we will not have initialized it yet. Do that now. */
5272 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5273 get_arg_pointer_save_area ();
5275 /* If we are doing generic stack checking and this function makes calls,
5276 do a stack probe at the start of the function to ensure we have enough
5277 space for another stack frame. */
5278 if (flag_stack_check == GENERIC_STACK_CHECK)
5280 rtx_insn *insn, *seq;
5282 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5283 if (CALL_P (insn))
5285 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5286 start_sequence ();
5287 if (STACK_CHECK_MOVING_SP)
5288 anti_adjust_stack_and_probe (max_frame_size, true);
5289 else
5290 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5291 seq = get_insns ();
5292 end_sequence ();
5293 set_insn_locations (seq, prologue_location);
5294 emit_insn_before (seq, stack_check_probe_note);
5295 break;
5299 /* End any sequences that failed to be closed due to syntax errors. */
5300 while (in_sequence_p ())
5301 end_sequence ();
5303 clear_pending_stack_adjust ();
5304 do_pending_stack_adjust ();
5306 /* Output a linenumber for the end of the function.
5307 SDB depends on this. */
5308 set_curr_insn_location (input_location);
5310 /* Before the return label (if any), clobber the return
5311 registers so that they are not propagated live to the rest of
5312 the function. This can only happen with functions that drop
5313 through; if there had been a return statement, there would
5314 have either been a return rtx, or a jump to the return label.
5316 We delay actual code generation after the current_function_value_rtx
5317 is computed. */
5318 clobber_after = get_last_insn ();
5320 /* Output the label for the actual return from the function. */
5321 emit_label (return_label);
5323 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5325 /* Let except.c know where it should emit the call to unregister
5326 the function context for sjlj exceptions. */
5327 if (flag_exceptions)
5328 sjlj_emit_function_exit_after (get_last_insn ());
5330 else
5332 /* We want to ensure that instructions that may trap are not
5333 moved into the epilogue by scheduling, because we don't
5334 always emit unwind information for the epilogue. */
5335 if (cfun->can_throw_non_call_exceptions)
5336 emit_insn (gen_blockage ());
5339 /* If this is an implementation of throw, do what's necessary to
5340 communicate between __builtin_eh_return and the epilogue. */
5341 expand_eh_return ();
5343 /* If scalar return value was computed in a pseudo-reg, or was a named
5344 return value that got dumped to the stack, copy that to the hard
5345 return register. */
5346 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5348 tree decl_result = DECL_RESULT (current_function_decl);
5349 rtx decl_rtl = DECL_RTL (decl_result);
5351 if (REG_P (decl_rtl)
5352 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5353 : DECL_REGISTER (decl_result))
5355 rtx real_decl_rtl = crtl->return_rtx;
5357 /* This should be set in assign_parms. */
5358 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5360 /* If this is a BLKmode structure being returned in registers,
5361 then use the mode computed in expand_return. Note that if
5362 decl_rtl is memory, then its mode may have been changed,
5363 but that crtl->return_rtx has not. */
5364 if (GET_MODE (real_decl_rtl) == BLKmode)
5365 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5367 /* If a non-BLKmode return value should be padded at the least
5368 significant end of the register, shift it left by the appropriate
5369 amount. BLKmode results are handled using the group load/store
5370 machinery. */
5371 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5372 && REG_P (real_decl_rtl)
5373 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5375 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5376 REGNO (real_decl_rtl)),
5377 decl_rtl);
5378 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5380 /* If a named return value dumped decl_return to memory, then
5381 we may need to re-do the PROMOTE_MODE signed/unsigned
5382 extension. */
5383 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5385 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5386 promote_function_mode (TREE_TYPE (decl_result),
5387 GET_MODE (decl_rtl), &unsignedp,
5388 TREE_TYPE (current_function_decl), 1);
5390 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5392 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5394 /* If expand_function_start has created a PARALLEL for decl_rtl,
5395 move the result to the real return registers. Otherwise, do
5396 a group load from decl_rtl for a named return. */
5397 if (GET_CODE (decl_rtl) == PARALLEL)
5398 emit_group_move (real_decl_rtl, decl_rtl);
5399 else
5400 emit_group_load (real_decl_rtl, decl_rtl,
5401 TREE_TYPE (decl_result),
5402 int_size_in_bytes (TREE_TYPE (decl_result)));
5404 /* In the case of complex integer modes smaller than a word, we'll
5405 need to generate some non-trivial bitfield insertions. Do that
5406 on a pseudo and not the hard register. */
5407 else if (GET_CODE (decl_rtl) == CONCAT
5408 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5409 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5411 int old_generating_concat_p;
5412 rtx tmp;
5414 old_generating_concat_p = generating_concat_p;
5415 generating_concat_p = 0;
5416 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5417 generating_concat_p = old_generating_concat_p;
5419 emit_move_insn (tmp, decl_rtl);
5420 emit_move_insn (real_decl_rtl, tmp);
5422 else
5423 emit_move_insn (real_decl_rtl, decl_rtl);
5427 /* If returning a structure, arrange to return the address of the value
5428 in a place where debuggers expect to find it.
5430 If returning a structure PCC style,
5431 the caller also depends on this value.
