HAMMER Utilities: MFC work to date.
[dragonfly.git] / sys / kern / vfs_subr.c
blobf79136f7b1b9048d76a668fad10259b4d68c0ea7
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.116.2.1 2008/08/02 14:34:29 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 #include <sys/sysref2.h>
88 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
90 int numvnodes;
91 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
92 int vfs_fastdev = 1;
93 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
95 enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
106 &reassignbufcalls, 0, "");
107 static int reassignbufloops;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
109 &reassignbufloops, 0, "");
110 static int reassignbufsortgood;
111 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
112 &reassignbufsortgood, 0, "");
113 static int reassignbufsortbad;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
115 &reassignbufsortbad, 0, "");
116 static int reassignbufmethod = 1;
117 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
118 &reassignbufmethod, 0, "");
120 int nfs_mount_type = -1;
121 static struct lwkt_token spechash_token;
122 struct nfs_public nfs_pub; /* publicly exported FS */
124 int desiredvnodes;
125 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
126 &desiredvnodes, 0, "Maximum number of vnodes");
128 static void vfs_free_addrlist (struct netexport *nep);
129 static int vfs_free_netcred (struct radix_node *rn, void *w);
130 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
131 const struct export_args *argp);
133 extern int dev_ref_debug;
136 * Red black tree functions
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
145 if (b1->b_loffset < b2->b_loffset)
146 return(-1);
147 if (b1->b_loffset > b2->b_loffset)
148 return(1);
149 return(0);
153 * Returns non-zero if the vnode is a candidate for lazy msyncing.
155 static __inline int
156 vshouldmsync(struct vnode *vp)
158 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
159 return (0); /* other holders */
160 if (vp->v_object &&
161 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
162 return (0);
164 return (1);
168 * Initialize the vnode management data structures.
170 * Called from vfsinit()
172 void
173 vfs_subr_init(void)
176 * Desiredvnodes is kern.maxvnodes. We want to scale it
177 * according to available system memory but we may also have
178 * to limit it based on available KVM, which is capped on 32 bit
179 * systems.
181 desiredvnodes = min(maxproc + vmstats.v_page_count / 4,
182 KvaSize / (20 *
183 (sizeof(struct vm_object) + sizeof(struct vnode))));
185 lwkt_token_init(&spechash_token);
189 * Knob to control the precision of file timestamps:
191 * 0 = seconds only; nanoseconds zeroed.
192 * 1 = seconds and nanoseconds, accurate within 1/HZ.
193 * 2 = seconds and nanoseconds, truncated to microseconds.
194 * >=3 = seconds and nanoseconds, maximum precision.
196 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
198 static int timestamp_precision = TSP_SEC;
199 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
200 &timestamp_precision, 0, "");
203 * Get a current timestamp.
205 void
206 vfs_timestamp(struct timespec *tsp)
208 struct timeval tv;
210 switch (timestamp_precision) {
211 case TSP_SEC:
212 tsp->tv_sec = time_second;
213 tsp->tv_nsec = 0;
214 break;
215 case TSP_HZ:
216 getnanotime(tsp);
217 break;
218 case TSP_USEC:
219 microtime(&tv);
220 TIMEVAL_TO_TIMESPEC(&tv, tsp);
221 break;
222 case TSP_NSEC:
223 default:
224 nanotime(tsp);
225 break;
230 * Set vnode attributes to VNOVAL
232 void
233 vattr_null(struct vattr *vap)
235 vap->va_type = VNON;
236 vap->va_size = VNOVAL;
237 vap->va_bytes = VNOVAL;
238 vap->va_mode = VNOVAL;
239 vap->va_nlink = VNOVAL;
240 vap->va_uid = VNOVAL;
241 vap->va_gid = VNOVAL;
242 vap->va_fsid = VNOVAL;
243 vap->va_fileid = VNOVAL;
244 vap->va_blocksize = VNOVAL;
245 vap->va_rmajor = VNOVAL;
246 vap->va_rminor = VNOVAL;
247 vap->va_atime.tv_sec = VNOVAL;
248 vap->va_atime.tv_nsec = VNOVAL;
249 vap->va_mtime.tv_sec = VNOVAL;
250 vap->va_mtime.tv_nsec = VNOVAL;
251 vap->va_ctime.tv_sec = VNOVAL;
252 vap->va_ctime.tv_nsec = VNOVAL;
253 vap->va_flags = VNOVAL;
254 vap->va_gen = VNOVAL;
255 vap->va_vaflags = 0;
256 vap->va_fsmid = VNOVAL;
257 /* va_*_uuid fields are only valid if related flags are set */
261 * Flush out and invalidate all buffers associated with a vnode.
263 * vp must be locked.
265 static int vinvalbuf_bp(struct buf *bp, void *data);
267 struct vinvalbuf_bp_info {
268 struct vnode *vp;
269 int slptimeo;
270 int lkflags;
271 int flags;
274 void
275 vupdatefsmid(struct vnode *vp)
277 atomic_set_int(&vp->v_flag, VFSMID);
281 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
283 struct vinvalbuf_bp_info info;
284 int error;
285 vm_object_t object;
288 * If we are being asked to save, call fsync to ensure that the inode
289 * is updated.
291 if (flags & V_SAVE) {
292 crit_enter();
293 while (vp->v_track_write.bk_active) {
294 vp->v_track_write.bk_waitflag = 1;
295 error = tsleep(&vp->v_track_write, slpflag,
296 "vinvlbuf", slptimeo);
297 if (error) {
298 crit_exit();
299 return (error);
302 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
303 crit_exit();
304 if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
305 return (error);
306 crit_enter();
307 if (vp->v_track_write.bk_active > 0 ||
308 !RB_EMPTY(&vp->v_rbdirty_tree))
309 panic("vinvalbuf: dirty bufs");
311 crit_exit();
313 crit_enter();
314 info.slptimeo = slptimeo;
315 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
316 if (slpflag & PCATCH)
317 info.lkflags |= LK_PCATCH;
318 info.flags = flags;
319 info.vp = vp;
322 * Flush the buffer cache until nothing is left.
324 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
325 !RB_EMPTY(&vp->v_rbdirty_tree)) {
326 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
327 vinvalbuf_bp, &info);
328 if (error == 0) {
329 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
330 vinvalbuf_bp, &info);
335 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
336 * have write I/O in-progress but if there is a VM object then the
337 * VM object can also have read-I/O in-progress.
