1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
34 #include "gdb_assert.h"
38 /* Prototypes for exported functions. */
40 void _initialize_values (void);
44 /* Type of value; either not an lval, or one of the various
45 different possible kinds of lval. */
48 /* Is it modifiable? Only relevant if lval != not_lval. */
51 /* Location of value (if lval). */
54 /* If lval == lval_memory, this is the address in the inferior.
55 If lval == lval_register, this is the byte offset into the
56 registers structure. */
59 /* Pointer to internal variable. */
60 struct internalvar
*internalvar
;
63 /* Describes offset of a value within lval of a structure in bytes.
64 If lval == lval_memory, this is an offset to the address. If
65 lval == lval_register, this is a further offset from
66 location.address within the registers structure. Note also the
67 member embedded_offset below. */
70 /* Only used for bitfields; number of bits contained in them. */
73 /* Only used for bitfields; position of start of field. For
74 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
75 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
78 /* Frame register value is relative to. This will be described in
79 the lval enum above as "lval_register". */
80 struct frame_id frame_id
;
82 /* Type of the value. */
85 /* If a value represents a C++ object, then the `type' field gives
86 the object's compile-time type. If the object actually belongs
87 to some class derived from `type', perhaps with other base
88 classes and additional members, then `type' is just a subobject
89 of the real thing, and the full object is probably larger than
92 If `type' is a dynamic class (i.e. one with a vtable), then GDB
93 can actually determine the object's run-time type by looking at
94 the run-time type information in the vtable. When this
95 information is available, we may elect to read in the entire
96 object, for several reasons:
98 - When printing the value, the user would probably rather see the
99 full object, not just the limited portion apparent from the
102 - If `type' has virtual base classes, then even printing `type'
103 alone may require reaching outside the `type' portion of the
104 object to wherever the virtual base class has been stored.
106 When we store the entire object, `enclosing_type' is the run-time
107 type -- the complete object -- and `embedded_offset' is the
108 offset of `type' within that larger type, in bytes. The
109 value_contents() macro takes `embedded_offset' into account, so
110 most GDB code continues to see the `type' portion of the value,
111 just as the inferior would.
113 If `type' is a pointer to an object, then `enclosing_type' is a
114 pointer to the object's run-time type, and `pointed_to_offset' is
115 the offset in bytes from the full object to the pointed-to object
116 -- that is, the value `embedded_offset' would have if we followed
117 the pointer and fetched the complete object. (I don't really see
118 the point. Why not just determine the run-time type when you
119 indirect, and avoid the special case? The contents don't matter
120 until you indirect anyway.)
122 If we're not doing anything fancy, `enclosing_type' is equal to
123 `type', and `embedded_offset' is zero, so everything works
125 struct type
*enclosing_type
;
127 int pointed_to_offset
;
129 /* Values are stored in a chain, so that they can be deleted easily
130 over calls to the inferior. Values assigned to internal
131 variables or put into the value history are taken off this
135 /* Register number if the value is from a register. */
138 /* If zero, contents of this value are in the contents field. If
139 nonzero, contents are in inferior memory at address in the
140 location.address field plus the offset field (and the lval field
141 should be lval_memory).
143 WARNING: This field is used by the code which handles watchpoints
144 (see breakpoint.c) to decide whether a particular value can be
145 watched by hardware watchpoints. If the lazy flag is set for
146 some member of a value chain, it is assumed that this member of
147 the chain doesn't need to be watched as part of watching the
148 value itself. This is how GDB avoids watching the entire struct
149 or array when the user wants to watch a single struct member or
150 array element. If you ever change the way lazy flag is set and
151 reset, be sure to consider this use as well! */
154 /* If nonzero, this is the value of a variable which does not
155 actually exist in the program. */
158 /* If value is a variable, is it initialized or not. */
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
168 gdb_byte contents
[1];
169 DOUBLEST force_doublest_align
;
170 LONGEST force_longest_align
;
171 CORE_ADDR force_core_addr_align
;
172 void *force_pointer_align
;
174 /* Do not add any new members here -- contents above will trash
178 /* Prototypes for local functions. */
180 static void show_values (char *, int);
182 static void show_convenience (char *, int);
185 /* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
191 #define VALUE_HISTORY_CHUNK 60
193 struct value_history_chunk
195 struct value_history_chunk
*next
;
196 struct value
*values
[VALUE_HISTORY_CHUNK
];
199 /* Chain of chunks now in use. */
201 static struct value_history_chunk
*value_history_chain
;
203 static int value_history_count
; /* Abs number of last entry stored */
205 /* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
209 static struct value
*all_values
;
211 /* Allocate a value that has the correct length for type TYPE. */
214 allocate_value (struct type
*type
)
217 struct type
*atype
= check_typedef (type
);
219 val
= (struct value
*) xzalloc (sizeof (struct value
) + TYPE_LENGTH (atype
));
220 val
->next
= all_values
;
223 val
->enclosing_type
= type
;
224 VALUE_LVAL (val
) = not_lval
;
225 VALUE_ADDRESS (val
) = 0;
226 VALUE_FRAME_ID (val
) = null_frame_id
;
230 VALUE_REGNUM (val