5432 And cfun->returns_pcc_struct is not necessarily set. */
5433 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5434 && !targetm.calls.omit_struct_return_reg)
5436 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5437 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5438 rtx outgoing;
5440 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5441 type = TREE_TYPE (type);
5442 else
5443 value_address = XEXP (value_address, 0);
5445 outgoing = targetm.calls.function_value (build_pointer_type (type),
5446 current_function_decl, true);
5448 /* Mark this as a function return value so integrate will delete the
5449 assignment and USE below when inlining this function. */
5450 REG_FUNCTION_VALUE_P (outgoing) = 1;
5452 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5453 value_address = convert_memory_address (GET_MODE (outgoing),
5454 value_address);
5456 emit_move_insn (outgoing, value_address);
5458 /* Show return register used to hold result (in this case the address
5459 of the result. */
5460 crtl->return_rtx = outgoing;
5463 /* Emit the actual code to clobber return register. Don't emit
5464 it if clobber_after is a barrier, then the previous basic block
5465 certainly doesn't fall thru into the exit block. */
5466 if (!BARRIER_P (clobber_after))
5468 rtx seq;
5470 start_sequence ();
5471 clobber_return_register ();
5472 seq = get_insns ();
5473 end_sequence ();
5475 emit_insn_after (seq, clobber_after);
5478 /* Output the label for the naked return from the function. */
5479 if (naked_return_label)
5480 emit_label (naked_return_label);
5482 /* @@@ This is a kludge. We want to ensure that instructions that
5483 may trap are not moved into the epilogue by scheduling, because
5484 we don't always emit unwind information for the epilogue. */
5485 if (cfun->can_throw_non_call_exceptions
5486 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5487 emit_insn (gen_blockage ());
5489 /* If stack protection is enabled for this function, check the guard. */
5490 if (crtl->stack_protect_guard)
5491 stack_protect_epilogue ();
5493 /* If we had calls to alloca, and this machine needs
5494 an accurate stack pointer to exit the function,
5495 insert some code to save and restore the stack pointer. */
5496 if (! EXIT_IGNORE_STACK
5497 && cfun->calls_alloca)
5499 rtx tem = 0, seq;
5501 start_sequence ();
5502 emit_stack_save (SAVE_FUNCTION, &tem);
5503 seq = get_insns ();
5504 end_sequence ();
5505 emit_insn_before (seq, parm_birth_insn);
5507 emit_stack_restore (SAVE_FUNCTION, tem);
5510 /* ??? This should no longer be necessary since stupid is no longer with
5511 us, but there are some parts of the compiler (eg reload_combine, and
5512 sh mach_dep_reorg) that still try and compute their own lifetime info
5513 instead of using the general framework. */
5514 use_return_register ();
5518 get_arg_pointer_save_area (void)
5520 rtx ret = arg_pointer_save_area;
5522 if (! ret)
5524 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5525 arg_pointer_save_area = ret;
5528 if (! crtl->arg_pointer_save_area_init)
5530 rtx seq;
5532 /* Save the arg pointer at the beginning of the function. The
5533 generated stack slot may not be a valid memory address, so we
5534 have to check it and fix it if necessary. */
5535 start_sequence ();
5536 emit_move_insn (validize_mem (copy_rtx (ret)),
5537 crtl->args.internal_arg_pointer);
5538 seq = get_insns ();
5539 end_sequence ();
5541 push_topmost_sequence ();
5542 emit_insn_after (seq, entry_of_function ());
5543 pop_topmost_sequence ();
5545 crtl->arg_pointer_save_area_init = true;
5548 return ret;
5551 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5552 for the first time. */
5554 static void
5555 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5557 rtx_insn *tmp;
5558 hash_table<insn_cache_hasher> *hash = *hashp;
5560 if (hash == NULL)
5561 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5563 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5565 rtx *slot = hash->find_slot (tmp, INSERT);
5566 gcc_assert (*slot == NULL);
5567 *slot = tmp;
5571 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5572 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5573 insn, then record COPY as well. */
5575 void
5576 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5578 hash_table<insn_cache_hasher> *hash;
5579 rtx *slot;
5581 hash = epilogue_insn_hash;
5582 if (!hash || !hash->find (insn))
5584 hash = prologue_insn_hash;
5585 if (!hash || !hash->find (insn))
5586 return;
5589 slot = hash->find_slot (copy, INSERT);
5590 gcc_assert (*slot == NULL);
5591 *slot = copy;
5594 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5595 we can be running after reorg, SEQUENCE rtl is possible. */
5597 static bool
5598 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5600 if (hash == NULL)
5601 return false;
5603 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5605 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5606 int i;
5607 for (i = seq->len () - 1; i >= 0; i--)
5608 if (hash->find (seq->element (i)))
5609 return true;
5610 return false;
5613 return hash->find (const_cast<rtx> (insn)) != NULL;
5617 prologue_epilogue_contains (const_rtx insn)
5619 if (contains (insn, prologue_insn_hash))
5620 return 1;
5621 if (contains (insn, epilogue_insn_hash))
5622 return 1;
5623 return 0;
5626 #ifdef HAVE_return
