bsd.dep.mk: fix race condition with beforedepend
[dragonfly.git] / sys / crypto / sha2 / sha2.c
bloba6ecc1607edaab42692475a887347f7de851debd
1 /*
2 * $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $
3 * $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $
4 * $DragonFly: src/sys/crypto/sha2/sha2.c,v 1.4 2004/02/12 23:14:05 joerg Exp $
5 */
6 /*
7 * sha2.c
9 * Version 1.0.0beta1
11 * Written by Aaron D. Gifford <me@aarongifford.com>
13 * Copyright 2000 Aaron D. Gifford. All rights reserved.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the copyright holder nor the names of contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/time.h>
45 #include <sys/systm.h>
46 #include <machine/endian.h>
47 #include <crypto/sha2/sha2.h>
50 * ASSERT NOTE:
51 * Some sanity checking code is included using assert(). On my FreeBSD
52 * system, this additional code can be removed by compiling with NDEBUG
53 * defined. Check your own systems manpage on assert() to see how to
54 * compile WITHOUT the sanity checking code on your system.
56 * UNROLLED TRANSFORM LOOP NOTE:
57 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
58 * loop version for the hash transform rounds (defined using macros
59 * later in this file). Either define on the command line, for example:
61 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
63 * or define below:
65 * #define SHA2_UNROLL_TRANSFORM
69 #if defined(__DragonFly__) || defined(__bsdi__) || defined(__FreeBSD__)
70 #define assert(x)
71 #endif
74 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
76 * BYTE_ORDER NOTE:
78 * Please make sure that your system defines BYTE_ORDER. If your
79 * architecture is little-endian, make sure it also defines
80 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
81 * equivilent.
83 * If your system does not define the above, then you can do so by
84 * hand like this:
86 * #define LITTLE_ENDIAN 1234
87 * #define BIG_ENDIAN 4321
89 * And for little-endian machines, add:
91 * #define BYTE_ORDER LITTLE_ENDIAN
93 * Or for big-endian machines:
95 * #define BYTE_ORDER BIG_ENDIAN
97 * The FreeBSD machine this was written on defines BYTE_ORDER
98 * appropriately by including <sys/types.h> (which in turn includes
99 * <machine/endian.h> where the appropriate definitions are actually
100 * made).
102 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
103 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
104 #endif
107 * Define the followingsha2_* types to types of the correct length on
108 * the native archtecture. Most BSD systems and Linux define u_intXX_t
109 * types. Machines with very recent ANSI C headers, can use the
110 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
111 * during compile or in the sha.h header file.
113 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
114 * will need to define these three typedefs below (and the appropriate
115 * ones in sha.h too) by hand according to their system architecture.
117 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
118 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
120 #if 0 /*def SHA2_USE_INTTYPES_H*/
122 typedef uint8_t sha2_byte; /* Exactly 1 byte */
123 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
124 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
126 #else /* SHA2_USE_INTTYPES_H */
128 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
129 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
130 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
132 #endif /* SHA2_USE_INTTYPES_H */
135 /*** SHA-256/384/512 Various Length Definitions ***********************/
136 /* NOTE: Most of these are in sha2.h */
137 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
138 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
139 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
142 /*** ENDIAN REVERSAL MACROS *******************************************/
143 #if BYTE_ORDER == LITTLE_ENDIAN
144 #define REVERSE32(w,x) { \
145 sha2_word32 tmp = (w); \
146 tmp = (tmp >> 16) | (tmp << 16); \
147 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
149 #define REVERSE64(w,x) { \
150 sha2_word64 tmp = (w); \
151 tmp = (tmp >> 32) | (tmp << 32); \
152 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
153 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
154 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
155 ((tmp & 0x0000ffff0000ffffULL) << 16); \
157 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
160 * Macro for incrementally adding the unsigned 64-bit integer n to the
161 * unsigned 128-bit integer (represented using a two-element array of
162 * 64-bit words):
164 #define ADDINC128(w,n) { \
165 (w)[0] += (sha2_word64)(n); \
166 if ((w)[0] < (n)) { \
167 (w)[1]++; \
171 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
173 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
175 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
176 * S is a ROTATION) because the SHA-256/384/512 description document
177 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
178 * same "backwards" definition.