339 do {
340 while (vp->v_track_write.bk_active > 0) {
341 vp->v_track_write.bk_waitflag = 1;
342 tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
344 if ((object = vp->v_object) != NULL) {
345 while (object->paging_in_progress)
346 vm_object_pip_sleep(object, "vnvlbx");
348 } while (vp->v_track_write.bk_active > 0);
350 crit_exit();
353 * Destroy the copy in the VM cache, too.
355 if ((object = vp->v_object) != NULL) {
356 vm_object_page_remove(object, 0, 0,
357 (flags & V_SAVE) ? TRUE : FALSE);
360 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
361 panic("vinvalbuf: flush failed");
362 if (!RB_EMPTY(&vp->v_rbhash_tree))
363 panic("vinvalbuf: flush failed, buffers still present");
364 return (0);
367 static int
368 vinvalbuf_bp(struct buf *bp, void *data)
370 struct vinvalbuf_bp_info *info = data;
371 int error;
373 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
374 error = BUF_TIMELOCK(bp, info->lkflags,
375 "vinvalbuf", info->slptimeo);
376 if (error == 0) {
377 BUF_UNLOCK(bp);
378 error = ENOLCK;
380 if (error == ENOLCK)
381 return(0);
382 return (-error);
385 KKASSERT(bp->b_vp == info->vp);
388 * XXX Since there are no node locks for NFS, I
389 * believe there is a slight chance that a delayed
390 * write will occur while sleeping just above, so
391 * check for it. Note that vfs_bio_awrite expects
392 * buffers to reside on a queue, while bwrite() and
393 * brelse() do not.
395 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
396 * check. This code will write out the buffer, period.
398 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
399 (info->flags & V_SAVE)) {
400 if (bp->b_vp == info->vp) {
401 if (bp->b_flags & B_CLUSTEROK) {
402 vfs_bio_awrite(bp);
403 } else {
404 bremfree(bp);
405 bp->b_flags |= B_ASYNC;
406 bwrite(bp);
408 } else {
409 bremfree(bp);
410 bwrite(bp);
412 } else if (info->flags & V_SAVE) {
414 * Cannot set B_NOCACHE on a clean buffer as this will
415 * destroy the VM backing store which might actually
416 * be dirty (and unsynchronized).
418 bremfree(bp);
419 bp->b_flags |= (B_INVAL | B_RELBUF);
420 bp->b_flags &= ~B_ASYNC;
421 brelse(bp);
422 } else {
423 bremfree(bp);
424 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
425 bp->b_flags &= ~B_ASYNC;
426 brelse(bp);
428 return(0);
432 * Truncate a file's buffer and pages to a specified length. This
433 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
434 * sync activity.
436 * The vnode must be locked.
438 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
439 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
440 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
441 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
444 vtruncbuf(struct vnode *vp, off_t length, int blksize)
446 off_t truncloffset;
447 int count;
448 const char *filename;
451 * Round up to the *next* block, then destroy the buffers in question.
452 * Since we are only removing some of the buffers we must rely on the
453 * scan count to determine whether a loop is necessary.
455 if ((count = (int)(length % blksize)) != 0)
456 truncloffset = length + (blksize - count);
457 else
458 truncloffset = length;
460 crit_enter();
461 do {
462 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
463 vtruncbuf_bp_trunc_cmp,
464 vtruncbuf_bp_trunc, &truncloffset);
465 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
466 vtruncbuf_bp_trunc_cmp,
467 vtruncbuf_bp_trunc, &truncloffset);
468 } while(count);
471 * For safety, fsync any remaining metadata if the file is not being
472 * truncated to 0. Since the metadata does not represent the entire
473 * dirty list we have to rely on the hit count to ensure that we get
474 * all of it.
476 if (length > 0) {
477 do {
478 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
479 vtruncbuf_bp_metasync_cmp,
480 vtruncbuf_bp_metasync, vp);
481 } while (count);
485 * Clean out any left over VM backing store.
487 crit_exit();
489 vnode_pager_setsize(vp, length);
491 crit_enter();
494 * It is possible to have in-progress I/O from buffers that were
495 * not part of the truncation. This should not happen if we
496 * are truncating to 0-length.
498 filename = TAILQ_FIRST(&vp->v_namecache) ?
499 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
501 while ((count = vp->v_track_write.bk_active) > 0) {
502 vp->v_track_write.bk_waitflag = 1;
503 tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
504 if (length == 0) {
505 kprintf("Warning: vtruncbuf(): Had to wait for "
506 "%d buffer I/Os to finish in %s\n",
507 count, filename);
512 * Make sure no buffers were instantiated while we were trying
513 * to clean out the remaining VM pages. This could occur due
514 * to busy dirty VM pages being flushed out to disk.
516 do {
517 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
518 vtruncbuf_bp_trunc_cmp,
519 vtruncbuf_bp_trunc, &truncloffset);
520 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
521 vtruncbuf_bp_trunc_cmp,
522 vtruncbuf_bp_trunc, &truncloffset);
523 if (count) {
524 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
525 "left over buffers in %s\n", count, filename);
527 } while(count);
529 crit_exit();
531 return (0);
535 * The callback buffer is beyond the new file EOF and must be destroyed.
536 * Note that the compare function must conform to the RB_SCAN's requirements.
538 static
540 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
542 if (bp->b_loffset >= *(off_t *)data)
543 return(0);
544 return(-1);
547 static
548 int
549 vtruncbuf_bp_trunc(struct buf *bp, void *data)
552 * Do not try to use a buffer we cannot immediately lock, but sleep
553 * anyway to prevent a livelock. The code will loop until all buffers
554 * can be acted upon.
556 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
557 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
558 BUF_UNLOCK(bp);
559 } else {
560 bremfree(bp);
561 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
562 bp->b_flags &= ~B_ASYNC;
563 brelse(bp);
565 return(1);
569 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
570 * blocks (with a negative loffset) are scanned.
571 * Note that the compare function must conform to the RB_SCAN's requirements.
573 static int
574 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
576 if (bp->b_loffset < 0)
577 return(0);
578 return(1);
581 static int
582 vtruncbuf_bp_metasync(struct buf *bp, void *data)
584 struct vnode *vp = data;
586 if (bp->b_flags & B_DELWRI) {
588 * Do not try to use a buffer we cannot immediately lock,
589 * but sleep anyway to prevent a livelock. The code will
590 * loop until all buffers can be acted upon.
