HAMMER 61B/Many: Stabilization
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
blobe7bb5ae9e492c810fc67a320b51d0dd7bf5e82de
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.86 2008/07/11 01:22:29 dillon Exp $
37 #include "hammer.h"
39 static int hammer_mem_add(hammer_record_t record);
40 static int hammer_mem_lookup(hammer_cursor_t cursor);
41 static int hammer_mem_first(hammer_cursor_t cursor);
42 static int hammer_frontend_trunc_callback(hammer_record_t record,
43 void *data __unused);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 hammer_btree_leaf_elm_t leaf);
48 struct rec_trunc_info {
49 u_int16_t rec_type;
50 int64_t trunc_off;
54 * Red-black tree support. Comparison code for insertion.
56 static int
57 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
59 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
60 return(-1);
61 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
62 return(1);
64 if (rec1->leaf.base.key < rec2->leaf.base.key)
65 return(-1);
66 if (rec1->leaf.base.key > rec2->leaf.base.key)
67 return(1);
70 * Never match against an item deleted by the front-end.
72 * rec1 is greater then rec2 if rec1 is marked deleted.
73 * rec1 is less then rec2 if rec2 is marked deleted.
75 * Multiple deleted records may be present, do not return 0
76 * if both are marked deleted.
78 if (rec1->flags & HAMMER_RECF_DELETED_FE)
79 return(1);
80 if (rec2->flags & HAMMER_RECF_DELETED_FE)
81 return(-1);
83 return(0);
87 * Basic record comparison code similar to hammer_btree_cmp().
89 static int
90 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
92 if (elm->rec_type < rec->leaf.base.rec_type)
93 return(-3);
94 if (elm->rec_type > rec->leaf.base.rec_type)
95 return(3);
97 if (elm->key < rec->leaf.base.key)
98 return(-2);
99 if (elm->key > rec->leaf.base.key)
100 return(2);
103 * Never match against an item deleted by the front-end.
104 * elm is less then rec if rec is marked deleted.
106 if (rec->flags & HAMMER_RECF_DELETED_FE)
107 return(-1);
108 return(0);
112 * Special LOOKUP_INFO to locate an overlapping record. This used by
113 * the reservation code to implement small-block records (whos keys will
114 * be different depending on data_len, when representing the same base
115 * offset).
117 * NOTE: The base file offset of a data record is (key - data_len), not (key).
119 static int
120 hammer_rec_overlap_compare(hammer_btree_leaf_elm_t leaf, hammer_record_t rec)
122 if (leaf->base.rec_type < rec->leaf.base.rec_type)
123 return(-3);
124 if (leaf->base.rec_type > rec->leaf.base.rec_type)
125 return(3);
128 * Overlap compare
130 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
131 /* leaf_end <= rec_beg */
132 if (leaf->base.key <= rec->leaf.base.key - rec->leaf.data_len)
133 return(-2);
134 /* leaf_beg >= rec_end */
135 if (leaf->base.key - leaf->data_len >= rec->leaf.base.key)
136 return(2);
137 } else {
138 if (leaf->base.key < rec->leaf.base.key)
139 return(-2);
140 if (leaf->base.key > rec->leaf.base.key)
141 return(2);
145 * Never match against an item deleted by the front-end.
146 * leaf is less then rec if rec is marked deleted.
148 * We must still return the proper code for the scan to continue
149 * along the correct branches.
151 if (rec->flags & HAMMER_RECF_DELETED_FE) {
152 if (leaf->base.key < rec->leaf.base.key)
153 return(-2);
154 if (leaf->base.key > rec->leaf.base.key)
155 return(2);
156 return(-1);
158 return(0);
162 * RB_SCAN comparison code for hammer_mem_first(). The argument order
163 * is reversed so the comparison result has to be negated. key_beg and
164 * key_end are both range-inclusive.
166 * Localized deletions are not cached in-memory.
168 static
170 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
172 hammer_cursor_t cursor = data;
173 int r;
175 r = hammer_rec_cmp(&cursor->key_beg, rec);
176 if (r > 1)
177 return(-1);
178 r = hammer_rec_cmp(&cursor->key_end, rec);
179 if (r < -1)
180 return(1);
181 return(0);
185 * This compare function is used when simply looking up key_beg.
187 static
189 hammer_rec_find_cmp(hammer_record_t rec, void *data)
191 hammer_cursor_t cursor = data;
192 int r;
194 r = hammer_rec_cmp(&cursor->key_beg, rec);
195 if (r > 1)
196 return(-1);
197 if (r < -1)
198 return(1);
199 return(0);
203 * Locate blocks within the truncation range. Partial blocks do not count.
205 static
207 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
209 struct rec_trunc_info *info = data;
211 if (rec->leaf.base.rec_type < info->rec_type)
212 return(-1);
213 if (rec->leaf.base.rec_type > info->rec_type)
214 return(1);
216 switch(rec->leaf.base.rec_type) {
217 case HAMMER_RECTYPE_DB:
219 * DB record key is not beyond the truncation point, retain.
221 if (rec->leaf.base.key < info->trunc_off)
222 return(-1);
223 break;
224 case HAMMER_RECTYPE_DATA:
226 * DATA record offset start is not beyond the truncation point,
227 * retain.
229 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
230 return(-1);
231 break;
232 default:
233 panic("hammer_rec_trunc_cmp: unexpected record type");
237 * The record start is >= the truncation point, return match,
238 * the record should be destroyed.
240 return(0);
243 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
244 RB_GENERATE_XLOOKUP(hammer_rec_rb_tree, INFO, hammer_record, rb_node,
245 hammer_rec_overlap_compare, hammer_btree_leaf_elm_t);
248 * Allocate a record for the caller to finish filling in. The record is
249 * returned referenced.
251 hammer_record_t
252 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
254 hammer_record_t record;
256 ++hammer_count_records;
257 record = kmalloc(sizeof(*record), M_HAMMER,
258 M_WAITOK | M_ZERO | M_USE_RESERVE);
259 record->flush_state = HAMMER_FST_IDLE;
260 record->ip = ip;
261 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
262 record->leaf.data_len = data_len;
263 hammer_ref(&record->lock);
265 if (data_len) {
266 record->data = kmalloc(data_len, M_HAMMER, M_WAITOK | M_ZERO);
267 record->flags |= HAMMER_RECF_ALLOCDATA;
268 ++hammer_count_record_datas;
271 return (record);
274 void
275 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
277 while (record->flush_state == HAMMER_FST_FLUSH) {
278 record->flags |= HAMMER_RECF_WANTED;
279 tsleep(record, 0, ident, 0);
284 * Called from the backend, hammer_inode.c, after a record has been
285 * flushed to disk. The record has been exclusively locked by the
286 * caller and interlocked with BE.
288 * We clean up the state, unlock, and release the record (the record
289 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
291 void
292 hammer_flush_record_done(hammer_record_t record, int error)
294 hammer_inode_t target_ip;
296 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
297 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
299 if (error) {
301 * An error occured, the backend was unable to sync the
302 * record to its media. Leave the record intact.