180 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
181 #define R(b,x) ((x) >> (b))
182 /* 32-bit Rotate-right (used in SHA-256): */
183 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
184 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
185 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
187 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
188 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
189 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
191 /* Four of six logical functions used in SHA-256: */
192 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
193 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
194 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
195 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
197 /* Four of six logical functions used in SHA-384 and SHA-512: */
198 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
199 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
200 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
201 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
203 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
204 /* NOTE: These should not be accessed directly from outside this
205 * library -- they are intended for private internal visibility/use
206 * only.
208 void SHA512_Last(SHA512_CTX*);
209 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
210 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 const static sha2_word32 K256[64] = {
216 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
234 /* Initial hash value H for SHA-256: */
235 const static sha2_word32 sha256_initial_hash_value[8] = {
236 0x6a09e667UL,
237 0xbb67ae85UL,
238 0x3c6ef372UL,
239 0xa54ff53aUL,
240 0x510e527fUL,
241 0x9b05688cUL,
242 0x1f83d9abUL,
243 0x5be0cd19UL
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 const static sha2_word64 K512[80] = {
248 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
290 /* Initial hash value H for SHA-384 */
291 const static sha2_word64 sha384_initial_hash_value[8] = {
292 0xcbbb9d5dc1059ed8ULL,
293 0x629a292a367cd507ULL,
294 0x9159015a3070dd17ULL,
295 0x152fecd8f70e5939ULL,
296 0x67332667ffc00b31ULL,
297 0x8eb44a8768581511ULL,
298 0xdb0c2e0d64f98fa7ULL,
299 0x47b5481dbefa4fa4ULL
302 /* Initial hash value H for SHA-512 */
303 const static sha2_word64 sha512_initial_hash_value[8] = {
304 0x6a09e667f3bcc908ULL,
305 0xbb67ae8584caa73bULL,
306 0x3c6ef372fe94f82bULL,
307 0xa54ff53a5f1d36f1ULL,
308 0x510e527fade682d1ULL,
309 0x9b05688c2b3e6c1fULL,
310 0x1f83d9abfb41bd6bULL,
311 0x5be0cd19137e2179ULL
315 * Constant used by SHA256/384/512_End() functions for converting the
316 * digest to a readable hexadecimal character string:
318 static const char *sha2_hex_digits = "0123456789abcdef";
321 /*** SHA-256: *********************************************************/
322 void SHA256_Init(SHA256_CTX* context) {
323 if (context == NULL) {
324 return;
326 bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
327 bzero(context->buffer, SHA256_BLOCK_LENGTH);
328 context->bitcount = 0;
331 #ifdef SHA2_UNROLL_TRANSFORM
333 /* Unrolled SHA-256 round macros: */
335 #if BYTE_ORDER == LITTLE_ENDIAN
337 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
338 REVERSE32(*data++, W256[j]); \
339 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
340 K256[j] + W256[j]; \
341 (d) += T1; \
342 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346 #else /* BYTE_ORDER == LITTLE_ENDIAN */
348 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
349 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
350 K256[j] + (W256[j] = *data++); \
351 (d) += T1; \
352 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
355 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
357 #define ROUND256(a,b,c,d,e,f,g,h) \
358 s0 = W256[(j+1)&0x0f]; \
359 s0 = sigma0_256(s0); \
360 s1 = W256[(j+14)&0x0f]; \
361 s1 = sigma1_256(s1); \
362 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
363 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
364 (d) += T1; \
365 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
368 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
369 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
370 sha2_word32 T1, *W256;
371 int j;
373 W256 = (sha2_word32*)context->buffer;
375 /* Initialize registers with the prev. intermediate value */
376 a = context->state[0];
377 b = context->state[1];
378 c = context->state[2];
379 d = context->state[3];
380 e = context->state[4];
381 f = context->state[5];
382 g = context->state[6];
