1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
38 #include "reggroups.h"
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
54 static char *i386_register_names
[] =
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
69 static const int i386_num_register_names
= ARRAY_SIZE (i386_register_names
);
71 /* Register names for MMX pseudo-registers. */
73 static char *i386_mmx_names
[] =
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
79 static const int i386_num_mmx_regs
= ARRAY_SIZE (i386_mmx_names
);
82 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
84 int mm0_regnum
= gdbarch_tdep (gdbarch
)->mm0_regnum
;
89 return (regnum
>= mm0_regnum
&& regnum
< mm0_regnum
+ i386_num_mmx_regs
);
95 i386_sse_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
97 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
99 #define I387_ST0_REGNUM tdep->st0_regnum
100 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
102 if (I387_NUM_XMM_REGS
== 0)
105 return (I387_XMM0_REGNUM
<= regnum
&& regnum
< I387_MXCSR_REGNUM
);
107 #undef I387_ST0_REGNUM
108 #undef I387_NUM_XMM_REGS
112 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
114 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
116 #define I387_ST0_REGNUM tdep->st0_regnum
117 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
119 if (I387_NUM_XMM_REGS
== 0)
122 return (regnum
== I387_MXCSR_REGNUM
);
124 #undef I387_ST0_REGNUM
125 #undef I387_NUM_XMM_REGS
128 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
135 i386_fp_regnum_p (int regnum
)
137 if (I387_ST0_REGNUM
< 0)
140 return (I387_ST0_REGNUM
<= regnum
&& regnum
< I387_FCTRL_REGNUM
);
144 i386_fpc_regnum_p (int regnum
)
146 if (I387_ST0_REGNUM
< 0)
149 return (I387_FCTRL_REGNUM
<= regnum
&& regnum
< I387_XMM0_REGNUM
);
152 /* Return the name of register REGNUM. */
155 i386_register_name (int regnum
)
157 if (i386_mmx_regnum_p (current_gdbarch
, regnum
))
158 return i386_mmx_names
[regnum
- I387_MM0_REGNUM
];
160 if (regnum
>= 0 && regnum
< i386_num_register_names
)
161 return i386_register_names
[regnum
];
166 /* Convert a dbx register number REG to the appropriate register
167 number used by GDB. */
170 i386_dbx_reg_to_regnum (int reg
)
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
175 if (reg
>= 0 && reg
<= 7)
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
185 else if (reg
>= 12 && reg
<= 19)
187 /* Floating-point registers. */
188 return reg
- 12 + I387_ST0_REGNUM
;
190 else if (reg
>= 21 && reg
<= 28)
193 return reg
- 21 + I387_XMM0_REGNUM
;
195 else if (reg
>= 29 && reg
<= 36)
198 return reg
- 29 + I387_MM0_REGNUM
;
201 /* This will hopefully provoke a warning. */
202 return gdbarch_num_regs (current_gdbarch
)
203 + gdbarch_num_pseudo_regs (current_gdbarch
);
206 /* Convert SVR4 register number REG to the appropriate register number
210 i386_svr4_reg_to_regnum (int reg
)
212 /* This implements the GCC register map that tries to be compatible
213 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215 /* The SVR4 register numbering includes %eip and %eflags, and
216 numbers the floating point registers differently. */
217 if (reg
>= 0 && reg
<= 9)
219 /* General-purpose registers. */
222 else if (reg
>= 11 && reg
<= 18)
224 /* Floating-point registers. */
225 return reg
- 11 + I387_ST0_REGNUM
;
227 else if (reg
>= 21 && reg
<= 36)
229 /* The SSE and MMX registers have the same numbers as with dbx. */
230 return i386_dbx_reg_to_regnum (reg
);
235 case 37: return I387_FCTRL_REGNUM
;
236 case 38: return I387_FSTAT_REGNUM
;
237 case 39: return I387_MXCSR_REGNUM
;
238 case 40: return I386_ES_REGNUM
;
239 case 41: return I386_CS_REGNUM
;
240 case 42: return I386_SS_REGNUM
;
241 case 43: return I386_DS_REGNUM
;
242 case 44: return I386_FS_REGNUM
;
243 case 45: return I386_GS_REGNUM
;
246 /* This will hopefully provoke a warning. */
247 return gdbarch_num_regs (current_gdbarch
)
248 + gdbarch_num_pseudo_regs (current_gdbarch
);
251 #undef I387_ST0_REGNUM
252 #undef I387_MM0_REGNUM
253 #undef I387_NUM_XMM_REGS
256 /* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
258 static const char att_flavor
[] = "att";
259 static const char intel_flavor
[] = "intel";
260 static const char *valid_flavors
[] =
266 static const char *disassembly_flavor
= att_flavor
;
269 /* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
278 This function is 64-bit safe. */
280 static const gdb_byte
*
281 i386_breakpoint_from_pc (CORE_ADDR
*pc
, int *len
)
283 static gdb_byte break_insn
[] = { 0xcc }; /* int 3 */
285 *len
= sizeof (break_insn
);
289 #ifdef I386_REGNO_TO_SYMMETRY
290 #error "The Sequent Symmetry is no longer supported."
293 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
297 /* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
299 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
301 struct i386_frame_cache
308 /* Saved registers. */
309 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
314 /* Stack space reserved for local variables. */
318 /* Allocate and initialize a frame cache. */
320 static struct i386_frame_cache
*
321 i386_alloc_frame_cache (void)
323 struct i386_frame_cache
*cache
;
326 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
330 cache
->sp_offset
= -4;
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
336 cache
->saved_regs
[i
] = -1;
338 cache
->stack_align
= 0;
339 cache
->pc_in_eax
= 0;
341 /* Frameless until proven otherwise. */
347 /* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
351 i386_follow_jump (CORE_ADDR pc
)
357 read_memory_nobpt (pc
, &op
, 1);
361 op
= read_memory_unsigned_integer (pc
+ 1, 1);
367 /* Relative jump: if data16 == 0, disp32, else disp16. */
370 delta
= read_memory_integer (pc
+ 2, 2);
372 /* Include the size of the jmp instruction (including the
378 delta
= read_memory_integer (pc
+ 1, 4);
380 /* Include the size of the jmp instruction. */
385 /* Relative jump, disp8 (ignore data16). */
386 delta
= read_memory_integer (pc
+ data16
+ 1, 1);
395 /* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
402 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
403 struct i386_frame_cache
*cache
)
405 /* Functions that return a structure or union start with:
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
415 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
420 if (current_pc
<= pc
)
423 read_memory_nobpt (pc
, &op
, 1);
425 if (op
!= 0x58) /* popl %eax */
428 read_memory_nobpt (pc
+ 1, buf
, 4);
429 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
432 if (current_pc
== pc
)
434 cache
->sp_offset
+= 4;
438 if (current_pc
== pc
+ 1)
440 cache
->pc_in_eax
= 1;
444 if (buf
[1] == proto1
[1])
451 i386_skip_probe (CORE_ADDR pc
)
453 /* A function may start with
467 read_memory_nobpt (pc
, &op
, 1);
469 if (op
== 0x68 || op
== 0x6a)
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc
+ delta
, buf
, sizeof (buf
));
483 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
484 pc
+= delta
+ sizeof (buf
);
490 /* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
497 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
498 struct i386_frame_cache
*cache
)
500 /* The register used by the compiler to perform the stack re-alignment
501 is, in order of preference, either %ecx, %edx, or %eax. GCC should
502 never use %ebx as it always treats it as callee-saved, whereas
503 the compiler can only use caller-saved registers. */
504 static const gdb_byte insns_ecx
[10] = {
505 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
509 static const gdb_byte insns_edx
[10] = {
510 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
511 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
512 0xff, 0x72, 0xfc /* pushl -4(%edx) */
514 static const gdb_byte insns_eax
[10] = {
515 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
516 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
517 0xff, 0x70, 0xfc /* pushl -4(%eax) */
521 if (target_read_memory (pc
, buf
, sizeof buf
)
522 || (memcmp (buf
, insns_ecx
, sizeof buf
) != 0
523 && memcmp (buf
, insns_edx
, sizeof buf
) != 0
524 && memcmp (buf
, insns_eax
, sizeof buf
) != 0))
527 if (current_pc
> pc
+ 4)
528 cache
->stack_align
= 1;
530 return min (pc
+ 10, current_pc
);
533 /* Maximum instruction length we need to handle. */
534 #define I386_MAX_INSN_LEN 6
536 /* Instruction description. */
540 gdb_byte insn
[I386_MAX_INSN_LEN
];
541 gdb_byte mask
[I386_MAX_INSN_LEN
];
544 /* Search for the instruction at PC in the list SKIP_INSNS. Return
545 the first instruction description that matches. Otherwise, return
548 static struct i386_insn
*
549 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*skip_insns
)
551 struct i386_insn
*insn
;
554 read_memory_nobpt (pc
, &op
, 1);
556 for (insn
= skip_insns
; insn
->len
> 0; insn
++)
558 if ((op
& insn
->mask
[0]) == insn
->insn
[0])
560 gdb_byte buf
[I386_MAX_INSN_LEN
- 1];
561 int insn_matched
= 1;
564 gdb_assert (insn
->len
> 1);
565 gdb_assert (insn
->len
<= I386_MAX_INSN_LEN
);
567 read_memory_nobpt (pc
+ 1, buf
, insn
->len
- 1);
568 for (i
= 1; i
< insn
->len
; i
++)
570 if ((buf
[i
- 1] & insn
->mask
[i
]) != insn
->insn
[i
])
582 /* Some special instructions that might be migrated by GCC into the
583 part of the prologue that sets up the new stack frame. Because the
584 stack frame hasn't been setup yet, no registers have been saved
585 yet, and only the scratch registers %eax, %ecx and %edx can be
588 struct i386_insn i386_frame_setup_skip_insns
[] =
590 /* Check for `movb imm8, r' and `movl imm32, r'.
