AMD64 - Fix many compile-time warnings. int/ptr type mismatches, %llx, etc.
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blobbdd30b18cc25554ad878d6dd3aeb3aee4d951aa6
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_free_inode(hammer_inode_t ip);
44 static void hammer_flush_inode_core(hammer_inode_t ip,
45 hammer_flush_group_t flg, int flags);
46 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
47 #if 0
48 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
49 #endif
50 static int hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
51 hammer_flush_group_t flg);
52 static int hammer_setup_parent_inodes_helper(hammer_record_t record,
53 int depth, hammer_flush_group_t flg);
54 static void hammer_inode_wakereclaims(hammer_inode_t ip, int dowake);
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
61 * RB-Tree support for inode structures
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
66 if (ip1->obj_localization < ip2->obj_localization)
67 return(-1);
68 if (ip1->obj_localization > ip2->obj_localization)
69 return(1);
70 if (ip1->obj_id < ip2->obj_id)
71 return(-1);
72 if (ip1->obj_id > ip2->obj_id)
73 return(1);
74 if (ip1->obj_asof < ip2->obj_asof)
75 return(-1);
76 if (ip1->obj_asof > ip2->obj_asof)
77 return(1);
78 return(0);
82 * RB-Tree support for inode structures / special LOOKUP_INFO
84 static int
85 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
87 if (info->obj_localization < ip->obj_localization)
88 return(-1);
89 if (info->obj_localization > ip->obj_localization)
90 return(1);
91 if (info->obj_id < ip->obj_id)
92 return(-1);
93 if (info->obj_id > ip->obj_id)
94 return(1);
95 if (info->obj_asof < ip->obj_asof)
96 return(-1);
97 if (info->obj_asof > ip->obj_asof)
98 return(1);
99 return(0);
103 * Used by hammer_scan_inode_snapshots() to locate all of an object's
104 * snapshots. Note that the asof field is not tested, which we can get
105 * away with because it is the lowest-priority field.
107 static int
108 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
110 hammer_inode_info_t info = data;
112 if (ip->obj_localization > info->obj_localization)
113 return(1);
114 if (ip->obj_localization < info->obj_localization)
115 return(-1);
116 if (ip->obj_id > info->obj_id)
117 return(1);
118 if (ip->obj_id < info->obj_id)
119 return(-1);
120 return(0);
124 * Used by hammer_unload_pseudofs() to locate all inodes associated with
125 * a particular PFS.
127 static int
128 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
130 u_int32_t localization = *(u_int32_t *)data;
131 if (ip->obj_localization > localization)
132 return(1);
133 if (ip->obj_localization < localization)
134 return(-1);
135 return(0);
139 * RB-Tree support for pseudofs structures
141 static int
142 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
144 if (p1->localization < p2->localization)
145 return(-1);
146 if (p1->localization > p2->localization)
147 return(1);
148 return(0);
152 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
153 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
154 hammer_inode_info_cmp, hammer_inode_info_t);
155 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
156 hammer_pfs_rb_compare, u_int32_t, localization);
159 * The kernel is not actively referencing this vnode but is still holding
160 * it cached.
162 * This is called from the frontend.
165 hammer_vop_inactive(struct vop_inactive_args *ap)
167 struct hammer_inode *ip = VTOI(ap->a_vp);
170 * Degenerate case
172 if (ip == NULL) {
173 vrecycle(ap->a_vp);
174 return(0);
178 * If the inode no longer has visibility in the filesystem try to
179 * recycle it immediately, even if the inode is dirty. Recycling
180 * it quickly allows the system to reclaim buffer cache and VM
181 * resources which can matter a lot in a heavily loaded system.
183 * This can deadlock in vfsync() if we aren't careful.
185 * Do not queue the inode to the flusher if we still have visibility,
186 * otherwise namespace calls such as chmod will unnecessarily generate
187 * multiple inode updates.
189 hammer_inode_unloadable_check(ip, 0);
190 if (ip->ino_data.nlinks == 0) {
191 if (ip->flags & HAMMER_INODE_MODMASK)
192 hammer_flush_inode(ip, 0);
193 vrecycle(ap->a_vp);
195 return(0);
199 * Release the vnode association. This is typically (but not always)
200 * the last reference on the inode.
202 * Once the association is lost we are on our own with regards to
203 * flushing the inode.
206 hammer_vop_reclaim(struct vop_reclaim_args *ap)
208 struct hammer_inode *ip;
209 hammer_mount_t hmp;
210 struct vnode *vp;
212 vp = ap->a_vp;
214 if ((ip = vp->v_data) != NULL) {
215 hmp = ip->hmp;
216 vp->v_data = NULL;
217 ip->vp = NULL;
219 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
220 ++hammer_count_reclaiming;
221 ++hmp->inode_reclaims;
222 ip->flags |= HAMMER_INODE_RECLAIM;
224 hammer_rel_inode(ip, 1);
226 return(0);
230 * Return a locked vnode for the specified inode. The inode must be
231 * referenced but NOT LOCKED on entry and will remain referenced on
232 * return.
234 * Called from the frontend.
237 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
239 hammer_mount_t hmp;
240 struct vnode *vp;
241 int error = 0;
242 u_int8_t obj_type;
244 hmp = ip->hmp;
246 for (;;) {
247 if ((vp = ip->vp) == NULL) {
248 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
249 if (error)
250 break;
251 hammer_lock_ex(&ip->lock);
252 if (ip->vp != NULL) {
253 hammer_unlock(&ip->lock);
254 vp = *vpp;
255 vp->v_type = VBAD;
256 vx_put(vp);
257 continue;
259 hammer_ref(&ip->lock);
260 vp = *vpp;
261 ip->vp = vp;
263 obj_type = ip->ino_data.obj_type;
264 vp->v_type = hammer_get_vnode_type(obj_type);
266 hammer_inode_wakereclaims(ip, 0);
268 switch(ip->ino_data.obj_type) {
269 case HAMMER_OBJTYPE_CDEV:
270 case HAMMER_OBJTYPE_BDEV:
271 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
272 addaliasu(vp, ip->ino_data.rmajor,
273 ip->ino_data.rminor);
274 break;
275 case HAMMER_OBJTYPE_FIFO:
276 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
277 break;
278 default:
279 break;
283 * Only mark as the root vnode if the ip is not
284 * historical, otherwise the VFS cache will get
285 * confused. The other half of the special handling
286 * is in hammer_vop_nlookupdotdot().
288 * Pseudo-filesystem roots can be accessed via
289 * non-root filesystem paths and setting VROOT may
290 * confuse the namecache. Set VPFSROOT instead.
292 if (ip->obj_id == HAMMER_OBJID_ROOT &&
293 ip->obj_asof == hmp->asof) {
294 if (ip->obj_localization == 0)
295 vp->v_flag |= VROOT;
296 else
297 vp->v_flag |= VPFSROOT;
300 vp->v_data = (void *)ip;
301 /* vnode locked by getnewvnode() */
302 /* make related vnode dirty if inode dirty? */
303 hammer_unlock(&ip->lock);
304 if (vp->v_type == VREG)
305 vinitvmio(vp, ip->ino_data.size);
306 break;
310 * loop if the vget fails (aka races), or if the vp
311 * no longer matches ip->vp.
313 if (vget(vp, LK_EXCLUSIVE) == 0) {
314 if (vp == ip->vp)
315 break;
316 vput(vp);
319 *vpp = vp;
320 return(error);
324 * Locate all copies of the inode for obj_id compatible with the specified
325 * asof, reference, and issue the related call-back. This routine is used
326 * for direct-io invalidation and does not create any new inodes.
328 void
329 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
330 int (*callback)(hammer_inode_t ip, void *data),
331 void *data)
333 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
334 hammer_inode_info_cmp_all_history,
335 callback, iinfo);
339 * Acquire a HAMMER inode. The returned inode is not locked. These functions
340 * do not attach or detach the related vnode (use hammer_get_vnode() for
341 * that).
343 * The flags argument is only applied for newly created inodes, and only
344 * certain flags are inherited.
346 * Called from the frontend.
348 struct hammer_inode *
349 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
350 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
351 int flags, int *errorp)
353 hammer_mount_t hmp = trans->hmp;
354 struct hammer_node_cache *cachep;
355 struct hammer_inode_info iinfo;
356 struct hammer_cursor cursor;
357 struct hammer_inode *ip;
361 * Determine if we already have an inode cached. If we do then
362 * we are golden.
364 * If we find an inode with no vnode we have to mark the
365 * transaction such that hammer_inode_waitreclaims() is
366 * called later on to avoid building up an infinite number
367 * of inodes. Otherwise we can continue to * add new inodes
368 * faster then they can be disposed of, even with the tsleep
369 * delay.
371 * If we find a dummy inode we return a failure so dounlink
372 * (which does another lookup) doesn't try to mess with the
373 * link count. hammer_vop_nresolve() uses hammer_get_dummy_inode()
374 * to ref dummy inodes.
376 iinfo.obj_id = obj_id;
377 iinfo.obj_asof = asof;
378 iinfo.obj_localization = localization;
379 loop:
380 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
381 if (ip) {
382 if (ip->flags & HAMMER_INODE_DUMMY) {
383 *errorp = ENOENT;
384 return(NULL);
386 hammer_ref(&ip->lock);
387 *errorp = 0;
388 return(ip);
392 * Allocate a new inode structure and deal with races later.
394 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
395 ++hammer_count_inodes;
396 ++hmp->count_inodes;
397 ip->obj_id = obj_id;
398 ip->obj_asof = iinfo.obj_asof;
399 ip->obj_localization = localization;
400 ip->hmp = hmp;
401 ip->flags = flags & HAMMER_INODE_RO;
402 ip->cache[0].ip = ip;
403 ip->cache[1].ip = ip;
404 ip->cache[2].ip = ip;
405 ip->cache[3].ip = ip;
406 if (hmp->ronly)
407 ip->flags |= HAMMER_INODE_RO;
408 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
409 0x7FFFFFFFFFFFFFFFLL;
410 RB_INIT(&ip->rec_tree);
411 TAILQ_INIT(&ip->target_list);
412 hammer_ref(&ip->lock);
415 * Locate the on-disk inode. If this is a PFS root we always
416 * access the current version of the root inode and (if it is not
417 * a master) always access information under it with a snapshot
418 * TID.
420 * We cache recent inode lookups in this directory in dip->cache[2].
421 * If we can't find it we assume the inode we are looking for is
422 * close to the directory inode.