383 h = context->state[7];
385 j = 0;
386 do {
387 /* Rounds 0 to 15 (unrolled): */
388 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
389 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
390 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
391 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
392 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
393 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
394 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
395 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
396 } while (j < 16);
398 /* Now for the remaining rounds to 64: */
399 do {
400 ROUND256(a,b,c,d,e,f,g,h);
401 ROUND256(h,a,b,c,d,e,f,g);
402 ROUND256(g,h,a,b,c,d,e,f);
403 ROUND256(f,g,h,a,b,c,d,e);
404 ROUND256(e,f,g,h,a,b,c,d);
405 ROUND256(d,e,f,g,h,a,b,c);
406 ROUND256(c,d,e,f,g,h,a,b);
407 ROUND256(b,c,d,e,f,g,h,a);
408 } while (j < 64);
410 /* Compute the current intermediate hash value */
411 context->state[0] += a;
412 context->state[1] += b;
413 context->state[2] += c;
414 context->state[3] += d;
415 context->state[4] += e;
416 context->state[5] += f;
417 context->state[6] += g;
418 context->state[7] += h;
420 /* Clean up */
421 a = b = c = d = e = f = g = h = T1 = 0;
424 #else /* SHA2_UNROLL_TRANSFORM */
426 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
427 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
428 sha2_word32 T1, T2, *W256;
429 int j;
431 W256 = (sha2_word32*)context->buffer;
433 /* Initialize registers with the prev. intermediate value */
434 a = context->state[0];
435 b = context->state[1];
436 c = context->state[2];
437 d = context->state[3];
438 e = context->state[4];
439 f = context->state[5];
440 g = context->state[6];
441 h = context->state[7];
443 j = 0;
444 do {
445 #if BYTE_ORDER == LITTLE_ENDIAN
446 /* Copy data while converting to host byte order */
447 REVERSE32(*data++,W256[j]);
448 /* Apply the SHA-256 compression function to update a..h */
449 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
450 #else /* BYTE_ORDER == LITTLE_ENDIAN */
451 /* Apply the SHA-256 compression function to update a..h with copy */
452 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
453 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
454 T2 = Sigma0_256(a) + Maj(a, b, c);
455 h = g;
456 g = f;
457 f = e;
458 e = d + T1;
459 d = c;
460 c = b;
461 b = a;
462 a = T1 + T2;
464 j++;
465 } while (j < 16);
467 do {
468 /* Part of the message block expansion: */
469 s0 = W256[(j+1)&0x0f];
470 s0 = sigma0_256(s0);
471 s1 = W256[(j+14)&0x0f];
472 s1 = sigma1_256(s1);
474 /* Apply the SHA-256 compression function to update a..h */
475 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
476 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
477 T2 = Sigma0_256(a) + Maj(a, b, c);
478 h = g;
479 g = f;
480 f = e;
481 e = d + T1;
482 d = c;
483 c = b;
484 b = a;
485 a = T1 + T2;
487 j++;
488 } while (j < 64);
490 /* Compute the current intermediate hash value */
491 context->state[0] += a;
492 context->state[1] += b;
493 context->state[2] += c;
494 context->state[3] += d;
495 context->state[4] += e;
496 context->state[5] += f;
497 context->state[6] += g;
498 context->state[7] += h;
500 /* Clean up */
501 a = b = c = d = e = f = g = h = T1 = T2 = 0;
504 #endif /* SHA2_UNROLL_TRANSFORM */
506 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
507 unsigned int freespace, usedspace;
509 if (len == 0) {
510 /* Calling with no data is valid - we do nothing */
511 return;
514 /* Sanity check: */
515 assert(context != NULL && data != NULL);
517 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
518 if (usedspace > 0) {
519 /* Calculate how much free space is available in the buffer */
520 freespace = SHA256_BLOCK_LENGTH - usedspace;
522 if (len >= freespace) {
523 /* Fill the buffer completely and process it */
524 bcopy(data, &context->buffer[usedspace], freespace);
525 context->bitcount += freespace << 3;
526 len -= freespace;
527 data += freespace;
528 SHA256_Transform(context, (sha2_word32*)context->buffer);
529 } else {
530 /* The buffer is not yet full */
531 bcopy(data, &context->buffer[usedspace], len);
532 context->bitcount += len << 3;
533 /* Clean up: */
534 usedspace = freespace = 0;
535 return;
538 while (len >= SHA256_BLOCK_LENGTH) {
539 /* Process as many complete blocks as we can */
540 SHA256_Transform(context, (const sha2_word32*)data);
541 context->bitcount += SHA256_BLOCK_LENGTH << 3;
542 len -= SHA256_BLOCK_LENGTH;
543 data += SHA256_BLOCK_LENGTH;
545 if (len > 0) {