304 Debugger("flush_record_done error");
307 if (record->flags & HAMMER_RECF_DELETED_BE) {
308 if ((target_ip = record->target_ip) != NULL) {
309 TAILQ_REMOVE(&target_ip->target_list, record,
310 target_entry);
311 record->target_ip = NULL;
312 hammer_test_inode(target_ip);
314 record->flush_state = HAMMER_FST_IDLE;
315 } else {
316 if (record->target_ip) {
317 record->flush_state = HAMMER_FST_SETUP;
318 hammer_test_inode(record->ip);
319 hammer_test_inode(record->target_ip);
320 } else {
321 record->flush_state = HAMMER_FST_IDLE;
324 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
325 if (record->flags & HAMMER_RECF_WANTED) {
326 record->flags &= ~HAMMER_RECF_WANTED;
327 wakeup(record);
329 hammer_rel_mem_record(record);
333 * Release a memory record. Records marked for deletion are immediately
334 * removed from the RB-Tree but otherwise left intact until the last ref
335 * goes away.
337 void
338 hammer_rel_mem_record(struct hammer_record *record)
340 hammer_inode_t ip, target_ip;
342 hammer_unref(&record->lock);
344 if (record->lock.refs == 0) {
346 * Upon release of the last reference wakeup any waiters.
347 * The record structure may get destroyed so callers will
348 * loop up and do a relookup.
350 * WARNING! Record must be removed from RB-TREE before we
351 * might possibly block. hammer_test_inode() can block!
353 ip = record->ip;
356 * Upon release of the last reference a record marked deleted
357 * is destroyed.
359 if (record->flags & HAMMER_RECF_DELETED_FE) {
360 KKASSERT(ip->lock.refs > 0);
361 KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
364 * target_ip may have zero refs, we have to ref it
365 * to prevent it from being ripped out from under
366 * us.
368 if ((target_ip = record->target_ip) != NULL) {
369 TAILQ_REMOVE(&target_ip->target_list,
370 record, target_entry);
371 record->target_ip = NULL;
372 hammer_ref(&target_ip->lock);
375 if (record->flags & HAMMER_RECF_ONRBTREE) {
376 RB_REMOVE(hammer_rec_rb_tree,
377 &record->ip->rec_tree,
378 record);
379 KKASSERT(ip->rsv_recs > 0);
380 --ip->hmp->rsv_recs;
381 --ip->rsv_recs;
382 ip->hmp->rsv_databytes -= record->leaf.data_len;
383 record->flags &= ~HAMMER_RECF_ONRBTREE;
385 if (RB_EMPTY(&record->ip->rec_tree)) {
386 record->ip->flags &= ~HAMMER_INODE_XDIRTY;
387 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
388 hammer_test_inode(record->ip);
393 * Do this test after removing record from the B-Tree.
395 if (target_ip) {
396 hammer_test_inode(target_ip);
397 hammer_rel_inode(target_ip, 0);
400 if (record->flags & HAMMER_RECF_ALLOCDATA) {
401 --hammer_count_record_datas;
402 kfree(record->data, M_HAMMER);
403 record->flags &= ~HAMMER_RECF_ALLOCDATA;
405 if (record->resv) {
406 hammer_blockmap_reserve_complete(ip->hmp,
407 record->resv);
408 record->resv = NULL;
410 record->data = NULL;
411 --hammer_count_records;
412 kfree(record, M_HAMMER);
418 * Record visibility depends on whether the record is being accessed by
419 * the backend or the frontend.
421 * Return non-zero if the record is visible, zero if it isn't or if it is
422 * deleted.
424 static __inline
426 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
428 if (cursor->flags & HAMMER_CURSOR_BACKEND) {
429 if (record->flags & HAMMER_RECF_DELETED_BE)
430 return(0);
431 } else {
432 if (record->flags & HAMMER_RECF_DELETED_FE)
433 return(0);
435 return(1);
439 * This callback is used as part of the RB_SCAN function for in-memory
440 * records. We terminate it (return -1) as soon as we get a match.
442 * This routine is used by frontend code.
444 * The primary compare code does not account for ASOF lookups. This
445 * code handles that case as well as a few others.
447 static
449 hammer_rec_scan_callback(hammer_record_t rec, void *data)
451 hammer_cursor_t cursor = data;
454 * We terminate on success, so this should be NULL on entry.
456 KKASSERT(cursor->iprec == NULL);
459 * Skip if the record was marked deleted.
461 if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
462 return(0);
465 * Skip if not visible due to our as-of TID
467 if (cursor->flags & HAMMER_CURSOR_ASOF) {
468 if (cursor->asof < rec->leaf.base.create_tid)
469 return(0);
470 if (rec->leaf.base.delete_tid &&
471 cursor->asof >= rec->leaf.base.delete_tid) {
472 return(0);
477 * ref the record. The record is protected from backend B-Tree
478 * interactions by virtue of the cursor's IP lock.
480 hammer_ref(&rec->lock);
483 * The record may have been deleted while we were blocked.
485 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
486 hammer_rel_mem_record(rec);
487 return(0);
491 * Set the matching record and stop the scan.
493 cursor->iprec = rec;
494 return(-1);
499 * Lookup an in-memory record given the key specified in the cursor. Works
500 * just like hammer_btree_lookup() but operates on an inode's in-memory
501 * record list.
503 * The lookup must fail if the record is marked for deferred deletion.
505 static
507 hammer_mem_lookup(hammer_cursor_t cursor)
509 int error;
511 KKASSERT(cursor->ip);
512 if (cursor->iprec) {
513 hammer_rel_mem_record(cursor->iprec);
514 cursor->iprec = NULL;
516 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
517 hammer_rec_scan_callback, cursor);
519 if (cursor->iprec == NULL)
520 error = ENOENT;
521 else
522 error = 0;
523 return(error);
527 * hammer_mem_first() - locate the first in-memory record matching the
528 * cursor within the bounds of the key range.
530 static
532 hammer_mem_first(hammer_cursor_t cursor)
534 hammer_inode_t ip;
536 ip = cursor->ip;
537 KKASSERT(ip != NULL);
539 if (cursor->iprec) {
540 hammer_rel_mem_record(cursor->iprec);
541 cursor->iprec = NULL;
544 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
545 hammer_rec_scan_callback, cursor);
548 * Adjust scan.node and keep it linked into the RB-tree so we can
549 * hold the cursor through third party modifications of the RB-tree.
551 if (cursor->iprec)
552 return(0);
553 return(ENOENT);
556 /************************************************************************
557 * HAMMER IN-MEMORY RECORD FUNCTIONS *
558 ************************************************************************
560 * These functions manipulate in-memory records. Such records typically
561 * exist prior to being committed to disk or indexed via the on-disk B-Tree.
565 * Add a directory entry (dip,ncp) which references inode (ip).
567 * Note that the low 32 bits of the namekey are set temporarily to create
568 * a unique in-memory record, and may be modified a second time when the
569 * record is synchronized to disk. In particular, the low 32 bits cannot be
570 * all 0's when synching to disk, which is not handled here.
572 * NOTE: bytes does not include any terminating \0 on name, and name might
573 * not be terminated.
576 hammer_ip_add_directory(struct hammer_transaction *trans,
577 struct hammer_inode *dip, const char *name, int bytes,
578 struct hammer_inode *ip)
580 struct hammer_cursor cursor;
581 hammer_record_t record;
582 int error;
583 int count;
584 u_int32_t iterator;
586 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
587 if (++trans->hmp->namekey_iterator == 0)
588 ++trans->hmp->namekey_iterator;
590 record->type = HAMMER_MEM_RECORD_ADD;
591 record->leaf.base.localization = dip->obj_localization +
592 HAMMER_LOCALIZE_MISC;
593 record->leaf.base.obj_id = dip->obj_id;
594 record->leaf.base.key = hammer_directory_namekey(name, bytes);
595 record->leaf.base.key += trans->hmp->namekey_iterator;
596 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
597 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
598 record->data->entry.obj_id = ip->obj_id;
599 record->data->entry.localization = ip->obj_localization;
600 bcopy(name, record->data->entry.name, bytes);
602 ++ip->ino_data.nlinks;
603 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
606 * Find an unused namekey. Both the in-memory record tree and
607 * the B-Tree are checked. Exact matches also match create_tid
608 * so use an ASOF search to (mostly) ignore it.