424 retry:
425 cachep = NULL;
426 if (dip) {
427 if (dip->cache[2].node)
428 cachep = &dip->cache[2];
429 else
430 cachep = &dip->cache[0];
432 hammer_init_cursor(trans, &cursor, cachep, NULL);
433 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
434 cursor.key_beg.obj_id = ip->obj_id;
435 cursor.key_beg.key = 0;
436 cursor.key_beg.create_tid = 0;
437 cursor.key_beg.delete_tid = 0;
438 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
439 cursor.key_beg.obj_type = 0;
441 cursor.asof = iinfo.obj_asof;
442 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
443 HAMMER_CURSOR_ASOF;
445 *errorp = hammer_btree_lookup(&cursor);
446 if (*errorp == EDEADLK) {
447 hammer_done_cursor(&cursor);
448 goto retry;
452 * On success the B-Tree lookup will hold the appropriate
453 * buffer cache buffers and provide a pointer to the requested
454 * information. Copy the information to the in-memory inode
455 * and cache the B-Tree node to improve future operations.
457 if (*errorp == 0) {
458 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
459 ip->ino_data = cursor.data->inode;
462 * cache[0] tries to cache the location of the object inode.
463 * The assumption is that it is near the directory inode.
465 * cache[1] tries to cache the location of the object data.
466 * We might have something in the governing directory from
467 * scan optimizations (see the strategy code in
468 * hammer_vnops.c).
470 * We update dip->cache[2], if possible, with the location
471 * of the object inode for future directory shortcuts.
473 hammer_cache_node(&ip->cache[0], cursor.node);
474 if (dip) {
475 if (dip->cache[3].node) {
476 hammer_cache_node(&ip->cache[1],
477 dip->cache[3].node);
479 hammer_cache_node(&dip->cache[2], cursor.node);
483 * The file should not contain any data past the file size
484 * stored in the inode. Setting save_trunc_off to the
485 * file size instead of max reduces B-Tree lookup overheads
486 * on append by allowing the flusher to avoid checking for
487 * record overwrites.
489 ip->save_trunc_off = ip->ino_data.size;
492 * Locate and assign the pseudofs management structure to
493 * the inode.
495 if (dip && dip->obj_localization == ip->obj_localization) {
496 ip->pfsm = dip->pfsm;
497 hammer_ref(&ip->pfsm->lock);
498 } else {
499 ip->pfsm = hammer_load_pseudofs(trans,
500 ip->obj_localization,
501 errorp);
502 *errorp = 0; /* ignore ENOENT */
507 * The inode is placed on the red-black tree and will be synced to
508 * the media when flushed or by the filesystem sync. If this races
509 * another instantiation/lookup the insertion will fail.
511 if (*errorp == 0) {
512 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
513 hammer_free_inode(ip);
514 hammer_done_cursor(&cursor);
515 goto loop;
517 ip->flags |= HAMMER_INODE_ONDISK;
518 } else {
519 if (ip->flags & HAMMER_INODE_RSV_INODES) {
520 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
521 --hmp->rsv_inodes;
524 hammer_free_inode(ip);
525 ip = NULL;
527 hammer_done_cursor(&cursor);
528 trans->flags |= HAMMER_TRANSF_NEWINODE;
529 return (ip);
533 * Get a dummy inode to placemark a broken directory entry.
535 struct hammer_inode *
536 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
537 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
538 int flags, int *errorp)
540 hammer_mount_t hmp = trans->hmp;
541 struct hammer_inode_info iinfo;
542 struct hammer_inode *ip;
545 * Determine if we already have an inode cached. If we do then
546 * we are golden.
548 * If we find an inode with no vnode we have to mark the
549 * transaction such that hammer_inode_waitreclaims() is
550 * called later on to avoid building up an infinite number
551 * of inodes. Otherwise we can continue to * add new inodes
552 * faster then they can be disposed of, even with the tsleep
553 * delay.
555 * If we find a non-fake inode we return an error. Only fake
556 * inodes can be returned by this routine.
558 iinfo.obj_id = obj_id;
559 iinfo.obj_asof = asof;
560 iinfo.obj_localization = localization;
561 loop:
562 *errorp = 0;
563 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
564 if (ip) {
565 if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
566 *errorp = ENOENT;
567 return(NULL);
569 hammer_ref(&ip->lock);
570 return(ip);
574 * Allocate a new inode structure and deal with races later.
576 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
577 ++hammer_count_inodes;
578 ++hmp->count_inodes;
579 ip->obj_id = obj_id;
580 ip->obj_asof = iinfo.obj_asof;
581 ip->obj_localization = localization;
582 ip->hmp = hmp;
583 ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
584 ip->cache[0].ip = ip;
585 ip->cache[1].ip = ip;
586 ip->cache[2].ip = ip;
587 ip->cache[3].ip = ip;
588 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
589 0x7FFFFFFFFFFFFFFFLL;
590 RB_INIT(&ip->rec_tree);
591 TAILQ_INIT(&ip->target_list);
592 hammer_ref(&ip->lock);
595 * Populate the dummy inode. Leave everything zero'd out.
597 * (ip->ino_leaf and ip->ino_data)
599 * Make the dummy inode a FIFO object which most copy programs
600 * will properly ignore.
602 ip->save_trunc_off = ip->ino_data.size;
603 ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
606 * Locate and assign the pseudofs management structure to
607 * the inode.
609 if (dip && dip->obj_localization == ip->obj_localization) {
610 ip->pfsm = dip->pfsm;
611 hammer_ref(&ip->pfsm->lock);
612 } else {
613 ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
614 errorp);
615 *errorp = 0; /* ignore ENOENT */
619 * The inode is placed on the red-black tree and will be synced to
620 * the media when flushed or by the filesystem sync. If this races
621 * another instantiation/lookup the insertion will fail.
623 * NOTE: Do not set HAMMER_INODE_ONDISK. The inode is a fake.
625 if (*errorp == 0) {
626 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
627 hammer_free_inode(ip);
628 goto loop;
630 } else {
631 if (ip->flags & HAMMER_INODE_RSV_INODES) {
632 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
633 --hmp->rsv_inodes;
635 hammer_free_inode(ip);
636 ip = NULL;
638 trans->flags |= HAMMER_TRANSF_NEWINODE;
639 return (ip);
643 * Return a referenced inode only if it is in our inode cache.
645 * Dummy inodes do not count.
647 struct hammer_inode *
648 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
649 hammer_tid_t asof, u_int32_t localization)
651 hammer_mount_t hmp = trans->hmp;
652 struct hammer_inode_info iinfo;
653 struct hammer_inode *ip;
655 iinfo.obj_id = obj_id;
656 iinfo.obj_asof = asof;
657 iinfo.obj_localization = localization;
659 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
660 if (ip) {
661 if (ip->flags & HAMMER_INODE_DUMMY)
662 ip = NULL;
663 else
664 hammer_ref(&ip->lock);
666 return(ip);
670 * Create a new filesystem object, returning the inode in *ipp. The
671 * returned inode will be referenced. The inode is created in-memory.
673 * If pfsm is non-NULL the caller wishes to create the root inode for
674 * a master PFS.
677 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
678 struct ucred *cred,
679 hammer_inode_t dip, const char *name, int namelen,
680 hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
682 hammer_mount_t hmp;
683 hammer_inode_t ip;
684 uid_t xuid;
685 int error;
686 int64_t namekey;
687 u_int32_t dummy;
689 hmp = trans->hmp;
691 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
692 ++hammer_count_inodes;
693 ++hmp->count_inodes;
694 trans->flags |= HAMMER_TRANSF_NEWINODE;
696 if (pfsm) {
697 KKASSERT(pfsm->localization != 0);
698 ip->obj_id = HAMMER_OBJID_ROOT;
699 ip->obj_localization = pfsm->localization;
700 } else {
701 KKASSERT(dip != NULL);
702 namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
703 ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
704 ip->obj_localization = dip->obj_localization;
707 KKASSERT(ip->obj_id != 0);
708 ip->obj_asof = hmp->asof;
709 ip->hmp = hmp;
710 ip->flush_state = HAMMER_FST_IDLE;
711 ip->flags = HAMMER_INODE_DDIRTY |
712 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
713 ip->cache[0].ip = ip;
714 ip->cache[1].ip = ip;
715 ip->cache[2].ip = ip;
716 ip->cache[3].ip = ip;
718 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
719 /* ip->save_trunc_off = 0; (already zero) */
720 RB_INIT(&ip->rec_tree);
721 TAILQ_INIT(&ip->target_list);
723 ip->ino_data.atime = trans->time;
724 ip->ino_data.mtime = trans->time;
725 ip->ino_data.size = 0;
726 ip->ino_data.nlinks = 0;
729 * A nohistory designator on the parent directory is inherited by
730 * the child. We will do this even for pseudo-fs creation... the
731 * sysad can turn it off.
733 if (dip) {
734 ip->ino_data.uflags = dip->ino_data.uflags &
735 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
738 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
739 ip->ino_leaf.base.localization = ip->obj_localization +
740 HAMMER_LOCALIZE_INODE;
741 ip->ino_leaf.base.obj_id = ip->obj_id;
742 ip->ino_leaf.base.key = 0;
743 ip->ino_leaf.base.create_tid = 0;
744 ip->ino_leaf.base.delete_tid = 0;
745 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
746 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
748 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
749 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
750 ip->ino_data.mode = vap->va_mode;
751 ip->ino_data.ctime = trans->time;
754 * If we are running version 2 or greater we use dirhash algorithm #1
755 * which is semi-sorted. Algorithm #0 was just a pure crc.
757 if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
758 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
759 ip->ino_data.cap_flags |= HAMMER_INODE_CAP_DIRHASH_ALG1;
764 * Setup the ".." pointer. This only needs to be done for directories
765 * but we do it for all objects as a recovery aid.
767 if (dip)
768 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
769 #if 0
771 * The parent_obj_localization field only applies to pseudo-fs roots.
772 * XXX this is no longer applicable, PFSs are no longer directly
773 * tied into the parent's directory structure.
775 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
776 ip->obj_id == HAMMER_OBJID_ROOT) {
777 ip->ino_data.ext.obj.parent_obj_localization =
778 dip->obj_localization;
780 #endif
782 switch(ip->ino_leaf.base.obj_type) {
783 case HAMMER_OBJTYPE_CDEV:
784 case HAMMER_OBJTYPE_BDEV:
785 ip->ino_data.rmajor = vap->va_rmajor;
786 ip->ino_data.rminor = vap->va_rminor;
787 break;
788 default:
789 break;
793 * Calculate default uid/gid and overwrite with information from
794 * the vap.