5627 /* Insert use of return register before the end of BB. */
5629 static void
5630 emit_use_return_register_into_block (basic_block bb)
5632 rtx seq, insn;
5633 start_sequence ();
5634 use_return_register ();
5635 seq = get_insns ();
5636 end_sequence ();
5637 insn = BB_END (bb);
5638 #ifdef HAVE_cc0
5639 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5640 insn = prev_cc0_setter (insn);
5641 #endif
5642 emit_insn_before (seq, insn);
5646 /* Create a return pattern, either simple_return or return, depending on
5647 simple_p. */
5649 static rtx
5650 gen_return_pattern (bool simple_p)
5652 #ifdef HAVE_simple_return
5653 return simple_p ? gen_simple_return () : gen_return ();
5654 #else
5655 gcc_assert (!simple_p);
5656 return gen_return ();
5657 #endif
5660 /* Insert an appropriate return pattern at the end of block BB. This
5661 also means updating block_for_insn appropriately. SIMPLE_P is
5662 the same as in gen_return_pattern and passed to it. */
5664 void
5665 emit_return_into_block (bool simple_p, basic_block bb)
5667 rtx jump, pat;
5668 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5669 pat = PATTERN (jump);
5670 if (GET_CODE (pat) == PARALLEL)
5671 pat = XVECEXP (pat, 0, 0);
5672 gcc_assert (ANY_RETURN_P (pat));
5673 JUMP_LABEL (jump) = pat;
5675 #endif
5677 /* Set JUMP_LABEL for a return insn. */
5679 void
5680 set_return_jump_label (rtx returnjump)
5682 rtx pat = PATTERN (returnjump);
5683 if (GET_CODE (pat) == PARALLEL)
5684 pat = XVECEXP (pat, 0, 0);
5685 if (ANY_RETURN_P (pat))
5686 JUMP_LABEL (returnjump) = pat;
5687 else
5688 JUMP_LABEL (returnjump) = ret_rtx;
5691 #if defined (HAVE_return) || defined (HAVE_simple_return)
5692 /* Return true if there are any active insns between HEAD and TAIL. */
5693 bool
5694 active_insn_between (rtx_insn *head, rtx_insn *tail)
5696 while (tail)
5698 if (active_insn_p (tail))
5699 return true;
5700 if (tail == head)
5701 return false;
5702 tail = PREV_INSN (tail);
5704 return false;
5707 /* LAST_BB is a block that exits, and empty of active instructions.
5708 Examine its predecessors for jumps that can be converted to
5709 (conditional) returns. */
5710 vec<edge>
5711 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5712 vec<edge> unconverted ATTRIBUTE_UNUSED)
5714 int i;
5715 basic_block bb;
5716 rtx label;
5717 edge_iterator ei;
5718 edge e;
5719 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5721 FOR_EACH_EDGE (e, ei, last_bb->preds)
5722 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5723 src_bbs.quick_push (e->src);
5725 label = BB_HEAD (last_bb);
5727 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5729 rtx_insn *jump = BB_END (bb);
5731 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5732 continue;
5734 e = find_edge (bb, last_bb);
5736 /* If we have an unconditional jump, we can replace that
5737 with a simple return instruction. */
5738 if (simplejump_p (jump))
5740 /* The use of the return register might be present in the exit
5741 fallthru block. Either:
5742 - removing the use is safe, and we should remove the use in
5743 the exit fallthru block, or
5744 - removing the use is not safe, and we should add it here.
5745 For now, we conservatively choose the latter. Either of the
5746 2 helps in crossjumping. */
5747 emit_use_return_register_into_block (bb);
5749 emit_return_into_block (simple_p, bb);
5750 delete_insn (jump);
5753 /* If we have a conditional jump branching to the last
5754 block, we can try to replace that with a conditional
5755 return instruction. */
5756 else if (condjump_p (jump))
5758 rtx dest;
5760 if (simple_p)
5761 dest = simple_return_rtx;
5762 else
5763 dest = ret_rtx;
5764 if (!redirect_jump (jump, dest, 0))
5766 #ifdef HAVE_simple_return
5767 if (simple_p)
5769 if (dump_file)
5770 fprintf (dump_file,
5771 "Failed to redirect bb %d branch.\n", bb->index);
5772 unconverted.safe_push (e);
5774 #endif
5775 continue;
5778 /* See comment in simplejump_p case above. */
5779 emit_use_return_register_into_block (bb);
5781 /* If this block has only one successor, it both jumps
5782 and falls through to the fallthru block, so we can't
5783 delete the edge. */
5784 if (single_succ_p (bb))
5785 continue;
5787 else
5789 #ifdef HAVE_simple_return
5790 if (simple_p)
5792 if (dump_file)
5793 fprintf (dump_file,
5794 "Failed to redirect bb %d branch.\n", bb->index);
5795 unconverted.safe_push (e);
5797 #endif
5798 continue;
5801 /* Fix up the CFG for the successful change we just made. */
5802 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5803 e->flags &= ~EDGE_CROSSING;
5805 src_bbs.release ();
5806 return unconverted;
5809 /* Emit a return insn for the exit fallthru block. */
5810 basic_block
5811 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5813 basic_block last_bb = exit_fallthru_edge->src;
5815 if (JUMP_P (BB_END (last_bb)))
5817 last_bb = split_edge (exit_fallthru_edge);
5818 exit_fallthru_edge = single_succ_edge (last_bb);
5820 emit_barrier_after (BB_END (last_bb));
5821 emit_return_into_block (simple_p, last_bb);
5822 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5823 return last_bb;
5825 #endif
5828 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5829 this into place with notes indicating where the prologue ends and where
5830 the epilogue begins. Update the basic block information when possible.