610 * delete-visibility is set so pending deletions do not give us
611 * a false-negative on our ability to use an iterator.
613 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
614 cursor.key_beg = record->leaf.base;
615 cursor.flags |= HAMMER_CURSOR_ASOF;
616 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
617 cursor.asof = ip->obj_asof;
619 count = 0;
620 while (hammer_ip_lookup(&cursor) == 0) {
621 iterator = (u_int32_t)record->leaf.base.key + 1;
622 if (iterator == 0)
623 iterator = 1;
624 record->leaf.base.key &= ~0xFFFFFFFFLL;
625 record->leaf.base.key |= iterator;
626 cursor.key_beg.key = record->leaf.base.key;
627 if (++count == 1000000000) {
628 hammer_rel_mem_record(record);
629 error = ENOSPC;
630 goto failed;
635 * The target inode and the directory entry are bound together.
637 record->target_ip = ip;
638 record->flush_state = HAMMER_FST_SETUP;
639 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
642 * The inode now has a dependancy and must be taken out of the idle
643 * state. An inode not in an idle state is given an extra reference.
645 if (ip->flush_state == HAMMER_FST_IDLE) {
646 hammer_ref(&ip->lock);
647 ip->flush_state = HAMMER_FST_SETUP;
649 error = hammer_mem_add(record);
650 failed:
651 hammer_done_cursor(&cursor);
652 return(error);
656 * Delete the directory entry and update the inode link count. The
657 * cursor must be seeked to the directory entry record being deleted.
659 * The related inode should be share-locked by the caller. The caller is
660 * on the frontend.
662 * This function can return EDEADLK requiring the caller to terminate
663 * the cursor, any locks, wait on the returned record, and retry.
666 hammer_ip_del_directory(struct hammer_transaction *trans,
667 hammer_cursor_t cursor, struct hammer_inode *dip,
668 struct hammer_inode *ip)
670 hammer_record_t record;
671 int error;
673 if (hammer_cursor_inmem(cursor)) {
675 * In-memory (unsynchronized) records can simply be freed.
676 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
677 * by the backend, we must still avoid races against the
678 * backend potentially syncing the record to the media.
680 * We cannot call hammer_ip_delete_record(), that routine may
681 * only be called from the backend.
683 record = cursor->iprec;
684 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
685 KKASSERT(cursor->deadlk_rec == NULL);
686 hammer_ref(&record->lock);
687 cursor->deadlk_rec = record;
688 error = EDEADLK;
689 } else {
690 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
691 record->flags |= HAMMER_RECF_DELETED_FE;
692 error = 0;
694 } else {
696 * If the record is on-disk we have to queue the deletion by
697 * the record's key. This also causes lookups to skip the
698 * record.
700 KKASSERT(dip->flags &
701 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
702 record = hammer_alloc_mem_record(dip, 0);
703 record->type = HAMMER_MEM_RECORD_DEL;
704 record->leaf.base = cursor->leaf->base;
706 record->target_ip = ip;
707 record->flush_state = HAMMER_FST_SETUP;
708 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
711 * The inode now has a dependancy and must be taken out of
712 * the idle state. An inode not in an idle state is given
713 * an extra reference.
715 if (ip->flush_state == HAMMER_FST_IDLE) {
716 hammer_ref(&ip->lock);
717 ip->flush_state = HAMMER_FST_SETUP;
720 error = hammer_mem_add(record);
724 * One less link. The file may still be open in the OS even after
725 * all links have gone away.
727 * We have to terminate the cursor before syncing the inode to
728 * avoid deadlocking against ourselves. XXX this may no longer
729 * be true.
731 * If nlinks drops to zero and the vnode is inactive (or there is
732 * no vnode), call hammer_inode_unloadable_check() to zonk the
733 * inode. If we don't do this here the inode will not be destroyed
734 * on-media until we unmount.
736 if (error == 0) {
737 --ip->ino_data.nlinks;
738 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
739 if (ip->ino_data.nlinks == 0 &&
740 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
741 hammer_done_cursor(cursor);
742 hammer_inode_unloadable_check(ip, 1);
743 hammer_flush_inode(ip, 0);
747 return(error);
751 * Add a record to an inode.
753 * The caller must allocate the record with hammer_alloc_mem_record(ip) and
754 * initialize the following additional fields:
756 * The related inode should be share-locked by the caller. The caller is
757 * on the frontend.
759 * record->rec.entry.base.base.key
760 * record->rec.entry.base.base.rec_type
761 * record->rec.entry.base.base.data_len
762 * record->data (a copy will be kmalloc'd if it cannot be embedded)
765 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
767 hammer_inode_t ip = record->ip;
768 int error;
770 KKASSERT(record->leaf.base.localization != 0);
771 record->leaf.base.obj_id = ip->obj_id;
772 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
773 error = hammer_mem_add(record);
774 return(error);
778 * Locate a bulk record in-memory. Bulk records allow disk space to be
779 * reserved so the front-end can flush large data writes without having
780 * to queue the BIO to the flusher. Only the related record gets queued
781 * to the flusher.
783 static hammer_record_t
784 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
786 hammer_record_t record;
787 struct hammer_btree_leaf_elm leaf;
789 bzero(&leaf, sizeof(leaf));
790 leaf.base.obj_id = ip->obj_id;
791 leaf.base.key = file_offset + bytes;
792 leaf.base.create_tid = 0;
793 leaf.base.delete_tid = 0;
794 leaf.base.rec_type = HAMMER_RECTYPE_DATA;
795 leaf.base.obj_type = 0; /* unused */
796 leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */
797 leaf.base.localization = ip->obj_localization + HAMMER_LOCALIZE_MISC;
798 leaf.data_len = bytes;
800 record = hammer_rec_rb_tree_RB_LOOKUP_INFO(&ip->rec_tree, &leaf);
801 if (record)
802 hammer_ref(&record->lock);
803 return(record);
807 * Reserve blockmap space placemarked with an in-memory record.
809 * This routine is called by the frontend in order to be able to directly
810 * flush a buffer cache buffer. The frontend has locked the related buffer
811 * cache buffers and we should be able to manipulate any overlapping
812 * in-memory records.
814 hammer_record_t
815 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
816 int *errorp)
818 hammer_record_t record;
819 hammer_record_t conflict;
820 int zone;
821 int flags;
824 * Deal with conflicting in-memory records. We cannot have multiple
825 * in-memory records for the same offset without seriously confusing
826 * the backend, including but not limited to the backend issuing
827 * delete-create-delete sequences and asserting on the delete_tid
828 * being the same as the create_tid.
830 * If we encounter a record with the backend interlock set we cannot
831 * immediately delete it without confusing the backend.
833 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
834 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
835 conflict->flags |= HAMMER_RECF_WANTED;
836 tsleep(conflict, 0, "hmrrc3", 0);
837 } else {
838 conflict->flags |= HAMMER_RECF_DELETED_FE;
840 hammer_rel_mem_record(conflict);
844 * Create a record to cover the direct write. This is called with
845 * the related BIO locked so there should be no possible conflict.