796 if (dip) {
797 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
798 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
799 xuid, cred, &vap->va_mode);
800 } else {
801 xuid = 0;
803 ip->ino_data.mode = vap->va_mode;
805 if (vap->va_vaflags & VA_UID_UUID_VALID)
806 ip->ino_data.uid = vap->va_uid_uuid;
807 else if (vap->va_uid != (uid_t)VNOVAL)
808 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
809 else
810 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
812 if (vap->va_vaflags & VA_GID_UUID_VALID)
813 ip->ino_data.gid = vap->va_gid_uuid;
814 else if (vap->va_gid != (gid_t)VNOVAL)
815 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
816 else if (dip)
817 ip->ino_data.gid = dip->ino_data.gid;
819 hammer_ref(&ip->lock);
821 if (pfsm) {
822 ip->pfsm = pfsm;
823 hammer_ref(&pfsm->lock);
824 error = 0;
825 } else if (dip->obj_localization == ip->obj_localization) {
826 ip->pfsm = dip->pfsm;
827 hammer_ref(&ip->pfsm->lock);
828 error = 0;
829 } else {
830 ip->pfsm = hammer_load_pseudofs(trans,
831 ip->obj_localization,
832 &error);
833 error = 0; /* ignore ENOENT */
836 if (error) {
837 hammer_free_inode(ip);
838 ip = NULL;
839 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
840 panic("hammer_create_inode: duplicate obj_id %llx",
841 (long long)ip->obj_id);
842 /* not reached */
843 hammer_free_inode(ip);
845 *ipp = ip;
846 return(error);
850 * Final cleanup / freeing of an inode structure
852 static void
853 hammer_free_inode(hammer_inode_t ip)
855 struct hammer_mount *hmp;
857 hmp = ip->hmp;
858 KKASSERT(ip->lock.refs == 1);
859 hammer_uncache_node(&ip->cache[0]);
860 hammer_uncache_node(&ip->cache[1]);
861 hammer_uncache_node(&ip->cache[2]);
862 hammer_uncache_node(&ip->cache[3]);
863 hammer_inode_wakereclaims(ip, 1);
864 if (ip->objid_cache)
865 hammer_clear_objid(ip);
866 --hammer_count_inodes;
867 --hmp->count_inodes;
868 if (ip->pfsm) {
869 hammer_rel_pseudofs(hmp, ip->pfsm);
870 ip->pfsm = NULL;
872 kfree(ip, hmp->m_inodes);
873 ip = NULL;
877 * Retrieve pseudo-fs data. NULL will never be returned.
879 * If an error occurs *errorp will be set and a default template is returned,
880 * otherwise *errorp is set to 0. Typically when an error occurs it will
881 * be ENOENT.
883 hammer_pseudofs_inmem_t
884 hammer_load_pseudofs(hammer_transaction_t trans,
885 u_int32_t localization, int *errorp)
887 hammer_mount_t hmp = trans->hmp;
888 hammer_inode_t ip;
889 hammer_pseudofs_inmem_t pfsm;
890 struct hammer_cursor cursor;
891 int bytes;
893 retry:
894 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
895 if (pfsm) {
896 hammer_ref(&pfsm->lock);
897 *errorp = 0;
898 return(pfsm);
902 * PFS records are stored in the root inode (not the PFS root inode,
903 * but the real root). Avoid an infinite recursion if loading
904 * the PFS for the real root.
906 if (localization) {
907 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
908 HAMMER_MAX_TID,
909 HAMMER_DEF_LOCALIZATION, 0, errorp);
910 } else {
911 ip = NULL;
914 pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
915 pfsm->localization = localization;
916 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
917 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
919 hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
920 cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
921 HAMMER_LOCALIZE_MISC;
922 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
923 cursor.key_beg.create_tid = 0;
924 cursor.key_beg.delete_tid = 0;
925 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
926 cursor.key_beg.obj_type = 0;
927 cursor.key_beg.key = localization;
928 cursor.asof = HAMMER_MAX_TID;
929 cursor.flags |= HAMMER_CURSOR_ASOF;
931 if (ip)
932 *errorp = hammer_ip_lookup(&cursor);
933 else
934 *errorp = hammer_btree_lookup(&cursor);
935 if (*errorp == 0) {
936 *errorp = hammer_ip_resolve_data(&cursor);
937 if (*errorp == 0) {
938 if (cursor.data->pfsd.mirror_flags &
939 HAMMER_PFSD_DELETED) {
940 *errorp = ENOENT;
941 } else {
942 bytes = cursor.leaf->data_len;
943 if (bytes > sizeof(pfsm->pfsd))
944 bytes = sizeof(pfsm->pfsd);
945 bcopy(cursor.data, &pfsm->pfsd, bytes);
949 hammer_done_cursor(&cursor);
951 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
952 hammer_ref(&pfsm->lock);
953 if (ip)
954 hammer_rel_inode(ip, 0);
955 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
956 kfree(pfsm, hmp->m_misc);
957 goto retry;
959 return(pfsm);
963 * Store pseudo-fs data. The backend will automatically delete any prior
964 * on-disk pseudo-fs data but we have to delete in-memory versions.
967 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
969 struct hammer_cursor cursor;
970 hammer_record_t record;
971 hammer_inode_t ip;
972 int error;
974 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
975 HAMMER_DEF_LOCALIZATION, 0, &error);
976 retry:
977 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
978 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
979 cursor.key_beg.localization = ip->obj_localization +
980 HAMMER_LOCALIZE_MISC;
981 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
982 cursor.key_beg.create_tid = 0;
983 cursor.key_beg.delete_tid = 0;
984 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
985 cursor.key_beg.obj_type = 0;
986 cursor.key_beg.key = pfsm->localization;
987 cursor.asof = HAMMER_MAX_TID;
988 cursor.flags |= HAMMER_CURSOR_ASOF;
991 * Replace any in-memory version of the record.
993 error = hammer_ip_lookup(&cursor);
994 if (error == 0 && hammer_cursor_inmem(&cursor)) {
995 record = cursor.iprec;
996 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
997 KKASSERT(cursor.deadlk_rec == NULL);
998 hammer_ref(&record->lock);
999 cursor.deadlk_rec = record;
1000 error = EDEADLK;
1001 } else {
1002 record->flags |= HAMMER_RECF_DELETED_FE;
1003 error = 0;
1008 * Allocate replacement general record. The backend flush will
1009 * delete any on-disk version of the record.
1011 if (error == 0 || error == ENOENT) {
1012 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1013 record->type = HAMMER_MEM_RECORD_GENERAL;
1015 record->leaf.base.localization = ip->obj_localization +
1016 HAMMER_LOCALIZE_MISC;
1017 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1018 record->leaf.base.key = pfsm->localization;
1019 record->leaf.data_len = sizeof(pfsm->pfsd);
1020 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1021 error = hammer_ip_add_record(trans, record);
1023 hammer_done_cursor(&cursor);
1024 if (error == EDEADLK)
1025 goto retry;
1026 hammer_rel_inode(ip, 0);
1027 return(error);
1031 * Create a root directory for a PFS if one does not alredy exist.
1033 * The PFS root stands alone so we must also bump the nlinks count
1034 * to prevent it from being destroyed on release.
1037 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1038 hammer_pseudofs_inmem_t pfsm)
1040 hammer_inode_t ip;
1041 struct vattr vap;
1042 int error;
1044 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1045 pfsm->localization, 0, &error);
1046 if (ip == NULL) {
1047 vattr_null(&vap);
1048 vap.va_mode = 0755;
1049 vap.va_type = VDIR;
1050 error = hammer_create_inode(trans, &vap, cred,
1051 NULL, NULL, 0,
1052 pfsm, &ip);
1053 if (error == 0) {
1054 ++ip->ino_data.nlinks;
1055 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
1058 if (ip)
1059 hammer_rel_inode(ip, 0);
1060 return(error);
1064 * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1065 * if we are unable to disassociate all the inodes.
1067 static
1069 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1071 int res;
1073 hammer_ref(&ip->lock);
1074 if (ip->lock.refs == 2 && ip->vp)
1075 vclean_unlocked(ip->vp);
1076 if (ip->lock.refs == 1 && ip->vp == NULL)
1077 res = 0;
1078 else
1079 res = -1; /* stop, someone is using the inode */
1080 hammer_rel_inode(ip, 0);
1081 return(res);
1085 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1087 int res;
1088 int try;
1090 for (try = res = 0; try < 4; ++try) {
1091 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1092 hammer_inode_pfs_cmp,
1093 hammer_unload_pseudofs_callback,
1094 &localization);
1095 if (res == 0 && try > 1)
1096 break;
1097 hammer_flusher_sync(trans->hmp);
1099 if (res != 0)
1100 res = ENOTEMPTY;
1101 return(res);
1106 * Release a reference on a PFS
1108 void
1109 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1111 hammer_unref(&pfsm->lock);
1112 if (pfsm->lock.refs == 0) {
1113 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1114 kfree(pfsm, hmp->m_misc);
1119 * Called by hammer_sync_inode().
1121 static int
1122 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1124 hammer_transaction_t trans = cursor->trans;
1125 hammer_record_t record;
1126 int error;
1127 int redirty;
1129 retry:
1130 error = 0;
1133 * If the inode has a presence on-disk then locate it and mark
1134 * it deleted, setting DELONDISK.
1136 * The record may or may not be physically deleted, depending on
1137 * the retention policy.
1139 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1140 HAMMER_INODE_ONDISK) {
1141 hammer_normalize_cursor(cursor);
1142 cursor->key_beg.localization = ip->obj_localization +
1143 HAMMER_LOCALIZE_INODE;
1144 cursor->key_beg.obj_id = ip->obj_id;
1145 cursor->key_beg.key = 0;
1146 cursor->key_beg.create_tid = 0;
1147 cursor->key_beg.delete_tid = 0;
1148 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1149 cursor->key_beg.obj_type = 0;
1150 cursor->asof = ip->obj_asof;
1151 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1152 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1153 cursor->flags |= HAMMER_CURSOR_BACKEND;
1155 error = hammer_btree_lookup(cursor);
1156 if (hammer_debug_inode)
1157 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1159 if (error == 0) {
1160 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1161 if (hammer_debug_inode)
1162 kprintf(" error %d\n", error);
1163 if (error == 0) {
1164 ip->flags |= HAMMER_INODE_DELONDISK;
1166 if (cursor->node)
1167 hammer_cache_node(&ip->cache[0], cursor->node);
1169 if (error == EDEADLK) {
1170 hammer_done_cursor(cursor);
1171 error = hammer_init_cursor(trans, cursor,
1172 &ip->cache[0], ip);
1173 if (hammer_debug_inode)
1174 kprintf("IPDED %p %d\n", ip, error);
1175 if (error == 0)
1176 goto retry;
1181 * Ok, write out the initial record or a new record (after deleting
1182 * the old one), unless the DELETED flag is set. This routine will
1183 * clear DELONDISK if it writes out a record.