546 /* There's left-overs, so save 'em */
547 bcopy(data, context->buffer, len);
548 context->bitcount += len << 3;
550 /* Clean up: */
551 usedspace = freespace = 0;
554 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
555 sha2_word32 *d = (sha2_word32*)digest;
556 unsigned int usedspace;
558 /* Sanity check: */
559 assert(context != NULL);
561 /* If no digest buffer is passed, we don't bother doing this: */
562 if (digest != NULL) {
563 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
564 #if BYTE_ORDER == LITTLE_ENDIAN
565 /* Convert FROM host byte order */
566 REVERSE64(context->bitcount,context->bitcount);
567 #endif
568 if (usedspace > 0) {
569 /* Begin padding with a 1 bit: */
570 context->buffer[usedspace++] = 0x80;
572 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
573 /* Set-up for the last transform: */
574 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
575 } else {
576 if (usedspace < SHA256_BLOCK_LENGTH) {
577 bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
579 /* Do second-to-last transform: */
580 SHA256_Transform(context, (sha2_word32*)context->buffer);
582 /* And set-up for the last transform: */
583 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
585 } else {
586 /* Set-up for the last transform: */
587 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
589 /* Begin padding with a 1 bit: */
590 *context->buffer = 0x80;
592 /* Set the bit count: */
593 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
595 /* Final transform: */
596 SHA256_Transform(context, (sha2_word32*)context->buffer);
598 #if BYTE_ORDER == LITTLE_ENDIAN
600 /* Convert TO host byte order */
601 int j;
602 for (j = 0; j < 8; j++) {
603 REVERSE32(context->state[j],context->state[j]);
604 *d++ = context->state[j];
607 #else
608 bcopy(context->state, d, SHA256_DIGEST_LENGTH);
609 #endif
612 /* Clean up state data: */
613 bzero(context, sizeof(context));
614 usedspace = 0;
617 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
618 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
619 int i;
621 /* Sanity check: */
622 assert(context != NULL);
624 if (buffer != NULL) {
625 SHA256_Final(digest, context);
627 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
628 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
629 *buffer++ = sha2_hex_digits[*d & 0x0f];
630 d++;
632 *buffer = (char)0;
633 } else {
634 bzero(context, sizeof(context));
636 bzero(digest, SHA256_DIGEST_LENGTH);
637 return buffer;
640 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
641 SHA256_CTX context;
643 SHA256_Init(&context);
644 SHA256_Update(&context, data, len);
645 return SHA256_End(&context, digest);
649 /*** SHA-512: *********************************************************/
650 void SHA512_Init(SHA512_CTX* context) {
651 if (context == NULL) {
652 return;
654 bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
655 bzero(context->buffer, SHA512_BLOCK_LENGTH);
656 context->bitcount[0] = context->bitcount[1] = 0;
659 #ifdef SHA2_UNROLL_TRANSFORM
661 /* Unrolled SHA-512 round macros: */
662 #if BYTE_ORDER == LITTLE_ENDIAN
664 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
665 REVERSE64(*data++, W512[j]); \
666 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
667 K512[j] + W512[j]; \
668 (d) += T1, \
669 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
673 #else /* BYTE_ORDER == LITTLE_ENDIAN */
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
677 K512[j] + (W512[j] = *data++); \
678 (d) += T1; \
679 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
682 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
684 #define ROUND512(a,b,c,d,e,f,g,h) \
685 s0 = W512[(j+1)&0x0f]; \
686 s0 = sigma0_512(s0); \
687 s1 = W512[(j+14)&0x0f]; \
688 s1 = sigma1_512(s1); \
689 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
690 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
691 (d) += T1; \
692 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
695 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
696 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
697 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
698 int j;
700 /* Initialize registers with the prev. intermediate value */
701 a = context->state[0];
702 b = context->state[1];
703 c = context->state[2];
704 d = context->state[3];
705 e = context->state[4];
706 f = context->state[5];
707 g = context->state[6];
708 h = context->state[7];
710 j = 0;
711 do {
712 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
713 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