) = -1;
232 val
->optimized_out
= 0;
233 val
->embedded_offset
= 0;
234 val
->pointed_to_offset
= 0;
236 val
->initialized
= 1; /* Default to initialized. */
240 /* Allocate a value that has the correct length
241 for COUNT repetitions type TYPE. */
244 allocate_repeat_value (struct type
*type
, int count
)
246 int low_bound
= current_language
->string_lower_bound
; /* ??? */
247 /* FIXME-type-allocation: need a way to free this type when we are
249 struct type
*range_type
250 = create_range_type ((struct type
*) NULL
, builtin_type_int
,
251 low_bound
, count
+ low_bound
- 1);
252 /* FIXME-type-allocation: need a way to free this type when we are
254 return allocate_value (create_array_type ((struct type
*) NULL
,
258 /* Accessor methods. */
261 value_next (struct value
*value
)
267 value_type (struct value
*value
)
272 deprecated_set_value_type (struct value
*value
, struct type
*type
)
278 value_offset (struct value
*value
)
280 return value
->offset
;
283 set_value_offset (struct value
*value
, int offset
)
285 value
->offset
= offset
;
289 value_bitpos (struct value
*value
)
291 return value
->bitpos
;
294 set_value_bitpos (struct value
*value
, int bit
)
300 value_bitsize (struct value
*value
)
302 return value
->bitsize
;
305 set_value_bitsize (struct value
*value
, int bit
)
307 value
->bitsize
= bit
;
311 value_contents_raw (struct value
*value
)
313 return value
->aligner
.contents
+ value
->embedded_offset
;
317 value_contents_all_raw (struct value
*value
)
319 return value
->aligner
.contents
;
323 value_enclosing_type (struct value
*value
)
325 return value
->enclosing_type
;
329 value_contents_all (struct value
*value
)
332 value_fetch_lazy (value
);
333 return value
->aligner
.contents
;
337 value_lazy (struct value
*value
)
343 set_value_lazy (struct value
*value
, int val
)
349 value_contents (struct value
*value
)
351 return value_contents_writeable (value
);
355 value_contents_writeable (struct value
*value
)
358 value_fetch_lazy (value
);
359 return value_contents_raw (value
);
362 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
363 this function is different from value_equal; in C the operator ==
364 can return 0 even if the two values being compared are equal. */
367 value_contents_equal (struct value
*val1
, struct value
*val2
)
373 type1
= check_typedef (value_type (val1
));
374 type2
= check_typedef (value_type (val2
));
375 len
= TYPE_LENGTH (type1
);
376 if (len
!= TYPE_LENGTH (type2
))
379 return (memcmp (value_contents (val1
), value_contents (val2
), len
) == 0);
383 value_optimized_out (struct value
*value
)
385 return value
->optimized_out
;
389 set_value_optimized_out (struct value
*value
, int val
)
391 value
->optimized_out
= val
;
395 value_embedded_offset (struct value
*value
)
397 return value
->embedded_offset
;
401 set_value_embedded_offset (struct value
*value
, int val
)
403 value
->embedded_offset
= val
;
407 value_pointed_to_offset (struct value
*value
)
409 return value
->pointed_to_offset
;
413 set_value_pointed_to_offset (struct value
*value
, int val
)
415 value
->pointed_to_offset
= val
;
419 deprecated_value_lval_hack (struct value
*value
)
425 deprecated_value_address_hack (struct value
*value
)
427 return &value
->location
.address
;
430 struct internalvar
**
431 deprecated_value_internalvar_hack (struct value
*value
)
433 return &value
->location
.internalvar
;
437 deprecated_value_frame_id_hack (struct value
*value
)
439 return &value
->frame_id
;
443 deprecated_value_regnum_hack (struct value
*value
)
445 return &value
->regnum
;
449 deprecated_value_modifiable (struct value
*value
)
451 return value
->modifiable
;
454 deprecated_set_value_modifiable (struct value
*value
, int modifiable
)
456 value
->modifiable
= modifiable
;
459 /* Return a mark in the value chain. All values allocated after the
460 mark is obtained (except for those released) are subject to being freed
461 if a subsequent value_free_to_mark is passed the mark. */
468 /* Free all values allocated since MARK was obtained by value_mark
469 (except for those released). */
471 value_free_to_mark (struct value
*mark
)
476 for (val
= all_values
; val
&& val
!= mark
; val
= next
)
484 /* Free all the values that have been allocated (except for those released).
485 Called after each command, successful or not. */
488 free_all_values (void)
493 for (val
= all_values
; val
; val
= next
)
502 /* Remove VAL from the chain all_values
503 so it will not be freed automatically. */
506 release_value (struct value
*val
)
510 if (all_values
== val
)
512 all_values
= val
->next
;
516 for (v
= all_values
; v
; v
= v
->next
)
526 /* Release all values up to mark */
528 value_release_to_mark (struct value
*mark
)
533 for (val
= next
= all_values
; next
; next
= next
->next
)
534 if (next
->next
== mark
)
536 all_values
= next
->next
;
544 /* Return a copy of the value ARG.
545 It contains the same contents, for same memory address,
546 but it's a different block of storage. */
549 value_copy (struct value
*arg
)
551 struct type
*encl_type
= value_enclosing_type (arg
);
552 struct value
*val
= allocate_value (encl_type
);
553 val
->type
= arg
->type
;
554 VALUE_LVAL (val
) = VALUE_LVAL (arg
);
555 val
->location
= arg
->location
;
556 val
->offset
= arg
->offset
;
557 val
->bitpos
= arg
->bitpos
;
558 val
->bitsize
= arg
->bitsize
;
559 VALUE_FRAME_ID (val
) = VALUE_FRAME_ID (arg
);
560 VALUE_REGNUM (val
) = VALUE_REGNUM (arg
);
561 val
->lazy
= arg
->lazy
;
562 val
->optimized_out
= arg
->optimized_out
;
563 val
->embedded_offset
= value_embedded_offset (arg
);
564 val
->pointed_to_offset
= arg
->pointed_to_offset
;
565 val
->modifiable
= arg
->modifiable
;
566 if (!value_lazy (val
))
568 memcpy (value_contents_all_raw (val
), value_contents_all_raw (arg
),
569 TYPE_LENGTH (value_enclosing_type (arg
)));
575 /* Access to the value history. */
577 /* Record a new value in the value history.