1185 * Update our inode statistics if this is the first application of
1186 * the inode on-disk.
1188 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1190 * Generate a record and write it to the media. We clean-up
1191 * the state before releasing so we do not have to set-up
1192 * a flush_group.
1194 record = hammer_alloc_mem_record(ip, 0);
1195 record->type = HAMMER_MEM_RECORD_INODE;
1196 record->flush_state = HAMMER_FST_FLUSH;
1197 record->leaf = ip->sync_ino_leaf;
1198 record->leaf.base.create_tid = trans->tid;
1199 record->leaf.data_len = sizeof(ip->sync_ino_data);
1200 record->leaf.create_ts = trans->time32;
1201 record->data = (void *)&ip->sync_ino_data;
1202 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1205 * If this flag is set we cannot sync the new file size
1206 * because we haven't finished related truncations. The
1207 * inode will be flushed in another flush group to finish
1208 * the job.
1210 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1211 ip->sync_ino_data.size != ip->ino_data.size) {
1212 redirty = 1;
1213 ip->sync_ino_data.size = ip->ino_data.size;
1214 } else {
1215 redirty = 0;
1218 for (;;) {
1219 error = hammer_ip_sync_record_cursor(cursor, record);
1220 if (hammer_debug_inode)
1221 kprintf("GENREC %p rec %08x %d\n",
1222 ip, record->flags, error);
1223 if (error != EDEADLK)
1224 break;
1225 hammer_done_cursor(cursor);
1226 error = hammer_init_cursor(trans, cursor,
1227 &ip->cache[0], ip);
1228 if (hammer_debug_inode)
1229 kprintf("GENREC reinit %d\n", error);
1230 if (error)
1231 break;
1235 * Note: The record was never on the inode's record tree
1236 * so just wave our hands importantly and destroy it.
1238 record->flags |= HAMMER_RECF_COMMITTED;
1239 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1240 record->flush_state = HAMMER_FST_IDLE;
1241 ++ip->rec_generation;
1242 hammer_rel_mem_record(record);
1245 * Finish up.
1247 if (error == 0) {
1248 if (hammer_debug_inode)
1249 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1250 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1251 HAMMER_INODE_ATIME |
1252 HAMMER_INODE_MTIME);
1253 ip->flags &= ~HAMMER_INODE_DELONDISK;
1254 if (redirty)
1255 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1258 * Root volume count of inodes
1260 hammer_sync_lock_sh(trans);
1261 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1262 hammer_modify_volume_field(trans,
1263 trans->rootvol,
1264 vol0_stat_inodes);
1265 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1266 hammer_modify_volume_done(trans->rootvol);
1267 ip->flags |= HAMMER_INODE_ONDISK;
1268 if (hammer_debug_inode)
1269 kprintf("NOWONDISK %p\n", ip);
1271 hammer_sync_unlock(trans);
1276 * If the inode has been destroyed, clean out any left-over flags
1277 * that may have been set by the frontend.
1279 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1280 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1281 HAMMER_INODE_ATIME |
1282 HAMMER_INODE_MTIME);
1284 return(error);
1288 * Update only the itimes fields.
1290 * ATIME can be updated without generating any UNDO. MTIME is updated
1291 * with UNDO so it is guaranteed to be synchronized properly in case of
1292 * a crash.
1294 * Neither field is included in the B-Tree leaf element's CRC, which is how
1295 * we can get away with updating ATIME the way we do.
1297 static int
1298 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1300 hammer_transaction_t trans = cursor->trans;
1301 int error;
1303 retry:
1304 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1305 HAMMER_INODE_ONDISK) {
1306 return(0);
1309 hammer_normalize_cursor(cursor);
1310 cursor->key_beg.localization = ip->obj_localization +
1311 HAMMER_LOCALIZE_INODE;
1312 cursor->key_beg.obj_id = ip->obj_id;
1313 cursor->key_beg.key = 0;
1314 cursor->key_beg.create_tid = 0;
1315 cursor->key_beg.delete_tid = 0;
1316 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1317 cursor->key_beg.obj_type = 0;
1318 cursor->asof = ip->obj_asof;
1319 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1320 cursor->flags |= HAMMER_CURSOR_ASOF;
1321 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1322 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1323 cursor->flags |= HAMMER_CURSOR_BACKEND;
1325 error = hammer_btree_lookup(cursor);
1326 if (error == 0) {
1327 hammer_cache_node(&ip->cache[0], cursor->node);
1328 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1330 * Updating MTIME requires an UNDO. Just cover
1331 * both atime and mtime.
1333 hammer_sync_lock_sh(trans);
1334 hammer_modify_buffer(trans, cursor->data_buffer,
1335 HAMMER_ITIMES_BASE(&cursor->data->inode),
1336 HAMMER_ITIMES_BYTES);
1337 cursor->data->inode.atime = ip->sync_ino_data.atime;
1338 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1339 hammer_modify_buffer_done(cursor->data_buffer);
1340 hammer_sync_unlock(trans);
1341 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1343 * Updating atime only can be done in-place with
1344 * no UNDO.
1346 hammer_sync_lock_sh(trans);
1347 hammer_modify_buffer(trans, cursor->data_buffer,
1348 NULL, 0);
1349 cursor->data->inode.atime = ip->sync_ino_data.atime;
1350 hammer_modify_buffer_done(cursor->data_buffer);
1351 hammer_sync_unlock(trans);
1353 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1355 if (error == EDEADLK) {
1356 hammer_done_cursor(cursor);
1357 error = hammer_init_cursor(trans, cursor,
1358 &ip->cache[0], ip);
1359 if (error == 0)
1360 goto retry;
1362 return(error);
1366 * Release a reference on an inode, flush as requested.
1368 * On the last reference we queue the inode to the flusher for its final
1369 * disposition.
1371 void
1372 hammer_rel_inode(struct hammer_inode *ip, int flush)
1374 /*hammer_mount_t hmp = ip->hmp;*/
1377 * Handle disposition when dropping the last ref.
1379 for (;;) {
1380 if (ip->lock.refs == 1) {
1382 * Determine whether on-disk action is needed for
1383 * the inode's final disposition.
1385 KKASSERT(ip->vp == NULL);
1386 hammer_inode_unloadable_check(ip, 0);
1387 if (ip->flags & HAMMER_INODE_MODMASK) {
1388 hammer_flush_inode(ip, 0);
1389 } else if (ip->lock.refs == 1) {
1390 hammer_unload_inode(ip);
1391 break;
1393 } else {
1394 if (flush)
1395 hammer_flush_inode(ip, 0);
1398 * The inode still has multiple refs, try to drop
1399 * one ref.
1401 KKASSERT(ip->lock.refs >= 1);
1402 if (ip->lock.refs > 1) {
1403 hammer_unref(&ip->lock);
1404 break;
1411 * Unload and destroy the specified inode. Must be called with one remaining
1412 * reference. The reference is disposed of.
1414 * The inode must be completely clean.
1416 static int
1417 hammer_unload_inode(struct hammer_inode *ip)
1419 hammer_mount_t hmp = ip->hmp;
1421 KASSERT(ip->lock.refs == 1,
1422 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
1423 KKASSERT(ip->vp == NULL);
1424 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1425 KKASSERT(ip->cursor_ip_refs == 0);
1426 KKASSERT(ip->lock.lockcount == 0);
1427 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1429 KKASSERT(RB_EMPTY(&ip->rec_tree));
1430 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1432 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1434 hammer_free_inode(ip);
1435 return(0);
1439 * Called during unmounting if a critical error occured. The in-memory
1440 * inode and all related structures are destroyed.
1442 * If a critical error did not occur the unmount code calls the standard
1443 * release and asserts that the inode is gone.
1446 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1448 hammer_record_t rec;
1451 * Get rid of the inodes in-memory records, regardless of their
1452 * state, and clear the mod-mask.
1454 while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1455 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1456 rec->target_ip = NULL;
1457 if (rec->flush_state == HAMMER_FST_SETUP)
1458 rec->flush_state = HAMMER_FST_IDLE;
1460 while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1461 if (rec->flush_state == HAMMER_FST_FLUSH)
1462 --rec->flush_group->refs;
1463 else
1464 hammer_ref(&rec->lock);
1465 KKASSERT(rec->lock.refs == 1);
1466 rec->flush_state = HAMMER_FST_IDLE;
1467 rec->flush_group = NULL;
1468 rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1469 rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1470 ++ip->rec_generation;
1471 hammer_rel_mem_record(rec);
1473 ip->flags &= ~HAMMER_INODE_MODMASK;
1474 ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1475 KKASSERT(ip->vp == NULL);
1478 * Remove the inode from any flush group, force it idle. FLUSH
1479 * and SETUP states have an inode ref.
1481 switch(ip->flush_state) {
1482 case HAMMER_FST_FLUSH:
1483 TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
1484 --ip->flush_group->refs;
1485 ip->flush_group = NULL;
1486 /* fall through */
1487 case HAMMER_FST_SETUP:
1488 hammer_unref(&ip->lock);
1489 ip->flush_state = HAMMER_FST_IDLE;
1490 /* fall through */
1491 case HAMMER_FST_IDLE:
1492 break;
1496 * There shouldn't be any associated vnode. The unload needs at
1497 * least one ref, if we do have a vp steal its ip ref.
1499 if (ip->vp) {
1500 kprintf("hammer_destroy_inode_callback: Unexpected "
1501 "vnode association ip %p vp %p\n", ip, ip->vp);
1502 ip->vp->v_data = NULL;
1503 ip->vp = NULL;
1504 } else {
1505 hammer_ref(&ip->lock);
1507 hammer_unload_inode(ip);
1508 return(0);
1512 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1513 * the read-only flag for cached inodes.
1515 * This routine is called from a RB_SCAN().
1518 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1520 hammer_mount_t hmp = ip->hmp;
1522 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1523 ip->flags |= HAMMER_INODE_RO;
1524 else
1525 ip->flags &= ~HAMMER_INODE_RO;
1526 return(0);
1530 * A transaction has modified an inode, requiring updates as specified by
1531 * the passed flags.
1533 * HAMMER_INODE_DDIRTY: Inode data has been updated
1534 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1535 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1536 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1537 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1539 void
1540 hammer_modify_inode(hammer_inode_t ip, int flags)
1543 * ronly of 0 or 2 does not trigger assertion.
1544 * 2 is a special error state
1546 KKASSERT(ip->hmp->ronly != 1 ||
1547 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1548 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1549 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1550 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1551 ip->flags |= HAMMER_INODE_RSV_INODES;
1552 ++ip->hmp->rsv_inodes;
1555 ip->flags |= flags;
1559 * Request that an inode be flushed. This whole mess cannot block and may
1560 * recurse (if not synchronous). Once requested HAMMER will attempt to
1561 * actively flush the inode until the flush can be done.