5832 Notes on epilogue placement:
5833 There are several kinds of edges to the exit block:
5834 * a single fallthru edge from LAST_BB
5835 * possibly, edges from blocks containing sibcalls
5836 * possibly, fake edges from infinite loops
5838 The epilogue is always emitted on the fallthru edge from the last basic
5839 block in the function, LAST_BB, into the exit block.
5841 If LAST_BB is empty except for a label, it is the target of every
5842 other basic block in the function that ends in a return. If a
5843 target has a return or simple_return pattern (possibly with
5844 conditional variants), these basic blocks can be changed so that a
5845 return insn is emitted into them, and their target is adjusted to
5846 the real exit block.
5848 Notes on shrink wrapping: We implement a fairly conservative
5849 version of shrink-wrapping rather than the textbook one. We only
5850 generate a single prologue and a single epilogue. This is
5851 sufficient to catch a number of interesting cases involving early
5852 exits.
5854 First, we identify the blocks that require the prologue to occur before
5855 them. These are the ones that modify a call-saved register, or reference
5856 any of the stack or frame pointer registers. To simplify things, we then
5857 mark everything reachable from these blocks as also requiring a prologue.
5858 This takes care of loops automatically, and avoids the need to examine
5859 whether MEMs reference the frame, since it is sufficient to check for
5860 occurrences of the stack or frame pointer.
5862 We then compute the set of blocks for which the need for a prologue
5863 is anticipatable (borrowing terminology from the shrink-wrapping
5864 description in Muchnick's book). These are the blocks which either
5865 require a prologue themselves, or those that have only successors
5866 where the prologue is anticipatable. The prologue needs to be
5867 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5868 is not. For the moment, we ensure that only one such edge exists.
5870 The epilogue is placed as described above, but we make a
5871 distinction between inserting return and simple_return patterns
5872 when modifying other blocks that end in a return. Blocks that end
5873 in a sibcall omit the sibcall_epilogue if the block is not in
5874 ANTIC. */
5876 void
5877 thread_prologue_and_epilogue_insns (void)
5879 bool inserted;
5880 #ifdef HAVE_simple_return
5881 vec<edge> unconverted_simple_returns = vNULL;
5882 bitmap_head bb_flags;
5883 #endif
5884 rtx_insn *returnjump;
5885 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5886 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5887 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5888 edge_iterator ei;
5890 df_analyze ();
5892 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5894 inserted = false;
5895 epilogue_end = NULL;
5896 returnjump = NULL;
5898 /* Can't deal with multiple successors of the entry block at the
5899 moment. Function should always have at least one entry
5900 point. */
5901 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5902 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5903 orig_entry_edge = entry_edge;
5905 split_prologue_seq = NULL;
5906 if (flag_split_stack
5907 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5908 == NULL))
5910 #ifndef HAVE_split_stack_prologue
5911 gcc_unreachable ();
5912 #else
5913 gcc_assert (HAVE_split_stack_prologue);
5915 start_sequence ();
5916 emit_insn (gen_split_stack_prologue ());
5917 split_prologue_seq = get_insns ();
5918 end_sequence ();
5920 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5921 set_insn_locations (split_prologue_seq, prologue_location);
5922 #endif
5925 prologue_seq = NULL;
5926 #ifdef HAVE_prologue
5927 if (HAVE_prologue)
5929 start_sequence ();
5930 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5931 emit_insn (seq);
5933 /* Insert an explicit USE for the frame pointer
5934 if the profiling is on and the frame pointer is required. */
5935 if (crtl->profile && frame_pointer_needed)
5936 emit_use (hard_frame_pointer_rtx);
5938 /* Retain a map of the prologue insns. */
5939 record_insns (seq, NULL, &prologue_insn_hash);
5940 emit_note (NOTE_INSN_PROLOGUE_END);
5942 /* Ensure that instructions are not moved into the prologue when
5943 profiling is on. The call to the profiling routine can be
5944 emitted within the live range of a call-clobbered register. */
5945 if (!targetm.profile_before_prologue () && crtl->profile)
5946 emit_insn (gen_blockage ());
5948 prologue_seq = get_insns ();
5949 end_sequence ();
5950 set_insn_locations (prologue_seq, prologue_location);
5952 #endif
5954 #ifdef HAVE_simple_return
5955 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5957 /* Try to perform a kind of shrink-wrapping, making sure the
5958 prologue/epilogue is emitted only around those parts of the
5959 function that require it. */
5961 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5962 #endif
5964 if (split_prologue_seq != NULL_RTX)
5966 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5967 inserted = true;
5969 if (prologue_seq != NULL_RTX)
5971 insert_insn_on_edge (prologue_seq, entry_edge);
5972 inserted = true;
5975 /* If the exit block has no non-fake predecessors, we don't need
5976 an epilogue. */
5977 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5978 if ((e->flags & EDGE_FAKE) == 0)
5979 break;
5980 if (e == NULL)
5981 goto epilogue_done;
5983 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5985 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5987 #ifdef HAVE_simple_return
5988 if (entry_edge != orig_entry_edge)
5989 exit_fallthru_edge
5990 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5991 &unconverted_simple_returns,
5992 &returnjump);
5993 #endif
5994 #ifdef HAVE_return
5995 if (HAVE_return)
5997 if (exit_fallthru_edge == NULL)
5998 goto epilogue_done;
6000 if (optimize)
6002 basic_block last_bb = exit_fallthru_edge->src;
6004 if (LABEL_P (BB_HEAD (last_bb))
6005 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6006 convert_jumps_to_returns (last_bb, false, vNULL);
6008 if (EDGE_COUNT (last_bb->preds) != 0
6009 && single_succ_p (last_bb))
6011 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6012 epilogue_end = returnjump = BB_END (last_bb);
6013 #ifdef HAVE_simple_return
6014 /* Emitting the return may add a basic block.