592 ??? Should we handle 16-bit operand-sizes here? */
594 /* `movb imm8, %al' and `movb imm8, %ah' */
595 /* `movb imm8, %cl' and `movb imm8, %ch' */
596 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
597 /* `movb imm8, %dl' and `movb imm8, %dh' */
598 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
599 /* `movl imm32, %eax' and `movl imm32, %ecx' */
600 { 5, { 0xb8 }, { 0xfe } },
601 /* `movl imm32, %edx' */
602 { 5, { 0xba }, { 0xff } },
604 /* Check for `mov imm32, r32'. Note that there is an alternative
605 encoding for `mov m32, %eax'.
607 ??? Should we handle SIB adressing here?
608 ??? Should we handle 16-bit operand-sizes here? */
610 /* `movl m32, %eax' */
611 { 5, { 0xa1 }, { 0xff } },
612 /* `movl m32, %eax' and `mov; m32, %ecx' */
613 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
614 /* `movl m32, %edx' */
615 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
617 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
618 Because of the symmetry, there are actually two ways to encode
619 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
620 opcode bytes 0x31 and 0x33 for `xorl'. */
622 /* `subl %eax, %eax' */
623 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
624 /* `subl %ecx, %ecx' */
625 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
626 /* `subl %edx, %edx' */
627 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
628 /* `xorl %eax, %eax' */
629 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
630 /* `xorl %ecx, %ecx' */
631 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
632 /* `xorl %edx, %edx' */
633 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
637 /* Check whether PC points at a code that sets up a new stack frame.
638 If so, it updates CACHE and returns the address of the first
639 instruction after the sequence that sets up the frame or LIMIT,
640 whichever is smaller. If we don't recognize the code, return PC. */
643 i386_analyze_frame_setup (CORE_ADDR pc
, CORE_ADDR limit
,
644 struct i386_frame_cache
*cache
)
646 struct i386_insn
*insn
;
653 read_memory_nobpt (pc
, &op
, 1);
655 if (op
== 0x55) /* pushl %ebp */
657 /* Take into account that we've executed the `pushl %ebp' that
658 starts this instruction sequence. */
659 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
660 cache
->sp_offset
+= 4;
663 /* If that's all, return now. */
667 /* Check for some special instructions that might be migrated by
668 GCC into the prologue and skip them. At this point in the
669 prologue, code should only touch the scratch registers %eax,
670 %ecx and %edx, so while the number of posibilities is sheer,
673 Make sure we only skip these instructions if we later see the
674 `movl %esp, %ebp' that actually sets up the frame. */
675 while (pc
+ skip
< limit
)
677 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
684 /* If that's all, return now. */
685 if (limit
<= pc
+ skip
)
688 read_memory_nobpt (pc
+ skip
, &op
, 1);
690 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
694 if (read_memory_unsigned_integer (pc
+ skip
+ 1, 1) != 0xec)
698 if (read_memory_unsigned_integer (pc
+ skip
+ 1, 1) != 0xe5)
705 /* OK, we actually have a frame. We just don't know how large
706 it is yet. Set its size to zero. We'll adjust it if
707 necessary. We also now commit to skipping the special
708 instructions mentioned before. */
712 /* If that's all, return now. */
716 /* Check for stack adjustment
720 NOTE: You can't subtract a 16-bit immediate from a 32-bit
721 reg, so we don't have to worry about a data16 prefix. */
722 read_memory_nobpt (pc
, &op
, 1);
725 /* `subl' with 8-bit immediate. */
726 if (read_memory_unsigned_integer (pc
+ 1, 1) != 0xec)
727 /* Some instruction starting with 0x83 other than `subl'. */
730 /* `subl' with signed 8-bit immediate (though it wouldn't
731 make sense to be negative). */
732 cache
->locals
= read_memory_integer (pc
+ 2, 1);
737 /* Maybe it is `subl' with a 32-bit immediate. */
738 if (read_memory_unsigned_integer (pc
+ 1, 1) != 0xec)
739 /* Some instruction starting with 0x81 other than `subl'. */
742 /* It is `subl' with a 32-bit immediate. */
743 cache
->locals
= read_memory_integer (pc
+ 2, 4);
748 /* Some instruction other than `subl'. */
752 else if (op
== 0xc8) /* enter */
754 cache
->locals
= read_memory_unsigned_integer (pc
+ 1, 2);
761 /* Check whether PC points at code that saves registers on the stack.
762 If so, it updates CACHE and returns the address of the first
763 instruction after the register saves or CURRENT_PC, whichever is
764 smaller. Otherwise, return PC. */
767 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
768 struct i386_frame_cache
*cache
)
770 CORE_ADDR offset
= 0;
774 if (cache
->locals
> 0)
775 offset
-= cache
->locals
;
776 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
778 read_memory_nobpt (pc
, &op
, 1);
779 if (op
< 0x50 || op
> 0x57)
783 cache
->saved_regs
[op
- 0x50] = offset
;
784 cache
->sp_offset
+= 4;
791 /* Do a full analysis of the prologue at PC and update CACHE
792 accordingly. Bail out early if CURRENT_PC is reached. Return the
793 address where the analysis stopped.
795 We handle these cases:
797 The startup sequence can be at the start of the function, or the
798 function can start with a branch to startup code at the end.
800 %ebp can be set up with either the 'enter' instruction, or "pushl
801 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
802 once used in the System V compiler).
804 Local space is allocated just below the saved %ebp by either the
805 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
806 16-bit unsigned argument for space to allocate, and the 'addl'
807 instruction could have either a signed byte, or 32-bit immediate.
809 Next, the registers used by this function are pushed. With the
810 System V compiler they will always be in the order: %edi, %esi,
811 %ebx (and sometimes a harmless bug causes it to also save but not
812 restore %eax); however, the code below is willing to see the pushes
813 in any order, and will handle up to 8 of them.