1563 * The inode may already be flushing, or may be in a setup state. We can
1564 * place the inode in a flushing state if it is currently idle and flag it
1565 * to reflush if it is currently flushing.
1567 * Upon return if the inode could not be flushed due to a setup
1568 * dependancy, then it will be automatically flushed when the dependancy
1569 * is satisfied.
1571 void
1572 hammer_flush_inode(hammer_inode_t ip, int flags)
1574 hammer_mount_t hmp;
1575 hammer_flush_group_t flg;
1576 int good;
1579 * next_flush_group is the first flush group we can place the inode
1580 * in. It may be NULL. If it becomes full we append a new flush
1581 * group and make that the next_flush_group.
1583 hmp = ip->hmp;
1584 while ((flg = hmp->next_flush_group) != NULL) {
1585 KKASSERT(flg->running == 0);
1586 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1587 break;
1588 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1589 hammer_flusher_async(ip->hmp, flg);
1591 if (flg == NULL) {
1592 flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1593 hmp->next_flush_group = flg;
1594 TAILQ_INIT(&flg->flush_list);
1595 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1599 * Trivial 'nothing to flush' case. If the inode is in a SETUP
1600 * state we have to put it back into an IDLE state so we can
1601 * drop the extra ref.
1603 * If we have a parent dependancy we must still fall through
1604 * so we can run it.
1606 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1607 if (ip->flush_state == HAMMER_FST_SETUP &&
1608 TAILQ_EMPTY(&ip->target_list)) {
1609 ip->flush_state = HAMMER_FST_IDLE;
1610 hammer_rel_inode(ip, 0);
1612 if (ip->flush_state == HAMMER_FST_IDLE)
1613 return;
1617 * Our flush action will depend on the current state.
1619 switch(ip->flush_state) {
1620 case HAMMER_FST_IDLE:
1622 * We have no dependancies and can flush immediately. Some
1623 * our children may not be flushable so we have to re-test
1624 * with that additional knowledge.
1626 hammer_flush_inode_core(ip, flg, flags);
1627 break;
1628 case HAMMER_FST_SETUP:
1630 * Recurse upwards through dependancies via target_list
1631 * and start their flusher actions going if possible.
1633 * 'good' is our connectivity. -1 means we have none and
1634 * can't flush, 0 means there weren't any dependancies, and
1635 * 1 means we have good connectivity.
1637 good = hammer_setup_parent_inodes(ip, 0, flg);
1639 if (good >= 0) {
1641 * We can continue if good >= 0. Determine how
1642 * many records under our inode can be flushed (and
1643 * mark them).
1645 hammer_flush_inode_core(ip, flg, flags);
1646 } else {
1648 * Parent has no connectivity, tell it to flush
1649 * us as soon as it does.
1651 * The REFLUSH flag is also needed to trigger
1652 * dependancy wakeups.
1654 ip->flags |= HAMMER_INODE_CONN_DOWN |
1655 HAMMER_INODE_REFLUSH;
1656 if (flags & HAMMER_FLUSH_SIGNAL) {
1657 ip->flags |= HAMMER_INODE_RESIGNAL;
1658 hammer_flusher_async(ip->hmp, flg);
1661 break;
1662 case HAMMER_FST_FLUSH:
1664 * We are already flushing, flag the inode to reflush
1665 * if needed after it completes its current flush.
1667 * The REFLUSH flag is also needed to trigger
1668 * dependancy wakeups.
1670 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1671 ip->flags |= HAMMER_INODE_REFLUSH;
1672 if (flags & HAMMER_FLUSH_SIGNAL) {
1673 ip->flags |= HAMMER_INODE_RESIGNAL;
1674 hammer_flusher_async(ip->hmp, flg);
1676 break;
1681 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1682 * ip which reference our ip.
1684 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1685 * so for now do not ref/deref the structures. Note that if we use the
1686 * ref/rel code later, the rel CAN block.
1688 static int
1689 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1690 hammer_flush_group_t flg)
1692 hammer_record_t depend;
1693 int good;
1694 int r;
1697 * If we hit our recursion limit and we have parent dependencies
1698 * We cannot continue. Returning < 0 will cause us to be flagged
1699 * for reflush. Returning -2 cuts off additional dependency checks
1700 * because they are likely to also hit the depth limit.
1702 * We cannot return < 0 if there are no dependencies or there might
1703 * not be anything to wakeup (ip).
1705 if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1706 kprintf("HAMMER Warning: depth limit reached on "
1707 "setup recursion, inode %p %016llx\n",
1708 ip, (long long)ip->obj_id);
1709 return(-2);
1713 * Scan dependencies
1715 good = 0;
1716 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1717 r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1718 KKASSERT(depend->target_ip == ip);
1719 if (r < 0 && good == 0)
1720 good = -1;
1721 if (r > 0)
1722 good = 1;
1725 * If we failed due to the recursion depth limit then stop
1726 * now.
1728 if (r == -2)
1729 break;
1731 return(good);
1735 * This helper function takes a record representing the dependancy between
1736 * the parent inode and child inode.
1738 * record->ip = parent inode
1739 * record->target_ip = child inode
1741 * We are asked to recurse upwards and convert the record from SETUP
1742 * to FLUSH if possible.
1744 * Return 1 if the record gives us connectivity
1746 * Return 0 if the record is not relevant
1748 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1750 static int
1751 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1752 hammer_flush_group_t flg)
1754 hammer_mount_t hmp;
1755 hammer_inode_t pip;
1756 int good;
1758 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1759 pip = record->ip;
1760 hmp = pip->hmp;
1763 * If the record is already flushing, is it in our flush group?
1765 * If it is in our flush group but it is a general record or a
1766 * delete-on-disk, it does not improve our connectivity (return 0),
1767 * and if the target inode is not trying to destroy itself we can't
1768 * allow the operation yet anyway (the second return -1).
1770 if (record->flush_state == HAMMER_FST_FLUSH) {
1772 * If not in our flush group ask the parent to reflush
1773 * us as soon as possible.
1775 if (record->flush_group != flg) {
1776 pip->flags |= HAMMER_INODE_REFLUSH;
1777 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1778 return(-1);
1782 * If in our flush group everything is already set up,
1783 * just return whether the record will improve our
1784 * visibility or not.
1786 if (record->type == HAMMER_MEM_RECORD_ADD)
1787 return(1);
1788 return(0);
1792 * It must be a setup record. Try to resolve the setup dependancies
1793 * by recursing upwards so we can place ip on the flush list.
1795 * Limit ourselves to 20 levels of recursion to avoid blowing out
1796 * the kernel stack. If we hit the recursion limit we can't flush
1797 * until the parent flushes. The parent will flush independantly
1798 * on its own and ultimately a deep recursion will be resolved.
1800 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1802 good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1805 * If good < 0 the parent has no connectivity and we cannot safely
1806 * flush the directory entry, which also means we can't flush our
1807 * ip. Flag us for downward recursion once the parent's
1808 * connectivity is resolved. Flag the parent for [re]flush or it
1809 * may not check for downward recursions.
1811 if (good < 0) {
1812 pip->flags |= HAMMER_INODE_REFLUSH;
1813 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1814 return(good);
1818 * We are go, place the parent inode in a flushing state so we can
1819 * place its record in a flushing state. Note that the parent
1820 * may already be flushing. The record must be in the same flush
1821 * group as the parent.
1823 if (pip->flush_state != HAMMER_FST_FLUSH)
1824 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1825 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1826 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1828 #if 0
1829 if (record->type == HAMMER_MEM_RECORD_DEL &&
1830 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1832 * Regardless of flushing state we cannot sync this path if the
1833 * record represents a delete-on-disk but the target inode
1834 * is not ready to sync its own deletion.
1836 * XXX need to count effective nlinks to determine whether
1837 * the flush is ok, otherwise removing a hardlink will
1838 * just leave the DEL record to rot.
1840 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1841 return(-1);
1842 } else
1843 #endif
1844 if (pip->flush_group == flg) {
1846 * Because we have not calculated nlinks yet we can just
1847 * set records to the flush state if the parent is in
1848 * the same flush group as we are.
1850 record->flush_state = HAMMER_FST_FLUSH;
1851 record->flush_group = flg;
1852 ++record->flush_group->refs;
1853 hammer_ref(&record->lock);
1856 * A general directory-add contributes to our visibility.
1858 * Otherwise it is probably a directory-delete or
1859 * delete-on-disk record and does not contribute to our
1860 * visbility (but we can still flush it).
1862 if (record->type == HAMMER_MEM_RECORD_ADD)
1863 return(1);
1864 return(0);
1865 } else {
1867 * If the parent is not in our flush group we cannot
1868 * flush this record yet, there is no visibility.
1869 * We tell the parent to reflush and mark ourselves
1870 * so the parent knows it should flush us too.
1872 pip->flags |= HAMMER_INODE_REFLUSH;
1873 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1874 return(-1);
1879 * This is the core routine placing an inode into the FST_FLUSH state.
1881 static void
1882 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1884 int go_count;
1887 * Set flush state and prevent the flusher from cycling into
1888 * the next flush group. Do not place the ip on the list yet.
1889 * Inodes not in the idle state get an extra reference.
1891 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1892 if (ip->flush_state == HAMMER_FST_IDLE)
1893 hammer_ref(&ip->lock);
1894 ip->flush_state = HAMMER_FST_FLUSH;
1895 ip->flush_group = flg;
1896 ++ip->hmp->flusher.group_lock;
1897 ++ip->hmp->count_iqueued;
1898 ++hammer_count_iqueued;
1899 ++flg->total_count;
1902 * If the flush group reaches the autoflush limit we want to signal
1903 * the flusher. This is particularly important for remove()s.
1905 if (flg->total_count == hammer_autoflush)
1906 flags |= HAMMER_FLUSH_SIGNAL;
1909 * We need to be able to vfsync/truncate from the backend.
1911 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1912 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1913 ip->flags |= HAMMER_INODE_VHELD;
1914 vref(ip->vp);
1918 * Figure out how many in-memory records we can actually flush
1919 * (not including inode meta-data, buffers, etc).
1921 KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
1922 if (flags & HAMMER_FLUSH_RECURSION) {
1924 * If this is a upwards recursion we do not want to
1925 * recurse down again!
1927 go_count = 1;
1928 #if 0
1929 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1931 * No new records are added if we must complete a flush
1932 * from a previous cycle, but we do have to move the records
1933 * from the previous cycle to the current one.