6015 Fix bb_flags for the added block. */
6016 if (last_bb != exit_fallthru_edge->src)
6017 bitmap_set_bit (&bb_flags, last_bb->index);
6018 #endif
6019 goto epilogue_done;
6023 #endif
6025 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6026 this marker for the splits of EH_RETURN patterns, and nothing else
6027 uses the flag in the meantime. */
6028 epilogue_completed = 1;
6030 #ifdef HAVE_eh_return
6031 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6032 some targets, these get split to a special version of the epilogue
6033 code. In order to be able to properly annotate these with unwind
6034 info, try to split them now. If we get a valid split, drop an
6035 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6036 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6038 rtx_insn *prev, *last, *trial;
6040 if (e->flags & EDGE_FALLTHRU)
6041 continue;
6042 last = BB_END (e->src);
6043 if (!eh_returnjump_p (last))
6044 continue;
6046 prev = PREV_INSN (last);
6047 trial = try_split (PATTERN (last), last, 1);
6048 if (trial == last)
6049 continue;
6051 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6052 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6054 #endif
6056 /* If nothing falls through into the exit block, we don't need an
6057 epilogue. */
6059 if (exit_fallthru_edge == NULL)
6060 goto epilogue_done;
6062 #ifdef HAVE_epilogue
6063 if (HAVE_epilogue)
6065 start_sequence ();
6066 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6067 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6068 if (seq)
6069 emit_jump_insn (seq);
6071 /* Retain a map of the epilogue insns. */
6072 record_insns (seq, NULL, &epilogue_insn_hash);
6073 set_insn_locations (seq, epilogue_location);
6075 seq = get_insns ();
6076 returnjump = get_last_insn ();
6077 end_sequence ();
6079 insert_insn_on_edge (seq, exit_fallthru_edge);
6080 inserted = true;
6082 if (JUMP_P (returnjump))
6083 set_return_jump_label (returnjump);
6085 else
6086 #endif
6088 basic_block cur_bb;
6090 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6091 goto epilogue_done;
6092 /* We have a fall-through edge to the exit block, the source is not
6093 at the end of the function, and there will be an assembler epilogue
6094 at the end of the function.
6095 We can't use force_nonfallthru here, because that would try to
6096 use return. Inserting a jump 'by hand' is extremely messy, so
6097 we take advantage of cfg_layout_finalize using
6098 fixup_fallthru_exit_predecessor. */
6099 cfg_layout_initialize (0);
6100 FOR_EACH_BB_FN (cur_bb, cfun)
6101 if (cur_bb->index >= NUM_FIXED_BLOCKS
6102 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6103 cur_bb->aux = cur_bb->next_bb;
6104 cfg_layout_finalize ();
6107 epilogue_done:
6109 default_rtl_profile ();
6111 if (inserted)
6113 sbitmap blocks;
6115 commit_edge_insertions ();
6117 /* Look for basic blocks within the prologue insns. */
6118 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6119 bitmap_clear (blocks);
6120 bitmap_set_bit (blocks, entry_edge->dest->index);
6121 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6122 find_many_sub_basic_blocks (blocks);
6123 sbitmap_free (blocks);
6125 /* The epilogue insns we inserted may cause the exit edge to no longer
6126 be fallthru. */
6127 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6129 if (((e->flags & EDGE_FALLTHRU) != 0)
6130 && returnjump_p (BB_END (e->src)))
6131 e->flags &= ~EDGE_FALLTHRU;
6135 #ifdef HAVE_simple_return
6136 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
6137 unconverted_simple_returns);
6138 #endif
6140 #ifdef HAVE_sibcall_epilogue
6141 /* Emit sibling epilogues before any sibling call sites. */
6142 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6143 ei_safe_edge (ei));
6146 basic_block bb = e->src;
6147 rtx_insn *insn = BB_END (bb);
6148 rtx ep_seq;
6150 if (!CALL_P (insn)
6151 || ! SIBLING_CALL_P (insn)
6152 #ifdef HAVE_simple_return
6153 || (entry_edge != orig_entry_edge
6154 && !bitmap_bit_p (&bb_flags, bb->index))
6155 #endif
6158 ei_next (&ei);
6159 continue;
6162 ep_seq = gen_sibcall_epilogue ();
6163 if (ep_seq)
6165 start_sequence ();
6166 emit_note (NOTE_INSN_EPILOGUE_BEG);
6167 emit_insn (ep_seq);
6168 rtx_insn *seq = get_insns ();
6169 end_sequence ();
6171 /* Retain a map of the epilogue insns. Used in life analysis to
6172 avoid getting rid of sibcall epilogue insns. Do this before we
6173 actually emit the sequence. */
6174 record_insns (seq, NULL, &epilogue_insn_hash);
6175 set_insn_locations (seq, epilogue_location);
6177 emit_insn_before (seq, insn);
6179 ei_next (&ei);
6181 #endif
6183 #ifdef HAVE_epilogue
6184 if (epilogue_end)
6186 rtx_insn *insn, *next;
6188 /* Similarly, move any line notes that appear after the epilogue.