815 If the setup sequence is at the end of the function, then the next
816 instruction will be a branch back to the start. */
819 i386_analyze_prologue (CORE_ADDR pc
, CORE_ADDR current_pc
,
820 struct i386_frame_cache
*cache
)
822 pc
= i386_follow_jump (pc
);
823 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
824 pc
= i386_skip_probe (pc
);
825 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
826 pc
= i386_analyze_frame_setup (pc
, current_pc
, cache
);
827 return i386_analyze_register_saves (pc
, current_pc
, cache
);
830 /* Return PC of first real instruction. */
833 i386_skip_prologue (CORE_ADDR start_pc
)
835 static gdb_byte pic_pat
[6] =
837 0xe8, 0, 0, 0, 0, /* call 0x0 */
838 0x5b, /* popl %ebx */
840 struct i386_frame_cache cache
;
846 pc
= i386_analyze_prologue (start_pc
, 0xffffffff, &cache
);
847 if (cache
.locals
< 0)
850 /* Found valid frame setup. */
852 /* The native cc on SVR4 in -K PIC mode inserts the following code
853 to get the address of the global offset table (GOT) into register
858 movl %ebx,x(%ebp) (optional)
861 This code is with the rest of the prologue (at the end of the
862 function), so we have to skip it to get to the first real
863 instruction at the start of the function. */
865 for (i
= 0; i
< 6; i
++)
867 read_memory_nobpt (pc
+ i
, &op
, 1);
868 if (pic_pat
[i
] != op
)
875 read_memory_nobpt (pc
+ delta
, &op
, 1);
877 if (op
== 0x89) /* movl %ebx, x(%ebp) */
879 op
= read_memory_unsigned_integer (pc
+ delta
+ 1, 1);
881 if (op
== 0x5d) /* One byte offset from %ebp. */
883 else if (op
== 0x9d) /* Four byte offset from %ebp. */
885 else /* Unexpected instruction. */
888 read_memory_nobpt (pc
+ delta
, &op
, 1);
892 if (delta
> 0 && op
== 0x81
893 && read_memory_unsigned_integer (pc
+ delta
+ 1, 1) == 0xc3)
899 /* If the function starts with a branch (to startup code at the end)
900 the last instruction should bring us back to the first
901 instruction of the real code. */
902 if (i386_follow_jump (start_pc
) != start_pc
)
903 pc
= i386_follow_jump (pc
);
908 /* This function is 64-bit safe. */
911 i386_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
915 frame_unwind_register (next_frame
, gdbarch_pc_regnum (current_gdbarch
), buf
);
916 return extract_typed_address (buf
, builtin_type_void_func_ptr
);
922 static struct i386_frame_cache
*
923 i386_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
925 struct i386_frame_cache
*cache
;
932 cache
= i386_alloc_frame_cache ();
935 /* In principle, for normal frames, %ebp holds the frame pointer,
936 which holds the base address for the current stack frame.
937 However, for functions that don't need it, the frame pointer is
938 optional. For these "frameless" functions the frame pointer is
939 actually the frame pointer of the calling frame. Signal
940 trampolines are just a special case of a "frameless" function.
941 They (usually) share their frame pointer with the frame that was
942 in progress when the signal occurred. */
944 frame_unwind_register (next_frame
, I386_EBP_REGNUM
, buf
);
945 cache
->base
= extract_unsigned_integer (buf
, 4);
946 if (cache
->base
== 0)
949 /* For normal frames, %eip is stored at 4(%ebp). */
950 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
952 cache
->pc
= frame_func_unwind (next_frame
, NORMAL_FRAME
);
954 i386_analyze_prologue (cache
->pc
, frame_pc_unwind (next_frame
), cache
);
956 if (cache
->stack_align
)
958 /* Saved stack pointer has been saved in %ecx. */
959 frame_unwind_register (next_frame
, I386_ECX_REGNUM
, buf
);
960 cache
->saved_sp
= extract_unsigned_integer(buf
, 4);
963 if (cache
->locals
< 0)
965 /* We didn't find a valid frame, which means that CACHE->base
966 currently holds the frame pointer for our calling frame. If
967 we're at the start of a function, or somewhere half-way its
968 prologue, the function's frame probably hasn't been fully
969 setup yet. Try to reconstruct the base address for the stack
970 frame by looking at the stack pointer. For truly "frameless"
971 functions this might work too. */
973 if (cache
->stack_align
)
975 /* We're halfway aligning the stack. */
976 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
977 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
979 /* This will be added back below. */
980 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
982 else if (cache
->pc
== 0)
984 /* We're in a function without proper pc. This
985 happens if the binary was stripped and we couldn't
986 find the beginning of the function.
987 We'll just assume that it is a framed function. */
989 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
990 cache
->sp_offset
+= 4;
994 frame_unwind_register (next_frame
, I386_ESP_REGNUM
, buf
);
995 cache
->base
= extract_unsigned_integer (buf
, 4) + cache
->sp_offset
;
999 /* Now that we have the base address for the stack frame we can
1000 calculate the value of %esp in the calling frame. */
1001 if (cache
->saved_sp
== 0)
1002 cache
->saved_sp
= cache
->base
+ 8;
1004 /* Adjust all the saved registers such that they contain addresses
1005 instead of offsets. */
1006 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1007 if (cache
->saved_regs
[i
] != -1)
1008 cache
->saved_regs
[i
] += cache
->base
;
1014 i386_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
1015 struct frame_id
*this_id
)
1017 struct i386_frame_cache
*cache
= i386_frame_cache (next_frame
, this_cache
);
1019 /* This marks the outermost frame. */
1020 if (cache
->base
== 0)
1023 /* See the end of i386_push_dummy_call. */
1024 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
1028 i386_frame_prev_register (struct frame_info
*next_frame
, void **this_cache
,
1029 int regnum
, int *optimizedp
,
1030 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1031 int *realnump
, gdb_byte
*valuep
)
1033 struct i386_frame_cache
*cache
= i386_frame_cache (next_frame
, this_cache
);
1035 gdb_assert (regnum
>= 0);
1037 /* The System V ABI says that:
1039 "The flags register contains the system flags, such as the
1040 direction flag and the carry flag. The direction flag must be
1041 set to the forward (that is, zero) direction before entry and
1042 upon exit from a function. Other user flags have no specified
1043 role in the standard calling sequence and are not preserved."
1045 To guarantee the "upon exit" part of that statement we fake a
1046 saved flags register that has its direction flag cleared.
1048 Note that GCC doesn't seem to rely on the fact that the direction
1049 flag is cleared after a function return; it always explicitly
1050 clears the flag before operations where it matters.
1052 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1053 right thing to do. The way we fake the flags register here makes
1054 it impossible to change it. */
1056 if (regnum
== I386_EFLAGS_REGNUM
)
1066 /* Clear the direction flag. */
1067 val
= frame_unwind_register_unsigned (next_frame
,
1068 I386_EFLAGS_REGNUM
);
1070 store_unsigned_integer (valuep
, 4, val
);
1076 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
1079 *lvalp
= lval_register
;
1081 *realnump
= I386_EAX_REGNUM
;
1083 frame_unwind_register (next_frame
, (*realnump
), valuep
);
1087 if (regnum
== I386_ESP_REGNUM
&& cache
->saved_sp
)
1095 /* Store the value. */
1096 store_unsigned_integer (valuep
, 4, cache
->saved_sp
);
1101 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
1104 *lvalp
= lval_memory
;
1105 *addrp
= cache
->saved_regs
[regnum
];
1109 /* Read the value in from memory. */
1110 read_memory (*addrp
, valuep
,
1111 register_size (current_gdbarch
, regnum
));
1117 *lvalp
= lval_register
;
1121 frame_unwind_register (next_frame
, (*realnump
), valuep
);
1124 static const struct frame_unwind i386_frame_unwind
=
1128 i386_frame_prev_register
1131 static const struct frame_unwind
*
1132 i386_frame_sniffer (struct frame_info
*next_frame
)
1134 return &i386_frame_unwind
;
1138 /* Signal trampolines. */
1140 static struct i386_frame_cache
*
1141 i386_sigtramp_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
1143 struct i386_frame_cache
*cache
;
1144 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
1151 cache
= i386_alloc_frame_cache ();
1153 frame_unwind_register (next_frame
, I386_ESP_REGNUM
, buf
);
1154 cache
->base
= extract_unsigned_integer (buf
, 4) - 4;
1156 addr
= tdep
->sigcontext_addr (next_frame
);
1157 if (tdep
->sc_reg_offset
)
1161 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
1163 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
1164 if (tdep
->sc_reg_offset
[i
] != -1)
1165 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
1169 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
1170 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
1173 *this_cache
= cache
;
1178 i386_sigtramp_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
1179 struct frame_id
*this_id
)
1181 struct i386_frame_cache
*cache
=
1182 i386_sigtramp_frame_cache (next_frame
, this_cache
);
1184 /* See the end of i386_push_dummy_call. */
1185 (*this_id
) = frame_id_build (cache
->base
+ 8, frame_pc_unwind (next_frame
));
1189 i386_sigtramp_frame_prev_register (struct frame_info
*next_frame
,
1191 int regnum
, int *optimizedp
,
1192 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1193 int *realnump
, gdb_byte
*valuep
)
1195 /* Make sure we've initialized the cache. */
1196 i386_sigtramp_frame_cache (next_frame
, this_cache
);
1198 i386_frame_prev_register (next_frame
, this_cache
, regnum
,
1199 optimizedp
, lvalp
, addrp
, realnump
, valuep
);
1202 static const struct frame_unwind i386_sigtramp_frame_unwind
=
1205 i386_sigtramp_frame_this_id
,
1206 i386_sigtramp_frame_prev_register
1209 static const struct frame_unwind
*
1210 i386_sigtramp_frame_sniffer (struct frame_info
*next_frame
)
1212 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (next_frame
));
1214 /* We shouldn't even bother if we don't have a sigcontext_addr
1216 if (tdep
->sigcontext_addr
== NULL
)
1219 if (tdep
->sigtramp_p
!= NULL
)
1221 if (tdep
->sigtramp_p (next_frame
))
1222 return &i386_sigtramp_frame_unwind
;
1225 if (tdep
->sigtramp_start
!= 0)
1227 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
1229 gdb_assert (tdep
->sigtramp_end
!= 0);
1230 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
1231 return &i386_sigtramp_frame_unwind
;
1239 i386_frame_base_address (struct frame_info
*next_frame
, void **this_cache
)
1241 struct i386_frame_cache
*cache
= i386_frame_cache (next_frame
, this_cache
);
1246 static const struct frame_base i386_frame_base
=
1249 i386_frame_base_address
,
1250 i386_frame_base_address
,
1251 i386_frame_base_address
1254 static struct frame_id
1255 i386_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1260 frame_unwind_register (next_frame
, I386_EBP_REGNUM
, buf
);
1261 fp
= extract_unsigned_integer (buf
, 4);
1263 /* See the end of i386_push_dummy_call. */
1264 return frame_id_build (fp
+ 8, frame_pc_unwind (next_frame
));
1268 /* Figure out where the longjmp will land. Slurp the args out of the
1269 stack. We expect the first arg to be a pointer to the jmp_buf
1270 structure from which we extract the address that we will land at.