1935 #if 0
1936 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1937 hammer_syncgrp_child_callback, NULL);
1938 #endif
1939 go_count = 1;
1940 #endif
1941 } else {
1943 * Normal flush, scan records and bring them into the flush.
1944 * Directory adds and deletes are usually skipped (they are
1945 * grouped with the related inode rather then with the
1946 * directory).
1948 * go_count can be negative, which means the scan aborted
1949 * due to the flush group being over-full and we should
1950 * flush what we have.
1952 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1953 hammer_setup_child_callback, NULL);
1957 * This is a more involved test that includes go_count. If we
1958 * can't flush, flag the inode and return. If go_count is 0 we
1959 * were are unable to flush any records in our rec_tree and
1960 * must ignore the XDIRTY flag.
1962 if (go_count == 0) {
1963 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1964 --ip->hmp->count_iqueued;
1965 --hammer_count_iqueued;
1967 --flg->total_count;
1968 ip->flush_state = HAMMER_FST_SETUP;
1969 ip->flush_group = NULL;
1970 if (ip->flags & HAMMER_INODE_VHELD) {
1971 ip->flags &= ~HAMMER_INODE_VHELD;
1972 vrele(ip->vp);
1976 * REFLUSH is needed to trigger dependancy wakeups
1977 * when an inode is in SETUP.
1979 ip->flags |= HAMMER_INODE_REFLUSH;
1980 if (flags & HAMMER_FLUSH_SIGNAL) {
1981 ip->flags |= HAMMER_INODE_RESIGNAL;
1982 hammer_flusher_async(ip->hmp, flg);
1984 if (--ip->hmp->flusher.group_lock == 0)
1985 wakeup(&ip->hmp->flusher.group_lock);
1986 return;
1991 * Snapshot the state of the inode for the backend flusher.
1993 * We continue to retain save_trunc_off even when all truncations
1994 * have been resolved as an optimization to determine if we can
1995 * skip the B-Tree lookup for overwrite deletions.
1997 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1998 * and stays in ip->flags. Once set, it stays set until the
1999 * inode is destroyed.
2001 if (ip->flags & HAMMER_INODE_TRUNCATED) {
2002 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2003 ip->sync_trunc_off = ip->trunc_off;
2004 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2005 ip->flags &= ~HAMMER_INODE_TRUNCATED;
2006 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2009 * The save_trunc_off used to cache whether the B-Tree
2010 * holds any records past that point is not used until
2011 * after the truncation has succeeded, so we can safely
2012 * set it now.
2014 if (ip->save_trunc_off > ip->sync_trunc_off)
2015 ip->save_trunc_off = ip->sync_trunc_off;
2017 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2018 ~HAMMER_INODE_TRUNCATED);
2019 ip->sync_ino_leaf = ip->ino_leaf;
2020 ip->sync_ino_data = ip->ino_data;
2021 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2022 #ifdef DEBUG_TRUNCATE
2023 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2024 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2025 #endif
2028 * The flusher list inherits our inode and reference.
2030 KKASSERT(flg->running == 0);
2031 TAILQ_INSERT_TAIL(&flg->flush_list, ip, flush_entry);
2032 if (--ip->hmp->flusher.group_lock == 0)
2033 wakeup(&ip->hmp->flusher.group_lock);
2035 if (flags & HAMMER_FLUSH_SIGNAL) {
2036 hammer_flusher_async(ip->hmp, flg);
2041 * Callback for scan of ip->rec_tree. Try to include each record in our
2042 * flush. ip->flush_group has been set but the inode has not yet been
2043 * moved into a flushing state.
2045 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2046 * both inodes.
2048 * We return 1 for any record placed or found in FST_FLUSH, which prevents
2049 * the caller from shortcutting the flush.
2051 static int
2052 hammer_setup_child_callback(hammer_record_t rec, void *data)
2054 hammer_flush_group_t flg;
2055 hammer_inode_t target_ip;
2056 hammer_inode_t ip;
2057 int r;
2060 * Records deleted or committed by the backend are ignored.
2061 * Note that the flush detects deleted frontend records at
2062 * multiple points to deal with races. This is just the first
2063 * line of defense. The only time HAMMER_RECF_DELETED_FE cannot
2064 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2065 * messes up link-count calculations.
2067 * NOTE: Don't get confused between record deletion and, say,
2068 * directory entry deletion. The deletion of a directory entry
2069 * which is on-media has nothing to do with the record deletion
2070 * flags.
2072 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2073 HAMMER_RECF_COMMITTED)) {
2074 if (rec->flush_state == HAMMER_FST_FLUSH) {
2075 KKASSERT(rec->flush_group == rec->ip->flush_group);
2076 r = 1;
2077 } else {
2078 r = 0;
2080 return(r);
2084 * If the record is in an idle state it has no dependancies and
2085 * can be flushed.
2087 ip = rec->ip;
2088 flg = ip->flush_group;
2089 r = 0;
2091 switch(rec->flush_state) {
2092 case HAMMER_FST_IDLE:
2094 * The record has no setup dependancy, we can flush it.
2096 KKASSERT(rec->target_ip == NULL);
2097 rec->flush_state = HAMMER_FST_FLUSH;
2098 rec->flush_group = flg;
2099 ++flg->refs;
2100 hammer_ref(&rec->lock);
2101 r = 1;
2102 break;
2103 case HAMMER_FST_SETUP:
2105 * The record has a setup dependancy. These are typically
2106 * directory entry adds and deletes. Such entries will be
2107 * flushed when their inodes are flushed so we do not
2108 * usually have to add them to the flush here. However,
2109 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2110 * it is asking us to flush this record (and it).
2112 target_ip = rec->target_ip;
2113 KKASSERT(target_ip != NULL);
2114 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2117 * If the target IP is already flushing in our group
2118 * we could associate the record, but target_ip has
2119 * already synced ino_data to sync_ino_data and we
2120 * would also have to adjust nlinks. Plus there are
2121 * ordering issues for adds and deletes.
2123 * Reflush downward if this is an ADD, and upward if
2124 * this is a DEL.
2126 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2127 if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
2128 ip->flags |= HAMMER_INODE_REFLUSH;
2129 else
2130 target_ip->flags |= HAMMER_INODE_REFLUSH;
2131 break;
2135 * Target IP is not yet flushing. This can get complex
2136 * because we have to be careful about the recursion.
2138 * Directories create an issue for us in that if a flush
2139 * of a directory is requested the expectation is to flush
2140 * any pending directory entries, but this will cause the
2141 * related inodes to recursively flush as well. We can't
2142 * really defer the operation so just get as many as we
2143 * can and
2145 #if 0
2146 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2147 (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2149 * We aren't reclaiming and the target ip was not
2150 * previously prevented from flushing due to this
2151 * record dependancy. Do not flush this record.
2153 /*r = 0;*/
2154 } else
2155 #endif
2156 if (flg->total_count + flg->refs >
2157 ip->hmp->undo_rec_limit) {
2159 * Our flush group is over-full and we risk blowing
2160 * out the UNDO FIFO. Stop the scan, flush what we
2161 * have, then reflush the directory.
2163 * The directory may be forced through multiple
2164 * flush groups before it can be completely
2165 * flushed.
2167 ip->flags |= HAMMER_INODE_RESIGNAL |
2168 HAMMER_INODE_REFLUSH;
2169 r = -1;
2170 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2172 * If the target IP is not flushing we can force
2173 * it to flush, even if it is unable to write out
2174 * any of its own records we have at least one in
2175 * hand that we CAN deal with.
2177 rec->flush_state = HAMMER_FST_FLUSH;
2178 rec->flush_group = flg;
2179 ++flg->refs;
2180 hammer_ref(&rec->lock);
2181 hammer_flush_inode_core(target_ip, flg,
2182 HAMMER_FLUSH_RECURSION);
2183 r = 1;
2184 } else {
2186 * General or delete-on-disk record.
2188 * XXX this needs help. If a delete-on-disk we could
2189 * disconnect the target. If the target has its own
2190 * dependancies they really need to be flushed.
2192 * XXX
2194 rec->flush_state = HAMMER_FST_FLUSH;
2195 rec->flush_group = flg;
2196 ++flg->refs;
2197 hammer_ref(&rec->lock);
2198 hammer_flush_inode_core(target_ip, flg,
2199 HAMMER_FLUSH_RECURSION);
2200 r = 1;
2202 break;
2203 case HAMMER_FST_FLUSH:
2205 * The flush_group should already match.
2207 KKASSERT(rec->flush_group == flg);
2208 r = 1;
2209 break;
2211 return(r);
2214 #if 0
2216 * This version just moves records already in a flush state to the new
2217 * flush group and that is it.
2219 static int
2220 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2222 hammer_inode_t ip = rec->ip;
2224 switch(rec->flush_state) {
2225 case HAMMER_FST_FLUSH:
2226 KKASSERT(rec->flush_group == ip->flush_group);
2227 break;
2228 default:
2229 break;
2231 return(0);
2233 #endif
2236 * Wait for a previously queued flush to complete.
2238 * If a critical error occured we don't try to wait.
2240 void
2241 hammer_wait_inode(hammer_inode_t ip)
2243 hammer_flush_group_t flg;
2245 flg = NULL;
2246 if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2247 while (ip->flush_state != HAMMER_FST_IDLE &&
2248 (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2249 if (ip->flush_state == HAMMER_FST_SETUP)
2250 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2251 if (ip->flush_state != HAMMER_FST_IDLE) {
2252 ip->flags |= HAMMER_INODE_FLUSHW;
2253 tsleep(&ip->flags, 0, "hmrwin", 0);
2260 * Called by the backend code when a flush has been completed.
2261 * The inode has already been removed from the flush list.
2263 * A pipelined flush can occur, in which case we must re-enter the
2264 * inode on the list and re-copy its fields.
2266 void
2267 hammer_flush_inode_done(hammer_inode_t ip, int error)
2269 hammer_mount_t hmp;
2270 int dorel;
2272 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2274 hmp = ip->hmp;
2277 * Auto-reflush if the backend could not completely flush
2278 * the inode. This fixes a case where a deferred buffer flush
2279 * could cause fsync to return early.
2281 if (ip->sync_flags & HAMMER_INODE_MODMASK)
2282 ip->flags |= HAMMER_INODE_REFLUSH;
2285 * Merge left-over flags back into the frontend and fix the state.
2286 * Incomplete truncations are retained by the backend.
2288 ip->error = error;
2289 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2290 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2293 * The backend may have adjusted nlinks, so if the adjusted nlinks
2294 * does not match the fronttend set the frontend's RDIRTY flag again.
2296 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2297 ip->flags |= HAMMER_INODE_DDIRTY;
2300 * Fix up the dirty buffer status.