6189 There is no need, however, to be quite so anal about the existence
6190 of such a note. Also possibly move
6191 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6192 info generation. */
6193 for (insn = epilogue_end; insn; insn = next)
6195 next = NEXT_INSN (insn);
6196 if (NOTE_P (insn)
6197 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6198 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6201 #endif
6203 #ifdef HAVE_simple_return
6204 bitmap_clear (&bb_flags);
6205 #endif
6207 /* Threading the prologue and epilogue changes the artificial refs
6208 in the entry and exit blocks. */
6209 epilogue_completed = 1;
6210 df_update_entry_exit_and_calls ();
6213 /* Reposition the prologue-end and epilogue-begin notes after
6214 instruction scheduling. */
6216 void
6217 reposition_prologue_and_epilogue_notes (void)
6219 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6220 || defined (HAVE_sibcall_epilogue)
6221 /* Since the hash table is created on demand, the fact that it is
6222 non-null is a signal that it is non-empty. */
6223 if (prologue_insn_hash != NULL)
6225 size_t len = prologue_insn_hash->elements ();
6226 rtx_insn *insn, *last = NULL, *note = NULL;
6228 /* Scan from the beginning until we reach the last prologue insn. */
6229 /* ??? While we do have the CFG intact, there are two problems:
6230 (1) The prologue can contain loops (typically probing the stack),
6231 which means that the end of the prologue isn't in the first bb.
6232 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6233 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6235 if (NOTE_P (insn))
6237 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6238 note = insn;
6240 else if (contains (insn, prologue_insn_hash))
6242 last = insn;
6243 if (--len == 0)
6244 break;
6248 if (last)
6250 if (note == NULL)
6252 /* Scan forward looking for the PROLOGUE_END note. It should
6253 be right at the beginning of the block, possibly with other
6254 insn notes that got moved there. */
6255 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6257 if (NOTE_P (note)
6258 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6259 break;
6263 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6264 if (LABEL_P (last))
6265 last = NEXT_INSN (last);
6266 reorder_insns (note, note, last);
6270 if (epilogue_insn_hash != NULL)
6272 edge_iterator ei;
6273 edge e;
6275 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6277 rtx_insn *insn, *first = NULL, *note = NULL;
6278 basic_block bb = e->src;
6280 /* Scan from the beginning until we reach the first epilogue insn. */
6281 FOR_BB_INSNS (bb, insn)
6283 if (NOTE_P (insn))
6285 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6287 note = insn;
6288 if (first != NULL)
6289 break;
6292 else if (first == NULL && contains (insn, epilogue_insn_hash))
6294 first = insn;
6295 if (note != NULL)
6296 break;
6300 if (note)
6302 /* If the function has a single basic block, and no real
6303 epilogue insns (e.g. sibcall with no cleanup), the
6304 epilogue note can get scheduled before the prologue
6305 note. If we have frame related prologue insns, having
6306 them scanned during the epilogue will result in a crash.
6307 In this case re-order the epilogue note to just before
6308 the last insn in the block. */
6309 if (first == NULL)
6310 first = BB_END (bb);
6312 if (PREV_INSN (first) != note)
6313 reorder_insns (note, note, PREV_INSN (first));
6317 #endif /* HAVE_prologue or HAVE_epilogue */
6320 /* Returns the name of function declared by FNDECL. */
6321 const char *
6322 fndecl_name (tree fndecl)
6324 if (fndecl == NULL)
6325 return "(nofn)";
6326 return lang_hooks.decl_printable_name (fndecl, 2);
6329 /* Returns the name of function FN. */
6330 const char *
6331 function_name (struct function *fn)
6333 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6334 return fndecl_name (fndecl);
6337 /* Returns the name of the current function. */
6338 const char *
6339 current_function_name (void)
6341 return function_name (cfun);
6345 static unsigned int
6346 rest_of_handle_check_leaf_regs (void)
6348 #ifdef LEAF_REGISTERS
6349 crtl->uses_only_leaf_regs
6350 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6351 #endif
6352 return 0;
6355 /* Insert a TYPE into the used types hash table of CFUN. */
6357 static void
6358 used_types_insert_helper (tree type, struct function *func)
6360 if (type != NULL && func != NULL)
6362 if (func->used_types_hash == NULL)
6363 func->used_types_hash = hash_set<tree>::create_ggc (37);
6365 func->used_types_hash->add (type);
6369 /* Given a type, insert it into the used hash table in cfun. */
6370 void
6371 used_types_insert (tree t)
6373 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6374 if (TYPE_NAME (t))
6375 break;
6376 else
6377 t = TREE_TYPE (t);
6378 if (TREE_CODE (t) == ERROR_MARK)
6379 return;
6380 if (TYPE_NAME (t) == NULL_TREE
6381 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6382 t = TYPE_MAIN_VARIANT (t);
6383 if (debug_info_level > DINFO_LEVEL_NONE)
6385 if (cfun)
6386 used_types_insert_helper (t, cfun);
6387 else
6389 /* So this might be a type referenced by a global variable.