592 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
593 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
594 BUF_UNLOCK(bp);
595 } else {
596 bremfree(bp);
597 if (bp->b_vp == vp) {
598 bp->b_flags |= B_ASYNC;
599 } else {
600 bp->b_flags &= ~B_ASYNC;
602 bwrite(bp);
604 return(1);
605 } else {
606 return(0);
611 * vfsync - implements a multipass fsync on a file which understands
612 * dependancies and meta-data. The passed vnode must be locked. The
613 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
615 * When fsyncing data asynchronously just do one consolidated pass starting
616 * with the most negative block number. This may not get all the data due
617 * to dependancies.
619 * When fsyncing data synchronously do a data pass, then a metadata pass,
620 * then do additional data+metadata passes to try to get all the data out.
622 static int vfsync_wait_output(struct vnode *vp,
623 int (*waitoutput)(struct vnode *, struct thread *));
624 static int vfsync_data_only_cmp(struct buf *bp, void *data);
625 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
626 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
627 static int vfsync_bp(struct buf *bp, void *data);
629 struct vfsync_info {
630 struct vnode *vp;
631 int synchronous;
632 int syncdeps;
633 int lazycount;
634 int lazylimit;
635 int skippedbufs;
636 int (*checkdef)(struct buf *);
640 vfsync(struct vnode *vp, int waitfor, int passes,
641 int (*checkdef)(struct buf *),
642 int (*waitoutput)(struct vnode *, struct thread *))
644 struct vfsync_info info;
645 int error;
647 bzero(&info, sizeof(info));
648 info.vp = vp;
649 if ((info.checkdef = checkdef) == NULL)
650 info.syncdeps = 1;
652 crit_enter_id("vfsync");
654 switch(waitfor) {
655 case MNT_LAZY:
657 * Lazy (filesystem syncer typ) Asynchronous plus limit the
658 * number of data (not meta) pages we try to flush to 1MB.
659 * A non-zero return means that lazy limit was reached.
661 info.lazylimit = 1024 * 1024;
662 info.syncdeps = 1;
663 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
664 vfsync_lazy_range_cmp, vfsync_bp, &info);
665 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
666 vfsync_meta_only_cmp, vfsync_bp, &info);
667 if (error == 0)
668 vp->v_lazyw = 0;
669 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
670 vn_syncer_add_to_worklist(vp, 1);
671 error = 0;
672 break;
673 case MNT_NOWAIT:
675 * Asynchronous. Do a data-only pass and a meta-only pass.
677 info.syncdeps = 1;
678 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
679 vfsync_bp, &info);
680 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
681 vfsync_bp, &info);
682 error = 0;
683 break;
684 default:
686 * Synchronous. Do a data-only pass, then a meta-data+data
687 * pass, then additional integrated passes to try to get
688 * all the dependancies flushed.
690 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
691 vfsync_bp, &info);
692 error = vfsync_wait_output(vp, waitoutput);
693 if (error == 0) {
694 info.skippedbufs = 0;
695 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
696 vfsync_bp, &info);
697 error = vfsync_wait_output(vp, waitoutput);
698 if (info.skippedbufs)
699 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
701 while (error == 0 && passes > 0 &&
702 !RB_EMPTY(&vp->v_rbdirty_tree)) {
703 if (--passes == 0) {
704 info.synchronous = 1;
705 info.syncdeps = 1;
707 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
708 vfsync_bp, &info);
709 if (error < 0)
710 error = -error;
711 info.syncdeps = 1;
712 if (error == 0)
713 error = vfsync_wait_output(vp, waitoutput);
715 break;
717 crit_exit_id("vfsync");
718 return(error);
721 static int
722 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
724 int error = 0;
726 while (vp->v_track_write.bk_active) {
727 vp->v_track_write.bk_waitflag = 1;
728 tsleep(&vp->v_track_write, 0, "fsfsn", 0);
730 if (waitoutput)
731 error = waitoutput(vp, curthread);
732 return(error);
735 static int
736 vfsync_data_only_cmp(struct buf *bp, void *data)
738 if (bp->b_loffset < 0)
739 return(-1);
740 return(0);
743 static int
744 vfsync_meta_only_cmp(struct buf *bp, void *data)
746 if (bp->b_loffset < 0)
747 return(0);
748 return(1);
751 static int
752 vfsync_lazy_range_cmp(struct buf *bp, void *data)
754 struct vfsync_info *info = data;
755 if (bp->b_loffset < info->vp->v_lazyw)
756 return(-1);
757 return(0);
760 static int
761 vfsync_bp(struct buf *bp, void *data)
763 struct vfsync_info *info = data;
764 struct vnode *vp = info->vp;
765 int error;
768 * if syncdeps is not set we do not try to write buffers which have
769 * dependancies.
771 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
772 return(0);
775 * Ignore buffers that we cannot immediately lock. XXX
777 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
778 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
779 ++info->skippedbufs;
780 return(0);
782 if ((bp->b_flags & B_DELWRI) == 0)
783 panic("vfsync_bp: buffer not dirty");
784 if (vp != bp->b_vp)
785 panic("vfsync_bp: buffer vp mismatch");
788 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
789 * has been written but an additional handshake with the device
790 * is required before we can dispose of the buffer. We have no idea
791 * how to do this so we have to skip these buffers.
793 if (bp->b_flags & B_NEEDCOMMIT) {
794 BUF_UNLOCK(bp);
795 return(0);
799 * Ask bioops if it is ok to sync
801 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
802 bremfree(bp);
803 brelse(bp);
804 return(0);
807 if (info->synchronous) {
809 * Synchronous flushing. An error may be returned.
811 bremfree(bp);
812 crit_exit_id("vfsync");
813 error = bwrite(bp);
814 crit_enter_id("vfsync");
815 } else {
817 * Asynchronous flushing. A negative return value simply
818 * stops the scan and is not considered an error. We use
819 * this to support limited MNT_LAZY flushes.
821 vp->v_lazyw = bp->b_loffset;
822 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
823 info->lazycount += vfs_bio_awrite(bp);
824 } else {
825 info->lazycount += bp->b_bufsize;
826 bremfree(bp);
827 crit_exit_id("vfsync");
828 bawrite(bp);
829 crit_enter_id("vfsync");
831 if (info->lazylimit && info->lazycount >= info->lazylimit)
832 error = 1;
833 else
834 error = 0;
836 return(-error);
840 * Associate a buffer with a vnode.
842 void
843 bgetvp(struct vnode *vp, struct buf *bp)
845 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
846 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
848 vhold(vp);
850 * Insert onto list for new vnode.