578 Returns the absolute history index of the entry.
579 Result of -1 indicates the value was not saved; otherwise it is the
580 value history index of this new item. */
583 record_latest_value (struct value
*val
)
587 /* We don't want this value to have anything to do with the inferior anymore.
588 In particular, "set $1 = 50" should not affect the variable from which
589 the value was taken, and fast watchpoints should be able to assume that
590 a value on the value history never changes. */
591 if (value_lazy (val
))
592 value_fetch_lazy (val
);
593 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
594 from. This is a bit dubious, because then *&$1 does not just return $1
595 but the current contents of that location. c'est la vie... */
599 /* Here we treat value_history_count as origin-zero
600 and applying to the value being stored now. */
602 i
= value_history_count
% VALUE_HISTORY_CHUNK
;
605 struct value_history_chunk
*new
606 = (struct value_history_chunk
*)
607 xmalloc (sizeof (struct value_history_chunk
));
608 memset (new->values
, 0, sizeof new->values
);
609 new->next
= value_history_chain
;
610 value_history_chain
= new;
613 value_history_chain
->values
[i
] = val
;
615 /* Now we regard value_history_count as origin-one
616 and applying to the value just stored. */
618 return ++value_history_count
;
621 /* Return a copy of the value in the history with sequence number NUM. */
624 access_value_history (int num
)
626 struct value_history_chunk
*chunk
;
631 absnum
+= value_history_count
;
636 error (_("The history is empty."));
638 error (_("There is only one value in the history."));
640 error (_("History does not go back to $$%d."), -num
);
642 if (absnum
> value_history_count
)
643 error (_("History has not yet reached $%d."), absnum
);
647 /* Now absnum is always absolute and origin zero. */
649 chunk
= value_history_chain
;
650 for (i
= (value_history_count
- 1) / VALUE_HISTORY_CHUNK
- absnum
/ VALUE_HISTORY_CHUNK
;
654 return value_copy (chunk
->values
[absnum
% VALUE_HISTORY_CHUNK
]);
658 show_values (char *num_exp
, int from_tty
)
666 /* "info history +" should print from the stored position.
667 "info history <exp>" should print around value number <exp>. */
668 if (num_exp
[0] != '+' || num_exp
[1] != '\0')
669 num
= parse_and_eval_long (num_exp
) - 5;
673 /* "info history" means print the last 10 values. */
674 num
= value_history_count
- 9;
680 for (i
= num
; i
< num
+ 10 && i
<= value_history_count
; i
++)
682 val
= access_value_history (i
);
683 printf_filtered (("$%d = "), i
);
684 value_print (val
, gdb_stdout
, 0, Val_pretty_default
);
685 printf_filtered (("\n"));
688 /* The next "info history +" should start after what we just printed. */
691 /* Hitting just return after this command should do the same thing as
692 "info history +". If num_exp is null, this is unnecessary, since
693 "info history +" is not useful after "info history". */
694 if (from_tty
&& num_exp
)
701 /* Internal variables. These are variables within the debugger
702 that hold values assigned by debugger commands.
703 The user refers to them with a '$' prefix
704 that does not appear in the variable names stored internally. */
706 static struct internalvar
*internalvars
;
708 /* If the variable does not already exist create it and give it the value given.
709 If no value is given then the default is zero. */
711 init_if_undefined_command (char* args
, int from_tty
)
713 struct internalvar
* intvar
;
715 /* Parse the expression - this is taken from set_command(). */
716 struct expression
*expr
= parse_expression (args
);
717 register struct cleanup
*old_chain
=
718 make_cleanup (free_current_contents
, &expr
);
720 /* Validate the expression.
721 Was the expression an assignment?
722 Or even an expression at all? */
723 if (expr
->nelts
== 0 || expr
->elts
[0].opcode
!= BINOP_ASSIGN
)
724 error (_("Init-if-undefined requires an assignment expression."));
726 /* Extract the variable from the parsed expression.
727 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
728 if (expr
->elts
[1].opcode
!= OP_INTERNALVAR
)
729 error (_("The first parameter to init-if-undefined should be a GDB variable."));
730 intvar
= expr
->elts
[2].internalvar
;
732 /* Only evaluate the expression if the lvalue is void.
733 This may still fail if the expresssion is invalid. */
734 if (TYPE_CODE (value_type (intvar
->value
)) == TYPE_CODE_VOID
)
735 evaluate_expression (expr
);
737 do_cleanups (old_chain
);
741 /* Look up an internal variable with name NAME. NAME should not
742 normally include a dollar sign.
744 If the specified internal variable does not exist,
745 one is created, with a void value. */
748 lookup_internalvar (char *name
)
750 struct internalvar
*var
;
752 for (var
= internalvars
; var
; var
= var
->next
)
753 if (strcmp (var
->name
, name
) == 0)
756 var
= (struct internalvar
*) xmalloc (sizeof (struct internalvar
));
757 var
->name
= concat (name
, (char *)NULL
);
758 var
->value
= allocate_value (builtin_type_void
);
759 var
->endian
= gdbarch_byte_order (current_gdbarch
);
760 release_value (var
->value
);
761 var
->next
= internalvars
;
767 value_of_internalvar (struct internalvar
*var
)
773 val
= value_copy (var
->value
);
774 if (value_lazy (val
))
775 value_fetch_lazy (val
);
776 VALUE_LVAL (val
) = lval_internalvar
;
777 VALUE_INTERNALVAR (val
) = var
;
779 /* Values are always stored in the target's byte order. When connected to a
780 target this will most likely always be correct, so there's normally no
781 need to worry about it.
783 However, internal variables can be set up before the target endian is
784 known and so may become out of date. Fix it up before anybody sees.