714 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
715 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
716 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
717 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
718 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
719 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
720 } while (j < 16);
722 /* Now for the remaining rounds up to 79: */
723 do {
724 ROUND512(a,b,c,d,e,f,g,h);
725 ROUND512(h,a,b,c,d,e,f,g);
726 ROUND512(g,h,a,b,c,d,e,f);
727 ROUND512(f,g,h,a,b,c,d,e);
728 ROUND512(e,f,g,h,a,b,c,d);
729 ROUND512(d,e,f,g,h,a,b,c);
730 ROUND512(c,d,e,f,g,h,a,b);
731 ROUND512(b,c,d,e,f,g,h,a);
732 } while (j < 80);
734 /* Compute the current intermediate hash value */
735 context->state[0] += a;
736 context->state[1] += b;
737 context->state[2] += c;
738 context->state[3] += d;
739 context->state[4] += e;
740 context->state[5] += f;
741 context->state[6] += g;
742 context->state[7] += h;
744 /* Clean up */
745 a = b = c = d = e = f = g = h = T1 = 0;
748 #else /* SHA2_UNROLL_TRANSFORM */
750 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
751 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
752 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
753 int j;
755 /* Initialize registers with the prev. intermediate value */
756 a = context->state[0];
757 b = context->state[1];
758 c = context->state[2];
759 d = context->state[3];
760 e = context->state[4];
761 f = context->state[5];
762 g = context->state[6];
763 h = context->state[7];
765 j = 0;
766 do {
767 #if BYTE_ORDER == LITTLE_ENDIAN
768 /* Convert TO host byte order */
769 REVERSE64(*data++, W512[j]);
770 /* Apply the SHA-512 compression function to update a..h */
771 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
772 #else /* BYTE_ORDER == LITTLE_ENDIAN */
773 /* Apply the SHA-512 compression function to update a..h with copy */
774 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
775 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
776 T2 = Sigma0_512(a) + Maj(a, b, c);
777 h = g;
778 g = f;
779 f = e;
780 e = d + T1;
781 d = c;
782 c = b;
783 b = a;
784 a = T1 + T2;
786 j++;
787 } while (j < 16);
789 do {
790 /* Part of the message block expansion: */
791 s0 = W512[(j+1)&0x0f];
792 s0 = sigma0_512(s0);
793 s1 = W512[(j+14)&0x0f];
794 s1 = sigma1_512(s1);
796 /* Apply the SHA-512 compression function to update a..h */
797 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
798 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
799 T2 = Sigma0_512(a) + Maj(a, b, c);
800 h = g;
801 g = f;
802 f = e;
803 e = d + T1;
804 d = c;
805 c = b;
806 b = a;
807 a = T1 + T2;
809 j++;
810 } while (j < 80);
812 /* Compute the current intermediate hash value */
813 context->state[0] += a;
814 context->state[1] += b;
815 context->state[2] += c;
816 context->state[3] += d;
817 context->state[4] += e;
818 context->state[5] += f;
819 context->state[6] += g;
820 context->state[7] += h;
822 /* Clean up */
823 a = b = c = d = e = f = g = h = T1 = T2 = 0;
826 #endif /* SHA2_UNROLL_TRANSFORM */
828 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
829 unsigned int freespace, usedspace;
831 if (len == 0) {
832 /* Calling with no data is valid - we do nothing */
833 return;
836 /* Sanity check: */
837 assert(context != NULL && data != NULL);
839 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
840 if (usedspace > 0) {
841 /* Calculate how much free space is available in the buffer */
842 freespace = SHA512_BLOCK_LENGTH - usedspace;
844 if (len >= freespace) {
845 /* Fill the buffer completely and process it */
846 bcopy(data, &context->buffer[usedspace], freespace);
847 ADDINC128(context->bitcount, freespace << 3);
848 len -= freespace;
849 data += freespace;
850 SHA512_Transform(context, (sha2_word64*)context->buffer);
851 } else {
852 /* The buffer is not yet full */
853 bcopy(data, &context->buffer[usedspace], len);
854 ADDINC128(context->bitcount, len << 3);
855 /* Clean up: */
856 usedspace = freespace = 0;
857 return;
860 while (len >= SHA512_BLOCK_LENGTH) {
861 /* Process as many complete blocks as we can */
862 SHA512_Transform(context, (const sha2_word64*)data);
863 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
864 len -= SHA512_BLOCK_LENGTH;
865 data += SHA512_BLOCK_LENGTH;
867 if (len > 0) {
868 /* There's left-overs, so save 'em */
869 bcopy(data, context->buffer, len);
870 ADDINC128(context->bitcount, len << 3);
872 /* Clean up: */
873 usedspace = freespace = 0;
876 void SHA512_Last(SHA512_CTX* context) {