1271 This address is copied into PC. This routine returns non-zero on
1274 This function is 64-bit safe. */
1277 i386_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
1280 CORE_ADDR sp
, jb_addr
;
1281 int jb_pc_offset
= gdbarch_tdep (get_frame_arch (frame
))->jb_pc_offset
;
1282 int len
= TYPE_LENGTH (builtin_type_void_func_ptr
);
1284 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1285 longjmp will land. */
1286 if (jb_pc_offset
== -1)
1289 /* Don't use I386_ESP_REGNUM here, since this function is also used
1291 get_frame_register (frame
, gdbarch_sp_regnum (current_gdbarch
), buf
);
1292 sp
= extract_typed_address (buf
, builtin_type_void_data_ptr
);
1293 if (target_read_memory (sp
+ len
, buf
, len
))
1296 jb_addr
= extract_typed_address (buf
, builtin_type_void_data_ptr
);
1297 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, len
))
1300 *pc
= extract_typed_address (buf
, builtin_type_void_func_ptr
);
1306 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1307 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
1308 struct value
**args
, CORE_ADDR sp
, int struct_return
,
1309 CORE_ADDR struct_addr
)
1314 /* Push arguments in reverse order. */
1315 for (i
= nargs
- 1; i
>= 0; i
--)
1317 int len
= TYPE_LENGTH (value_enclosing_type (args
[i
]));
1319 /* The System V ABI says that:
1321 "An argument's size is increased, if necessary, to make it a
1322 multiple of [32-bit] words. This may require tail padding,
1323 depending on the size of the argument."
1325 This makes sure the stack stays word-aligned. */
1326 sp
-= (len
+ 3) & ~3;
1327 write_memory (sp
, value_contents_all (args
[i
]), len
);
1330 /* Push value address. */
1334 store_unsigned_integer (buf
, 4, struct_addr
);
1335 write_memory (sp
, buf
, 4);
1338 /* Store return address. */
1340 store_unsigned_integer (buf
, 4, bp_addr
);
1341 write_memory (sp
, buf
, 4);
1343 /* Finally, update the stack pointer... */
1344 store_unsigned_integer (buf
, 4, sp
);
1345 regcache_cooked_write (regcache
, I386_ESP_REGNUM
, buf
);
1347 /* ...and fake a frame pointer. */
1348 regcache_cooked_write (regcache
, I386_EBP_REGNUM
, buf
);
1350 /* MarkK wrote: This "+ 8" is all over the place:
1351 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1352 i386_unwind_dummy_id). It's there, since all frame unwinders for
1353 a given target have to agree (within a certain margin) on the
1354 definition of the stack address of a frame. Otherwise
1355 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1356 stack address *before* the function call as a frame's CFA. On
1357 the i386, when %ebp is used as a frame pointer, the offset
1358 between the contents %ebp and the CFA as defined by GCC. */
1362 /* These registers are used for returning integers (and on some
1363 targets also for returning `struct' and `union' values when their
1364 size and alignment match an integer type). */
1365 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1366 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1368 /* Read, for architecture GDBARCH, a function return value of TYPE
1369 from REGCACHE, and copy that into VALBUF. */
1372 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
1373 struct regcache
*regcache
, gdb_byte
*valbuf
)
1375 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1376 int len
= TYPE_LENGTH (type
);
1377 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
1379 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1381 if (tdep
->st0_regnum
< 0)
1383 warning (_("Cannot find floating-point return value."));
1384 memset (valbuf
, 0, len
);
1388 /* Floating-point return values can be found in %st(0). Convert
1389 its contents to the desired type. This is probably not
1390 exactly how it would happen on the target itself, but it is
1391 the best we can do. */
1392 regcache_raw_read (regcache
, I386_ST0_REGNUM
, buf
);
1393 convert_typed_floating (buf
, builtin_type_i387_ext
, valbuf
, type
);
1397 int low_size
= register_size (current_gdbarch
, LOW_RETURN_REGNUM
);
1398 int high_size
= register_size (current_gdbarch
, HIGH_RETURN_REGNUM
);
1400 if (len
<= low_size
)
1402 regcache_raw_read (regcache
, LOW_RETURN_REGNUM
, buf
);
1403 memcpy (valbuf
, buf
, len
);
1405 else if (len
<= (low_size
+ high_size
))
1407 regcache_raw_read (regcache
, LOW_RETURN_REGNUM
, buf
);
1408 memcpy (valbuf
, buf
, low_size
);
1409 regcache_raw_read (regcache
, HIGH_RETURN_REGNUM
, buf
);
1410 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
1413 internal_error (__FILE__
, __LINE__
,
1414 _("Cannot extract return value of %d bytes long."), len
);
1418 /* Write, for architecture GDBARCH, a function return value of TYPE
1419 from VALBUF into REGCACHE. */
1422 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
1423 struct regcache
*regcache
, const gdb_byte
*valbuf
)
1425 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1426 int len
= TYPE_LENGTH (type
);
1428 /* Define I387_ST0_REGNUM such that we use the proper definitions
1429 for the architecture. */
1430 #define I387_ST0_REGNUM I386_ST0_REGNUM
1432 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1435 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
1437 if (tdep
->st0_regnum
< 0)
1439 warning (_("Cannot set floating-point return value."));
1443 /* Returning floating-point values is a bit tricky. Apart from
1444 storing the return value in %st(0), we have to simulate the
1445 state of the FPU at function return point. */
1447 /* Convert the value found in VALBUF to the extended
1448 floating-point format used by the FPU. This is probably
1449 not exactly how it would happen on the target itself, but
1450 it is the best we can do. */
1451 convert_typed_floating (valbuf
, type
, buf
, builtin_type_i387_ext
);
1452 regcache_raw_write (regcache
, I386_ST0_REGNUM
, buf
);
1454 /* Set the top of the floating-point register stack to 7. The
1455 actual value doesn't really matter, but 7 is what a normal
1456 function return would end up with if the program started out
1457 with a freshly initialized FPU. */
1458 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM
, &fstat
);
1460 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM
, fstat
);
1462 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1463 the floating-point register stack to 7, the appropriate value
1464 for the tag word is 0x3fff. */
1465 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM
, 0x3fff);
1469 int low_size
= register_size (current_gdbarch
, LOW_RETURN_REGNUM
);
1470 int high_size
= register_size (current_gdbarch
, HIGH_RETURN_REGNUM
);
1472 if (len
<= low_size
)
1473 regcache_raw_write_part (regcache
, LOW_RETURN_REGNUM
, 0, len
, valbuf
);
1474 else if (len
<= (low_size
+ high_size
))
1476 regcache_raw_write (regcache
, LOW_RETURN_REGNUM
, valbuf
);
1477 regcache_raw_write_part (regcache
, HIGH_RETURN_REGNUM
, 0,
1478 len
- low_size
, valbuf
+ low_size
);
1481 internal_error (__FILE__
, __LINE__
,
1482 _("Cannot store return value of %d bytes long."), len
);
1485 #undef I387_ST0_REGNUM
1489 /* This is the variable that is set with "set struct-convention", and
1490 its legitimate values. */
1491 static const char default_struct_convention
[] = "default";
1492 static const char pcc_struct_convention
[] = "pcc";
1493 static const char reg_struct_convention
[] = "reg";
1494 static const char *valid_conventions
[] =
1496 default_struct_convention
,
1497 pcc_struct_convention
,
1498 reg_struct_convention
,
1501 static const char *struct_convention
= default_struct_convention
;
1503 /* Return non-zero if TYPE, which is assumed to be a structure,
1504 a union type, or an array type, should be returned in registers
1505 for architecture GDBARCH. */
1508 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
1510 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1511 enum type_code code
= TYPE_CODE (type
);
1512 int len
= TYPE_LENGTH (type
);
1514 gdb_assert (code
== TYPE_CODE_STRUCT