847 * The backend is responsible for finalizing the space reserved in
848 * this record.
850 * XXX bytes not aligned, depend on the reservation code to
851 * align the reservation.
853 record = hammer_alloc_mem_record(ip, 0);
854 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
855 HAMMER_ZONE_SMALL_DATA_INDEX;
856 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
857 &record->leaf.data_offset,
858 errorp);
859 if (record->resv == NULL) {
860 kprintf("hammer_ip_add_bulk: reservation failed\n");
861 hammer_rel_mem_record(record);
862 return(NULL);
864 record->type = HAMMER_MEM_RECORD_DATA;
865 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
866 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
867 record->leaf.base.obj_id = ip->obj_id;
868 record->leaf.base.key = file_offset + bytes;
869 record->leaf.base.localization = ip->obj_localization +
870 HAMMER_LOCALIZE_MISC;
871 record->leaf.data_len = bytes;
872 hammer_crc_set_leaf(data, &record->leaf);
873 flags = record->flags;
875 hammer_ref(&record->lock); /* mem_add eats a reference */
876 *errorp = hammer_mem_add(record);
877 if (*errorp) {
878 conflict = hammer_ip_get_bulk(ip, file_offset, bytes);
879 kprintf("hammer_ip_add_bulk: error %d conflict %p file_offset %lld bytes %d\n",
880 *errorp, conflict, file_offset, bytes);
881 if (conflict)
882 kprintf("conflict %lld %d\n", conflict->leaf.base.key, conflict->leaf.data_len);
883 if (conflict)
884 hammer_rel_mem_record(conflict);
886 KKASSERT(*errorp == 0);
887 conflict = hammer_ip_get_bulk(ip, file_offset, bytes);
888 if (conflict != record) {
889 kprintf("conflict mismatch %p %p %08x\n", conflict, record, record->flags);
890 if (conflict)
891 kprintf("conflict mismatch %lld/%d %lld/%d\n", conflict->leaf.base.key, conflict->leaf.data_len, record->leaf.base.key, record->leaf.data_len);
893 KKASSERT(conflict == record);
894 hammer_rel_mem_record(conflict);
896 return (record);
900 * Frontend truncation code. Scan in-memory records only. On-disk records
901 * and records in a flushing state are handled by the backend. The vnops
902 * setattr code will handle the block containing the truncation point.
904 * Partial blocks are not deleted.
907 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
909 struct rec_trunc_info info;
911 switch(ip->ino_data.obj_type) {
912 case HAMMER_OBJTYPE_REGFILE:
913 info.rec_type = HAMMER_RECTYPE_DATA;
914 break;
915 case HAMMER_OBJTYPE_DBFILE:
916 info.rec_type = HAMMER_RECTYPE_DB;
917 break;
918 default:
919 return(EINVAL);
921 info.trunc_off = file_size;
922 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
923 hammer_frontend_trunc_callback, &info);
924 return(0);
927 static int
928 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
930 if (record->flags & HAMMER_RECF_DELETED_FE)
931 return(0);
932 if (record->flush_state == HAMMER_FST_FLUSH)
933 return(0);
934 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
935 hammer_ref(&record->lock);
936 record->flags |= HAMMER_RECF_DELETED_FE;
937 hammer_rel_mem_record(record);
938 return(0);
942 * Return 1 if the caller must check for and delete existing records
943 * before writing out a new data record.
945 * Return 0 if the caller can just insert the record into the B-Tree without
946 * checking.
948 static int
949 hammer_record_needs_overwrite_delete(hammer_record_t record)
951 hammer_inode_t ip = record->ip;
952 int64_t file_offset;
953 int r;
955 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
956 file_offset = record->leaf.base.key;
957 else
958 file_offset = record->leaf.base.key - record->leaf.data_len;
959 r = (file_offset < ip->save_trunc_off);
960 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
961 if (ip->save_trunc_off <= record->leaf.base.key)
962 ip->save_trunc_off = record->leaf.base.key + 1;
963 } else {
964 if (ip->save_trunc_off < record->leaf.base.key)
965 ip->save_trunc_off = record->leaf.base.key;
967 return(r);
971 * Backend code. Sync a record to the media.
974 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
976 hammer_transaction_t trans = cursor->trans;
977 int64_t file_offset;
978 int bytes;
979 void *bdata;
980 int error;
981 int doprop;
983 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
984 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
985 KKASSERT(record->leaf.base.localization != 0);
988 * If this is a bulk-data record placemarker there may be an existing
989 * record on-disk, indicating a data overwrite. If there is the
990 * on-disk record must be deleted before we can insert our new record.
992 * We've synthesized this record and do not know what the create_tid
993 * on-disk is, nor how much data it represents.
995 * Keep in mind that (key) for data records is (base_offset + len),
996 * not (base_offset). Also, we only want to get rid of on-disk
997 * records since we are trying to sync our in-memory record, call
998 * hammer_ip_delete_range() with truncating set to 1 to make sure
999 * it skips in-memory records.
1001 * It is ok for the lookup to return ENOENT.
1003 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1004 * to call hammer_ip_delete_range() or not. This also means we must
1005 * update sync_trunc_off() as we write.
1007 if (record->type == HAMMER_MEM_RECORD_DATA &&
1008 hammer_record_needs_overwrite_delete(record)) {
1009 file_offset = record->leaf.base.key - record->leaf.data_len;
1010 bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1011 ~HAMMER_BUFMASK;
1012 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1013 error = hammer_ip_delete_range(
1014 cursor, record->ip,
1015 file_offset, file_offset + bytes - 1,
1017 if (error && error != ENOENT)
1018 goto done;
1022 * If this is a general record there may be an on-disk version
1023 * that must be deleted before we can insert the new record.
1025 if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1026 error = hammer_delete_general(cursor, record->ip,
1027 &record->leaf);
1028 if (error && error != ENOENT)
1029 goto done;
1033 * Setup the cursor.
1035 hammer_normalize_cursor(cursor);
1036 cursor->key_beg = record->leaf.base;
1037 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1038 cursor->flags |= HAMMER_CURSOR_BACKEND;
1039 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1042 * Records can wind up on-media before the inode itself is on-media.
1043 * Flag the case.
1045 record->ip->flags |= HAMMER_INODE_DONDISK;
1048 * If we are deleting a directory entry an exact match must be
1049 * found on-disk.
1051 if (record->type == HAMMER_MEM_RECORD_DEL) {
1052 error = hammer_btree_lookup(cursor);
1053 if (error == 0) {
1054 error = hammer_ip_delete_record(cursor, record->ip,
1055 trans->tid);
1056 if (error == 0) {
1057 record->flags |= HAMMER_RECF_DELETED_FE;
1058 record->flags |= HAMMER_RECF_DELETED_BE;
1061 goto done;
1065 * We are inserting.
1067 * Issue a lookup to position the cursor and locate the cluster. The
1068 * target key should not exist. If we are creating a directory entry
1069 * we may have to iterate the low 32 bits of the key to find an unused
1070 * key.