852 crit_enter();
853 bp->b_vp = vp;
854 bp->b_flags |= B_HASHED;
855 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
856 panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
858 bp->b_flags |= B_VNCLEAN;
859 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
860 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
861 crit_exit();
865 * Disassociate a buffer from a vnode.
867 void
868 brelvp(struct buf *bp)
870 struct vnode *vp;
872 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
875 * Delete from old vnode list, if on one.
877 vp = bp->b_vp;
878 crit_enter();
879 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
880 if (bp->b_flags & B_VNDIRTY)
881 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
882 else
883 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
884 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
886 if (bp->b_flags & B_HASHED) {
887 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
888 bp->b_flags &= ~B_HASHED;
890 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
891 vp->v_flag &= ~VONWORKLST;
892 LIST_REMOVE(vp, v_synclist);
894 crit_exit();
895 bp->b_vp = NULL;
896 vdrop(vp);
900 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
901 * This routine is called when the state of the B_DELWRI bit is changed.
903 void
904 reassignbuf(struct buf *bp)
906 struct vnode *vp = bp->b_vp;
907 int delay;
909 KKASSERT(vp != NULL);
910 ++reassignbufcalls;
913 * B_PAGING flagged buffers cannot be reassigned because their vp
914 * is not fully linked in.
916 if (bp->b_flags & B_PAGING)
917 panic("cannot reassign paging buffer");
919 crit_enter();
920 if (bp->b_flags & B_DELWRI) {
922 * Move to the dirty list, add the vnode to the worklist
924 if (bp->b_flags & B_VNCLEAN) {
925 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
926 bp->b_flags &= ~B_VNCLEAN;
928 if ((bp->b_flags & B_VNDIRTY) == 0) {
929 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
930 panic("reassignbuf: dup lblk vp %p bp %p",
931 vp, bp);
933 bp->b_flags |= B_VNDIRTY;
935 if ((vp->v_flag & VONWORKLST) == 0) {
936 switch (vp->v_type) {
937 case VDIR:
938 delay = dirdelay;
939 break;
940 case VCHR:
941 case VBLK:
942 if (vp->v_rdev &&
943 vp->v_rdev->si_mountpoint != NULL) {
944 delay = metadelay;
945 break;
947 /* fall through */
948 default:
949 delay = filedelay;
951 vn_syncer_add_to_worklist(vp, delay);
953 } else {
955 * Move to the clean list, remove the vnode from the worklist
956 * if no dirty blocks remain.
958 if (bp->b_flags & B_VNDIRTY) {
959 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
960 bp->b_flags &= ~B_VNDIRTY;
962 if ((bp->b_flags & B_VNCLEAN) == 0) {
963 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
964 panic("reassignbuf: dup lblk vp %p bp %p",
965 vp, bp);
967 bp->b_flags |= B_VNCLEAN;
969 if ((vp->v_flag & VONWORKLST) &&
970 RB_EMPTY(&vp->v_rbdirty_tree)) {
971 vp->v_flag &= ~VONWORKLST;
972 LIST_REMOVE(vp, v_synclist);
975 crit_exit();
979 * Create a vnode for a block device.
980 * Used for mounting the root file system.
983 bdevvp(cdev_t dev, struct vnode **vpp)
985 struct vnode *vp;
986 struct vnode *nvp;
987 int error;
989 if (dev == NULL) {
990 *vpp = NULLVP;
991 return (ENXIO);
993 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops_p, &nvp, 0, 0);
994 if (error) {
995 *vpp = NULLVP;
996 return (error);
998 vp = nvp;
999 vp->v_type = VCHR;
1000 vp->v_umajor = dev->si_umajor;
1001 vp->v_uminor = dev->si_uminor;
1002 vx_unlock(vp);
1003 *vpp = vp;
1004 return (0);
1008 v_associate_rdev(struct vnode *vp, cdev_t dev)
1010 lwkt_tokref ilock;
1012 if (dev == NULL)
1013 return(ENXIO);
1014 if (dev_is_good(dev) == 0)
1015 return(ENXIO);
1016 KKASSERT(vp->v_rdev == NULL);
1017 if (dev_ref_debug)
1018 kprintf("Z1");
1019 vp->v_rdev = reference_dev(dev);
1020 lwkt_gettoken(&ilock, &spechash_token);
1021 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1022 lwkt_reltoken(&ilock);
1023 return(0);
1026 void
1027 v_release_rdev(struct vnode *vp)
1029 lwkt_tokref ilock;
1030 cdev_t dev;
1032 if ((dev = vp->v_rdev) != NULL) {
1033 lwkt_gettoken(&ilock, &spechash_token);
1034 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1035 vp->v_rdev = NULL;
1036 release_dev(dev);
1037 lwkt_reltoken(&ilock);
1042 * Add a vnode to the alias list hung off the cdev_t. We only associate
1043 * the device number with the vnode. The actual device is not associated
1044 * until the vnode is opened (usually in spec_open()), and will be
1045 * disassociated on last close.
1047 void
1048 addaliasu(struct vnode *nvp, int x, int y)
1050 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1051 panic("addaliasu on non-special vnode");
1052 nvp->v_umajor = x;
1053 nvp->v_uminor = y;
1057 * Simple call that a filesystem can make to try to get rid of a
1058 * vnode. It will fail if anyone is referencing the vnode (including
1059 * the caller).
1061 * The filesystem can check whether its in-memory inode structure still
1062 * references the vp on return.
1064 void
1065 vclean_unlocked(struct vnode *vp)
1067 vx_get(vp);
1068 if (sysref_isactive(&vp->v_sysref) == 0)
1069 vgone_vxlocked(vp);
1070 vx_put(vp);
1074 * Disassociate a vnode from its underlying filesystem.
1076 * The vnode must be VX locked and referenced. In all normal situations
1077 * there are no active references. If vclean_vxlocked() is called while
1078 * there are active references, the vnode is being ripped out and we have
1079 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1081 void
1082 vclean_vxlocked(struct vnode *vp, int flags)
1084 int active;
1085 int n;
1086 vm_object_t object;
1089 * If the vnode has already been reclaimed we have nothing to do.
1091 if (vp->v_flag & VRECLAIMED)
1092 return;
1093 vp->v_flag |= VRECLAIMED;
1096 * Scrap the vfs cache
1098 while (cache_inval_vp(vp, 0) != 0) {
1099 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1100 tsleep(vp, 0, "vclninv", 2);
1104 * Check to see if the vnode is in use. If so we have to reference it
1105 * before we clean it out so that its count cannot fall to zero and
1106 * generate a race against ourselves to recycle it.