1515 || code
== TYPE_CODE_UNION
1516 || code
== TYPE_CODE_ARRAY
);
1518 if (struct_convention
== pcc_struct_convention
1519 || (struct_convention
== default_struct_convention
1520 && tdep
->struct_return
== pcc_struct_return
))
1523 /* Structures consisting of a single `float', `double' or 'long
1524 double' member are returned in %st(0). */
1525 if (code
== TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type
) == 1)
1527 type
= check_typedef (TYPE_FIELD_TYPE (type
, 0));
1528 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1529 return (len
== 4 || len
== 8 || len
== 12);
1532 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
1535 /* Determine, for architecture GDBARCH, how a return value of TYPE
1536 should be returned. If it is supposed to be returned in registers,
1537 and READBUF is non-zero, read the appropriate value from REGCACHE,
1538 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1539 from WRITEBUF into REGCACHE. */
1541 static enum return_value_convention
1542 i386_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
1543 struct regcache
*regcache
, gdb_byte
*readbuf
,
1544 const gdb_byte
*writebuf
)
1546 enum type_code code
= TYPE_CODE (type
);
1548 if ((code
== TYPE_CODE_STRUCT
1549 || code
== TYPE_CODE_UNION
1550 || code
== TYPE_CODE_ARRAY
)
1551 && !i386_reg_struct_return_p (gdbarch
, type
))
1553 /* The System V ABI says that:
1555 "A function that returns a structure or union also sets %eax
1556 to the value of the original address of the caller's area
1557 before it returns. Thus when the caller receives control
1558 again, the address of the returned object resides in register
1559 %eax and can be used to access the object."
1561 So the ABI guarantees that we can always find the return
1562 value just after the function has returned. */
1564 /* Note that the ABI doesn't mention functions returning arrays,
1565 which is something possible in certain languages such as Ada.
1566 In this case, the value is returned as if it was wrapped in
1567 a record, so the convention applied to records also applies
1574 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
1575 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
1578 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
1581 /* This special case is for structures consisting of a single
1582 `float', `double' or 'long double' member. These structures are
1583 returned in %st(0). For these structures, we call ourselves
1584 recursively, changing TYPE into the type of the first member of
1585 the structure. Since that should work for all structures that
1586 have only one member, we don't bother to check the member's type
1588 if (code
== TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type
) == 1)
1590 type
= check_typedef (TYPE_FIELD_TYPE (type
, 0));
1591 return i386_return_value (gdbarch
, type
, regcache
, readbuf
, writebuf
);
1595 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
1597 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
1599 return RETURN_VALUE_REGISTER_CONVENTION
;
1603 /* Type for %eflags. */
1604 struct type
*i386_eflags_type
;
1606 /* Type for %mxcsr. */
1607 struct type
*i386_mxcsr_type
;
1609 /* Construct types for ISA-specific registers. */
1611 i386_init_types (void)
1615 type
= init_flags_type ("builtin_type_i386_eflags", 4);
1616 append_flags_type_flag (type
, 0, "CF");
1617 append_flags_type_flag (type
, 1, NULL
);
1618 append_flags_type_flag (type
, 2, "PF");
1619 append_flags_type_flag (type
, 4, "AF");
1620 append_flags_type_flag (type
, 6, "ZF");
1621 append_flags_type_flag (type
, 7, "SF");
1622 append_flags_type_flag (type
, 8, "TF");
1623 append_flags_type_flag (type
, 9, "IF");
1624 append_flags_type_flag (type
, 10, "DF");
1625 append_flags_type_flag (type
, 11, "OF");
1626 append_flags_type_flag (type
, 14, "NT");
1627 append_flags_type_flag (type
, 16, "RF");
1628 append_flags_type_flag (type
, 17, "VM");
1629 append_flags_type_flag (type
, 18, "AC");
1630 append_flags_type_flag (type
, 19, "VIF");
1631 append_flags_type_flag (type
, 20, "VIP");
1632 append_flags_type_flag (type
, 21, "ID");
1633 i386_eflags_type
= type
;
1635 type
= init_flags_type ("builtin_type_i386_mxcsr", 4);
1636 append_flags_type_flag (type
, 0, "IE");
1637 append_flags_type_flag (type
, 1, "DE");
1638 append_flags_type_flag (type
, 2, "ZE");
1639 append_flags_type_flag (type
, 3, "OE");
1640 append_flags_type_flag (type
, 4, "UE");
1641 append_flags_type_flag (type
, 5, "PE");
1642 append_flags_type_flag (type
, 6, "DAZ");
1643 append_flags_type_flag (type
, 7, "IM");
1644 append_flags_type_flag (type
, 8, "DM");
1645 append_flags_type_flag (type
, 9, "ZM");
1646 append_flags_type_flag (type
, 10, "OM");
1647 append_flags_type_flag (type
, 11, "UM");
1648 append_flags_type_flag (type
, 12, "PM");
1649 append_flags_type_flag (type
, 15, "FZ");
1650 i386_mxcsr_type
= type
;
1653 /* Construct vector type for MMX registers. */
1655 i386_mmx_type (struct gdbarch
*gdbarch
)
1657 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1659 if (!tdep
->i386_mmx_type
)
1661 /* The type we're building is this: */
1663 union __gdb_builtin_type_vec64i
1666 int32_t v2_int32
[2];
1667 int16_t v4_int16
[4];
1674 t
= init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
1675 append_composite_type_field (t
, "uint64", builtin_type_int64
);
1676 append_composite_type_field (t
, "v2_int32",
1677 init_vector_type (builtin_type_int32
, 2));
1678 append_composite_type_field (t
, "v4_int16",
1679 init_vector_type (builtin_type_int16
, 4));
1680 append_composite_type_field (t
, "v8_int8",
1681 init_vector_type (builtin_type_int8
, 8));
1683 TYPE_FLAGS (t
) |= TYPE_FLAG_VECTOR
;
1684 TYPE_NAME (t
) = "builtin_type_vec64i";
1685 tdep
->i386_mmx_type
= t
;
1688 return tdep
->i386_mmx_type
;
1692 i386_sse_type (struct gdbarch
*gdbarch
)
1694 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1696 if (!tdep
->i386_sse_type
)
1698 /* The type we're building is this: */
1700 union __gdb_builtin_type_vec128i
1703 int64_t v2_int64
[2];
1704 int32_t v4_int32
[4];
1705 int16_t v8_int16
[8];
1706 int8_t v16_int8
[16];
1707 double v2_double
[2];
1714 t
= init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION
);
1715 append_composite_type_field (t
, "v4_float",
1716 init_vector_type (builtin_type_float
, 4));
1717 append_composite_type_field (t
, "v2_double",
1718 init_vector_type (builtin_type_double
, 2));
1719 append_composite_type_field (t
, "v16_int8",
1720 init_vector_type (builtin_type_int8
, 16));
1721 append_composite_type_field (t
, "v8_int16",
1722 init_vector_type (builtin_type_int16
, 8));
1723 append_composite_type_field (t
, "v4_int32",
1724 init_vector_type (builtin_type_int32
, 4));
1725 append_composite_type_field (t
, "v2_int64",
1726 init_vector_type (builtin_type_int64
, 2));
1727 append_composite_type_field (t
, "uint128", builtin_type_int128
);
1729 TYPE_FLAGS (t
) |= TYPE_FLAG_VECTOR
;
1730 TYPE_NAME (t
) = "builtin_type_vec128i";
1731 tdep
->i386_sse_type
= t
;
1734 return tdep
->i386_sse_type
;
1737 /* Return the GDB type object for the "standard" data type of data in
1738 register REGNUM. Perhaps %esi and %edi should go here, but
1739 potentially they could be used for things other than address. */
1741 static struct type
*
1742 i386_register_type (struct gdbarch
*gdbarch
, int regnum
)
1744 if (regnum
== I386_EIP_REGNUM
)
1745 return builtin_type_void_func_ptr
;
1747 if (regnum
== I386_EFLAGS_REGNUM
)
1748 return i386_eflags_type
;
1750 if (regnum
== I386_EBP_REGNUM
|| regnum
== I386_ESP_REGNUM
)
1751 return builtin_type_void_data_ptr
;
1753 if (i386_fp_regnum_p (regnum
))
1754 return builtin_type_i387_ext
;
1756 if (i386_mmx_regnum_p (gdbarch
, regnum
))
1757 return i386_mmx_type (gdbarch
);
1759 if (i386_sse_regnum_p (gdbarch
, regnum
))
1760 return i386_sse_type (gdbarch
);
1762 #define I387_ST0_REGNUM I386_ST0_REGNUM
1763 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1765 if (regnum