2302 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2303 ip->flags |= HAMMER_INODE_BUFS;
2307 * Re-set the XDIRTY flag if some of the inode's in-memory records
2308 * could not be flushed.
2310 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2311 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2312 (!RB_EMPTY(&ip->rec_tree) &&
2313 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2316 * Do not lose track of inodes which no longer have vnode
2317 * assocations, otherwise they may never get flushed again.
2319 * The reflush flag can be set superfluously, causing extra pain
2320 * for no reason. If the inode is no longer modified it no longer
2321 * needs to be flushed.
2323 if (ip->flags & HAMMER_INODE_MODMASK) {
2324 if (ip->vp == NULL)
2325 ip->flags |= HAMMER_INODE_REFLUSH;
2326 } else {
2327 ip->flags &= ~HAMMER_INODE_REFLUSH;
2331 * Adjust the flush state.
2333 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2335 * We were unable to flush out all our records, leave the
2336 * inode in a flush state and in the current flush group.
2337 * The flush group will be re-run.
2339 * This occurs if the UNDO block gets too full or there is
2340 * too much dirty meta-data and allows the flusher to
2341 * finalize the UNDO block and then re-flush.
2343 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2344 dorel = 0;
2345 } else {
2347 * Remove from the flush_group
2349 TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
2350 ip->flush_group = NULL;
2353 * Clean up the vnode ref and tracking counts.
2355 if (ip->flags & HAMMER_INODE_VHELD) {
2356 ip->flags &= ~HAMMER_INODE_VHELD;
2357 vrele(ip->vp);
2359 --hmp->count_iqueued;
2360 --hammer_count_iqueued;
2363 * And adjust the state.
2365 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2366 ip->flush_state = HAMMER_FST_IDLE;
2367 dorel = 1;
2368 } else {
2369 ip->flush_state = HAMMER_FST_SETUP;
2370 dorel = 0;
2374 * If the frontend is waiting for a flush to complete,
2375 * wake it up.
2377 if (ip->flags & HAMMER_INODE_FLUSHW) {
2378 ip->flags &= ~HAMMER_INODE_FLUSHW;
2379 wakeup(&ip->flags);
2383 * If the frontend made more changes and requested another
2384 * flush, then try to get it running.
2386 * Reflushes are aborted when the inode is errored out.
2388 if (ip->flags & HAMMER_INODE_REFLUSH) {
2389 ip->flags &= ~HAMMER_INODE_REFLUSH;
2390 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2391 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2392 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2393 } else {
2394 hammer_flush_inode(ip, 0);
2400 * If we have no parent dependancies we can clear CONN_DOWN
2402 if (TAILQ_EMPTY(&ip->target_list))
2403 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2406 * If the inode is now clean drop the space reservation.
2408 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2409 (ip->flags & HAMMER_INODE_RSV_INODES)) {
2410 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2411 --hmp->rsv_inodes;
2414 if (dorel)
2415 hammer_rel_inode(ip, 0);
2419 * Called from hammer_sync_inode() to synchronize in-memory records
2420 * to the media.
2422 static int
2423 hammer_sync_record_callback(hammer_record_t record, void *data)
2425 hammer_cursor_t cursor = data;
2426 hammer_transaction_t trans = cursor->trans;
2427 hammer_mount_t hmp = trans->hmp;
2428 int error;
2431 * Skip records that do not belong to the current flush.
2433 ++hammer_stats_record_iterations;
2434 if (record->flush_state != HAMMER_FST_FLUSH)
2435 return(0);
2437 #if 1
2438 if (record->flush_group != record->ip->flush_group) {
2439 kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2440 Debugger("blah2");
2441 return(0);
2443 #endif
2444 KKASSERT(record->flush_group == record->ip->flush_group);
2447 * Interlock the record using the BE flag. Once BE is set the
2448 * frontend cannot change the state of FE.
2450 * NOTE: If FE is set prior to us setting BE we still sync the
2451 * record out, but the flush completion code converts it to
2452 * a delete-on-disk record instead of destroying it.
2454 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2455 record->flags |= HAMMER_RECF_INTERLOCK_BE;
2458 * The backend has already disposed of the record.
2460 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2461 error = 0;
2462 goto done;
2466 * If the whole inode is being deleting all on-disk records will
2467 * be deleted very soon, we can't sync any new records to disk
2468 * because they will be deleted in the same transaction they were
2469 * created in (delete_tid == create_tid), which will assert.
2471 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2472 * that we currently panic on.
2474 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2475 switch(record->type) {
2476 case HAMMER_MEM_RECORD_DATA:
2478 * We don't have to do anything, if the record was
2479 * committed the space will have been accounted for
2480 * in the blockmap.
2482 /* fall through */
2483 case HAMMER_MEM_RECORD_GENERAL:
2485 * Set deleted-by-backend flag. Do not set the
2486 * backend committed flag, because we are throwing
2487 * the record away.
2489 record->flags |= HAMMER_RECF_DELETED_BE;
2490 ++record->ip->rec_generation;
2491 error = 0;
2492 goto done;
2493 case HAMMER_MEM_RECORD_ADD:
2494 panic("hammer_sync_record_callback: illegal add "
2495 "during inode deletion record %p", record);
2496 break; /* NOT REACHED */
2497 case HAMMER_MEM_RECORD_INODE:
2498 panic("hammer_sync_record_callback: attempt to "
2499 "sync inode record %p?", record);
2500 break; /* NOT REACHED */
2501 case HAMMER_MEM_RECORD_DEL:
2503 * Follow through and issue the on-disk deletion
2505 break;
2510 * If DELETED_FE is set special handling is needed for directory
2511 * entries. Dependant pieces related to the directory entry may
2512 * have already been synced to disk. If this occurs we have to
2513 * sync the directory entry and then change the in-memory record
2514 * from an ADD to a DELETE to cover the fact that it's been
2515 * deleted by the frontend.
2517 * A directory delete covering record (MEM_RECORD_DEL) can never
2518 * be deleted by the frontend.
2520 * Any other record type (aka DATA) can be deleted by the frontend.
2521 * XXX At the moment the flusher must skip it because there may
2522 * be another data record in the flush group for the same block,
2523 * meaning that some frontend data changes can leak into the backend's
2524 * synchronization point.
2526 if (record->flags & HAMMER_RECF_DELETED_FE) {
2527 if (record->type == HAMMER_MEM_RECORD_ADD) {
2529 * Convert a front-end deleted directory-add to
2530 * a directory-delete entry later.
2532 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2533 } else {
2535 * Dispose of the record (race case). Mark as
2536 * deleted by backend (and not committed).
2538 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2539 record->flags |= HAMMER_RECF_DELETED_BE;
2540 ++record->ip->rec_generation;
2541 error = 0;
2542 goto done;
2547 * Assign the create_tid for new records. Deletions already
2548 * have the record's entire key properly set up.
2550 if (record->type != HAMMER_MEM_RECORD_DEL) {
2551 record->leaf.base.create_tid = trans->tid;
2552 record->leaf.create_ts = trans->time32;
2554 for (;;) {
2555 error = hammer_ip_sync_record_cursor(cursor, record);
2556 if (error != EDEADLK)
2557 break;
2558 hammer_done_cursor(cursor);
2559 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2560 record->ip);
2561 if (error)
2562 break;
2564 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2566 if (error)
2567 error = -error;
2568 done:
2569 hammer_flush_record_done(record, error);
2572 * Do partial finalization if we have built up too many dirty
2573 * buffers. Otherwise a buffer cache deadlock can occur when
2574 * doing things like creating tens of thousands of tiny files.
2576 * We must release our cursor lock to avoid a 3-way deadlock
2577 * due to the exclusive sync lock the finalizer must get.
2579 if (hammer_flusher_meta_limit(hmp)) {
2580 hammer_unlock_cursor(cursor);
2581 hammer_flusher_finalize(trans, 0);
2582 hammer_lock_cursor(cursor);
2585 return(error);
2589 * Backend function called by the flusher to sync an inode to media.
2592 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2594 struct hammer_cursor cursor;
2595 hammer_node_t tmp_node;
2596 hammer_record_t depend;
2597 hammer_record_t next;
2598 int error, tmp_error;
2599 u_int64_t nlinks;
2601 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2602 return(0);
2604 error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2605 if (error)
2606 goto done;
2609 * Any directory records referencing this inode which are not in
2610 * our current flush group must adjust our nlink count for the
2611 * purposes of synchronization to disk.
2613 * Records which are in our flush group can be unlinked from our
2614 * inode now, potentially allowing the inode to be physically
2615 * deleted.
2617 * This cannot block.
2619 nlinks = ip->ino_data.nlinks;
2620 next = TAILQ_FIRST(&ip->target_list);
2621 while ((depend = next) != NULL) {
2622 next = TAILQ_NEXT(depend, target_entry);
2623 if (depend->flush_state == HAMMER_FST_FLUSH &&
2624 depend->flush_group == ip->flush_group) {
2626 * If this is an ADD that was deleted by the frontend
2627 * the frontend nlinks count will have already been
2628 * decremented, but the backend is going to sync its
2629 * directory entry and must account for it. The
2630 * record will be converted to a delete-on-disk when
2631 * it gets synced.
2633 * If the ADD was not deleted by the frontend we
2634 * can remove the dependancy from our target_list.
2636 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2637 ++nlinks;
2638 } else {
2639 TAILQ_REMOVE(&ip->target_list, depend,
2640 target_entry);
2641 depend->target_ip = NULL;
2643 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2645 * Not part of our flush group and not deleted by
2646 * the front-end, adjust the link count synced to
2647 * the media (undo what the frontend did when it
2648 * queued the record).
2650 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2651 switch(depend->type) {
2652 case HAMMER_MEM_RECORD_ADD:
2653 --nlinks;
2654 break;
2655 case HAMMER_MEM_RECORD_DEL:
2656 ++nlinks;
2657 break;
2658 default:
2659 break;
2665 * Set dirty if we had to modify the link count.
2667 if (ip->sync_ino_data.nlinks != nlinks) {
2668 KKASSERT((int64_t)nlinks >= 0);
2669 ip->sync_ino_data.nlinks = nlinks;
2670 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2674 * If there is a trunction queued destroy any data past the (aligned)
2675 * truncation point. Userland will have dealt with the buffer
2676 * containing the truncation point for us.
2678 * We don't flush pending frontend data buffers until after we've
2679 * dealt with the truncation.
2681 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2683 * Interlock trunc_off. The VOP front-end may continue to
2684 * make adjustments to it while we are blocked.