786 Internal variables usually hold simple scalar values, and we can
787 correct those. More complex values (e.g. structures and floating
788 point types) are left alone, because they would be too complicated
791 if (var
->endian
!= gdbarch_byte_order (current_gdbarch
))
793 gdb_byte
*array
= value_contents_raw (val
);
794 struct type
*type
= check_typedef (value_enclosing_type (val
));
795 switch (TYPE_CODE (type
))
799 /* Reverse the bytes. */
800 for (i
= 0, j
= TYPE_LENGTH (type
) - 1; i
< j
; i
++, j
--)
814 set_internalvar_component (struct internalvar
*var
, int offset
, int bitpos
,
815 int bitsize
, struct value
*newval
)
817 gdb_byte
*addr
= value_contents_writeable (var
->value
) + offset
;
820 modify_field (addr
, value_as_long (newval
),
823 memcpy (addr
, value_contents (newval
), TYPE_LENGTH (value_type (newval
)));
827 set_internalvar (struct internalvar
*var
, struct value
*val
)
829 struct value
*newval
;
831 newval
= value_copy (val
);
832 newval
->modifiable
= 1;
834 /* Force the value to be fetched from the target now, to avoid problems
835 later when this internalvar is referenced and the target is gone or
837 if (value_lazy (newval
))
838 value_fetch_lazy (newval
);
840 /* Begin code which must not call error(). If var->value points to
841 something free'd, an error() obviously leaves a dangling pointer.
842 But we also get a danling pointer if var->value points to
843 something in the value chain (i.e., before release_value is
844 called), because after the error free_all_values will get called before
848 var
->endian
= gdbarch_byte_order (current_gdbarch
);
849 release_value (newval
);
850 /* End code which must not call error(). */
854 internalvar_name (struct internalvar
*var
)
859 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
860 prevent cycles / duplicates. */
863 preserve_one_value (struct value
*value
, struct objfile
*objfile
,
866 if (TYPE_OBJFILE (value
->type
) == objfile
)
867 value
->type
= copy_type_recursive (objfile
, value
->type
, copied_types
);
869 if (TYPE_OBJFILE (value
->enclosing_type
) == objfile
)
870 value
->enclosing_type
= copy_type_recursive (objfile
,
871 value
->enclosing_type
,
875 /* Update the internal variables and value history when OBJFILE is
876 discarded; we must copy the types out of the objfile. New global types
877 will be created for every convenience variable which currently points to
878 this objfile's types, and the convenience variables will be adjusted to
879 use the new global types. */
882 preserve_values (struct objfile
*objfile
)
885 struct value_history_chunk
*cur
;
886 struct internalvar
*var
;
889 /* Create the hash table. We allocate on the objfile's obstack, since
890 it is soon to be deleted. */
891 copied_types
= create_copied_types_hash (objfile
);
893 for (cur
= value_history_chain
; cur
; cur
= cur
->next
)
894 for (i
= 0; i
< VALUE_HISTORY_CHUNK
; i
++)
896 preserve_one_value (cur
->values
[i
], objfile
, copied_types
);
898 for (var
= internalvars
; var
; var
= var
->next
)
899 preserve_one_value (var
->value
, objfile
, copied_types
);
901 htab_delete (copied_types
);
905 show_convenience (char *ignore
, int from_tty
)
907 struct internalvar
*var
;
910 for (var
= internalvars
; var
; var
= var
->next
)
916 printf_filtered (("$%s = "), var
->name
);
917 value_print (value_of_internalvar (var
), gdb_stdout
,
918 0, Val_pretty_default
);
919 printf_filtered (("\n"));
922 printf_unfiltered (_("\
923 No debugger convenience variables now defined.\n\
924 Convenience variables have names starting with \"$\";\n\
925 use \"set\" as in \"set $foo = 5\" to define them.\n"));
928 /* Extract a value as a C number (either long or double).
929 Knows how to convert fixed values to double, or
930 floating values to long.
931 Does not deallocate the value. */
934 value_as_long (struct value
*val
)
936 /* This coerces arrays and functions, which is necessary (e.g.
937 in disassemble_command). It also dereferences references, which
938 I suspect is the most logical thing to do. */
939 val
= coerce_array (val
);
940 return unpack_long (value_type (val
), value_contents (val
));
944 value_as_double (struct value
*val
)
949 foo
= unpack_double (value_type (val
), value_contents (val
), &inv
);
951 error (_("Invalid floating value found in program."));
954 /* Extract a value as a C pointer. Does not deallocate the value.
955 Note that val's type may not actually be a pointer; value_as_long
956 handles all the cases. */
958 value_as_address (struct value
*val
)
960 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
961 whether we want this to be true eventually. */
963 /* gdbarch_addr_bits_remove is wrong if we are being called for a
964 non-address (e.g. argument to "signal", "info break", etc.), or
965 for pointers to char, in which the low bits *are* significant. */
966 return gdbarch_addr_bits_remove (current_gdbarch
, value_as_long (val
));
969 /* There are several targets (IA-64, PowerPC, and others) which
970 don't represent pointers to functions as simply the address of
971 the function's entry point. For example, on the IA-64, a
972 function pointer points to a two-word descriptor, generated by
973 the linker, which contains the function's entry point, and the
974 value the IA-64 "global pointer" register should have --- to
975 support position-independent code. The linker generates
976 descriptors only for those functions whose addresses are taken.
978 On such targets, it's difficult for GDB to convert an arbitrary
979 function address into a function pointer; it has to either find
980 an existing descriptor for that function, or call malloc and
981 build its own. On some targets, it is impossible for GDB to
982 build a descriptor at all: the descriptor must contain a jump
983 instruction; data memory cannot be executed; and code memory
986 Upon entry to this function, if VAL is a value of type `function'
987 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
988 VALUE_ADDRESS (val) is the address of the function. This is what
989 you'll get if you evaluate an expression like `main'. The call
990 to COERCE_ARRAY below actually does all the usual unary
991 conversions, which includes converting values of type `function'
992 to `pointer to function'. This is the challenging conversion
993 discussed above. Then, `unpack_long' will convert that pointer
994 back into an address.