1072 hammer_sync_lock_sh(trans);
1073 cursor->flags |= HAMMER_CURSOR_INSERT;
1074 error = hammer_btree_lookup(cursor);
1075 if (hammer_debug_inode)
1076 kprintf("DOINSERT LOOKUP %d\n", error);
1077 if (error == 0) {
1078 kprintf("hammer_ip_sync_record: duplicate rec "
1079 "at (%016llx)\n", record->leaf.base.key);
1080 Debugger("duplicate record1");
1081 error = EIO;
1083 #if 0
1084 if (record->type == HAMMER_MEM_RECORD_DATA)
1085 kprintf("sync_record %016llx ---------------- %016llx %d\n",
1086 record->leaf.base.key - record->leaf.data_len,
1087 record->leaf.data_offset, error);
1088 #endif
1090 if (error != ENOENT)
1091 goto done_unlock;
1094 * Allocate the record and data. The result buffers will be
1095 * marked as being modified and further calls to
1096 * hammer_modify_buffer() will result in unneeded UNDO records.
1098 * Support zero-fill records (data == NULL and data_len != 0)
1100 if (record->type == HAMMER_MEM_RECORD_DATA) {
1102 * The data portion of a bulk-data record has already been
1103 * committed to disk, we need only adjust the layer2
1104 * statistics in the same transaction as our B-Tree insert.
1106 KKASSERT(record->leaf.data_offset != 0);
1107 hammer_blockmap_finalize(trans, record->leaf.data_offset,
1108 record->leaf.data_len);
1109 error = 0;
1110 } else if (record->data && record->leaf.data_len) {
1112 * Wholely cached record, with data. Allocate the data.
1114 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1115 record->leaf.base.rec_type,
1116 &record->leaf.data_offset,
1117 &cursor->data_buffer, &error);
1118 if (bdata == NULL)
1119 goto done_unlock;
1120 hammer_crc_set_leaf(record->data, &record->leaf);
1121 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1122 bcopy(record->data, bdata, record->leaf.data_len);
1123 hammer_modify_buffer_done(cursor->data_buffer);
1124 } else {
1126 * Wholely cached record, without data.
1128 record->leaf.data_offset = 0;
1129 record->leaf.data_crc = 0;
1132 error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1133 if (hammer_debug_inode && error)
1134 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", error, cursor->node->node_offset, cursor->index, record->leaf.base.key);
1137 * Our record is on-disk, normally mark the in-memory version as
1138 * deleted. If the record represented a directory deletion but
1139 * we had to sync a valid directory entry to disk we must convert
1140 * the record to a covering delete so the frontend does not have
1141 * visibility on the synced entry.
1143 if (error == 0) {
1144 if (doprop) {
1145 hammer_btree_do_propagation(cursor,
1146 record->ip->pfsm,
1147 &record->leaf);
1149 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1150 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1151 record->flags &= ~HAMMER_RECF_DELETED_FE;
1152 record->type = HAMMER_MEM_RECORD_DEL;
1153 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1154 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1155 /* hammer_flush_record_done takes care of the rest */
1156 } else {
1157 record->flags |= HAMMER_RECF_DELETED_FE;
1158 record->flags |= HAMMER_RECF_DELETED_BE;
1160 } else {
1161 if (record->leaf.data_offset) {
1162 hammer_blockmap_free(trans, record->leaf.data_offset,
1163 record->leaf.data_len);
1166 done_unlock:
1167 hammer_sync_unlock(trans);
1168 done:
1169 return(error);
1173 * Add the record to the inode's rec_tree. The low 32 bits of a directory
1174 * entry's key is used to deal with hash collisions in the upper 32 bits.
1175 * A unique 64 bit key is generated in-memory and may be regenerated a
1176 * second time when the directory record is flushed to the on-disk B-Tree.
1178 * A referenced record is passed to this function. This function
1179 * eats the reference. If an error occurs the record will be deleted.
1181 * A copy of the temporary record->data pointer provided by the caller
1182 * will be made.
1184 static
1186 hammer_mem_add(hammer_record_t record)
1188 hammer_mount_t hmp = record->ip->hmp;
1191 * Make a private copy of record->data
1193 if (record->data)
1194 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1197 * Insert into the RB tree. A unique key should have already
1198 * been selected if this is a directory entry.
1200 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1201 record->flags |= HAMMER_RECF_DELETED_FE;
1202 hammer_rel_mem_record(record);
1203 return (EEXIST);
1205 ++hmp->count_newrecords;
1206 ++hmp->rsv_recs;
1207 ++record->ip->rsv_recs;
1208 record->ip->hmp->rsv_databytes += record->leaf.data_len;
1209 record->flags |= HAMMER_RECF_ONRBTREE;
1210 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1211 hammer_rel_mem_record(record);
1212 return(0);
1215 /************************************************************************
1216 * HAMMER INODE MERGED-RECORD FUNCTIONS *
1217 ************************************************************************
1219 * These functions augment the B-Tree scanning functions in hammer_btree.c
1220 * by merging in-memory records with on-disk records.
1224 * Locate a particular record either in-memory or on-disk.
1226 * NOTE: This is basically a standalone routine, hammer_ip_next() may
1227 * NOT be called to iterate results.
1230 hammer_ip_lookup(hammer_cursor_t cursor)
1232 int error;
1235 * If the element is in-memory return it without searching the
1236 * on-disk B-Tree
1238 KKASSERT(cursor->ip);
1239 error = hammer_mem_lookup(cursor);
1240 if (error == 0) {
1241 cursor->leaf = &cursor->iprec->leaf;
1242 return(error);
1244 if (error != ENOENT)
1245 return(error);
1248 * If the inode has on-disk components search the on-disk B-Tree.
1250 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1251 return(error);
1252 error = hammer_btree_lookup(cursor);
1253 if (error == 0)
1254 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1255 return(error);
1259 * Locate the first record within the cursor's key_beg/key_end range,
1260 * restricted to a particular inode. 0 is returned on success, ENOENT
1261 * if no records matched the requested range, or some other error.
1263 * When 0 is returned hammer_ip_next() may be used to iterate additional
1264 * records within the requested range.
1266 * This function can return EDEADLK, requiring the caller to terminate
1267 * the cursor and try again.
1270 hammer_ip_first(hammer_cursor_t cursor)
1272 hammer_inode_t ip = cursor->ip;
1273 int error;
1275 KKASSERT(ip != NULL);
1278 * Clean up fields and setup for merged scan
1280 cursor->flags &= ~HAMMER_CURSOR_DELBTREE;
1281 cursor->flags |= HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM;
1282 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_MEMEOF;
1283 if (cursor->iprec) {
1284 hammer_rel_mem_record(cursor->iprec);
1285 cursor->iprec = NULL;
1289 * Search the on-disk B-Tree. hammer_btree_lookup() only does an
1290 * exact lookup so if we get ENOENT we have to call the iterate
1291 * function to validate the first record after the begin key.
1293 * The ATEDISK flag is used by hammer_btree_iterate to determine
1294 * whether it must index forwards or not. It is also used here
1295 * to select the next record from in-memory or on-disk.
1297 * EDEADLK can only occur if the lookup hit an empty internal
1298 * element and couldn't delete it. Since this could only occur
1299 * in-range, we can just iterate from the failure point.
1301 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1302 error = hammer_btree_lookup(cursor);
1303 if (error == ENOENT || error == EDEADLK) {
1304 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1305 if (hammer_debug_general & 0x2000)
1306 kprintf("error %d node %p %016llx index %d\n", error, cursor->node, cursor->node->node_offset, cursor->index);
1307 error = hammer_btree_iterate(cursor);
1309 if (error && error != ENOENT)
1310 return(error);
1311 if (error == 0) {
1312 cursor->flags &= ~HAMMER_CURSOR_DISKEOF;
1313 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1314 } else {
1315 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1320 * Search the in-memory record list (Red-Black tree). Unlike the
1321 * B-Tree search, mem_first checks for records in the range.