== I387_MXCSR_REGNUM
)
1766 return i386_mxcsr_type
;
1768 #undef I387_ST0_REGNUM
1769 #undef I387_NUM_XMM_REGS
1771 return builtin_type_int
;
1774 /* Map a cooked register onto a raw register or memory. For the i386,
1775 the MMX registers need to be mapped onto floating point registers. */
1778 i386_mmx_regnum_to_fp_regnum (struct regcache
*regcache
, int regnum
)
1780 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
1785 /* Define I387_ST0_REGNUM such that we use the proper definitions
1786 for REGCACHE's architecture. */
1787 #define I387_ST0_REGNUM tdep->st0_regnum
1789 mmxreg
= regnum
- tdep
->mm0_regnum
;
1790 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM
, &fstat
);
1791 tos
= (fstat
>> 11) & 0x7;
1792 fpreg
= (mmxreg
+ tos
) % 8;
1794 return (I387_ST0_REGNUM
+ fpreg
);
1796 #undef I387_ST0_REGNUM
1800 i386_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1801 int regnum
, gdb_byte
*buf
)
1803 if (i386_mmx_regnum_p (gdbarch
, regnum
))
1805 gdb_byte mmx_buf
[MAX_REGISTER_SIZE
];
1806 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
1808 /* Extract (always little endian). */
1809 regcache_raw_read (regcache
, fpnum
, mmx_buf
);
1810 memcpy (buf
, mmx_buf
, register_size (gdbarch
, regnum
));
1813 regcache_raw_read (regcache
, regnum
, buf
);
1817 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1818 int regnum
, const gdb_byte
*buf
)
1820 if (i386_mmx_regnum_p (gdbarch
, regnum
))
1822 gdb_byte mmx_buf
[MAX_REGISTER_SIZE
];
1823 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
1826 regcache_raw_read (regcache
, fpnum
, mmx_buf
);
1827 /* ... Modify ... (always little endian). */
1828 memcpy (mmx_buf
, buf
, register_size (gdbarch
, regnum
));
1830 regcache_raw_write (regcache
, fpnum
, mmx_buf
);
1833 regcache_raw_write (regcache
, regnum
, buf
);
1837 /* Return the register number of the register allocated by GCC after
1838 REGNUM, or -1 if there is no such register. */
1841 i386_next_regnum (int regnum
)
1843 /* GCC allocates the registers in the order:
1845 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1847 Since storing a variable in %esp doesn't make any sense we return
1848 -1 for %ebp and for %esp itself. */
1849 static int next_regnum
[] =
1851 I386_EDX_REGNUM
, /* Slot for %eax. */
1852 I386_EBX_REGNUM
, /* Slot for %ecx. */
1853 I386_ECX_REGNUM
, /* Slot for %edx. */
1854 I386_ESI_REGNUM
, /* Slot for %ebx. */
1855 -1, -1, /* Slots for %esp and %ebp. */
1856 I386_EDI_REGNUM
, /* Slot for %esi. */
1857 I386_EBP_REGNUM
/* Slot for %edi. */
1860 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
1861 return next_regnum
[regnum
];
1866 /* Return nonzero if a value of type TYPE stored in register REGNUM
1867 needs any special handling. */
1870 i386_convert_register_p (int regnum
, struct type
*type
)
1872 int len
= TYPE_LENGTH (type
);
1874 /* Values may be spread across multiple registers. Most debugging
1875 formats aren't expressive enough to specify the locations, so
1876 some heuristics is involved. Right now we only handle types that
1877 have a length that is a multiple of the word size, since GCC
1878 doesn't seem to put any other types into registers. */
1879 if (len
> 4 && len
% 4 == 0)
1881 int last_regnum
= regnum
;
1885 last_regnum
= i386_next_regnum (last_regnum
);
1889 if (last_regnum
!= -1)
1893 return i386_fp_regnum_p (regnum
);
1896 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1897 return its contents in TO. */
1900 i386_register_to_value (struct frame_info
*frame
, int regnum
,
1901 struct type
*type
, gdb_byte
*to
)
1903 int len
= TYPE_LENGTH (type
);
1905 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1906 available in FRAME (i.e. if it wasn't saved)? */
1908 if (i386_fp_regnum_p (regnum
))
1910 i387_register_to_value (frame
, regnum
, type
, to
);
1914 /* Read a value spread across multiple registers. */
1916 gdb_assert (len
> 4 && len
% 4 == 0);
1920 gdb_assert (regnum
!= -1);
1921 gdb_assert (register_size (current_gdbarch
, regnum
) == 4);
1923 get_frame_register (frame
, regnum
, to
);
1924 regnum
= i386_next_regnum (regnum
);
1930 /* Write the contents FROM of a value of type TYPE into register
1931 REGNUM in frame FRAME. */
1934 i386_value_to_register (struct frame_info
*frame
, int regnum
,
1935 struct type
*type
, const gdb_byte
*from
)
1937 int len
= TYPE_LENGTH (type
);
1939 if (i386_fp_regnum_p (regnum
))
1941 i387_value_to_register (frame
, regnum
, type
, from
);
1945 /* Write a value spread across multiple registers. */
1947 gdb_assert (len
> 4 && len
% 4 == 0);
1951 gdb_assert (regnum
!= -1);
1952 gdb_assert (register_size (current_gdbarch
, regnum
) == 4);
1954 put_frame_register (frame
, regnum
, from
);
1955 regnum
= i386_next_regnum (regnum
);
1961 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1962 in the general-purpose register set REGSET to register cache
1963 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1966 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
1967 int regnum
, const void *gregs
, size_t len
)
1969 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (regset
->arch
);
1970 const gdb_byte
*regs
= gregs
;
1973 gdb_assert (len
== tdep
->sizeof_gregset
);
1975 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
1977 if ((regnum
== i
|| regnum
== -1)
1978 && tdep
->gregset_reg_offset
[i
] != -1)
1979 regcache_raw_supply (regcache
, i
, regs
+ tdep
->gregset_reg_offset
[i
]);
1983 /* Collect register REGNUM from the register cache REGCACHE and store
1984 it in the buffer specified by GREGS and LEN as described by the
1985 general-purpose register set REGSET. If REGNUM is -1, do this for
1986 all registers in REGSET. */
1989 i386_collect_gregset (const struct regset
*regset
,
1990 const struct regcache
*regcache
,
1991 int regnum
, void *gregs
, size_t len
)
1993 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (regset
->arch
);
1994 gdb_byte
*regs
= gregs
;
1997 gdb_assert (len
== tdep
->sizeof_gregset
);
1999 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
2001 if ((regnum
== i
|| regnum
== -1)
2002 && tdep
->gregset_reg_offset
[i
] != -1)
2003 regcache_raw_collect (regcache
, i
, regs
+ tdep
->gregset_reg_offset
[i
]);
2007 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2008 in the floating-point register set REGSET to register cache
2009 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2012 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
2013 int regnum
, const void *fpregs
, size_t len
)
2015 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (regset
->arch
);
2017 if (len
== I387_SIZEOF_FXSAVE
)
2019 i387_supply_fxsave (regcache
, regnum
, fpregs
);
2023 gdb_assert (len
== tdep
->sizeof_fpregset
);
2024 i387_supply_fsave (regcache
, regnum
, fpregs
);
2027 /* Collect register REGNUM from the register cache REGCACHE and store
2028 it in the buffer specified by FPREGS and LEN as described by the
2029 floating-point register set REGSET. If REGNUM is -1, do this for
2030 all registers in REGSET. */
2033 i386_collect_fpregset (const struct regset
*regset
,
2034 const struct regcache
*regcache
,
2035 int regnum
, void *fpregs
, size_t len
)
2037 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (regset
->arch
);
2039 if (len
== I387_SIZEOF_FXSAVE
)
2041 i387_collect_fxsave (regcache
, regnum
, fpregs
);
2045 gdb_assert (len
== tdep
->sizeof_fpregset
);
2046 i387_collect_fsave (regcache
, regnum
, fpregs
);
2049 /* Return the appropriate register set for the core section identified
2050 by SECT_NAME and SECT_SIZE. */
2052 const struct regset
*
2053 i386_regset_from_core_section (struct gdbarch
*gdbarch
,
2054 const char *sect_name
, size_t sect_size
)
2056 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2058 if (strcmp (sect_name
, ".reg") == 0 && sect_size
== tdep
->sizeof_gregset
)
2060 if (tdep
->gregset
== NULL
)
2061 tdep
->gregset
= regset_alloc (gdbarch
, i386_supply_gregset
,