1108 active = sysref_isactive(&vp->v_sysref);
1111 * Clean out any buffers associated with the vnode and destroy its
1112 * object, if it has one.
1114 vinvalbuf(vp, V_SAVE, 0, 0);
1117 * If purging an active vnode (typically during a forced unmount
1118 * or reboot), it must be closed and deactivated before being
1119 * reclaimed. This isn't really all that safe, but what can
1120 * we do? XXX.
1122 * Note that neither of these routines unlocks the vnode.
1124 if (active && (flags & DOCLOSE)) {
1125 while ((n = vp->v_opencount) != 0) {
1126 if (vp->v_writecount)
1127 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1128 else
1129 VOP_CLOSE(vp, FNONBLOCK);
1130 if (vp->v_opencount == n) {
1131 kprintf("Warning: unable to force-close"
1132 " vnode %p\n", vp);
1133 break;
1139 * If the vnode has not been deactivated, deactivated it. Deactivation
1140 * can create new buffers and VM pages so we have to call vinvalbuf()
1141 * again to make sure they all get flushed.
1143 * This can occur if a file with a link count of 0 needs to be
1144 * truncated.
1146 if ((vp->v_flag & VINACTIVE) == 0) {
1147 vp->v_flag |= VINACTIVE;
1148 VOP_INACTIVE(vp);
1149 vinvalbuf(vp, V_SAVE, 0, 0);
1153 * If the vnode has an object, destroy it.
1155 if ((object = vp->v_object) != NULL) {
1156 if (object->ref_count == 0) {
1157 if ((object->flags & OBJ_DEAD) == 0)
1158 vm_object_terminate(object);
1159 } else {
1160 vm_pager_deallocate(object);
1162 vp->v_flag &= ~VOBJBUF;
1164 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1167 * Reclaim the vnode.
1169 if (VOP_RECLAIM(vp))
1170 panic("vclean: cannot reclaim");
1173 * Done with purge, notify sleepers of the grim news.
1175 vp->v_ops = &dead_vnode_vops_p;
1176 vn_pollgone(vp);
1177 vp->v_tag = VT_NON;
1180 * If we are destroying an active vnode, reactivate it now that
1181 * we have reassociated it with deadfs. This prevents the system
1182 * from crashing on the vnode due to it being unexpectedly marked
1183 * as inactive or reclaimed.
1185 if (active && (flags & DOCLOSE)) {
1186 vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1191 * Eliminate all activity associated with the requested vnode
1192 * and with all vnodes aliased to the requested vnode.
1194 * The vnode must be referenced and vx_lock()'d
1196 * revoke { struct vnode *a_vp, int a_flags }
1199 vop_stdrevoke(struct vop_revoke_args *ap)
1201 struct vnode *vp, *vq;
1202 lwkt_tokref ilock;
1203 cdev_t dev;
1205 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1207 vp = ap->a_vp;
1210 * If the vnode is already dead don't try to revoke it
1212 if (vp->v_flag & VRECLAIMED)
1213 return (0);
1216 * If the vnode has a device association, scrap all vnodes associated
1217 * with the device. Don't let the device disappear on us while we
1218 * are scrapping the vnodes.
1220 * The passed vp will probably show up in the list, do not VX lock
1221 * it twice!
1223 if (vp->v_type != VCHR)
1224 return(0);
1225 if ((dev = vp->v_rdev) == NULL) {
1226 if ((dev = get_dev(vp->v_umajor, vp->v_uminor)) == NULL)
1227 return(0);
1229 reference_dev(dev);
1230 lwkt_gettoken(&ilock, &spechash_token);
1231 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1232 if (vp != vq)
1233 vx_get(vq);
1234 if (vq == SLIST_FIRST(&dev->si_hlist))
1235 vgone_vxlocked(vq);
1236 if (vp != vq)
1237 vx_put(vq);
1239 lwkt_reltoken(&ilock);
1240 release_dev(dev);
1241 return (0);
1245 * This is called when the object underlying a vnode is being destroyed,
1246 * such as in a remove(). Try to recycle the vnode immediately if the
1247 * only active reference is our reference.
1249 * Directory vnodes in the namecache with children cannot be immediately
1250 * recycled because numerous VOP_N*() ops require them to be stable.
1253 vrecycle(struct vnode *vp)
1255 if (vp->v_sysref.refcnt <= 1) {
1256 if (cache_inval_vp_nonblock(vp))
1257 return(0);
1258 vgone_vxlocked(vp);
1259 return (1);
1261 return (0);
1265 * Return the maximum I/O size allowed for strategy calls on VP.
1267 * If vp is VCHR or VBLK we dive the device, otherwise we use
1268 * the vp's mount info.
1271 vmaxiosize(struct vnode *vp)
1273 if (vp->v_type == VBLK || vp->v_type == VCHR) {
1274 return(vp->v_rdev->si_iosize_max);
1275 } else {
1276 return(vp->v_mount->mnt_iosize_max);
1281 * Eliminate all activity associated with a vnode in preparation for reuse.
1283 * The vnode must be VX locked and refd and will remain VX locked and refd
1284 * on return. This routine may be called with the vnode in any state, as
1285 * long as it is VX locked. The vnode will be cleaned out and marked
1286 * VRECLAIMED but will not actually be reused until all existing refs and
1287 * holds go away.
1289 * NOTE: This routine may be called on a vnode which has not yet been
1290 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1291 * already been reclaimed.
1293 * This routine is not responsible for placing us back on the freelist.
1294 * Instead, it happens automatically when the caller releases the VX lock
1295 * (assuming there aren't any other references).
1298 void
1299 vgone_vxlocked(struct vnode *vp)
1302 * assert that the VX lock is held. This is an absolute requirement
1303 * now for vgone_vxlocked() to be called.
1305 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1308 * Clean out the filesystem specific data and set the VRECLAIMED
1309 * bit. Also deactivate the vnode if necessary.
1311 vclean_vxlocked(vp, DOCLOSE);
1314 * Delete from old mount point vnode list, if on one.
1316 if (vp->v_mount != NULL)
1317 insmntque(vp, NULL);
1320 * If special device, remove it from special device alias list
1321 * if it is on one. This should normally only occur if a vnode is
1322 * being revoked as the device should otherwise have been released
1323 * naturally.
1325 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1326 v_release_rdev(vp);
1330 * Set us to VBAD
1332 vp->v_type = VBAD;
1336 * Lookup a vnode by device number.