1323 error = hammer_mem_first(cursor);
1324 if (error && error != ENOENT)
1325 return(error);
1326 if (error == 0) {
1327 cursor->flags &= ~HAMMER_CURSOR_MEMEOF;
1328 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1329 if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0)
1330 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1334 * This will return the first matching record.
1336 return(hammer_ip_next(cursor));
1340 * Retrieve the next record in a merged iteration within the bounds of the
1341 * cursor. This call may be made multiple times after the cursor has been
1342 * initially searched with hammer_ip_first().
1344 * 0 is returned on success, ENOENT if no further records match the
1345 * requested range, or some other error code is returned.
1348 hammer_ip_next(hammer_cursor_t cursor)
1350 hammer_btree_elm_t elm;
1351 hammer_record_t rec, save;
1352 int error;
1353 int r;
1355 next_btree:
1357 * Load the current on-disk and in-memory record. If we ate any
1358 * records we have to get the next one.
1360 * If we deleted the last on-disk record we had scanned ATEDISK will
1361 * be clear and DELBTREE will be set, forcing a call to iterate. The
1362 * fact that ATEDISK is clear causes iterate to re-test the 'current'
1363 * element. If ATEDISK is set, iterate will skip the 'current'
1364 * element.
1366 * Get the next on-disk record
1368 if (cursor->flags & (HAMMER_CURSOR_ATEDISK|HAMMER_CURSOR_DELBTREE)) {
1369 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1370 error = hammer_btree_iterate(cursor);
1371 cursor->flags &= ~HAMMER_CURSOR_DELBTREE;
1372 if (error == 0) {
1373 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1374 hammer_cache_node(&cursor->ip->cache[1],
1375 cursor->node);
1376 } else {
1377 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1378 HAMMER_CURSOR_ATEDISK;
1383 next_memory:
1385 * Get the next in-memory record.
1387 * hammer_rec_scan_cmp: Is the record still in our general range,
1388 * (non-inclusive of snapshot exclusions)?
1389 * hammer_rec_scan_callback: Is the record in our snapshot?
1391 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1392 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1393 save = cursor->iprec;
1394 cursor->iprec = NULL;
1395 rec = save ? hammer_rec_rb_tree_RB_NEXT(save) : NULL;
1396 while (rec) {
1397 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1398 break;
1399 if (hammer_rec_scan_callback(rec, cursor) != 0)
1400 break;
1401 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1403 if (save)
1404 hammer_rel_mem_record(save);
1405 if (cursor->iprec) {
1406 KKASSERT(cursor->iprec == rec);
1407 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1408 } else {
1409 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1415 * The memory record may have become stale while being held in
1416 * cursor->iprec. We are interlocked against the backend on
1417 * with regards to B-Tree entries.
1419 if ((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0) {
1420 if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0) {
1421 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1422 goto next_memory;
1427 * Extract either the disk or memory record depending on their
1428 * relative position.
1430 error = 0;
1431 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1432 case 0:
1434 * Both entries valid. Compare the entries and nominally
1435 * return the first one in the sort order. Numerous cases
1436 * require special attention, however.
1438 elm = &cursor->node->ondisk->elms[cursor->index];
1439 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1442 * If the two entries differ only by their key (-2/2) or
1443 * create_tid (-1/1), and are DATA records, we may have a
1444 * nominal match. We have to calculate the base file
1445 * offset of the data.
1447 if (r <= 2 && r >= -2 && r != 0 &&
1448 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1449 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1450 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1451 int64_t base2 = cursor->iprec->leaf.base.key -
1452 cursor->iprec->leaf.data_len;
1453 if (base1 == base2)
1454 r = 0;
1457 if (r < 0) {
1458 error = hammer_btree_extract(cursor,
1459 HAMMER_CURSOR_GET_LEAF);
1460 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1461 break;
1465 * If the entries match exactly the memory entry is either
1466 * an on-disk directory entry deletion or a bulk data
1467 * overwrite. If it is a directory entry deletion we eat
1468 * both entries.
1470 * For the bulk-data overwrite case it is possible to have
1471 * visibility into both, which simply means the syncer
1472 * hasn't gotten around to doing the delete+insert sequence
1473 * on the B-Tree. Use the memory entry and throw away the
1474 * on-disk entry.
1476 * If the in-memory record is not either of these we
1477 * probably caught the syncer while it was syncing it to
1478 * the media. Since we hold a shared lock on the cursor,
1479 * the in-memory record had better be marked deleted at
1480 * this point.
1482 if (r == 0) {
1483 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1484 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1485 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1486 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1487 goto next_btree;
1489 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1490 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1491 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1493 /* fall through to memory entry */
1494 } else {
1495 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1496 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1497 goto next_memory;
1500 /* fall through to the memory entry */
1501 case HAMMER_CURSOR_ATEDISK:
1503 * Only the memory entry is valid.
1505 cursor->leaf = &cursor->iprec->leaf;
1506 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1509 * If the memory entry is an on-disk deletion we should have
1510 * also had found a B-Tree record. If the backend beat us
1511 * to it it would have interlocked the cursor and we should
1512 * have seen the in-memory record marked DELETED_FE.
1514 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1515 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1516 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1518 break;
1519 case HAMMER_CURSOR_ATEMEM:
1521 * Only the disk entry is valid
1523 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1524 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1525 break;
1526 default:
1528 * Neither entry is valid
1530 * XXX error not set properly
1532 cursor->leaf = NULL;
1533 error = ENOENT;
1534 break;
1536 return(error);
1540 * Resolve the cursor->data pointer for the current cursor position in
1541 * a merged iteration.
1544 hammer_ip_resolve_data(hammer_cursor_t cursor)
1546 hammer_record_t record;
1547 int error;
1549 if (hammer_cursor_inmem(cursor)) {
1551 * The data associated with an in-memory record is usually
1552 * kmalloced, but reserve-ahead data records will have an
1553 * on-disk reference.
1555 * NOTE: Reserve-ahead data records must be handled in the
1556 * context of the related high level buffer cache buffer
1557 * to interlock against async writes.
1559 record = cursor->iprec;
1560 cursor->data = record->data;
1561 error = 0;
1562 if (cursor->data == NULL) {
1563 KKASSERT(record->leaf.base.rec_type ==
1564 HAMMER_RECTYPE_DATA);
1565 cursor->data = hammer_bread_ext(cursor->trans->hmp,
1566 record->leaf.data_offset,
1567 record->leaf.data_len,
1568 &error,
1569 &cursor->data_buffer);
1571 } else {
1572 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1573 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1575 return(error);
1579 * Backend truncation / record replacement - delete records in range.
1581 * Delete all records within the specified range for inode ip. In-memory
1582 * records still associated with the frontend are ignored.
1584 * If truncating is non-zero in-memory records associated with the back-end
1585 * are ignored. If truncating is > 1 we can return EWOULDBLOCK.
1587 * NOTES:
1589 * * An unaligned range will cause new records to be added to cover
1590 * the edge cases. (XXX not implemented yet).
1592 * * Replacement via reservations (see hammer_ip_sync_record_cursor())
1593 * also do not deal with unaligned ranges.
1595 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1597 * * Record keys for regular file data have to be special-cased since
1598 * they indicate the end of the range (key = base + bytes).