6390 Record that type so that we can later decide to emit its
6391 debug information. */
6392 vec_safe_push (types_used_by_cur_var_decl, t);
6397 /* Helper to Hash a struct types_used_by_vars_entry. */
6399 static hashval_t
6400 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6402 gcc_assert (entry && entry->var_decl && entry->type);
6404 return iterative_hash_object (entry->type,
6405 iterative_hash_object (entry->var_decl, 0));
6408 /* Hash function of the types_used_by_vars_entry hash table. */
6410 hashval_t
6411 used_type_hasher::hash (types_used_by_vars_entry *entry)
6413 return hash_types_used_by_vars_entry (entry);
6416 /*Equality function of the types_used_by_vars_entry hash table. */
6418 bool
6419 used_type_hasher::equal (types_used_by_vars_entry *e1,
6420 types_used_by_vars_entry *e2)
6422 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6425 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6427 void
6428 types_used_by_var_decl_insert (tree type, tree var_decl)
6430 if (type != NULL && var_decl != NULL)
6432 types_used_by_vars_entry **slot;
6433 struct types_used_by_vars_entry e;
6434 e.var_decl = var_decl;
6435 e.type = type;
6436 if (types_used_by_vars_hash == NULL)
6437 types_used_by_vars_hash
6438 = hash_table<used_type_hasher>::create_ggc (37);
6440 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6441 if (*slot == NULL)
6443 struct types_used_by_vars_entry *entry;
6444 entry = ggc_alloc<types_used_by_vars_entry> ();
6445 entry->type = type;
6446 entry->var_decl = var_decl;
6447 *slot = entry;
6452 namespace {
6454 const pass_data pass_data_leaf_regs =
6456 RTL_PASS, /* type */
6457 "*leaf_regs", /* name */
6458 OPTGROUP_NONE, /* optinfo_flags */
6459 TV_NONE, /* tv_id */
6460 0, /* properties_required */
6461 0, /* properties_provided */
6462 0, /* properties_destroyed */
6463 0, /* todo_flags_start */
6464 0, /* todo_flags_finish */
6467 class pass_leaf_regs : public rtl_opt_pass
6469 public:
6470 pass_leaf_regs (gcc::context *ctxt)
6471 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6474 /* opt_pass methods: */
6475 virtual unsigned int execute (function *)
6477 return rest_of_handle_check_leaf_regs ();
6480 }; // class pass_leaf_regs
6482 } // anon namespace
6484 rtl_opt_pass *
6485 make_pass_leaf_regs (gcc::context *ctxt)
6487 return new pass_leaf_regs (ctxt);
6490 static unsigned int
6491 rest_of_handle_thread_prologue_and_epilogue (void)
6493 if (optimize)
6494 cleanup_cfg (CLEANUP_EXPENSIVE);
6496 /* On some machines, the prologue and epilogue code, or parts thereof,
6497 can be represented as RTL. Doing so lets us schedule insns between
6498 it and the rest of the code and also allows delayed branch
6499 scheduling to operate in the epilogue. */
6500 thread_prologue_and_epilogue_insns ();
6502 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6503 see PR57320. */
6504 cleanup_cfg (0);
6506 /* The stack usage info is finalized during prologue expansion. */
6507 if (flag_stack_usage_info)
6508 output_stack_usage ();
6510 return 0;
6513 namespace {
6515 const pass_data pass_data_thread_prologue_and_epilogue =
6517 RTL_PASS, /* type */
6518 "pro_and_epilogue", /* name */
6519 OPTGROUP_NONE, /* optinfo_flags */
6520 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6521 0, /* properties_required */
6522 0, /* properties_provided */
6523 0, /* properties_destroyed */
6524 0, /* todo_flags_start */
6525 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6528 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6530 public:
6531 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6532 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6535 /* opt_pass methods: */
6536 virtual unsigned int execute (function *)
6538 return rest_of_handle_thread_prologue_and_epilogue ();
6541 }; // class pass_thread_prologue_and_epilogue
6543 } // anon namespace
6545 rtl_opt_pass *
6546 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6548 return new pass_thread_prologue_and_epilogue (ctxt);
6552 /* This mini-pass fixes fall-out from SSA in asm statements that have
6553 in-out constraints. Say you start with
6555 orig = inout;
6556 asm ("": "+mr" (inout));
6557 use (orig);
6559 which is transformed very early to use explicit output and match operands:
6561 orig = inout;
6562 asm ("": "=mr" (inout) : "0" (inout));
6563 use (orig);
6565 Or, after SSA and copyprop,
6567 asm ("": "=mr" (inout_2) : "0" (inout_1));
6568 use (inout_1);
6570 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6571 they represent two separate values, so they will get different pseudo
6572 registers during expansion. Then, since the two operands need to match
6573 per the constraints, but use different pseudo registers, reload can
6574 only register a reload for these operands. But reloads can only be
6575 satisfied by hardregs, not by memory, so we need a register for this
6576 reload, just because we are presented with non-matching operands.
6577 So, even though we allow memory for this operand, no memory can be
6578 used for it, just because the two operands don't match. This can
6579 cause reload failures on register-starved targets.
6581 So it's a symptom of reload not being able to use memory for reloads
6582 or, alternatively it's also a symptom of both operands not coming into
6583 reload as matching (in which case the pseudo could go to memory just
6584 fine, as the alternative allows it, and no reload would be necessary).