1339 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1341 lwkt_tokref ilock;
1342 struct vnode *vp;
1344 lwkt_gettoken(&ilock, &spechash_token);
1345 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1346 if (type == vp->v_type) {
1347 *vpp = vp;
1348 lwkt_reltoken(&ilock);
1349 return (1);
1352 lwkt_reltoken(&ilock);
1353 return (0);
1357 * Calculate the total number of references to a special device. This
1358 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1359 * an overloaded field. Since udev2dev can now return NULL, we have
1360 * to check for a NULL v_rdev.
1363 count_dev(cdev_t dev)
1365 lwkt_tokref ilock;
1366 struct vnode *vp;
1367 int count = 0;
1369 if (SLIST_FIRST(&dev->si_hlist)) {
1370 lwkt_gettoken(&ilock, &spechash_token);
1371 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1372 if (vp->v_sysref.refcnt > 0)
1373 count += vp->v_sysref.refcnt;
1375 lwkt_reltoken(&ilock);
1377 return(count);
1381 count_udev(int x, int y)
1383 cdev_t dev;
1385 if ((dev = get_dev(x, y)) == NULL)
1386 return(0);
1387 return(count_dev(dev));
1391 vcount(struct vnode *vp)
1393 if (vp->v_rdev == NULL)
1394 return(0);
1395 return(count_dev(vp->v_rdev));
1399 * Initialize VMIO for a vnode. This routine MUST be called before a
1400 * VFS can issue buffer cache ops on a vnode. It is typically called
1401 * when a vnode is initialized from its inode.
1404 vinitvmio(struct vnode *vp, off_t filesize)
1406 vm_object_t object;
1407 int error = 0;
1409 retry:
1410 if ((object = vp->v_object) == NULL) {
1411 object = vnode_pager_alloc(vp, filesize, 0, 0);
1413 * Dereference the reference we just created. This assumes
1414 * that the object is associated with the vp.
1416 object->ref_count--;
1417 vrele(vp);
1418 } else {
1419 if (object->flags & OBJ_DEAD) {
1420 vn_unlock(vp);
1421 vm_object_dead_sleep(object, "vodead");
1422 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1423 goto retry;
1426 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1427 vp->v_flag |= VOBJBUF;
1428 return (error);
1433 * Print out a description of a vnode.
1435 static char *typename[] =
1436 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1438 void
1439 vprint(char *label, struct vnode *vp)
1441 char buf[96];
1443 if (label != NULL)
1444 kprintf("%s: %p: ", label, (void *)vp);
1445 else
1446 kprintf("%p: ", (void *)vp);
1447 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1448 typename[vp->v_type],
1449 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1450 buf[0] = '\0';
1451 if (vp->v_flag & VROOT)
1452 strcat(buf, "|VROOT");
1453 if (vp->v_flag & VTEXT)
1454 strcat(buf, "|VTEXT");
1455 if (vp->v_flag & VSYSTEM)
1456 strcat(buf, "|VSYSTEM");
1457 if (vp->v_flag & VFREE)
1458 strcat(buf, "|VFREE");
1459 if (vp->v_flag & VOBJBUF)
1460 strcat(buf, "|VOBJBUF");
1461 if (buf[0] != '\0')
1462 kprintf(" flags (%s)", &buf[1]);
1463 if (vp->v_data == NULL) {
1464 kprintf("\n");
1465 } else {
1466 kprintf("\n\t");
1467 VOP_PRINT(vp);
1471 #ifdef DDB
1472 #include <ddb/ddb.h>
1474 static int db_show_locked_vnodes(struct mount *mp, void *data);
1477 * List all of the locked vnodes in the system.
1478 * Called when debugging the kernel.
1480 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1482 kprintf("Locked vnodes\n");
1483 mountlist_scan(db_show_locked_vnodes, NULL,
1484 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1487 static int
1488 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1490 struct vnode *vp;
1492 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1493 if (vn_islocked(vp))
1494 vprint((char *)0, vp);
1496 return(0);
1498 #endif
1501 * Top level filesystem related information gathering.
1503 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1505 static int
1506 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1508 int *name = (int *)arg1 - 1; /* XXX */
1509 u_int namelen = arg2 + 1; /* XXX */
1510 struct vfsconf *vfsp;
1512 #if 1 || defined(COMPAT_PRELITE2)
1513 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1514 if (namelen == 1)
1515 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1516 #endif
1518 #ifdef notyet
1519 /* all sysctl names at this level are at least name and field */
1520 if (namelen < 2)
1521 return (ENOTDIR); /* overloaded */
1522 if (name[0] != VFS_GENERIC) {
1523 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1524 if (vfsp->vfc_typenum == name[0])
1525 break;
1526 if (vfsp == NULL)
1527 return (EOPNOTSUPP);
1528 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1529 oldp, oldlenp, newp, newlen, p));
1531 #endif
1532 switch (name[1]) {
1533 case VFS_MAXTYPENUM:
1534 if (namelen != 2)
1535 return (ENOTDIR);
1536 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1537 case VFS_CONF:
1538 if (namelen != 3)
1539 return (ENOTDIR); /* overloaded */
1540 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1541 if (vfsp->vfc_typenum == name[2])
1542 break;
1543 if (vfsp == NULL)
1544 return (EOPNOTSUPP);
1545 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1547 return (EOPNOTSUPP);
1550 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1551 "Generic filesystem");
1553 #if 1 || defined(COMPAT_PRELITE2)
1555 static int
1556 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1558 int error;
1559 struct vfsconf *vfsp;
1560 struct ovfsconf ovfs;
1562 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1563 bzero(&ovfs, sizeof(ovfs));
1564 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1565 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1566 ovfs.vfc_index = vfsp->vfc_typenum;
1567 ovfs.vfc_refcount = vfsp->vfc_refcount;
1568 ovfs.vfc_flags = vfsp->vfc_flags;
1569 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1570 if (error)
1571 return error;
1573 return 0;
1576 #endif /* 1 || COMPAT_PRELITE2 */
1579 * Check to see if a filesystem is mounted on a block device.
1582 vfs_mountedon(struct vnode *vp)
1584 cdev_t dev;
1586 if ((dev = vp->v_rdev) == NULL) {
1587 if (vp->v_type != VBLK)
1588 dev = get_dev(vp->v_uminor, vp->v_umajor);
1590 if (dev != NULL && dev->si_mountpoint)
1591 return (EBUSY);
1592 return (0);
1596 * Unmount all filesystems. The list is traversed in reverse order
1597 * of mounting to avoid dependencies.