1600 * * This function may be asked to delete ridiculously huge ranges, for
1601 * example if someone truncates or removes a 1TB regular file. We
1602 * must be very careful on restarts and we may have to stop w/
1603 * EWOULDBLOCK to avoid blowing out the buffer cache.
1606 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1607 int64_t ran_beg, int64_t ran_end, int truncating)
1609 hammer_transaction_t trans = cursor->trans;
1610 hammer_btree_leaf_elm_t leaf;
1611 int error;
1612 int64_t off;
1613 int64_t tmp64;
1615 #if 0
1616 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1617 #endif
1619 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1620 retry:
1621 hammer_normalize_cursor(cursor);
1622 cursor->key_beg.localization = ip->obj_localization +
1623 HAMMER_LOCALIZE_MISC;
1624 cursor->key_beg.obj_id = ip->obj_id;
1625 cursor->key_beg.create_tid = 0;
1626 cursor->key_beg.delete_tid = 0;
1627 cursor->key_beg.obj_type = 0;
1629 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1630 cursor->key_beg.key = ran_beg;
1631 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1632 } else {
1634 * The key in the B-Tree is (base+bytes), so the first possible
1635 * matching key is ran_beg + 1.
1637 cursor->key_beg.key = ran_beg + 1;
1638 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1641 cursor->key_end = cursor->key_beg;
1642 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1643 cursor->key_end.key = ran_end;
1644 } else {
1645 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */
1646 if (tmp64 < ran_end)
1647 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1648 else
1649 cursor->key_end.key = ran_end + MAXPHYS + 1;
1652 cursor->asof = ip->obj_asof;
1653 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1654 cursor->flags |= HAMMER_CURSOR_ASOF;
1655 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1656 cursor->flags |= HAMMER_CURSOR_BACKEND;
1657 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1659 error = hammer_ip_first(cursor);
1662 * Iterate through matching records and mark them as deleted.
1664 while (error == 0) {
1665 leaf = cursor->leaf;
1667 KKASSERT(leaf->base.delete_tid == 0);
1668 KKASSERT(leaf->base.obj_id == ip->obj_id);
1671 * There may be overlap cases for regular file data. Also
1672 * remember the key for a regular file record is (base + len),
1673 * NOT (base).
1675 * Note that do to duplicates (mem & media) allowed by
1676 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1678 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1679 off = leaf->base.key - leaf->data_len;
1681 * Check the left edge case. We currently do not
1682 * split existing records.
1684 if (off < ran_beg && leaf->base.key > ran_beg) {
1685 panic("hammer left edge case %016llx %d\n",
1686 leaf->base.key, leaf->data_len);
1690 * Check the right edge case. Note that the
1691 * record can be completely out of bounds, which
1692 * terminates the search.
1694 * base->key is exclusive of the right edge while
1695 * ran_end is inclusive of the right edge. The
1696 * (key - data_len) left boundary is inclusive.
1698 * XXX theory-check this test at some point, are
1699 * we missing a + 1 somewhere? Note that ran_end
1700 * could overflow.
1702 if (leaf->base.key - 1 > ran_end) {
1703 if (leaf->base.key - leaf->data_len > ran_end)
1704 break;
1705 panic("hammer right edge case\n");
1707 } else {
1708 off = leaf->base.key;
1712 * Delete the record. When truncating we do not delete
1713 * in-memory (data) records because they represent data
1714 * written after the truncation.
1716 * This will also physically destroy the B-Tree entry and
1717 * data if the retention policy dictates. The function
1718 * will set HAMMER_CURSOR_DELBTREE which hammer_ip_next()
1719 * uses to perform a fixup.
1721 if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1722 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1724 * If we have built up too many meta-buffers we risk
1725 * deadlocking the kernel and must stop. This can
1726 * occur when deleting ridiculously huge files.
1727 * sync_trunc_off is updated so the next cycle does
1728 * not re-iterate records we have already deleted.
1730 * This is only done with formal truncations.
1732 if (truncating > 1 && error == 0 &&
1733 hammer_flusher_meta_limit(ip->hmp)) {
1734 ip->sync_trunc_off = off;
1735 error = EWOULDBLOCK;
1738 if (error)
1739 break;
1740 ran_beg = off; /* for restart */
1741 error = hammer_ip_next(cursor);
1743 if (cursor->node)
1744 hammer_cache_node(&ip->cache[1], cursor->node);
1746 if (error == EDEADLK) {
1747 hammer_done_cursor(cursor);
1748 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1749 if (error == 0)
1750 goto retry;
1752 if (error == ENOENT)
1753 error = 0;
1754 return(error);
1758 * This backend function deletes the specified record on-disk, similar to
1759 * delete_range but for a specific record. Unlike the exact deletions
1760 * used when deleting a directory entry this function uses an ASOF search
1761 * like delete_range.
1763 * This function may be called with ip->obj_asof set for a slave snapshot,
1764 * so don't use it. We always delete non-historical records only.
1766 static int
1767 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
1768 hammer_btree_leaf_elm_t leaf)
1770 hammer_transaction_t trans = cursor->trans;
1771 int error;
1773 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1774 retry:
1775 hammer_normalize_cursor(cursor);
1776 cursor->key_beg = leaf->base;
1777 cursor->asof = HAMMER_MAX_TID;
1778 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1779 cursor->flags |= HAMMER_CURSOR_ASOF;
1780 cursor->flags |= HAMMER_CURSOR_BACKEND;
1781 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1783 error = hammer_btree_lookup(cursor);
1784 if (error == 0) {
1785 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1787 if (error == EDEADLK) {
1788 hammer_done_cursor(cursor);
1789 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1790 if (error == 0)
1791 goto retry;
1793 return(error);
1797 * This function deletes remaining auxillary records when an inode is
1798 * being deleted. This function explicitly does not delete the
1799 * inode record, directory entry, data, or db records. Those must be
1800 * properly disposed of prior to this call.
1803 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
1805 hammer_transaction_t trans = cursor->trans;
1806 hammer_btree_leaf_elm_t leaf;
1807 int error;
1809 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1810 retry:
1811 hammer_normalize_cursor(cursor);
1812 cursor->key_beg.localization = ip->obj_localization +
1813 HAMMER_LOCALIZE_MISC;
1814 cursor->key_beg.obj_id = ip->obj_id;
1815 cursor->key_beg.create_tid = 0;
1816 cursor->key_beg.delete_tid = 0;
1817 cursor->key_beg.obj_type = 0;
1818 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
1819 cursor->key_beg.key = HAMMER_MIN_KEY;
1821 cursor->key_end = cursor->key_beg;
1822 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
1823 cursor->key_end.key = HAMMER_MAX_KEY;
1825 cursor->asof = ip->obj_asof;
1826 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1827 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1828 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1829 cursor->flags |= HAMMER_CURSOR_BACKEND;
1831 error = hammer_ip_first(cursor);
1834 * Iterate through matching records and mark them as deleted.
1836 while (error == 0) {
1837 leaf = cursor->leaf;
1839 KKASSERT(leaf->base.delete_tid == 0);
1842 * Mark the record and B-Tree entry as deleted. This will
1843 * also physically delete the B-Tree entry, record, and
1844 * data if the retention policy dictates. The function
1845 * will set HAMMER_CURSOR_DELBTREE which hammer_ip_next()
1846 * uses to perform a fixup.
1848 * Directory entries (and delete-on-disk directory entries)
1849 * must be synced and cannot be deleted.