2686 off_t trunc_off;
2687 off_t aligned_trunc_off;
2688 int blkmask;
2690 trunc_off = ip->sync_trunc_off;
2691 blkmask = hammer_blocksize(trunc_off) - 1;
2692 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2695 * Delete any whole blocks on-media. The front-end has
2696 * already cleaned out any partial block and made it
2697 * pending. The front-end may have updated trunc_off
2698 * while we were blocked so we only use sync_trunc_off.
2700 * This operation can blow out the buffer cache, EWOULDBLOCK
2701 * means we were unable to complete the deletion. The
2702 * deletion will update sync_trunc_off in that case.
2704 error = hammer_ip_delete_range(&cursor, ip,
2705 aligned_trunc_off,
2706 0x7FFFFFFFFFFFFFFFLL, 2);
2707 if (error == EWOULDBLOCK) {
2708 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2709 error = 0;
2710 goto defer_buffer_flush;
2713 if (error)
2714 goto done;
2717 * Clear the truncation flag on the backend after we have
2718 * complete the deletions. Backend data is now good again
2719 * (including new records we are about to sync, below).
2721 * Leave sync_trunc_off intact. As we write additional
2722 * records the backend will update sync_trunc_off. This
2723 * tells the backend whether it can skip the overwrite
2724 * test. This should work properly even when the backend
2725 * writes full blocks where the truncation point straddles
2726 * the block because the comparison is against the base
2727 * offset of the record.
2729 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2730 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2731 } else {
2732 error = 0;
2736 * Now sync related records. These will typically be directory
2737 * entries, records tracking direct-writes, or delete-on-disk records.
2739 if (error == 0) {
2740 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2741 hammer_sync_record_callback, &cursor);
2742 if (tmp_error < 0)
2743 tmp_error = -error;
2744 if (tmp_error)
2745 error = tmp_error;
2747 hammer_cache_node(&ip->cache[1], cursor.node);
2750 * Re-seek for inode update, assuming our cache hasn't been ripped
2751 * out from under us.
2753 if (error == 0) {
2754 tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
2755 if (tmp_node) {
2756 hammer_cursor_downgrade(&cursor);
2757 hammer_lock_sh(&tmp_node->lock);
2758 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2759 hammer_cursor_seek(&cursor, tmp_node, 0);
2760 hammer_unlock(&tmp_node->lock);
2761 hammer_rel_node(tmp_node);
2763 error = 0;
2767 * If we are deleting the inode the frontend had better not have
2768 * any active references on elements making up the inode.
2770 * The call to hammer_ip_delete_clean() cleans up auxillary records
2771 * but not DB or DATA records. Those must have already been deleted
2772 * by the normal truncation mechanic.
2774 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2775 RB_EMPTY(&ip->rec_tree) &&
2776 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2777 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2778 int count1 = 0;
2780 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2781 if (error == 0) {
2782 ip->flags |= HAMMER_INODE_DELETED;
2783 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2784 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2785 KKASSERT(RB_EMPTY(&ip->rec_tree));
2788 * Set delete_tid in both the frontend and backend
2789 * copy of the inode record. The DELETED flag handles
2790 * this, do not set RDIRTY.
2792 ip->ino_leaf.base.delete_tid = trans->tid;
2793 ip->sync_ino_leaf.base.delete_tid = trans->tid;
2794 ip->ino_leaf.delete_ts = trans->time32;
2795 ip->sync_ino_leaf.delete_ts = trans->time32;
2799 * Adjust the inode count in the volume header
2801 hammer_sync_lock_sh(trans);
2802 if (ip->flags & HAMMER_INODE_ONDISK) {
2803 hammer_modify_volume_field(trans,
2804 trans->rootvol,
2805 vol0_stat_inodes);
2806 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2807 hammer_modify_volume_done(trans->rootvol);
2809 hammer_sync_unlock(trans);
2813 if (error)
2814 goto done;
2815 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2817 defer_buffer_flush:
2819 * Now update the inode's on-disk inode-data and/or on-disk record.
2820 * DELETED and ONDISK are managed only in ip->flags.
2822 * In the case of a defered buffer flush we still update the on-disk
2823 * inode to satisfy visibility requirements if there happen to be
2824 * directory dependancies.
2826 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2827 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2829 * If deleted and on-disk, don't set any additional flags.
2830 * the delete flag takes care of things.
2832 * Clear flags which may have been set by the frontend.
2834 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2835 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2836 HAMMER_INODE_DELETING);
2837 break;
2838 case HAMMER_INODE_DELETED:
2840 * Take care of the case where a deleted inode was never
2841 * flushed to the disk in the first place.
2843 * Clear flags which may have been set by the frontend.
2845 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2846 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2847 HAMMER_INODE_DELETING);
2848 while (RB_ROOT(&ip->rec_tree)) {
2849 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2850 hammer_ref(&record->lock);
2851 KKASSERT(record->lock.refs == 1);
2852 record->flags |= HAMMER_RECF_DELETED_BE;
2853 ++record->ip->rec_generation;
2854 hammer_rel_mem_record(record);
2856 break;
2857 case HAMMER_INODE_ONDISK:
2859 * If already on-disk, do not set any additional flags.
2861 break;
2862 default:
2864 * If not on-disk and not deleted, set DDIRTY to force
2865 * an initial record to be written.
2867 * Also set the create_tid in both the frontend and backend
2868 * copy of the inode record.
2870 ip->ino_leaf.base.create_tid = trans->tid;
2871 ip->ino_leaf.create_ts = trans->time32;
2872 ip->sync_ino_leaf.base.create_tid = trans->tid;
2873 ip->sync_ino_leaf.create_ts = trans->time32;
2874 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2875 break;
2879 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
2880 * is already on-disk the old record is marked as deleted.
2882 * If DELETED is set hammer_update_inode() will delete the existing
2883 * record without writing out a new one.
2885 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2887 if (ip->flags & HAMMER_INODE_DELETED) {
2888 error = hammer_update_inode(&cursor, ip);
2889 } else
2890 if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2891 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2892 error = hammer_update_itimes(&cursor, ip);
2893 } else
2894 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2895 error = hammer_update_inode(&cursor, ip);
2897 done:
2898 if (error) {
2899 hammer_critical_error(ip->hmp, ip, error,
2900 "while syncing inode");
2902 hammer_done_cursor(&cursor);
2903 return(error);
2907 * This routine is called when the OS is no longer actively referencing
2908 * the inode (but might still be keeping it cached), or when releasing
2909 * the last reference to an inode.
2911 * At this point if the inode's nlinks count is zero we want to destroy
2912 * it, which may mean destroying it on-media too.
2914 void
2915 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2917 struct vnode *vp;
2920 * Set the DELETING flag when the link count drops to 0 and the
2921 * OS no longer has any opens on the inode.
2923 * The backend will clear DELETING (a mod flag) and set DELETED
2924 * (a state flag) when it is actually able to perform the
2925 * operation.
2927 * Don't reflag the deletion if the flusher is currently syncing
2928 * one that was already flagged. A previously set DELETING flag
2929 * may bounce around flags and sync_flags until the operation is
2930 * completely done.
2932 if (ip->ino_data.nlinks == 0 &&
2933 ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2934 ip->flags |= HAMMER_INODE_DELETING;
2935 ip->flags |= HAMMER_INODE_TRUNCATED;
2936 ip->trunc_off = 0;
2937 vp = NULL;
2938 if (getvp) {
2939 if (hammer_get_vnode(ip, &vp) != 0)
2940 return;
2944 * Final cleanup
2946 if (ip->vp) {
2947 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2948 vnode_pager_setsize(ip->vp, 0);
2950 if (getvp) {
2951 vput(vp);
2957 * After potentially resolving a dependancy the inode is tested
2958 * to determine whether it needs to be reflushed.
2960 void
2961 hammer_test_inode(hammer_inode_t ip)
2963 if (ip->flags & HAMMER_INODE_REFLUSH) {
2964 ip->flags &= ~HAMMER_INODE_REFLUSH;
2965 hammer_ref(&ip->lock);
2966 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2967 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2968 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2969 } else {
2970 hammer_flush_inode(ip, 0);
2972 hammer_rel_inode(ip, 0);
2977 * Clear the RECLAIM flag on an inode. This occurs when the inode is
2978 * reassociated with a vp or just before it gets freed.
2980 * Pipeline wakeups to threads blocked due to an excessive number of
2981 * detached inodes. The reclaim count generates a bit of negative
2982 * feedback.
2984 static void
2985 hammer_inode_wakereclaims(hammer_inode_t ip, int dowake)
2987 struct hammer_reclaim *reclaim;
2988 hammer_mount_t hmp = ip->hmp;
2990 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2991 return;
2993 --hammer_count_reclaiming;
2994 --hmp->inode_reclaims;
2995 ip->flags &= ~HAMMER_INODE_RECLAIM;
2997 if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT || dowake) {
2998 reclaim = TAILQ_FIRST(&hmp->reclaim_list);
2999 if (reclaim && reclaim->count > 0 && --reclaim->count == 0) {
3000 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3001 wakeup(reclaim);
3007 * Setup our reclaim pipeline. We only let so many detached (and dirty)
3008 * inodes build up before we start blocking.
3010 * When we block we don't care *which* inode has finished reclaiming,
3011 * as lone as one does. This is somewhat heuristical... we also put a
3012 * cap on how long we are willing to wait.
3014 void
3015 hammer_inode_waitreclaims(hammer_mount_t hmp)
3017 struct hammer_reclaim reclaim;
3018 int delay;
3020 if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT)
3021 return;
3022 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
3023 (HAMMER_RECLAIM_WAIT * 3) + 1;
3024 if (delay > 0) {
3025 reclaim.count = 2;
3026 TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3027 tsleep(&reclaim, 0, "hmrrcm", delay);
3028 if (reclaim.count > 0)
3029 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3034 * A larger then normal backlog of inodes is sitting in the flusher,
3035 * enforce a general slowdown to let it catch up. This routine is only
3036 * called on completion of a non-flusher-related transaction which
3037 * performed B-Tree node I/O.
3039 * It is possible for the flusher to stall in a continuous load.
3040 * blogbench -i1000 -o seems to do a good job generating this sort of load.
3041 * If the flusher is unable to catch up the inode count can bloat until
3042 * we run out of kvm.
3044 * This is a bit of a hack.
3046 void
3047 hammer_inode_waithard(hammer_mount_t hmp)
3050 * Hysteresis.
3052 if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3053 if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT / 2 &&
3054 hmp->count_iqueued < hmp->count_inodes / 20) {
3055 hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3056 return;
3058 } else {
3059 if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT ||
3060 hmp->count_iqueued < hmp->count_inodes / 10) {
3061 return;
3063 hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3067 * Block for one flush cycle.
3069 hammer_flusher_wait_next(hmp);