1600 static int vfs_umountall_callback(struct mount *mp, void *data);
1602 void
1603 vfs_unmountall(void)
1605 int count;
1607 do {
1608 count = mountlist_scan(vfs_umountall_callback,
1609 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1610 } while (count);
1613 static
1615 vfs_umountall_callback(struct mount *mp, void *data)
1617 int error;
1619 error = dounmount(mp, MNT_FORCE);
1620 if (error) {
1621 mountlist_remove(mp);
1622 kprintf("unmount of filesystem mounted from %s failed (",
1623 mp->mnt_stat.f_mntfromname);
1624 if (error == EBUSY)
1625 kprintf("BUSY)\n");
1626 else
1627 kprintf("%d)\n", error);
1629 return(1);
1633 * Build hash lists of net addresses and hang them off the mount point.
1634 * Called by ufs_mount() to set up the lists of export addresses.
1636 static int
1637 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1638 const struct export_args *argp)
1640 struct netcred *np;
1641 struct radix_node_head *rnh;
1642 int i;
1643 struct radix_node *rn;
1644 struct sockaddr *saddr, *smask = 0;
1645 struct domain *dom;
1646 int error;
1648 if (argp->ex_addrlen == 0) {
1649 if (mp->mnt_flag & MNT_DEFEXPORTED)
1650 return (EPERM);
1651 np = &nep->ne_defexported;
1652 np->netc_exflags = argp->ex_flags;
1653 np->netc_anon = argp->ex_anon;
1654 np->netc_anon.cr_ref = 1;
1655 mp->mnt_flag |= MNT_DEFEXPORTED;
1656 return (0);
1659 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1660 return (EINVAL);
1661 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1662 return (EINVAL);
1664 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1665 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1666 saddr = (struct sockaddr *) (np + 1);
1667 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1668 goto out;
1669 if (saddr->sa_len > argp->ex_addrlen)
1670 saddr->sa_len = argp->ex_addrlen;
1671 if (argp->ex_masklen) {
1672 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1673 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1674 if (error)
1675 goto out;
1676 if (smask->sa_len > argp->ex_masklen)
1677 smask->sa_len = argp->ex_masklen;
1679 i = saddr->sa_family;
1680 if ((rnh = nep->ne_rtable[i]) == 0) {
1682 * Seems silly to initialize every AF when most are not used,
1683 * do so on demand here
1685 SLIST_FOREACH(dom, &domains, dom_next)
1686 if (dom->dom_family == i && dom->dom_rtattach) {
1687 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1688 dom->dom_rtoffset);
1689 break;
1691 if ((rnh = nep->ne_rtable[i]) == 0) {
1692 error = ENOBUFS;
1693 goto out;
1696 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1697 np->netc_rnodes);
1698 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1699 error = EPERM;
1700 goto out;
1702 np->netc_exflags = argp->ex_flags;
1703 np->netc_anon = argp->ex_anon;
1704 np->netc_anon.cr_ref = 1;
1705 return (0);
1706 out:
1707 kfree(np, M_NETADDR);
1708 return (error);
1711 /* ARGSUSED */
1712 static int
1713 vfs_free_netcred(struct radix_node *rn, void *w)
1715 struct radix_node_head *rnh = (struct radix_node_head *) w;
1717 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1718 kfree((caddr_t) rn, M_NETADDR);
1719 return (0);
1723 * Free the net address hash lists that are hanging off the mount points.
1725 static void
1726 vfs_free_addrlist(struct netexport *nep)
1728 int i;
1729 struct radix_node_head *rnh;
1731 for (i = 0; i <= AF_MAX; i++)
1732 if ((rnh = nep->ne_rtable[i])) {
1733 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1734 (caddr_t) rnh);
1735 kfree((caddr_t) rnh, M_RTABLE);
1736 nep->ne_rtable[i] = 0;
1741 vfs_export(struct mount *mp, struct netexport *nep,
1742 const struct export_args *argp)
1744 int error;
1746 if (argp->ex_flags & MNT_DELEXPORT) {
1747 if (mp->mnt_flag & MNT_EXPUBLIC) {
1748 vfs_setpublicfs(NULL, NULL, NULL);
1749 mp->mnt_flag &= ~MNT_EXPUBLIC;
1751 vfs_free_addrlist(nep);
1752 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1754 if (argp->ex_flags & MNT_EXPORTED) {
1755 if (argp->ex_flags & MNT_EXPUBLIC) {
1756 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1757 return (error);
1758 mp->mnt_flag |= MNT_EXPUBLIC;
1760 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1761 return (error);
1762 mp->mnt_flag |= MNT_EXPORTED;
1764 return (0);
1769 * Set the publicly exported filesystem (WebNFS). Currently, only
1770 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1773 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1774 const struct export_args *argp)
1776 int error;
1777 struct vnode *rvp;
1778 char *cp;
1781 * mp == NULL -> invalidate the current info, the FS is
1782 * no longer exported. May be called from either vfs_export
1783 * or unmount, so check if it hasn't already been done.
1785 if (mp == NULL) {
1786 if (nfs_pub.np_valid) {
1787 nfs_pub.np_valid = 0;
1788 if (nfs_pub.np_index != NULL) {
1789 FREE(nfs_pub.np_index, M_TEMP);
1790 nfs_pub.np_index = NULL;
1793 return (0);
1797 * Only one allowed at a time.
1799 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1800 return (EBUSY);
1803 * Get real filehandle for root of exported FS.
1805 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1806 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1808 if ((error = VFS_ROOT(mp, &rvp)))
1809 return (error);
1811 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1812 return (error);
1814 vput(rvp);
1817 * If an indexfile was specified, pull it in.
1819 if (argp->ex_indexfile != NULL) {
1820 int namelen;
1822 error = vn_get_namelen(rvp, &namelen);
1823 if (error)
1824 return (error);
1825 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1826 M_WAITOK);
1827 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1828 namelen, (size_t *)0);
1829 if (!error) {
1831 * Check for illegal filenames.
1833 for (cp = nfs_pub.np_index; *cp; cp++) {
1834 if (*cp == '/') {
1835 error = EINVAL;
1836 break;
1840 if (error) {
1841 FREE(nfs_pub.np_index, M_TEMP);
1842 return (error);
1846 nfs_pub.np_mount = mp;
1847 nfs_pub.np_valid = 1;
1848 return (0);
1851 struct netcred *
1852 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1853 struct sockaddr *nam)
1855 struct netcred *np;
1856 struct radix_node_head *rnh;
1857 struct sockaddr *saddr;
1859 np = NULL;
1860 if (mp->mnt_flag & MNT_EXPORTED) {
1862 * Lookup in the export list first.