1851 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1852 ++*countp;
1853 if (error)
1854 break;
1855 error = hammer_ip_next(cursor);
1857 if (cursor->node)
1858 hammer_cache_node(&ip->cache[1], cursor->node);
1859 if (error == EDEADLK) {
1860 hammer_done_cursor(cursor);
1861 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1862 if (error == 0)
1863 goto retry;
1865 if (error == ENOENT)
1866 error = 0;
1867 return(error);
1871 * Delete the record at the current cursor. On success the cursor will
1872 * be positioned appropriately for an iteration but may no longer be at
1873 * a leaf node.
1875 * This routine is only called from the backend.
1877 * NOTE: This can return EDEADLK, requiring the caller to terminate the
1878 * cursor and retry.
1881 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
1882 hammer_tid_t tid)
1884 hammer_off_t zone2_offset;
1885 hammer_record_t iprec;
1886 hammer_btree_elm_t elm;
1887 hammer_mount_t hmp;
1888 int error;
1890 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1891 KKASSERT(tid != 0);
1892 hmp = cursor->node->hmp;
1895 * In-memory (unsynchronized) records can simply be freed. This
1896 * only occurs in range iterations since all other records are
1897 * individually synchronized. Thus there should be no confusion with
1898 * the interlock.
1900 * An in-memory record may be deleted before being committed to disk,
1901 * but could have been accessed in the mean time. The backing store
1902 * may never been marked allocated and so hammer_blockmap_free() may
1903 * never get called on it. Because of this we have to make sure that
1904 * we've gotten rid of any related hammer_buffer or buffer cache
1905 * buffer.
1907 if (hammer_cursor_inmem(cursor)) {
1908 iprec = cursor->iprec;
1909 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
1910 iprec->flags |= HAMMER_RECF_DELETED_FE;
1911 iprec->flags |= HAMMER_RECF_DELETED_BE;
1913 if (iprec->leaf.data_offset && iprec->leaf.data_len) {
1914 zone2_offset = hammer_blockmap_lookup(hmp, iprec->leaf.data_offset, &error);
1915 KKASSERT(error == 0);
1916 hammer_del_buffers(hmp,
1917 iprec->leaf.data_offset,
1918 zone2_offset,
1919 iprec->leaf.data_len);
1921 return(0);
1925 * On-disk records are marked as deleted by updating their delete_tid.
1926 * This does not effect their position in the B-Tree (which is based
1927 * on their create_tid).
1929 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1930 elm = NULL;
1932 if (error == 0) {
1933 error = hammer_delete_at_cursor(
1934 cursor,
1935 HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
1936 NULL);
1938 return(error);
1942 * Delete the B-Tree element at the current cursor and do any necessary
1943 * mirror propagation.
1945 * The cursor must be properly positioned for an iteration on return but
1946 * may be pointing at an internal element.
1949 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
1950 int64_t *stat_bytes)
1952 struct hammer_btree_leaf_elm save_leaf;
1953 hammer_btree_leaf_elm_t leaf;
1954 hammer_node_t node;
1955 hammer_btree_elm_t elm;
1956 hammer_off_t data_offset;
1957 int32_t data_len;
1958 u_int16_t rec_type;
1959 int error;
1960 int doprop;
1962 error = hammer_cursor_upgrade(cursor);
1963 if (error)
1964 return(error);
1966 node = cursor->node;
1967 elm = &node->ondisk->elms[cursor->index];
1968 leaf = &elm->leaf;
1969 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
1972 * Adjust the delete_tid. Update the mirror_tid propagation field
1973 * as well.
1975 hammer_sync_lock_sh(cursor->trans);
1976 doprop = 0;
1977 if (delete_flags & HAMMER_DELETE_ADJUST) {
1978 hammer_modify_node(cursor->trans, node, elm, sizeof(*elm));
1979 elm->leaf.base.delete_tid = cursor->trans->tid;
1980 elm->leaf.delete_ts = cursor->trans->time32;
1981 hammer_modify_node_done(node);
1983 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
1984 hammer_modify_node_field(cursor->trans, node, mirror_tid);
1985 node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
1986 hammer_modify_node_done(node);
1987 doprop = 1;
1991 * Adjust for the iteration. We have deleted the current
1992 * element and want to clear ATEDISK so the iteration does
1993 * not skip the element after, which now becomes the current
1994 * element.
1996 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1997 cursor->flags |= HAMMER_CURSOR_DELBTREE;
1998 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2002 * An on-disk record cannot have the same delete_tid
2003 * as its create_tid. In a chain of record updates
2004 * this could result in a duplicate record.
2006 KKASSERT(elm->leaf.base.delete_tid !=
2007 elm->leaf.base.create_tid);
2011 * Destroy the B-Tree element if asked (typically if a nohistory
2012 * file or mount, or when called by the pruning code).
2014 * Adjust the ATEDISK flag to properly support iterations.
2016 if (delete_flags & HAMMER_DELETE_DESTROY) {
2017 data_offset = elm->leaf.data_offset;
2018 data_len = elm->leaf.data_len;
2019 rec_type = elm->leaf.base.rec_type;
2020 if (doprop) {
2021 save_leaf = elm->leaf;
2022 leaf = &save_leaf;
2025 error = hammer_btree_delete(cursor);
2026 if (error == 0) {
2028 * This forces a fixup for the iteration because
2029 * the cursor is now either sitting at the 'next'
2030 * element or sitting at the end of a leaf.
2032 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2033 cursor->flags |= HAMMER_CURSOR_DELBTREE;
2034 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2037 if (error == 0) {
2038 switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2039 case HAMMER_ZONE_LARGE_DATA:
2040 case HAMMER_ZONE_SMALL_DATA:
2041 case HAMMER_ZONE_META:
2042 hammer_blockmap_free(cursor->trans,
2043 data_offset, data_len);
2044 break;
2045 default:
2046 break;
2052 * mirror_tid propagation occurs if the node's mirror_tid had to be
2053 * updated while adjusting the delete_tid.
2055 * This occurs when deleting even in nohistory mode, but does not
2056 * occur when pruning an already-deleted node.
2058 if (doprop) {
2059 KKASSERT(cursor->ip != NULL);
2060 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2062 hammer_sync_unlock(cursor->trans);
2063 return (error);
2067 * Determine whether we can remove a directory. This routine checks whether
2068 * a directory is empty or not and enforces flush connectivity.
2070 * Flush connectivity requires that we block if the target directory is
2071 * currently flushing, otherwise it may not end up in the same flush group.
2073 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2076 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2078 struct hammer_cursor cursor;
2079 int error;
2082 * Check directory empty
2084 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2086 cursor.key_beg.localization = ip->obj_localization +
2087 HAMMER_LOCALIZE_MISC;
2088 cursor.key_beg.obj_id = ip->obj_id;
2089 cursor.key_beg.create_tid = 0;
2090 cursor.key_beg.delete_tid = 0;
2091 cursor.key_beg.obj_type = 0;
2092 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2093 cursor.key_beg.key = HAMMER_MIN_KEY;
2095 cursor.key_end = cursor.key_beg;
2096 cursor.key_end.rec_type = 0xFFFF;
2097 cursor.key_end.key = HAMMER_MAX_KEY;
2099 cursor.asof = ip->obj_asof;
2100 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2102 error = hammer_ip_first(&cursor);
2103 if (error == ENOENT)
2104 error = 0;
2105 else if (error == 0)
2106 error = ENOTEMPTY;
2107 hammer_done_cursor(&cursor);
2108 return(error);