2062 i386_collect_gregset
);
2063 return tdep
->gregset
;
2066 if ((strcmp (sect_name
, ".reg2") == 0 && sect_size
== tdep
->sizeof_fpregset
)
2067 || (strcmp (sect_name
, ".reg-xfp") == 0
2068 && sect_size
== I387_SIZEOF_FXSAVE
))
2070 if (tdep
->fpregset
== NULL
)
2071 tdep
->fpregset
= regset_alloc (gdbarch
, i386_supply_fpregset
,
2072 i386_collect_fpregset
);
2073 return tdep
->fpregset
;
2080 #ifdef STATIC_TRANSFORM_NAME
2081 /* SunPRO encodes the static variables. This is not related to C++
2082 mangling, it is done for C too. */
2085 sunpro_static_transform_name (char *name
)
2088 if (IS_STATIC_TRANSFORM_NAME (name
))
2090 /* For file-local statics there will be a period, a bunch of
2091 junk (the contents of which match a string given in the
2092 N_OPT), a period and the name. For function-local statics
2093 there will be a bunch of junk (which seems to change the
2094 second character from 'A' to 'B'), a period, the name of the
2095 function, and the name. So just skip everything before the
2097 p
= strrchr (name
, '.');
2103 #endif /* STATIC_TRANSFORM_NAME */
2106 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2109 i386_pe_skip_trampoline_code (CORE_ADDR pc
, char *name
)
2111 if (pc
&& read_memory_unsigned_integer (pc
, 2) == 0x25ff) /* jmp *(dest) */
2113 unsigned long indirect
= read_memory_unsigned_integer (pc
+ 2, 4);
2114 struct minimal_symbol
*indsym
=
2115 indirect
? lookup_minimal_symbol_by_pc (indirect
) : 0;
2116 char *symname
= indsym
? SYMBOL_LINKAGE_NAME (indsym
) : 0;
2120 if (strncmp (symname
, "__imp_", 6) == 0
2121 || strncmp (symname
, "_imp_", 5) == 0)
2122 return name
? 1 : read_memory_unsigned_integer (indirect
, 4);
2125 return 0; /* Not a trampoline. */
2129 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2130 sigtramp routine. */
2133 i386_sigtramp_p (struct frame_info
*next_frame
)
2135 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
2138 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2139 return (name
&& strcmp ("_sigtramp", name
) == 0);
2143 /* We have two flavours of disassembly. The machinery on this page
2144 deals with switching between those. */
2147 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
2149 gdb_assert (disassembly_flavor
== att_flavor
2150 || disassembly_flavor
== intel_flavor
);
2152 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2153 constified, cast to prevent a compiler warning. */
2154 info
->disassembler_options
= (char *) disassembly_flavor
;
2155 info
->mach
= gdbarch_bfd_arch_info (current_gdbarch
)->mach
;
2157 return print_insn_i386 (pc
, info
);
2161 /* There are a few i386 architecture variants that differ only
2162 slightly from the generic i386 target. For now, we don't give them
2163 their own source file, but include them here. As a consequence,
2164 they'll always be included. */
2166 /* System V Release 4 (SVR4). */
2168 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2169 sigtramp routine. */
2172 i386_svr4_sigtramp_p (struct frame_info
*next_frame
)
2174 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
2177 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2178 currently unknown. */
2179 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2180 return (name
&& (strcmp ("_sigreturn", name
) == 0
2181 || strcmp ("_sigacthandler", name
) == 0
2182 || strcmp ("sigvechandler", name
) == 0));
2185 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2186 routine, return the address of the associated sigcontext (ucontext)
2190 i386_svr4_sigcontext_addr (struct frame_info
*next_frame
)
2195 frame_unwind_register (next_frame
, I386_ESP_REGNUM
, buf
);
2196 sp
= extract_unsigned_integer (buf
, 4);
2198 return read_memory_unsigned_integer (sp
+ 8, 4);
2205 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
2207 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2208 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
2211 /* System V Release 4 (SVR4). */
2214 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
2216 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2218 /* System V Release 4 uses ELF. */
2219 i386_elf_init_abi (info
, gdbarch
);
2221 /* System V Release 4 has shared libraries. */
2222 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
2224 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
2225 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
2226 tdep
->sc_pc_offset
= 36 + 14 * 4;
2227 tdep
->sc_sp_offset
= 36 + 17 * 4;
2229 tdep
->jb_pc_offset
= 20;
2235 i386_go32_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
2237 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2239 /* DJGPP doesn't have any special frames for signal handlers. */
2240 tdep
->sigtramp_p
= NULL
;
2242 tdep
->jb_pc_offset
= 36;
2246 /* i386 register groups. In addition to the normal groups, add "mmx"
2249 static struct reggroup
*i386_sse_reggroup
;
2250 static struct reggroup
*i386_mmx_reggroup
;
2253 i386_init_reggroups (void)
2255 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
2256 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
2260 i386_add_reggroups (struct gdbarch
*gdbarch
)
2262 reggroup_add (gdbarch
, i386_sse_reggroup
);
2263 reggroup_add (gdbarch
, i386_mmx_reggroup
);
2264 reggroup_add (gdbarch
, general_reggroup
);
2265 reggroup_add (gdbarch
, float_reggroup
);
2266 reggroup_add (gdbarch
, all_reggroup
);
2267 reggroup_add (gdbarch
, save_reggroup
);
2268 reggroup_add (gdbarch
, restore_reggroup
);
2269 reggroup_add (gdbarch
, vector_reggroup
);
2270 reggroup_add (gdbarch
, system_reggroup
);
2274 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
2275 struct reggroup
*group
)
2277 int sse_regnum_p
= (i386_sse_regnum_p (gdbarch
, regnum
)
2278 || i386_mxcsr_regnum_p (gdbarch
, regnum
));
2279 int fp_regnum_p
= (i386_fp_regnum_p (regnum
)
2280 || i386_fpc_regnum_p (regnum
));
2281 int mmx_regnum_p
= (i386_mmx_regnum_p (gdbarch
, regnum
));
2283 if (group
== i386_mmx_reggroup
)
2284 return mmx_regnum_p
;
2285 if (group
== i386_sse_reggroup
)
2286 return sse_regnum_p
;
2287 if (group
== vector_reggroup
)
2288 return (mmx_regnum_p
|| sse_regnum_p
);
2289 if (group
== float_reggroup
)
2291 if (group
== general_reggroup
)
2292 return (!fp_regnum_p
&& !mmx_regnum_p
&& !sse_regnum_p
);
2294 return default_register_reggroup_p (gdbarch
, regnum
, group
);
2298 /* Get the ARGIth function argument for the current function. */
2301 i386_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
2304 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
2305 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4);
2309 static struct gdbarch
*
2310 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2312 struct gdbarch_tdep
*tdep
;
2313 struct gdbarch
*gdbarch
;
2315 /* If there is already a candidate, use it. */
2316 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2318 return arches
->gdbarch
;
2320 /* Allocate space for the new architecture. */
2321 tdep
= XCALLOC (1, struct gdbarch_tdep
);
2322 gdbarch
= gdbarch_alloc (&info
, tdep
);
2324 /* General-purpose registers. */
2325 tdep
->gregset
= NULL
;
2326 tdep
->gregset_reg_offset
= NULL
;
2327 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
2328 tdep
->sizeof_gregset
= 0;
2330 /* Floating-point registers. */
2331 tdep
->fpregset
= NULL
;
2332 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
2334 /* The default settings include the FPU registers, the MMX registers
2335 and the SSE registers. This can be overridden for a specific ABI
2336 by adjusting the members `st0_regnum', `mm0_regnum' and
2337 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2338 will show up in the output of "info all-registers". Ideally we
2339 should try to autodetect whether they are available, such that we
2340 can prevent "info all-registers" from displaying registers that
2343 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2344 [the SSE registers] always (even when they don't exist) or never