996 So, suppose the user types `disassemble foo' on an architecture
997 with a strange function pointer representation, on which GDB
998 cannot build its own descriptors, and suppose further that `foo'
999 has no linker-built descriptor. The address->pointer conversion
1000 will signal an error and prevent the command from running, even
1001 though the next step would have been to convert the pointer
1002 directly back into the same address.
1004 The following shortcut avoids this whole mess. If VAL is a
1005 function, just return its address directly. */
1006 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_FUNC
1007 || TYPE_CODE (value_type (val
)) == TYPE_CODE_METHOD
)
1008 return VALUE_ADDRESS (val
);
1010 val
= coerce_array (val
);
1012 /* Some architectures (e.g. Harvard), map instruction and data
1013 addresses onto a single large unified address space. For
1014 instance: An architecture may consider a large integer in the
1015 range 0x10000000 .. 0x1000ffff to already represent a data
1016 addresses (hence not need a pointer to address conversion) while
1017 a small integer would still need to be converted integer to
1018 pointer to address. Just assume such architectures handle all
1019 integer conversions in a single function. */
1023 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1024 must admonish GDB hackers to make sure its behavior matches the
1025 compiler's, whenever possible.
1027 In general, I think GDB should evaluate expressions the same way
1028 the compiler does. When the user copies an expression out of
1029 their source code and hands it to a `print' command, they should
1030 get the same value the compiler would have computed. Any
1031 deviation from this rule can cause major confusion and annoyance,
1032 and needs to be justified carefully. In other words, GDB doesn't
1033 really have the freedom to do these conversions in clever and
1036 AndrewC pointed out that users aren't complaining about how GDB
1037 casts integers to pointers; they are complaining that they can't
1038 take an address from a disassembly listing and give it to `x/i'.
1039 This is certainly important.
1041 Adding an architecture method like integer_to_address() certainly
1042 makes it possible for GDB to "get it right" in all circumstances
1043 --- the target has complete control over how things get done, so
1044 people can Do The Right Thing for their target without breaking
1045 anyone else. The standard doesn't specify how integers get
1046 converted to pointers; usually, the ABI doesn't either, but
1047 ABI-specific code is a more reasonable place to handle it. */
1049 if (TYPE_CODE (value_type (val
)) != TYPE_CODE_PTR
1050 && TYPE_CODE (value_type (val
)) != TYPE_CODE_REF
1051 && gdbarch_integer_to_address_p (current_gdbarch
))
1052 return gdbarch_integer_to_address (current_gdbarch
, value_type (val
),
1053 value_contents (val
));
1055 return unpack_long (value_type (val
), value_contents (val
));
1059 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1060 as a long, or as a double, assuming the raw data is described
1061 by type TYPE. Knows how to convert different sizes of values
1062 and can convert between fixed and floating point. We don't assume
1063 any alignment for the raw data. Return value is in host byte order.
1065 If you want functions and arrays to be coerced to pointers, and
1066 references to be dereferenced, call value_as_long() instead.
1068 C++: It is assumed that the front-end has taken care of
1069 all matters concerning pointers to members. A pointer
1070 to member which reaches here is considered to be equivalent
1071 to an INT (or some size). After all, it is only an offset. */
1074 unpack_long (struct type
*type
, const gdb_byte
*valaddr
)
1076 enum type_code code
= TYPE_CODE (type
);
1077 int len
= TYPE_LENGTH (type
);
1078 int nosign
= TYPE_UNSIGNED (type
);
1082 case TYPE_CODE_TYPEDEF
:
1083 return unpack_long (check_typedef (type
), valaddr
);
1084 case TYPE_CODE_ENUM
:
1085 case TYPE_CODE_FLAGS
:
1086 case TYPE_CODE_BOOL
:
1088 case TYPE_CODE_CHAR
:
1089 case TYPE_CODE_RANGE
:
1090 case TYPE_CODE_MEMBERPTR
:
1092 return extract_unsigned_integer (valaddr
, len
);
1094 return extract_signed_integer (valaddr
, len
);
1097 return extract_typed_floating (valaddr
, type
);
1101 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1102 whether we want this to be true eventually. */
1103 return extract_typed_address (valaddr
, type
);
1106 error (_("Value can't be converted to integer."));
1108 return 0; /* Placate lint. */
1111 /* Return a double value from the specified type and address.
1112 INVP points to an int which is set to 0 for valid value,
1113 1 for invalid value (bad float format). In either case,
1114 the returned double is OK to use. Argument is in target
1115 format, result is in host format. */
1118 unpack_double (struct type
*type
, const gdb_byte
*valaddr
, int *invp
)
1120 enum type_code code
;
1124 *invp
= 0; /* Assume valid. */
1125 CHECK_TYPEDEF (type
);
1126 code
= TYPE_CODE (type
);
1127 len
= TYPE_LENGTH (type
);
1128 nosign
= TYPE_UNSIGNED (type
);
1129 if (code
== TYPE_CODE_FLT
)
1131 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1132 floating-point value was valid (using the macro
1133 INVALID_FLOAT). That test/macro have been removed.
1135 It turns out that only the VAX defined this macro and then
1136 only in a non-portable way. Fixing the portability problem
1137 wouldn't help since the VAX floating-point code is also badly
1138 bit-rotten. The target needs to add definitions for the
1139 methods gdbarch_float_format and gdbarch_double_format - these
1140 exactly describe the target floating-point format. The
1141 problem here is that the corresponding floatformat_vax_f and
1142 floatformat_vax_d values these methods should be set to are
1143 also not defined either. Oops!