6585 We fix the latter problem here, by transforming
6587 asm ("": "=mr" (inout_2) : "0" (inout_1));
6589 back to
6591 inout_2 = inout_1;
6592 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6594 static void
6595 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6597 int i;
6598 bool changed = false;
6599 rtx op = SET_SRC (p_sets[0]);
6600 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6601 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6602 bool *output_matched = XALLOCAVEC (bool, noutputs);
6604 memset (output_matched, 0, noutputs * sizeof (bool));
6605 for (i = 0; i < ninputs; i++)
6607 rtx input, output;
6608 rtx_insn *insns;
6609 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6610 char *end;
6611 int match, j;
6613 if (*constraint == '%')
6614 constraint++;
6616 match = strtoul (constraint, &end, 10);
6617 if (end == constraint)
6618 continue;
6620 gcc_assert (match < noutputs);
6621 output = SET_DEST (p_sets[match]);
6622 input = RTVEC_ELT (inputs, i);
6623 /* Only do the transformation for pseudos. */
6624 if (! REG_P (output)
6625 || rtx_equal_p (output, input)
6626 || (GET_MODE (input) != VOIDmode
6627 && GET_MODE (input) != GET_MODE (output)))
6628 continue;
6630 /* We can't do anything if the output is also used as input,
6631 as we're going to overwrite it. */
6632 for (j = 0; j < ninputs; j++)
6633 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6634 break;
6635 if (j != ninputs)
6636 continue;
6638 /* Avoid changing the same input several times. For
6639 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6640 only change in once (to out1), rather than changing it
6641 first to out1 and afterwards to out2. */
6642 if (i > 0)
6644 for (j = 0; j < noutputs; j++)
6645 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6646 break;
6647 if (j != noutputs)
6648 continue;
6650 output_matched[match] = true;
6652 start_sequence ();
6653 emit_move_insn (output, input);
6654 insns = get_insns ();
6655 end_sequence ();
6656 emit_insn_before (insns, insn);
6658 /* Now replace all mentions of the input with output. We can't
6659 just replace the occurrence in inputs[i], as the register might
6660 also be used in some other input (or even in an address of an
6661 output), which would mean possibly increasing the number of
6662 inputs by one (namely 'output' in addition), which might pose
6663 a too complicated problem for reload to solve. E.g. this situation:
6665 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6667 Here 'input' is used in two occurrences as input (once for the
6668 input operand, once for the address in the second output operand).
6669 If we would replace only the occurrence of the input operand (to
6670 make the matching) we would be left with this:
6672 output = input
6673 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6675 Now we suddenly have two different input values (containing the same
6676 value, but different pseudos) where we formerly had only one.
6677 With more complicated asms this might lead to reload failures
6678 which wouldn't have happen without this pass. So, iterate over
6679 all operands and replace all occurrences of the register used. */
6680 for (j = 0; j < noutputs; j++)
6681 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6682 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6683 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6684 input, output);
6685 for (j = 0; j < ninputs; j++)
6686 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6687 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6688 input, output);
6690 changed = true;
6693 if (changed)
6694 df_insn_rescan (insn);
6697 /* Add the decl D to the local_decls list of FUN. */
6699 void
6700 add_local_decl (struct function *fun, tree d)
6702 gcc_assert (TREE_CODE (d) == VAR_DECL);
6703 vec_safe_push (fun->local_decls, d);
6706 namespace {
6708 const pass_data pass_data_match_asm_constraints =
6710 RTL_PASS, /* type */
6711 "asmcons", /* name */
6712 OPTGROUP_NONE, /* optinfo_flags */
6713 TV_NONE, /* tv_id */
6714 0, /* properties_required */
6715 0, /* properties_provided */
6716 0, /* properties_destroyed */
6717 0, /* todo_flags_start */
6718 0, /* todo_flags_finish */
6721 class pass_match_asm_constraints : public rtl_opt_pass
6723 public:
6724 pass_match_asm_constraints (gcc::context *ctxt)
6725 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6728 /* opt_pass methods: */
6729 virtual unsigned int execute (function *);
6731 }; // class pass_match_asm_constraints
6733 unsigned
6734 pass_match_asm_constraints::execute (function *fun)
6736 basic_block bb;
6737 rtx_insn *insn;
6738 rtx pat, *p_sets;
6739 int noutputs;
6741 if (!crtl->has_asm_statement)
6742 return 0;
6744 df_set_flags (DF_DEFER_INSN_RESCAN);
6745 FOR_EACH_BB_FN (bb, fun)
6747 FOR_BB_INSNS (bb, insn)
6749 if (!INSN_P (insn))
6750 continue;
6752 pat = PATTERN (insn);
6753 if (GET_CODE (pat) == PARALLEL)
6754 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6755 else if (GET_CODE (pat) == SET)
6756 p_sets = &PATTERN (insn), noutputs = 1;
6757 else
6758 continue;
6760 if (GET_CODE (*p_sets) == SET
6761 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6762 match_asm_constraints_1 (insn, p_sets, noutputs);
6766 return TODO_df_finish;
6769 } // anon namespace
6771 rtl_opt_pass *
6772 make_pass_match_asm_constraints (gcc::context *ctxt)
6774 return new pass_match_asm_constraints (ctxt);
6778 #include "gt-function.h"