877 unsigned int usedspace;
879 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
880 #if BYTE_ORDER == LITTLE_ENDIAN
881 /* Convert FROM host byte order */
882 REVERSE64(context->bitcount[0],context->bitcount[0]);
883 REVERSE64(context->bitcount[1],context->bitcount[1]);
884 #endif
885 if (usedspace > 0) {
886 /* Begin padding with a 1 bit: */
887 context->buffer[usedspace++] = 0x80;
889 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
890 /* Set-up for the last transform: */
891 bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
892 } else {
893 if (usedspace < SHA512_BLOCK_LENGTH) {
894 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
896 /* Do second-to-last transform: */
897 SHA512_Transform(context, (sha2_word64*)context->buffer);
899 /* And set-up for the last transform: */
900 bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
902 } else {
903 /* Prepare for final transform: */
904 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
906 /* Begin padding with a 1 bit: */
907 *context->buffer = 0x80;
909 /* Store the length of input data (in bits): */
910 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
911 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
913 /* Final transform: */
914 SHA512_Transform(context, (sha2_word64*)context->buffer);
917 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
918 sha2_word64 *d = (sha2_word64*)digest;
920 /* Sanity check: */
921 assert(context != NULL);
923 /* If no digest buffer is passed, we don't bother doing this: */
924 if (digest != NULL) {
925 SHA512_Last(context);
927 /* Save the hash data for output: */
928 #if BYTE_ORDER == LITTLE_ENDIAN
930 /* Convert TO host byte order */
931 int j;
932 for (j = 0; j < 8; j++) {
933 REVERSE64(context->state[j],context->state[j]);
934 *d++ = context->state[j];
937 #else
938 bcopy(context->state, d, SHA512_DIGEST_LENGTH);
939 #endif
942 /* Zero out state data */
943 bzero(context, sizeof(context));
946 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
947 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
948 int i;
950 /* Sanity check: */
951 assert(context != NULL);
953 if (buffer != NULL) {
954 SHA512_Final(digest, context);
956 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
957 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
958 *buffer++ = sha2_hex_digits[*d & 0x0f];
959 d++;
961 *buffer = (char)0;
962 } else {
963 bzero(context, sizeof(context));
965 bzero(digest, SHA512_DIGEST_LENGTH);
966 return buffer;
969 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
970 SHA512_CTX context;
972 SHA512_Init(&context);
973 SHA512_Update(&context, data, len);
974 return SHA512_End(&context, digest);
978 /*** SHA-384: *********************************************************/
979 void SHA384_Init(SHA384_CTX* context) {
980 if (context == NULL) {
981 return;
983 bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
984 bzero(context->buffer, SHA384_BLOCK_LENGTH);
985 context->bitcount[0] = context->bitcount[1] = 0;
988 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
989 SHA512_Update((SHA512_CTX*)context, data, len);
992 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
993 sha2_word64 *d = (sha2_word64*)digest;
995 /* Sanity check: */
996 assert(context != NULL);
998 /* If no digest buffer is passed, we don't bother doing this: */
999 if (digest != NULL) {
1000 SHA512_Last((SHA512_CTX*)context);
1002 /* Save the hash data for output: */
1003 #if BYTE_ORDER == LITTLE_ENDIAN
1005 /* Convert TO host byte order */
1006 int j;
1007 for (j = 0; j < 6; j++) {
1008 REVERSE64(context->state[j],context->state[j]);
1009 *d++ = context->state[j];
1012 #else
1013 bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1014 #endif
1017 /* Zero out state data */
1018 bzero(context, sizeof(context));
1021 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1022 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1023 int i;
1025 /* Sanity check: */
1026 assert(context != NULL);
1028 if (buffer != NULL) {
1029 SHA384_Final(digest, context);
1031 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1032 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1033 *buffer++ = sha2_hex_digits[*d & 0x0f];
1034 d++;
1036 *buffer = (char)0;
1037 } else {
1038 bzero(context, sizeof(context));
1040 bzero(digest, SHA384_DIGEST_LENGTH);
1041 return buffer;
1044 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1045 SHA384_CTX context;
1047 SHA384_Init(&context);
1048 SHA384_Update(&context, data, len);
1049 return SHA384_End(&context, digest);