1145 Hopefully someone will add both the missing floatformat
1146 definitions and the new cases for floatformat_is_valid (). */
1148 if (!floatformat_is_valid (floatformat_from_type (type
), valaddr
))
1154 return extract_typed_floating (valaddr
, type
);
1158 /* Unsigned -- be sure we compensate for signed LONGEST. */
1159 return (ULONGEST
) unpack_long (type
, valaddr
);
1163 /* Signed -- we are OK with unpack_long. */
1164 return unpack_long (type
, valaddr
);
1168 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1169 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1170 We don't assume any alignment for the raw data. Return value is in
1173 If you want functions and arrays to be coerced to pointers, and
1174 references to be dereferenced, call value_as_address() instead.
1176 C++: It is assumed that the front-end has taken care of
1177 all matters concerning pointers to members. A pointer
1178 to member which reaches here is considered to be equivalent
1179 to an INT (or some size). After all, it is only an offset. */
1182 unpack_pointer (struct type
*type
, const gdb_byte
*valaddr
)
1184 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1185 whether we want this to be true eventually. */
1186 return unpack_long (type
, valaddr
);
1190 /* Get the value of the FIELDN'th field (which must be static) of
1191 TYPE. Return NULL if the field doesn't exist or has been
1195 value_static_field (struct type
*type
, int fieldno
)
1197 struct value
*retval
;
1199 if (TYPE_FIELD_STATIC_HAS_ADDR (type
, fieldno
))
1201 retval
= value_at (TYPE_FIELD_TYPE (type
, fieldno
),
1202 TYPE_FIELD_STATIC_PHYSADDR (type
, fieldno
));
1206 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, fieldno
);
1207 struct symbol
*sym
= lookup_symbol (phys_name
, 0, VAR_DOMAIN
, 0, NULL
);
1210 /* With some compilers, e.g. HP aCC, static data members are reported
1211 as non-debuggable symbols */
1212 struct minimal_symbol
*msym
= lookup_minimal_symbol (phys_name
, NULL
, NULL
);
1217 retval
= value_at (TYPE_FIELD_TYPE (type
, fieldno
),
1218 SYMBOL_VALUE_ADDRESS (msym
));
1223 /* SYM should never have a SYMBOL_CLASS which will require
1224 read_var_value to use the FRAME parameter. */
1225 if (symbol_read_needs_frame (sym
))
1226 warning (_("static field's value depends on the current "
1227 "frame - bad debug info?"));
1228 retval
= read_var_value (sym
, NULL
);
1230 if (retval
&& VALUE_LVAL (retval
) == lval_memory
)
1231 SET_FIELD_PHYSADDR (TYPE_FIELD (type
, fieldno
),
1232 VALUE_ADDRESS (retval
));
1237 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1238 You have to be careful here, since the size of the data area for the value
1239 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1240 than the old enclosing type, you have to allocate more space for the data.
1241 The return value is a pointer to the new version of this value structure. */
1244 value_change_enclosing_type (struct value
*val
, struct type
*new_encl_type
)
1246 if (TYPE_LENGTH (new_encl_type
) <= TYPE_LENGTH (value_enclosing_type (val
)))
1248 val
->enclosing_type
= new_encl_type
;
1253 struct value
*new_val
;
1256 new_val
= (struct value
*) xrealloc (val
, sizeof (struct value
) + TYPE_LENGTH (new_encl_type
));
1258 new_val
->enclosing_type
= new_encl_type
;
1260 /* We have to make sure this ends up in the same place in the value
1261 chain as the original copy, so it's clean-up behavior is the same.
1262 If the value has been released, this is a waste of time, but there
1263 is no way to tell that in advance, so... */
1265 if (val
!= all_values
)
1267 for (prev
= all_values
; prev
!= NULL
; prev
= prev
->next
)
1269 if (prev
->next
== val
)
1271 prev
->next
= new_val
;
1281 /* Given a value ARG1 (offset by OFFSET bytes)
1282 of a struct or union type ARG_TYPE,
1283 extract and return the value of one of its (non-static) fields.
1284 FIELDNO says which field. */
1287 value_primitive_field (struct value
*arg1
, int offset
,
1288 int fieldno
, struct type
*arg_type
)
1293 CHECK_TYPEDEF (arg_type
);
1294 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
1296 /* Handle packed fields */
1298 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
))
1300 v
= value_from_longest (type
,
1301 unpack_field_as_long (arg_type
,
1302 value_contents (arg1
)
1305 v
->bitpos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
) % 8;
1306 v
->bitsize
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
1307 v
->offset
= value_offset (arg1
) + offset
1308 + TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
1310 else if (fieldno
< TYPE_N_BASECLASSES (arg_type
))
1312 /* This field is actually a base subobject, so preserve the
1313 entire object's contents for later references to virtual
1315 v
= allocate_value (value_enclosing_type (arg1
));
1317 if (value_lazy (arg1
))
1318 set_value_lazy (v
, 1);
1320 memcpy (value_contents_all_raw (v
), value_contents_all_raw (arg1
),
1321 TYPE_LENGTH (value_enclosing_type (arg1
)));
1322 v
->offset
= value_offset (arg1
);
1323 v
->embedded_offset
= (offset
+ value_embedded_offset (arg1
)
1324 + TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8);
1328 /* Plain old data member */
1329 offset
+= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
1330 v
= allocate_value (type
);
1331 if (value_lazy (arg1
))
1332 set_value_lazy (v
, 1);
1334 memcpy (value_contents_raw (v
),
1335 value_contents_raw (arg1
) + offset
,
1336 TYPE_LENGTH (type
));
1337 v
->offset
= (value_offset (arg1
) + offset
1338 + value_embedded_offset (arg1
));
1340 VALUE_LVAL (v
) = VALUE_LVAL (arg1
);
1341 if (VALUE_LVAL (arg1
) == lval_internalvar
)
1342 VALUE_LVAL (v
) = lval_internalvar_component
;
1343 v
->location
= arg1
->location
;
1344 VALUE_REGNUM (v
) = VALUE_REGNUM (arg1
);
1345 VALUE_FRAME_ID (v
) = VALUE_FRAME_ID (arg1
);
1349 /* Given a value ARG1 of a struct or union type,
1350 extract and return the value of one of its (non-static) fields.