2345 showing them to the user (even when they do exist), I prefer the
2346 former over the latter. */
2348 tdep
->st0_regnum
= I386_ST0_REGNUM
;
2350 /* The MMX registers are implemented as pseudo-registers. Put off
2351 calculating the register number for %mm0 until we know the number
2352 of raw registers. */
2353 tdep
->mm0_regnum
= 0;
2355 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2356 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
2358 tdep
->jb_pc_offset
= -1;
2359 tdep
->struct_return
= pcc_struct_return
;
2360 tdep
->sigtramp_start
= 0;
2361 tdep
->sigtramp_end
= 0;
2362 tdep
->sigtramp_p
= i386_sigtramp_p
;
2363 tdep
->sigcontext_addr
= NULL
;
2364 tdep
->sc_reg_offset
= NULL
;
2365 tdep
->sc_pc_offset
= -1;
2366 tdep
->sc_sp_offset
= -1;
2368 /* The format used for `long double' on almost all i386 targets is
2369 the i387 extended floating-point format. In fact, of all targets
2370 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2371 on having a `long double' that's not `long' at all. */
2372 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
2374 /* Although the i387 extended floating-point has only 80 significant
2375 bits, a `long double' actually takes up 96, probably to enforce
2377 set_gdbarch_long_double_bit (gdbarch
, 96);
2379 /* The default ABI includes general-purpose registers,
2380 floating-point registers, and the SSE registers. */
2381 set_gdbarch_num_regs (gdbarch
, I386_SSE_NUM_REGS
);
2382 set_gdbarch_register_name (gdbarch
, i386_register_name
);
2383 set_gdbarch_register_type (gdbarch
, i386_register_type
);
2385 /* Register numbers of various important registers. */
2386 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
2387 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
2388 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
2389 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
2391 /* NOTE: kettenis/20040418: GCC does have two possible register
2392 numbering schemes on the i386: dbx and SVR4. These schemes
2393 differ in how they number %ebp, %esp, %eflags, and the
2394 floating-point registers, and are implemented by the arrays
2395 dbx_register_map[] and svr4_dbx_register_map in
2396 gcc/config/i386.c. GCC also defines a third numbering scheme in
2397 gcc/config/i386.c, which it designates as the "default" register
2398 map used in 64bit mode. This last register numbering scheme is
2399 implemented in dbx64_register_map, and is used for AMD64; see
2402 Currently, each GCC i386 target always uses the same register
2403 numbering scheme across all its supported debugging formats
2404 i.e. SDB (COFF), stabs and DWARF 2. This is because
2405 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2406 DBX_REGISTER_NUMBER macro which is defined by each target's
2407 respective config header in a manner independent of the requested
2408 output debugging format.
2410 This does not match the arrangement below, which presumes that
2411 the SDB and stabs numbering schemes differ from the DWARF and
2412 DWARF 2 ones. The reason for this arrangement is that it is
2413 likely to get the numbering scheme for the target's
2414 default/native debug format right. For targets where GCC is the
2415 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2416 targets where the native toolchain uses a different numbering
2417 scheme for a particular debug format (stabs-in-ELF on Solaris)
2418 the defaults below will have to be overridden, like
2419 i386_elf_init_abi() does. */
2421 /* Use the dbx register numbering scheme for stabs and COFF. */
2422 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
2423 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
2425 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2426 set_gdbarch_dwarf_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
2427 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
2429 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2430 be in use on any of the supported i386 targets. */
2432 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
2434 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
2436 /* Call dummy code. */
2437 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
2439 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
2440 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
2441 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
2443 set_gdbarch_return_value (gdbarch
, i386_return_value
);
2445 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
2447 /* Stack grows downward. */
2448 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2450 set_gdbarch_breakpoint_from_pc (gdbarch
, i386_breakpoint_from_pc
);
2451 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
2453 set_gdbarch_frame_args_skip (gdbarch
, 8);
2455 /* Wire in the MMX registers. */
2456 set_gdbarch_num_pseudo_regs (gdbarch
, i386_num_mmx_regs
);
2457 set_gdbarch_pseudo_register_read (gdbarch
, i386_pseudo_register_read
);
2458 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
2460 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
2462 set_gdbarch_unwind_dummy_id (gdbarch
, i386_unwind_dummy_id
);
2464 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
2466 /* Add the i386 register groups. */
2467 i386_add_reggroups (gdbarch
);
2468 set_gdbarch_register_reggroup_p (gdbarch
, i386_register_reggroup_p
);
2470 /* Helper for function argument information. */
2471 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
2473 /* Hook in the DWARF CFI frame unwinder. */
2474 frame_unwind_append_sniffer (gdbarch
, dwarf2_frame_sniffer
);
2476 frame_base_set_default (gdbarch
, &i386_frame_base
);
2478 /* Hook in ABI-specific overrides, if they have been registered. */
2479 gdbarch_init_osabi (info
, gdbarch
);
2481 frame_unwind_append_sniffer (gdbarch
, i386_sigtramp_frame_sniffer
);
2482 frame_unwind_append_sniffer (gdbarch
, i386_frame_sniffer
);
2484 /* If we have a register mapping, enable the generic core file
2485 support, unless it has already been enabled. */
2486 if (tdep
->gregset_reg_offset
2487 && !gdbarch_regset_from_core_section_p (gdbarch
))
2488 set_gdbarch_regset_from_core_section (gdbarch
,
2489 i386_regset_from_core_section
);
2491 /* Unless support for MMX has been disabled, make %mm0 the first
2493 if (tdep
->mm0_regnum
== 0)
2494 tdep
->mm0_regnum
= gdbarch_num_regs (gdbarch
);
2499 static enum gdb_osabi
2500 i386_coff_osabi_sniffer (bfd
*abfd
)
2502 if (strcmp (bfd_get_target (abfd
), "coff-go32-exe") == 0
2503 || strcmp (bfd_get_target (abfd
), "coff-go32") == 0)
2504 return GDB_OSABI_GO32
;
2506 return GDB_OSABI_UNKNOWN
;
2510 /* Provide a prototype to silence -Wmissing-prototypes. */
2511 void _initialize_i386_tdep (void);
2514 _initialize_i386_tdep (void)
2516 register_gdbarch_init (bfd_arch_i386
, i386_gdbarch_init
);
2518 /* Add the variable that controls the disassembly flavor. */
2519 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
2520 &disassembly_flavor
, _("\
2521 Set the disassembly flavor."), _("\
2522 Show the disassembly flavor."), _("\
2523 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2525 NULL
, /* FIXME: i18n: */
2526 &setlist
, &showlist
);
2528 /* Add the variable that controls the convention for returning
2530 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
2531 &struct_convention
, _("\
2532 Set the convention for returning small structs."), _("\
2533 Show the convention for returning small structs."), _("\
2534 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2537 NULL
, /* FIXME: i18n: */
2538 &setlist
, &showlist
);
2540 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_coff_flavour
,
2541 i386_coff_osabi_sniffer
);
2543 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
2544 i386_svr4_init_abi
);
2545 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_GO32
,
2546 i386_go32_init_abi
);
2548 /* Initialize the i386-specific register groups & types. */
2549 i386_init_reggroups ();