1864 if (nam != NULL) {
1865 saddr = nam;
1866 rnh = nep->ne_rtable[saddr->sa_family];
1867 if (rnh != NULL) {
1868 np = (struct netcred *)
1869 (*rnh->rnh_matchaddr)((char *)saddr,
1870 rnh);
1871 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1872 np = NULL;
1876 * If no address match, use the default if it exists.
1878 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1879 np = &nep->ne_defexported;
1881 return (np);
1885 * perform msync on all vnodes under a mount point. The mount point must
1886 * be locked. This code is also responsible for lazy-freeing unreferenced
1887 * vnodes whos VM objects no longer contain pages.
1889 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1891 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1892 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
1893 * way up in this high level function.
1895 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1896 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1898 void
1899 vfs_msync(struct mount *mp, int flags)
1901 int vmsc_flags;
1903 vmsc_flags = VMSC_GETVP;
1904 if (flags != MNT_WAIT)
1905 vmsc_flags |= VMSC_NOWAIT;
1906 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1907 (void *)flags);
1911 * scan1 is a fast pre-check. There could be hundreds of thousands of
1912 * vnodes, we cannot afford to do anything heavy weight until we have a
1913 * fairly good indication that there is work to do.
1915 static
1917 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1919 int flags = (int)data;
1921 if ((vp->v_flag & VRECLAIMED) == 0) {
1922 if (vshouldmsync(vp))
1923 return(0); /* call scan2 */
1924 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1925 (vp->v_flag & VOBJDIRTY) &&
1926 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
1927 return(0); /* call scan2 */
1932 * do not call scan2, continue the loop
1934 return(-1);
1938 * This callback is handed a locked vnode.
1940 static
1942 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1944 vm_object_t obj;
1945 int flags = (int)data;
1947 if (vp->v_flag & VRECLAIMED)
1948 return(0);
1950 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1951 if ((obj = vp->v_object) != NULL) {
1952 vm_object_page_clean(obj, 0, 0,
1953 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1956 return(0);
1960 * Record a process's interest in events which might happen to
1961 * a vnode. Because poll uses the historic select-style interface
1962 * internally, this routine serves as both the ``check for any
1963 * pending events'' and the ``record my interest in future events''
1964 * functions. (These are done together, while the lock is held,
1965 * to avoid race conditions.)
1968 vn_pollrecord(struct vnode *vp, int events)
1970 lwkt_tokref ilock;
1972 KKASSERT(curthread->td_proc != NULL);
1974 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1975 if (vp->v_pollinfo.vpi_revents & events) {
1977 * This leaves events we are not interested
1978 * in available for the other process which
1979 * which presumably had requested them
1980 * (otherwise they would never have been
1981 * recorded).
1983 events &= vp->v_pollinfo.vpi_revents;
1984 vp->v_pollinfo.vpi_revents &= ~events;
1986 lwkt_reltoken(&ilock);
1987 return events;
1989 vp->v_pollinfo.vpi_events |= events;
1990 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
1991 lwkt_reltoken(&ilock);
1992 return 0;
1996 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
1997 * it is possible for us to miss an event due to race conditions, but
1998 * that condition is expected to be rare, so for the moment it is the
1999 * preferred interface.
2001 void
2002 vn_pollevent(struct vnode *vp, int events)
2004 lwkt_tokref ilock;
2006 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2007 if (vp->v_pollinfo.vpi_events & events) {
2009 * We clear vpi_events so that we don't
2010 * call selwakeup() twice if two events are
2011 * posted before the polling process(es) is
2012 * awakened. This also ensures that we take at
2013 * most one selwakeup() if the polling process
2014 * is no longer interested. However, it does
2015 * mean that only one event can be noticed at
2016 * a time. (Perhaps we should only clear those
2017 * event bits which we note?) XXX
2019 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2020 vp->v_pollinfo.vpi_revents |= events;
2021 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2023 lwkt_reltoken(&ilock);
2027 * Wake up anyone polling on vp because it is being revoked.
2028 * This depends on dead_poll() returning POLLHUP for correct
2029 * behavior.
2031 void
2032 vn_pollgone(struct vnode *vp)
2034 lwkt_tokref ilock;
2036 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2037 if (vp->v_pollinfo.vpi_events) {
2038 vp->v_pollinfo.vpi_events = 0;
2039 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2041 lwkt_reltoken(&ilock);
2045 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2046 * (or v_rdev might be NULL).
2048 cdev_t
2049 vn_todev(struct vnode *vp)
2051 if (vp->v_type != VBLK && vp->v_type != VCHR)
2052 return (NULL);
2053 KKASSERT(vp->v_rdev != NULL);
2054 return (vp->v_rdev);
2058 * Check if vnode represents a disk device. The vnode does not need to be
2059 * opened.
2062 vn_isdisk(struct vnode *vp, int *errp)
2064 cdev_t dev;
2066 if (vp->v_type != VCHR) {
2067 if (errp != NULL)
2068 *errp = ENOTBLK;
2069 return (0);
2072 if ((dev = vp->v_rdev) == NULL)
2073 dev = get_dev(vp->v_umajor, vp->v_uminor);
2075 if (dev == NULL) {
2076 if (errp != NULL)
2077 *errp = ENXIO;
2078 return (0);
2080 if (dev_is_good(dev) == 0) {
2081 if (errp != NULL)
2082 *errp = ENXIO;
2083 return (0);
2085 if ((dev_dflags(dev) & D_DISK) == 0) {
2086 if (errp != NULL)
2087 *errp = ENOTBLK;
2088 return (0);
2090 if (errp != NULL)
2091 *errp = 0;
2092 return (1);
2096 vn_get_namelen(struct vnode *vp, int *namelen)
2098 int error, retval[2];
2100 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2101 if (error)
2102 return (error);
2103 *namelen = *retval;
2104 return (0);
2108 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2109 uint16_t d_namlen, const char *d_name)
2111 struct dirent *dp;
2112 size_t len;
2114 len = _DIRENT_RECLEN(d_namlen);
2115 if (len > uio->uio_resid)
2116 return(1);
2118 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2120 dp->d_ino = d_ino;
2121 dp->d_namlen = d_namlen;
2122 dp->d_type = d_type;
2123 bcopy(d_name, dp->d_name, d_namlen);
2125 *error = uiomove((caddr_t)dp, len, uio);
2127 kfree(dp, M_TEMP);
2129 return(0);