1351 FIELDNO says which field. */
1354 value_field (struct value
*arg1
, int fieldno
)
1356 return value_primitive_field (arg1
, 0, fieldno
, value_type (arg1
));
1359 /* Return a non-virtual function as a value.
1360 F is the list of member functions which contains the desired method.
1361 J is an index into F which provides the desired method.
1363 We only use the symbol for its address, so be happy with either a
1364 full symbol or a minimal symbol.
1368 value_fn_field (struct value
**arg1p
, struct fn_field
*f
, int j
, struct type
*type
,
1372 struct type
*ftype
= TYPE_FN_FIELD_TYPE (f
, j
);
1373 char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, j
);
1375 struct minimal_symbol
*msym
;
1377 sym
= lookup_symbol (physname
, 0, VAR_DOMAIN
, 0, NULL
);
1384 gdb_assert (sym
== NULL
);
1385 msym
= lookup_minimal_symbol (physname
, NULL
, NULL
);
1390 v
= allocate_value (ftype
);
1393 VALUE_ADDRESS (v
) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
1397 VALUE_ADDRESS (v
) = SYMBOL_VALUE_ADDRESS (msym
);
1402 if (type
!= value_type (*arg1p
))
1403 *arg1p
= value_ind (value_cast (lookup_pointer_type (type
),
1404 value_addr (*arg1p
)));
1406 /* Move the `this' pointer according to the offset.
1407 VALUE_OFFSET (*arg1p) += offset;
1415 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1418 Extracting bits depends on endianness of the machine. Compute the
1419 number of least significant bits to discard. For big endian machines,
1420 we compute the total number of bits in the anonymous object, subtract
1421 off the bit count from the MSB of the object to the MSB of the
1422 bitfield, then the size of the bitfield, which leaves the LSB discard
1423 count. For little endian machines, the discard count is simply the
1424 number of bits from the LSB of the anonymous object to the LSB of the
1427 If the field is signed, we also do sign extension. */
1430 unpack_field_as_long (struct type
*type
, const gdb_byte
*valaddr
, int fieldno
)
1434 int bitpos
= TYPE_FIELD_BITPOS (type
, fieldno
);
1435 int bitsize
= TYPE_FIELD_BITSIZE (type
, fieldno
);
1437 struct type
*field_type
;
1439 val
= extract_unsigned_integer (valaddr
+ bitpos
/ 8, sizeof (val
));
1440 field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
1441 CHECK_TYPEDEF (field_type
);
1443 /* Extract bits. See comment above. */
1445 if (BITS_BIG_ENDIAN
)
1446 lsbcount
= (sizeof val
* 8 - bitpos
% 8 - bitsize
);
1448 lsbcount
= (bitpos
% 8);
1451 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1452 If the field is signed, and is negative, then sign extend. */
1454 if ((bitsize
> 0) && (bitsize
< 8 * (int) sizeof (val
)))
1456 valmask
= (((ULONGEST
) 1) << bitsize
) - 1;
1458 if (!TYPE_UNSIGNED (field_type
))
1460 if (val
& (valmask
^ (valmask
>> 1)))
1469 /* Modify the value of a bitfield. ADDR points to a block of memory in
1470 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1471 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1472 indicate which bits (in target bit order) comprise the bitfield.
1473 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1474 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1477 modify_field (gdb_byte
*addr
, LONGEST fieldval
, int bitpos
, int bitsize
)
1480 ULONGEST mask
= (ULONGEST
) -1 >> (8 * sizeof (ULONGEST
) - bitsize
);
1482 /* If a negative fieldval fits in the field in question, chop
1483 off the sign extension bits. */
1484 if ((~fieldval
& ~(mask
>> 1)) == 0)
1487 /* Warn if value is too big to fit in the field in question. */
1488 if (0 != (fieldval
& ~mask
))
1490 /* FIXME: would like to include fieldval in the message, but
1491 we don't have a sprintf_longest. */
1492 warning (_("Value does not fit in %d bits."), bitsize
);
1494 /* Truncate it, otherwise adjoining fields may be corrupted. */
1498 oword
= extract_unsigned_integer (addr
, sizeof oword
);
1500 /* Shifting for bit field depends on endianness of the target machine. */
1501 if (BITS_BIG_ENDIAN
)
1502 bitpos
= sizeof (oword
) * 8 - bitpos
- bitsize
;
1504 oword
&= ~(mask
<< bitpos
);
1505 oword
|= fieldval
<< bitpos
;
1507 store_unsigned_integer (addr
, sizeof oword
, oword
);
1510 /* Pack NUM into BUF using a target format of TYPE. */
1513 pack_long (gdb_byte
*buf
, struct type
*type
, LONGEST num
)
1517 type
= check_typedef (type
);
1518 len
= TYPE_LENGTH (type
);
1520 switch (TYPE_CODE (type
))
1523 case TYPE_CODE_CHAR
:
1524 case TYPE_CODE_ENUM
:
1525 case TYPE_CODE_FLAGS
:
1526 case TYPE_CODE_BOOL
:
1527 case TYPE_CODE_RANGE
:
1528 case TYPE_CODE_MEMBERPTR
:
1529 store_signed_integer (buf
, len
, num
);
1534 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
1538 error (_("Unexpected type (%d) encountered for integer constant."),
1544 /* Convert C numbers into newly allocated values. */
1547 value_from_longest (struct type
*type
, LONGEST num
)
1549 struct value
*val
= allocate_value (type
);
1551 pack_long (value_contents_raw (val
), type
, num
);
1557 /* Create a value representing a pointer of type TYPE to the address
1560 value_from_pointer (struct type
*type
, CORE_ADDR addr
)
1562 struct value
*val
= allocate_value (type
);
1563 store_typed_address (value_contents_raw (val
), type
, addr
);
1568 /* Create a value for a string constant to be stored locally
1569 (not in the inferior's memory space, but in GDB memory).
1570 This is analogous to value_from_longest, which also does not
1571 use inferior memory. String shall NOT contain embedded nulls. */
1574 value_from_string (char *ptr
)
1577 int len
= strlen (ptr
);
1578 int lowbound
= current_language
->string_lower_bound
;
1579 struct type
*string_char_type
;
1580 struct type
*rangetype
;
1581 struct type
*stringtype
;
1583 rangetype
= create_range_type ((struct type
*) NULL
,
1585 lowbound
, len
+ lowbound
- 1);
1586 string_char_type
= language_string_char_type (current_language
,
1588 stringtype
= create_array_type ((struct type
*) NULL
,
1591 val
= allocate_value (stringtype
);
1592 memcpy (value_contents_raw (val
), ptr
, len
);
1597 value_from_double (struct type
*type
, DOUBLEST num
)
1599 struct value
*val
= allocate_value (type
);
1600 struct type
*base_type
= check_typedef (type
);
1601 enum type_code code
= TYPE_CODE (base_type
);
1602 int len
= TYPE_LENGTH (base_type
);
1604 if (code
== TYPE_CODE_FLT
)
1606 store_typed_floating (value_contents_raw (val
), base_type
, num
);
1609 error (_("Unexpected type encountered for floating constant."));
1615 coerce_ref (struct value
*arg
)
1617 struct type
*value_type_arg_tmp
= check_typedef (value_type (arg
));
1618 if (TYPE_CODE (value_type_arg_tmp
) == TYPE_CODE_REF
)
1619 arg
= value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp
),
1620 unpack_pointer (value_type (arg
),
1621 value_contents (arg
)));
1626 coerce_array (struct value
*arg
)
1628 arg
= coerce_ref (arg
);
1629 if (current_language
->c_style_arrays
1630 && TYPE_CODE (value_type (arg
)) == TYPE_CODE_ARRAY
)
1631 arg
= value_coerce_array (arg
);
1632 if (TYPE_CODE (value_type (arg
)) == TYPE_CODE_FUNC
)
1633 arg
= value_coerce_function (arg
);
1638 coerce_number (struct value
*arg
)
1640 arg
= coerce_array (arg
);
1641 arg
= coerce_enum (arg
);
1646 coerce_enum (struct value
*arg
)
1648 if (TYPE_CODE (check_typedef (value_type (arg
))) == TYPE_CODE_ENUM
)
1649 arg
= value_cast (builtin_type_unsigned_int
, arg
);
1654 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1655 gdbarch_extract_return_value? GCC_P is true if compiled with gcc and TYPE
1656 is the type (which is known to be struct, union or array).
1658 On most machines, the struct convention is used unless we are
1659 using gcc and the type is of a special size. */
1660 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1661 native compiler. GCC 2.3.3 was the last release that did it the
1662 old way. Since gcc2_compiled was not changed, we have no
1663 way to correctly win in all cases, so we just do the right thing
1664 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1665 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1666 would cause more chaos than dealing with some struct returns being
1668 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1672 generic_use_struct_convention (int gcc_p
, struct type
*value_type
)
1674 return !(TYPE_LENGTH (value_type
) == 1
1675 || TYPE_LENGTH (value_type
) == 2
1676 || TYPE_LENGTH (value_type
) == 4
1677 || TYPE_LENGTH (value_type
) == 8);
1680 /* Return true if the function returning the specified type is using
1681 the convention of returning structures in memory (passing in the
1682 address as a hidden first parameter). GCC_P is nonzero if compiled
1686 using_struct_return (struct type
*value_type
, int gcc_p
)
1688 enum type_code code
= TYPE_CODE (value_type
);
1690 if (code
== TYPE_CODE_ERROR
)
1691 error (_("Function return type unknown."));
1693 if (code
== TYPE_CODE_VOID
)
1694 /* A void return value is never in memory. See also corresponding
1695 code in "print_return_value". */
1698 /* Probe the architecture for the return-value convention. */
1699 return (gdbarch_return_value (current_gdbarch
, value_type
,
1701 != RETURN_VALUE_REGISTER_CONVENTION
);
1704 /* Set the initialized field in a value struct. */
1707 set_value_initialized (struct value
*val
, int status
)
1709 val
->initialized
= status
;
1712 /* Return the initialized field in a value struct. */
1715 value_initialized (struct value
*val
)
1717 return val
->initialized
;
1721 _initialize_values (void)
1723 add_cmd ("convenience", no_class
, show_convenience
, _("\
1724 Debugger convenience (\"$foo\") variables.\n\
1725 These variables are created when you assign them values;\n\
1726 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1728 A few convenience variables are given values automatically:\n\
1729 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1730 \"$__\" holds the contents of the last address examined with \"x\"."),
1733 add_cmd ("values", no_class
, show_values
,
1734 _("Elements of value history around item number IDX (or last ten)."),
1737 add_com ("init-if-undefined", class_vars
, init_if_undefined_command
, _("\
1738 Initialize a convenience variable if necessary.\n\
1739 init-if-undefined VARIABLE = EXPRESSION\n\
1740 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1741 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1742 VARIABLE is already initialized."));